2021 American Control Conference (ACC)
New Orleans, USA, May 25-28, 2021

Efficient Robot Motion Planning via Sampling and Optimization

Jessica Leu, Ge Zhang, Liting Sun, and Masayoshi Tomizuka

Abstract— Robot motion planning is one of the important
elements in robotics. In environments full of obstacles, it is
always challenging to find a collision-free and dynamically-
feasible path between the robot’s initial configuration and goal
configuration. While many motion planning algorithms have
been proposed in the past, each of them has its pros and
cons. This work presents a benchmark which implements and
compares existing planning algorithms on a variety of problems
with extensive simulation. Based on that, we also propose
a hybrid planning algorithm, RRT*-CFS, that combines the
merits of sampling-based planning methods and optimization-
based planning methods. The first layer, RRT*, quickly sam-
ples a semi-optimal path. The second layer, CFS, performs
sequential convex optimization given the reference path from
RRT#*. The proposed RRT*-CFS has feasibility and convergence
guarantees. Simulation results show that RRT*-CFS benefits
from the hybrid structure and performs robustly in various
scenarios including the narrow passage problems.

[. INTRODUCTION

Motion planning is one of the key challenges in robotics.
It refers to the problem of finding a collision-free and
dynamically-feasible path between the initial configuration
and the goal configuration in environments full of obstacles.
Existing motion planning algorithms fall into two categories:
planning-by-construction or planning-by-modification [1].
Searching-based planning and sampling-based planning are
two typical plan-by-construction algorithms. Algorithms
such as A* and D* search [2], [3] belong to searching-based
algorithms, whereas rapidly-exploring random tree (RRT) [4]
and probabilistic roadmap (PRM) [5] belong to sampling-
based planning. Planning-by-modification refers to the algo-
rithms that reshape a reference trajectory to obtain optimality
regarding specific properties [6], [7], [8]. Optimization-based
algorithms belong to this category.

Both types of motion planning algorithms have pros and
cons. Planning-by-construction algorithms are guaranteed to
generate collision-free trajectories and require short compu-
tational time. However, the constructed trajectories often do
not consider dynamic constraints and are not smooth. Some
modifications remedy these problems [9], [10], but require
more computational resource. Optimization-based algorithms
often start with an initial trajectory that links the initial
configuration and the goal configuration [6], [7]. Next, the
algorithms iteratively improve the trajectory to satisfy the
constraints (e.g., collision-free conditions) and minimize the
cost. Note that the initial trajectory can be either feasible or
infeasible depending on the requirements of the algorithms.
The trajectories generated by optimization-based algorithms

All authors are with the Department of Mechanical Engineering,

University of California, Berkeley, CA 94720 USA jess.leu24,
ge_zhang, litingsun, tomizuka@berkeley.edu

978-1-6654-4197-1/$31.00 ©2021 AACC

Fig. 1: A manipulator navigating through the obstacles.

are usually smooth. However, optimization-based algorithms
often fail to find a feasible solution if initial trajectories are
naively chosen (e.g., a line segment from the initial to the
goal in the configuration space). The reason behind is that
most optimization-based algorithms rely on local gradient
information, so the final trajectories and the computational
time highly depend on the selection of the initial path.
In order to clearly see the effects of these pros and cons
when solving motion planning problems, this paper presents
a benchmark that tests motion planning algorithms from
different categories. To the best knowledge of the authors,
this is the first comprehensive benchmark that tests motion
planning algorithms from different categories.

In addition to the benchmark, this work also presents a
hybrid planning algorithm, RRT*-CFS, which combines the
merits of planning-by-construction algorithms and planning-
by-modification algorithms. The algorithm has two layers.
We first use RRT* [11] to quickly generate a feasible
and semi-optimal path. This path then serves as an initial
trajectory for the optimization layer that uses the convex
feasible set algorithm (CFS) [6] to quickly solve the non-
convex motion planning problem. RRT*-CFS is able to find
a globally-near-optimal solutions in complex environments,
even in scenarios with narrow passages [12], and has good
performance in terms of optimality and computational time.
Our contributions are threefold as follows:

e A comprehensive benchmark that compares motion
planning algorithms from different categories is pre-
sented.

o The proposed RRT*-CFS algorithm can solve planning
problems that cannot be solved by many optimization-
based algorithms alone, has short computational time,
and has the lowest average-cost of all algorithms we
compare in this work.

o We implement RRT*-CFS and demonstrate its success
with extensive simulation.

