

On 3-braids and L-space knots

Christine Ruey Shan Lee · Faramarz
Vafaee

Received: date / Accepted: date

Abstract We classify closed 3-braids which are L-space knots.

Keywords 3-braid · L-space · Jones polynomial

1 Introduction

A rational homology 3-sphere Y is an L-space if $|H_1(Y; \mathbb{Z})| = \text{rank } \widehat{HF}(Y)$, where \widehat{HF} denotes the ‘hat’ version of Heegaard Floer homology, and the name stems from the fact that lens spaces are L-spaces. Besides lens spaces, examples of L-spaces include all connected sums of manifolds with elliptic geometry [Ozsváth and Szabó(2005)].

A prominent source of L-spaces arises from surgeries on knots. Suppose that K is a knot in S^3 : if K admits a non-trivial surgery to an L-space, then K is an L-space knot. Examples include torus knots and, more generally, Berge knots in S^3 . Various properties of L-space knots have been studied in the previous years; the two particularly pertinent to our work are about the Alexander polynomial $\Delta_K(t)$ of an L-space knot K :

- The absolute value of a nonzero coefficient of $\Delta_K(t)$ is 1. The set of nonzero coefficients alternates in sign [Ozsváth and Szabó(2005), Corollary 1.3].
- If g is the maximum degree of $\Delta_K(t)$ in t , then the coefficient of the term t^{g-1} is nonzero and therefore ± 1 [Hedden and Watson(2018)].

The purpose of this manuscript is to study which 3-braids, that close to form a knot, admit L-space surgeries. To state our result we need to prepare a definition: a twisted $(3, q)$ torus knot, denoted $K(3, q; 2, r)$ where $q \equiv \pm 1 \pmod{3}$, is the

The first author is supported in part by National Science Foundation Grant DMS 1907010.

C. R. S. Lee
Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36608
E-mail: christine.rs.lee@gmail.com

F. Vafaee
E-mail: faramarz.vafaee@gmail.com

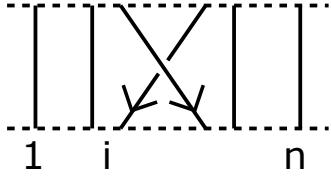


Fig. 1 The generator σ_i .

closure of a 3-braid made up of a $(3, q)$ torus braid with r full twist(s) on two adjacent strands. We prove that:

Theorem 1 *The only knots with 3-braid representatives that admit L-space surgeries are $K(3, q; 2, r)$ where $rq > 0$.*

Our proof of Theorem

2 The Jones polynomial, 3-braids, and the Alexander polynomial

We will first derive an expression of the Alexander polynomial of a closed 3-braid in terms of the Jones polynomial. Let B_n be the n -strand braid group. The *Burau representation* of B_n is a map ψ from B_n to $n-1 \times n-1$ matrices with entries in $\mathbb{Z}[t, t^{-1}]$.

$$\psi : B_n \rightarrow GL(n-1, \mathbb{Z}[t, t^{-1}]).$$

For $n = 3$, ψ is defined explicitly on the generators σ_1, σ_2 (see Figure

Let a be an element of B_3 , \hat{a} be the closed braid, and e_a be the exponent sum of a . In general for $a \in B_n$, \hat{a} being a knot implies that $n-1+e_a$ is even, since if $n-1+e_a$ is odd, a quick argument by visual inspection shows that \hat{a} has more than one component. Thus for $a \in B_3$, where \hat{a} is a knot, $2 \pm e_a$ is even and therefore e_a is even. The Jones polynomial $J_{\hat{a}}(t)$ of \hat{a} can be written in terms of ψ [Jones(1985)]:

$$J_{\hat{a}}(t) = (-\sqrt{t})^{-e_a} (t + t^{-1} + \text{trace } \psi(a)). \quad (1)$$

The sign change on e_a as compared to [Birman(1985), Eq. (5)], where this form of the equation is from, is due to the difference in convention on the Jones polynomial. When $n = 3$, the Alexander polynomial of \hat{a} may also be written in terms of the trace of ψ [Birman(1985), Eq. (7)]:

$$(t^{-1} + 1 + t) \Delta_{\hat{a}}(t) = (-1)^{-e_a} (t^{-e_a/2} - t^{e_a/2} \text{trace } \psi(a) + t^{e_a/2}), \quad (2)$$

with similar adjustments on the signs. Rearranging Equations (1) and (2)

This expression allows us to compute certain coefficients of the Alexander polynomial from the Jones polynomial for closed 3-braids. To organize the computation, we will use Schreier's [Schreier(1924)] normal form for each representative of a conjugacy class.

