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Abstract We classify closed 3-braids which are L-space knots.
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1 Introduction

A rational homology 3-sphere Y is an L-space if |H1(Y;Z)| = rank ﬁ’(Y),
where HF denotes the ‘hat’ version of Heegaard Floer homology, and the name
stems from the fact that lens spaces are L-spaces. Besides lens spaces, exam-
ples of L-spaces include all connected sums of manifolds with elliptic geometry
[Ozsvéath and Szabd(2005)].

A prominent source of L-spaces arises from surgeries on knots. Suppose that
K is a knot in S3: if K admits a non-trivial surgery to an L-space, then K is an
L-space knot. Examples include torus knots and, more generally, Berge knots in
3. Various properties of L-space knots have been studied in the previous years;
the two particularly pertinent to our work are about the Alexander polynomial
Ak (t) of an L-space knot K:

— The absolute value of a nonzero coefficient of A (t) is 1. The set of nonzero
coefficients alternates in sign [Ozsvath and Szab6(2005), Corollary 1.3].

— If g is the maximum degree of Ag (t) in ¢, then the coefficient of the term 9"
is nonzero and therefore +1 [Hedden and Watson(2018)].

The purpose of this manuscript is to study which 3-braids, that close to form a
knot, admit L-space surgeries. To state our result we need to prepare a definition:
a twisted (3,q) torus knot, denoted K(3,q;2,7) where ¢ = +1 (mod 3), is the
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Fig. 1 The generator o;.

closure of a 3-braid made up of a (3,q) torus braid with = full twist(s) on two
adjacent strands. We prove that:

Theorem 1 The only knots with 3-braid representatives that admit L-space surg-
eries are K(3,q;2,r) where rq > 0.

Our proof of Theorem

2 The Jones polynomial, 3-braids, and the Alexander polynomial

We will first derive an expression of the Alexander polynomial of a closed 3-braid
in terms of the Jones polynomial. Let B,, be the n-strand braid group. The Burau
representation of By, is a map v from B, to n — 1 X n — 1 matrices with entries
in Z[t,t™ .

¥ : Bp — GL(n —1,Z[t,t')).

For n = 3, 4 is defined explicitly on the generators o1,02 (see Figure

Let a be an element of B3, a be the closed braid, and e, be the exponent
sum of a. In general for a € By, a being a knot implies that n — 1 + e, is even,
since if n — 1 + e, is odd, a quick argument by visual inspection shows that a has
more than one component. Thus for a € B3, where a is a knot, 2 + e, is even and
therefore eq is even. The Jones polynomial J;(t) of @ can be written in terms of
1 |Jones(1985)|:

Ja(t) = (—=Vt) " (t +t " + trace ¥(a)). (1)

The sign change on e, as compared to |Birman(1985), Eq. (5)], where this form of
the equation is from, is due to the difference in convention on the Jones polynomial.
When n = 3, the Alexander polynomial of ¢ may also be written in terms of the
trace of ¢ |Birman(1985), Eq. (7)]:

(1A (0) = (=) (12—t Ptrace w(a) +£%%),  (2)

with similar adjustments on the signs. Rearranging Equations (

This expression allows us to compute certain coefficients of the Alexander
polynomial from the Jones polynomial for closed 3-braids. To organize the compu-
tation, we will use Schreier’s [Schreier(1924)] normal form for each representative
of a conjugacy class.

Theorem 2 [Schreter(1924)] Let b € Bs be a braid on three strands, and C' be
the 3-braid (0102)°. Then b is conjugate to a braid in exactly one of the following
forms:
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CroProy M .. P20y % where k € Z and pi,qi, and s are all positive integers,
C*o?, for k,p € Z,

Ck0102, fO’I“ ke Z,

C*o10901, for k € Z, or

Ckoi020102, for k € 7.

SURSIRCIS

It suffices to study the 3-braids among the conjugacy representatives above to
determine which closed 3-braid is an L-space knot. It is straightforward to check
that C’kazl7 and C*o10901 represent links for any k, p € Z. Also, since C' = (0102)3,
we get that, for any k € Z, C¥o102 and C*o1020102 represent the (3,3k + 1) and
(3, 3k + 2) torus knots, respectively. Thus we will only need to study class (

Recall that if a nontrivial knot K is an L-space knot, then the absolute value
of a nonzero coefficient of the Alexander polynomial Ak (t) is 1, and the nonzero
coefficients alternate in sign. Moreover, let g be the maximum degree of Ak (¢) in ¢,
then the coefficients of the term 97! is nonzero and therefore +1. The symmetric
Alexander polynomial has the two possible forms given below for an L-space knot:

—1

t9 — 971 4 ... + terms in-between — ¢t 971 4 479

or
9 1971 _ ... _terms in-between -t~ 97D) 79,

Thus by a quick computation, we can conclude the following statement.

Lemma 1 Suppose that a nontrivial knot K is an L-space knot, then the product
Ar()- (T +141)

is a symmetric polynomial with coefficients in {—1,0,1}, which do not necessarily
alternate in sign, and the second coefficient and the second-to-last coefficient are
both zero.