Theorem 2 [Schreier(1924)] *Let $b \in B_3$ be a braid on three strands, and C be the 3-braid $(\sigma_1 \sigma_2)^3$. Then b is conjugate to a braid in exactly one of the following forms:*

1. $C^k \sigma_1^{p_1} \sigma_2^{-q_1} \cdots \sigma_1^{p_s} \sigma_2^{-q_s}$, where $k \in \mathbb{Z}$ and p_i, q_i , and s are all positive integers,
2. $C^k \sigma_1^p$, for $k, p \in \mathbb{Z}$,
3. $C^k \sigma_1 \sigma_2$, for $k \in \mathbb{Z}$,
4. $C^k \sigma_1 \sigma_2 \sigma_1$, for $k \in \mathbb{Z}$, or
5. $C^k \sigma_1 \sigma_2 \sigma_1 \sigma_2$, for $k \in \mathbb{Z}$.

It suffices to study the 3-braids among the conjugacy representatives above to determine which closed 3-braid is an L-space knot. It is straightforward to check that $C^k \sigma_1^p$ and $C^k \sigma_1 \sigma_2 \sigma_1$ represent links for any $k, p \in \mathbb{Z}$. Also, since $C = (\sigma_1 \sigma_2)^3$, we get that, for any $k \in \mathbb{Z}$, $C^k \sigma_1 \sigma_2$ and $C^k \sigma_1 \sigma_2 \sigma_1 \sigma_2$ represent the $(3, 3k+1)$ and $(3, 3k+2)$ torus knots, respectively. Thus we will only need to study class (

Recall that if a nontrivial knot K is an L-space knot, then the absolute value of a nonzero coefficient of the Alexander polynomial $\Delta_K(t)$ is 1, and the nonzero coefficients alternate in sign. Moreover, let g be the maximum degree of $\Delta_K(t)$ in t , then the coefficients of the term t^{g-1} is nonzero and therefore ± 1 . The symmetric Alexander polynomial has the two possible forms given below for an L-space knot:

$$t^g - t^{g-1} + \cdots + \text{terms in-between} - t^{-(g-1)} + t^{-g}$$

or

$$-t^g + t^{g-1} - \cdots - \text{terms in-between} + t^{-(g-1)} - t^{-g}.$$

Thus by a quick computation, we can conclude the following statement.

Lemma 1 Suppose that a nontrivial knot K is an L-space knot, then the product

$$\Delta_K(t) \cdot (t^{-1} + 1 + t)$$

is a symmetric polynomial with coefficients in $\{-1, 0, 1\}$, which do not necessarily alternate in sign, and the second coefficient and the second-to-last coefficient are both zero.

The conjugacy representatives of class (1) in Theorem

The braid $a = \sigma_1^{p_1} \sigma_2^{-q_1} \cdots \sigma_1^{p_s} \sigma_2^{-q_s}$ is called an *alternating 3-braid*. The first three coefficients and the last three coefficients of the Jones polynomial for the closure of this class of 3-braids, as well as the degree, are explicitly calculated in [Futer et al.(2010)Futer, Kalfagianni, and Purcell]. We assemble below the results we will need.

Definition 1 For an alternating 3-braid $a = \sigma_1^{p_1} \sigma_2^{-q_1} \cdots \sigma_1^{p_s} \sigma_2^{-q_s}$, let

$$\mathbf{p} := \sum_{i=1}^s p_i, \text{ and } \mathbf{q} := \sum_{i=1}^s q_i,$$

so the exponent sum $e_a = \mathbf{p} - \mathbf{q}$. We will call s the *index* of the alternating braid.

We have the following lemma from [Futer et al.(2010)Futer, Kalfagianni, and Purcell], phrased in terms of the notations in this paper with item (c) replaced by a result within the proof.

Lemma 2 [Futer et al.(2010)Futer, Kalfagianni, and Purcell, Lemma 6.2] Suppose that a link \hat{a} is the closure of an alternating 3-braid a :

$$a = \sigma_1^{p_1} \sigma_2^{-q_1} \cdots \sigma_1^{p_s} \sigma_2^{-q_s},$$

with $p_i, q_i, s > 0$ and $\mathbf{p} > 1$ and $\mathbf{q} > 1$, then the following holds.

(a) The highest and lowest powers, $M(\hat{a})$ and $m(\hat{a})$ of $J_{\hat{a}}(t)$ in t are

$$M(\hat{a}) = \frac{3\mathbf{q} - \mathbf{p}}{2} \text{ and } m(\hat{a}) = \frac{\mathbf{q} - 3\mathbf{p}}{2}.$$

(b) The first two coefficients α, β in $J_{\hat{a}}(t)$ from $M(\hat{a})$, and the last two coefficients β', α' in $J_{\hat{a}}(t)$ from $m(\hat{a})$ are

$$\alpha = (-1)^{\mathbf{p}}, \beta = (-1)^{\mathbf{p}+1}(s - \epsilon_{\mathbf{q}}), \beta' = (-1)^{\mathbf{q}+1}(s - \epsilon_{\mathbf{p}}), \alpha' = (-1)^{\mathbf{q}},$$

where $\epsilon_{\mathbf{p}} = 1$ if $\mathbf{p} = 2$ and 0 if $\mathbf{p} > 2$, and similarly for $\epsilon_{\mathbf{q}}$.

(c) [Futer et al.(2010)Futer, Kalfagianni, and Purcell, Eq. (14) in the proof of Lemma 6.2] Let γ, γ' denote the third and the third-to-last coefficient of $J_{\hat{a}}(t)$, respectively. We have

$$(-1)^{\mathbf{p}}\gamma = \frac{s^2 + 3s}{2} - \#\{i : p_i = 1\} - \#\{i : q_i = 1\} - \delta_{\mathbf{q}=3},$$

and

$$(-1)^{\mathbf{q}}\gamma' = \frac{s^2 + 3s}{2} - \#\{i : p_i = 1\} - \#\{i : q_i = 1\} - \delta_{\mathbf{p}=3},$$

where $\delta_{\mathbf{q}=3}$ is zero if $\mathbf{q} \neq 3$ and 1 otherwise, and $\delta_{\mathbf{p}=3}$ is similarly defined.

Note that item (c) implies the original statement in item (c) of [Futer et al.(2010)Futer, Kalfagianni, and Purcell, Lemma 6.2].

The next result writes the Jones polynomial of the closure of a generic 3-braid in terms of the Jones polynomial of the closure of an alternating braid. Again, the statement is phrased in terms of the notations in this paper.

Lemma 3 [Futer et al.(2010)Futer, Kalfagianni, and Purcell, Lemma 6.3] If b is a generic 3-braid of the form

$$b = C^k a,$$

where a is an alternating 3-braid, and let $J_{\hat{b}}(t)$ denote the Jones polynomial of the closure \hat{b} , then

$$J_{\hat{b}}(t) = t^{-6k} J_{\hat{a}}(t) + (-\sqrt{t})^{-e_a} (t + t^{-1})(t^{-3k} - t^{-6k}).$$

By Equation (

We are now ready to determine which closed 3-braids are L-space knots. The proof is outlined as follows: We will consider generic 3-braids and first rule out the cases where the index s , as defined in Definition

The case $s = 2$: Note that $\mathbf{q} \geq 2, \mathbf{p} \geq 2$ so the first, last, second, and penultimate coefficients are distinct by Lemma 2 (a) since $M(\hat{a}) - m(\hat{a}) \geq 4$. If we have a strict inequality $\mathbf{p} > 2$ or $\mathbf{q} > 2$, then the third and third-to-last coefficients are also distinct.

If $\mathbf{p} > 2$, then from Lemma

The case $s = 1$: Assuming that $\mathbf{p} > 3$ and $\mathbf{q} \geq 1$ or $\mathbf{q} > 3$ and $\mathbf{p} \geq 1$, then the first, last, second, penultimate, third, and third-to-last coefficients are distinct since $M(\hat{a}) - m(\hat{a}) > 4$ by Lemma 2 (a). The absolute values of the third coefficient γ and the third-to-last coefficient γ' of $-t^{e_a} J_{\hat{a}}(t)$ have the form

$$|\gamma| = \left| \left(\frac{s^2 + 3s}{2} - \#\{i : p_i = 1\} - \#\{i : q_i = 1\} - \delta_{\mathbf{q}=3} \right) \right|,$$