The conjugacy representatives of class (1) in Theorem

The braid a = o}'oy ¥ -+ o*05 % is called an alternating 3-braid. The first
three coefficients and the last three coefficients of the Jones polynomial for the
closure of this class of 3-braids, as well as the degree, are explicitly calculated in
[Futer et al.(2010)Futer, Kalfagianni, and Purcell]. We assemble below the results
we will need.

Definition 1 For an alternating 3-braid a = o'oy @ - o= 0, %, let

S S
pi=Y pi, andq:= Y g,
i=1 i=1
so the exponent sum e, = p —q. We will call s the index of the alternating braid.

We have the following lemma from [Futer et al.(2010)Futer, Kalfagianni, and Purcell],
phrased in terms of the notations in this paper with item (c) replaced by a result
within the proof.
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Lemma 2 [Futer et al.(2010)Futer, Kalfagianni, and Purcell, Lemma 6.2] Sup-
pose that a link a is the closure of an alternating 3-braid a:

a=optoy . oitoy ",

with pi,qi, s >0 and p > 1 and q > 1, then the following holds.
(a) The highest and lowest powers, M(a) and m(a) of Ja(t) in t are

M(a) = 29=P 4ngm(a) = =3P
2 2
(b) The first two coefficients a, B in J5(t) from M(a) , and the last two coefficients
B, o in Ji(t) from m(a) are

a= (1P 8= (1P (s —eq), 8’ = ()T (5 — &), 0" = (-1),

where ep =1 if p=2 and 0 if p > 2, and similarly for eq.

(c¢) [Futer et al.(2010)Futer, Kalfagianni, and Purcell, Eq. (14) in the proof of Lemma
6.2] Let v,~" denote the third and the third-to-last coefficient of J;(t), respec-
tively. We have

2
(~1Py =552 i g = 1)~ {0 = 1)~ bass,
and
2
(—1)3y = & *2‘35 Cfiip =1} — i g = 1} — Sp_s,

where dq=3 1s zero if @ # 3 and 1 otherwise, and dp=3 is similarly defined.

Note that item (c) implies the original statement in item (c) of [Futer et al.(2010)Futer, Kalfagianni, and Purcell,
Lemma 6.2].
The next result writes the Jones polynomial of the closure of a generic 3-braid
in terms of the Jones polynomial of the closure of an alternating braid. Again, the
statement is phrased in terms of the notations in this paper.

Lemma 3 [Futer et al.(2010)Futer, Kalfagianni, and Purcell, Lemma 6.3] If b is
a generic 3-braid of the form

b= Cka,

where a is an alternating 3-braid, and let J;(t) denote the Jones polynomial of the
closure Z), then

Jy(t) = t7FJa(t) + (—VEO) (¢ + ) — 7).

By Equation (

We are now ready to determine which closed 3-braids are L-space knots. The
proof is outlined as follows: We will consider generic 3-braids and first rule out the
cases where the index s, as defined in Definition
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The cases = 2: Note that q > 2, p > 2 so the first, last, second, and penultimate
coefficients are distinct by Lemma 2 (a) since M (a) —m(a) > 4. If we have a strict
inequality p > 2 or q > 2, then the third and third-to-last coefficients are also
distinct.

If p > 2, then from Lemma

The case s =1: Assuming that p > 3 and q > 1 or q > 3 and p > 1, then
the first, last, second, penultimate, third, and third-to-last coefficients are distinct
since M (a)—m(a) > 4 by Lemma 2 (a). The absolute values of the third coefficient
v and the third-to-last coefficient v" of —t°*J;(t) have the form

2
W|:\(S +35—~#ﬁ:pi=1}—~#&:q¢=1}—6¢ﬁ>\

2
and
' 52+ 3s ) .
1= (52— i = 1}~ #{ 0s = 1}~ Fps
by Lemma

Setting (q + p)/2—2equal to (p—q)/2—1or (p—q)/2+ 1 givesq =1 or
q = 3. Setting (q + p)/2 — 2 equal to —3k — (p — q)/2 or 3k + (p — q)/2 gives
p = =3k + 2 or q = 3k + 2. Similarly, if p > 3 and q > 1, then we must have
p=3p=1,q=3k+2,or p=-3k+ 2.

We consider two cases: 1) p > 3 and q > 3, and 2) p > 3 and q > 3. We
suppose that k # 0. By the arguments made in the previous paragraph, we have
that || or |[y'| = 2, each of which needs to be canceled out by a term in

t_3k_(p—‘1)/2, t3k+(P_Q)/2.