and

$$|\gamma'| = \left| \left(\frac{s^2 + 3s}{2} - \#\{i : p_i = 1\} - \#\{i : q_i = 1\} - \delta_{\mathbf{p}=3} \right) \right|,$$

by Lemma

Setting $(\mathbf{q} + \mathbf{p})/2 - 2$ equal to $(\mathbf{p} - \mathbf{q})/2 - 1$ or $(\mathbf{p} - \mathbf{q})/2 + 1$ gives $\mathbf{q} = 1$ or $\mathbf{q} = 3$. Setting $(\mathbf{q} + \mathbf{p})/2 - 2$ equal to $-3k - (\mathbf{p} - \mathbf{q})/2$ or $3k + (\mathbf{p} - \mathbf{q})/2$ gives $\mathbf{p} = -3k + 2$ or $\mathbf{q} = 3k + 2$. Similarly, if $\mathbf{p} > 3$ and $\mathbf{q} > 1$, then we must have $\mathbf{p} = 3, \mathbf{p} = 1, \mathbf{q} = 3k + 2$, or $\mathbf{p} = -3k + 2$.

We consider two cases: 1) $\mathbf{p} \geq 3$ and $\mathbf{q} > 3$, and 2) $\mathbf{p} > 3$ and $\mathbf{q} \geq 3$. We suppose that $k \neq 0$. By the arguments made in the previous paragraph, we have that $|\gamma|$ or $|\gamma'| = 2$, each of which needs to be canceled out by a term in

$$t^{-3k - (\mathbf{p} - \mathbf{q})/2}, t^{3k + (\mathbf{p} - \mathbf{q})/2}.$$

If $\mathbf{p} \geq 3, \mathbf{q} > 3$, then $|\gamma'| = 2$ and we have that $(\mathbf{q} + \mathbf{p})/2 - 2 = -3k - (\mathbf{p} - \mathbf{q})/2$ or $3k + (\mathbf{p} - \mathbf{q})/2$, which means $\mathbf{p} = -3k + 2$ or $\mathbf{q} = 3k + 2$. We cannot have that $\mathbf{p} = -3k + 2$ and $\mathbf{q} = 3k + 2$ since they are both supposed to be positive. Therefore we suppose that $\mathbf{p} = -3k + 2$ or $\mathbf{q} = 3k + 2$. In the first case, k is negative, and $-(\mathbf{p} + \mathbf{q})/2 + 2 = 3k + (\mathbf{p} - \mathbf{q})/2$ as well as $(\mathbf{q} + \mathbf{p})/2 - 2 = -3k - (\mathbf{p} - \mathbf{q})/2$. In the second case, k is positive and $-(\mathbf{p} + \mathbf{q})/2 + 2 = -3k - (\mathbf{p} - \mathbf{q})/2$, $(\mathbf{p} + \mathbf{q})/2 - 2 = 3k + (\mathbf{p} - \mathbf{q})/2$. This means that γ, γ' potentially cancel with the coefficients of $t^{-3k - e_a/2}$ and $t^{3k + e_a/2}$ in Equation (. Either way, we end up having, for $k < 0$,

$$\begin{aligned} & \Delta_K(t) \cdot (t^{-1} + 1 + t) \\ &= \pm t^{-\frac{-3k+2+\mathbf{q}}{2}} \mp t^{-\frac{-3k+2+\mathbf{q}}{2}+1} \pm \underbrace{ct^{-\frac{-3k+2+\mathbf{q}}{2}+2}}_{\text{contribution from } \gamma} \mp \cdots \pm \underbrace{c't^{\frac{-3k+2+\mathbf{q}}{2}-2}}_{\text{contribution from } \gamma'} \mp t^{\frac{-3k+2+\mathbf{q}}{2}-1} \pm t^{\frac{-3k+2+\mathbf{q}}{2}} \\ &+ \underbrace{t^{\frac{-3k+2-\mathbf{q}}{2}-1} + t^{\frac{-3k+2-\mathbf{q}}{2}+1}}_{\text{do not contribute to the extremal coefficients } \alpha, \alpha', \beta, \beta' \text{ shown in previous line, since it would force } \mathbf{q} = -1, 0, 1 \text{ or } 2}, \end{aligned}$$

after cancelling the third and third-to-last coefficients of $J_{\hat{a}}(t)$ with $t^{-3k-e_a/2}$ and $t^{3k+e_a/2}$. Here c, c' are coefficients of the third and third-to-last term of the first line that may cancel with the coefficients on the next line. (If they do not cancel or $\mathbf{p} = 3$ making $|\gamma| = 1$, we can immediately rule out the possibility that \hat{b} is an L-space knot, since the resulting Alexander polynomial has no chance of satisfying the conditions of Lemma

$$\begin{aligned} \Delta_K(t) \cdot (t^{-1} + 1 + t) \\ = \pm t^{-\frac{3k+2+\mathbf{p}}{2}} \mp t^{-\frac{3k+2+\mathbf{p}}{2}+1} \pm \underbrace{ct^{-\frac{3k+2+\mathbf{p}}{2}+2}}_{\text{contribution from } \gamma} \mp \cdots \pm \underbrace{c't^{\frac{3k+2+\mathbf{p}}{2}-2}}_{\text{contribution from } \gamma'} \mp t^{\frac{3k+2+\mathbf{p}}{2}-1} \pm t^{\frac{3k+2+\mathbf{p}}{2}} \\ + \underbrace{t^{\frac{-(3k+2)+\mathbf{p}}{2}-1} + t^{\frac{-(3k+2)+\mathbf{p}}{2}+1}}_{\text{do not contribute to the extremal coefficients } \alpha, \alpha', \beta, \beta' \text{ shown in previous line, since it would force } \mathbf{p} = -1, 0, 1 \text{ or } 2} \end{aligned} .$$

One of the conditions from Lemma

For the remaining cases of \mathbf{p}, \mathbf{q} , we argue by directly looking at the Alexander polynomial without involving coefficients γ, γ' . When both $\mathbf{p}, \mathbf{q} = 3$, we have that the alternating 3-braid a takes the form $\sigma_1^3 \sigma_2^{-3}$. The Alexander polynomial of this alternating 3-braid is

$$\Delta_a(t) = 3 + \frac{1}{t^2} - \frac{2}{t} - 2t + t^2,$$

obtained by multiplying the Alexander polynomial of the trefoil by itself, since this 3-braid is a connected sum of two (right-hand and left-hand) trefoils. It is clear from the Alexander polynomial that this knot cannot be an L-space knot due to the fact that several of its nonzero coefficients are not ± 1 . Now we consider a generic 3-braid $b = C^k a$ with $a = \sigma_1^3 \sigma_2^{-3}$. Since $e_a = 0$, the highest power and the lowest power of the Jones polynomial of \hat{a} are 3 and -3 . By Equation (,

$$\Delta_{\hat{b}}(t)(t^{-1} + 1 + t) = -J_{\hat{a}}(t) + \frac{1}{t} + t + t^{-3k} + t^{3k},$$

where

$$J_{\hat{a}}(t) = 3 - \frac{1}{t^3} + \frac{1}{t^2} - \frac{1}{t} - t + t^2 - t^3.$$

When $k \neq 0$, it is clear that the constant term 3 of $J_{\hat{a}}(t)$ will not be canceled out by the terms $\frac{1}{t}, t, t^{-3k}$, or t^{-3k} . Thus none of the closures of braids of the form $C^k \sigma_1^3 \sigma_2^{-3}$ will be an L-space knot.

We may also rule out the case $\mathbf{p} = 2$ or $\mathbf{q} = 2$ since this would give a link rather than a knot. After also ruling out the cases which would make e_a odd, the remaining generic 3-braids whose closure can be an L-space knot are given below.

Table 1 Remaining generic 3-braids whose closures can be L-space knots.

$C^k \sigma_1^1 \sigma_2^{-q}$	for q odd.
$C^k \sigma_1^p \sigma_2^{-1}$	for p odd.

We now claim that $C^k \sigma_1^p \sigma_2^{-1}$, for p odd and $k > 0$, represents an L-space knot. Given $(\sigma_1 \sigma_2 \sigma_1)^2 = (\sigma_2 \sigma_1)^3$ by the braid relations $\sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2$, note that:

$$\begin{aligned} (\sigma_1 \sigma_2 \sigma_1)^{2k} \sigma_1^p \sigma_2^{-1} &\sim (\sigma_2 \sigma_1)^{3k} \sigma_1^p \sigma_2^{-1} \\ &\sim (\sigma_2 \sigma_1)^{3k-1} \sigma_1^{p+1}. \end{aligned}$$

The latter braid is the twisted torus knot, $K(3, 3k-1; 2, \frac{p+1}{2})$, which is known to be an L-space knot [Vafaee(2014), Theorem 3.1].