If p >3, q > 3, then |y/| = 2 and we have that (q+p)/2—2= -3k — (p —q)/2
or 3k + (p — q)/2, which means p = —3k + 2 or q = 3k + 2. We cannot have that
p = —3k+2 and q = 3k+2 since they are both supposed to be positive. Therefore
we suppose that p = —3k + 2 or q = 3k + 2. In the first case, k is negative, and
—(P+q)/2+2=3k+(p—q)/2aswellas (q+ p)/2—2 = —3k—(p—q)/2. In the
second case, k is positive and —(p + q)/2+2=-3k—(p—q)/2, (p+q)/2—2 =
3k + (p — q)/2. This means that 7,7’ potentially cancel with the coefficients of
t—3k=¢€a/2 and ¢3F*+€e/2 in Equation (- Either way, we end up having, for k£ < 0,

Ar()- ¢ +141)

_ —3ki24q _ =3k+2+q 4 _ =8kt24a 4 , =3k424a _o
=+t 2 Ft 2 + ct 2 F-o-x ¢t 2 Ft
~————
contribution from -~y contribution from ~’
—3k+2-q _ 1 —3k+2-q 4 ¢
—+ t 2 —+ 2 +

do not contribute to the extremal coefficients «, a’, 8, 8’ shown in previous line, since it would force q = —1,0,1 or 2

—3k+2+a 4
2

—3k+2+4q
2

bl
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after cancelling the third and third-to-last coefficients of J, (t) with ¢t 2¢7¢/2 and
t3k+ea/2 Here ¢, ¢ are coefficients of the third and third-to-last term of the first
line that may cancel with the coefficients on the next line. (If they do not cancel
or p = 3 making |y| = 1, we can immediately rule out the possibility that bis an
L-space knot, since the resulting Alexander polynomial has no chance of satisfying
the conditions of Lemma

Ag(t) -t +141)

3k+2+p 3k+2+p
— e |

3k+2+p 3k+2+p 3k+2+p 3k+2+p
-T2 e 2 2 L4 2

= =+t 2 Ft ct F---x ct Ft
contribution from ~ contribution from ~’
—(Bk+2)+p ¢ —(Bk+2)+p 4 4
+ 2 +t 2"
do not contribute to the extremal coefficients «, a’, 8, 8’ shown in previous line, since it would force p = —1,0,1 or 2

One of the conditions from Lemma
For the remaining cases of p, q, we argue by directly looking at the Alexander
polynomial without involving coefficients v,v’. When both p,q = 3, we have that
the alternating 3-braid a takes the form iy 3. The Alexander polynomial of this
alternating 3-braid is
1 2 9
Da(t) =3+ 5 -5 =2+,
obtained by multiplying the Alexander polynomial of the trefoil by itself, since
this 3-braid is a connected sum of two (right-hand and left-hand) trefoils. It is
clear from the Alexander polynomial that this knot cannot be an L-space knot
due to the fact that several of its nonzero coefficients are not £1. Now we consider
a generic 3-braid b = C*a with a = 0%053. Since e, = 0, the highest power and
the lowest power of the Jones polynomial of & are 3 and —3. By Equation (,

_ 1 _
Dy ()(¢ 1+1+t):—Ja(t)+¥+t+t Bk
where
1 1 1 s 3
Jat) =3 = gt 5 =5 — bt 1%

When k # 0, it is clear that the constant term 3 of J;(t) will not be canceled out
by the terms %,t,t_?’k, or t 3%, Thus none of the closures of braids of the form
C*o305 % will be an L-space knot.

We may also rule out the case p = 2 or q = 2 since this would give a link
rather than a knot. After also ruling out the cases which would make e, odd, the

remaining generic 3-braids whose closure can be an L-space knot are given below.

Table 1 Remaining generic 3-braids whose closures can be L-space knots.

| Ckotoy? | for g odd. |
l Ckalfogl l for p odd. ‘
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We now claim that Ckafoz_l, for p odd and k > 0, represents an L-space knot.
Given (010201)% = (0201)? by the braid relations 010201 = 020102, note that:

(010201)2’%—{70;1 ~ (0201)3k0f051
~ (0_20_1)316710_]134»1.

The latter braid is the twisted torus knot, K(3,3k —1;2, p%l), which is known
to be an L-space knot [Vafaee(2014), Theorem 3.1].
Now if k¥ < 0 then

—1

o10201)* 0?0 1
102

1 1

—1 —1\— —
oy 01 ) Toyog
1 -1

-1 —
09 04

2

(o1 o1

1, -1 -1 -1 -1 _—-1_—1y—
~ 0oy (07 0y 01 0 0y 01 ) "0]

1, -1 -1 -1 _—1_—1_—1y—
~ 0oy (07 0y 0f oy ) toy

1

oy 01

1 1 1

-1, -1 -1 _—1 _—1_—1 —1\—k —
~ oy (07 0y 01 0y 01 03 ) "0 010,

—1 _—1\—3k+1 1
~ (o3 o1 ) * Uf+

~ (0_10_2)3]@—10_11)4-1.

Using the explicit form of the Alexander polynomial of a (3,3k — 1) torus knot
with ”Qi full twists in adjacent strings [Morton(2006), Theorem 4], we see that
none of these knots can be an L-space knot.

For k < 0, a similar argument shows that the closure of Cka%a;q, for ¢ odd,
also represents an L-space knot. Notice that in this case the knot is isotopic to the

—g—1 . . . . ey
closure of (o201)** 15, 97", so its mirror image admits a positive L-space surgery.

Looking at the Alexander polynomial of the closure of the braid Ckoiag 7~

(0102)3k+102_q_1 for k > 0 also shows that it does not represent an L-space knot.
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