Now if $k < 0$ then

$$\begin{aligned} (\sigma_1 \sigma_2 \sigma_1)^{2k} \sigma_1^p \sigma_2^{-1} &\sim (\sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1} \sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1})^{-k} \sigma_1^p \sigma_2^{-1} \\ &\sim \sigma_2^{-1} (\sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1} \sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1})^{-k} \sigma_1^p \\ &\sim \sigma_2^{-1} (\sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1} \sigma_2^{-1})^{-k} \sigma_1^p \\ &\sim \sigma_2^{-1} (\sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1} \sigma_2^{-1} \sigma_1^{-1} \sigma_2^{-1})^{-k} \sigma_1^{-1} \sigma_1 \sigma_1^p \\ &\sim (\sigma_2^{-1} \sigma_1^{-1})^{-3k+1} \sigma_1^{p+1} \\ &\sim (\sigma_1 \sigma_2)^{3k-1} \sigma_1^{p+1}. \end{aligned}$$

Using the explicit form of the Alexander polynomial of a $(3, 3k-1)$ torus knot with $\frac{p+1}{2}$ full twists in adjacent strings [Morton(2006), Theorem 4], we see that none of these knots can be an L-space knot.

For $k < 0$, a similar argument shows that the closure of $C^k \sigma_1^1 \sigma_2^{-q}$, for q odd, also represents an L-space knot. Notice that in this case the knot is isotopic to the closure of $(\sigma_2 \sigma_1)^{3k+1} \sigma_2^{-q-1}$, so its mirror image admits a positive L-space surgery. Looking at the Alexander polynomial of the closure of the braid $C^k \sigma_1^1 \sigma_2^{-q} \sim (\sigma_1 \sigma_2)^{3k+1} \sigma_2^{-q-1}$ for $k > 0$ also shows that it does not represent an L-space knot.

Acknowledgements We would like to thank Efstratia Kalfagianni for referring us to the problem. We would also like to thank Cameron Gordon and Kenneth Baker for their conversations with the first author and their interest in this work. We would also like to thank the anonymous referee for many thoughtful suggestions on improving the manuscript.

References

Birman(1985). Birman J (1985) On the Jones polynomial of closed 3-braids. *Invent Math* 81(2):287–294

Birman and Menasco(1992). Birman JS, Menasco WW (1992) Studying links via closed braids. I. *Pacific J Math* 154(1):17–36

Cha and Livingston(2019). Cha JC, Livingston C (2019) Knotinfo: Table of knot invariants. <http://www.indiana.edu/~knotinfo>

Futer et al.(2010)Futer, Kalfagianni, and Purcell. Futer D, Kalfagianni E, Purcell J (2010) Cusp Areas of Farey manifolds and Applications to Knot Theory. *Int Math Res Not* (23):4434–4497

Hedden and Watson(2018). Hedden M, Watson L (2018) On the geography and botany of knot Floer homology. *Selecta Math (NS)* 24(2):997–1037, DOI 10.1007/s00029-017-0351-5, URL <https://doi.org/10.1007/s00029-017-0351-5>

Jones(1985). Jones VFR (1985) A polynomial invariant for knots via von Newmann algebras. *Bull Amer Math Soc* (12):103–111

Lidman and Moore(2016). Lidman T, Moore AH (2016) Pretzel knots with L-space surgeries. *Michigan Math J* 65(1):105–130, URL <http://projecteuclid.org/euclid.mmj/1457101813>

Morton(2006). Morton HR (2006) The Alexander polynomial of a torus knot with twists. *Journal of Knot Theory and Its Ramifications* 15(08):1037–1047, DOI 10.1142/S0218216506004920, URL <http://www.worldscientific.com/doi/abs/10.1142/S0218216506004920>

Ozsváth and Szabó(2005). Ozsváth P, Szabó Z (2005) On knot Floer homology and lens space surgeries. *Topology* 44(6):1281–1300

Schreier(1924). Schreier O (1924) Über die gruppen $aabb = 1$. *Abh Math Sem Univ Hamburg* (3):167–169

Vafaee(2014). Vafaee F (2014) On the knot Floer homology of twisted torus knots. *Int Math Res Not IMRN* p doi: 10.1093/imrn/rnu130