The remainder of the paper is organized as fol-

4196

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2021 at 18:49:45 UTC from IEEE Xplore. Restrictions apply.

lows. Section 2 discusses the related works. Section
3 presents our proposed algorithm and the theoreti-
cal analysis. Section 4 presents the benchmark and
the simulation results (video is publicly available at
jessicaleu24.github.io/ACC2021.html). Finally, we
conclude the work in Section 5.

II. RELATED WORKS

In this section, we first introduce our general formulation
of the motion planning problem. We then present some key
algorithms that we use or compare in our work.

A. Baseline Problem Formulation

In many scenarios, robot motion planning can be per-
formed by solving an optimization problem with the fol-
lowing form:

min f(x), (1

xel

where x € R™ and I' defines the feasible set:

F:ﬂrj :m{x:hj(x) >0} 2)

We assume that the constraint function h;(x) is a semi-
convex function [6]. For example, h;(z) can be the distance
between a robot and the jth obstacle. The cost function,
f:R™ — R, is strongly convex and smooth. Note that the
motion planning problem is non-convex due to the existence
of the obstacles and the non-linear robot dynamics. Also, the
dimension of the planning problem, n, depends on both the
robot’s state space and the number of points from the initial
state to the final state. n is usually large in motion planning
problems; therefore, solving motion planning problems is in
general hard.

B. Sampling-based Algorithms and RRT*

In general, sampling-based algorithms are fast [4]. There
are many sampling-based motion planning algorithms, such
as RRT*, variations of PRM [13], [14] and variations of
RRT [10], [11], [15], [16]. These variations modify the
original methods to obtain better planning performances,
e.g., handling dynamic constraints, smoothing trajectories,
short-cutting trajectories, etc. However, these modifications
often require more computational time and resource and
the requirements grow quickly as the robot system becomes
more complex. As a result, these algorithms require longer
computational time in complex systems. This weakens the
computation advantage of sampling-based methods. Since
our goal is to construct a strong hybrid algorithm rather than
a strong stand-alone sampling-based algorithm, we value
computational time highly and choose RRT*, which can
provide a feasible and semi-optimal [11], [16] path with the
shortest computational time.

C. Optimization-based Algorithms and CFS

There are also many optimization-based algorithms that
can be used for motion planning, such as SQP [17], CHOMP
[7], TrajOpt [18], and CFS [6]. SQP uses the Lagrangian of
the original problem to formulate a transformed problem that
solves for the Lagrange multipliers. The solution of these
Lagrange multipliers is then used to update the decision
variables of the original problem. CHOMP and TrajOpt both
formulate an unconstrained problem with a cost function
that penalizes the path’s smoothness and proximity to the
obstacles. However, the two have different approaches for
collision detection. In addition, TrajOpt uses SQP to solve
the problem; whereas CHOMP uses gradient descent.

Among these algorithms, CFS is a fast optimization-
based motion planning algorithm that can handle infeasible
initialization under some assumptions. Here we give a brief
review of the CFS algorithm. We can rewrite the non-convex
optimization problem as follows:

fx). 3)

x* = arg max
xel'CR"”

CFS solves the non-convex problem iteratively. The fol-

lowing information is required:

o Initialization: An initial value of the state x(°), which
does not necessarily satisfy x(©) e T".

o Safety index and disjoint convex obstacles : Similar to
Eq. (2), where hj(x) is the safety index for the jth
disjoint obstacle.

o Convex feasible set: The convex feasible set, y*) :=
x(x(k)) € I, is constructed corresponding to previous
states x(¥).

The convex feasible set in our case is as follows:

n
X =,
7 @)
= ﬂ{x chi(x®) £ VTR (x) (x — x®)) > 0}.
j=1

With CFS, a convex sub-optimization problem is formulated
and solved for the optimal value of x(**1):

fx). (5)

x(**t1D) = arg max
XEX(’C)
The algorithm solves the problem iteratively and results in a
sequence of x(), x(x(®) Tt is guaranteed in [6]
that this sequence will converge to a local optimal, x*.
Notice that SQP and TrajOpt rely on the second-order
information of the original problem, while CHOMP and
CFS rely on the gradient information. As mentioned previ-
ously, optimization-based algorithms rely on local gradient
information (or higher-order information); therefore the final
trajectories and the computational time highly depend on the
choice of the initial path.

D. Hybrid Algorithms

There have been several researches focusing on hybrid
planners [1], [19], [20], [21]. [1] used Lattice A* Search

4197

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2021 at 18:49:45 UTC from IEEE Xplore. Restrictions apply.

to generate initial trajectories for CFS and illustrated its
performance on a mobile robot. The sampling space of these
experiments is 2D. Since the number of points in the lattice
grid grows exponentially as the dimension grows in the
configuration space, the effectiveness of this work for high
dimensional applications (e.g., 6-DoF manipulators) is highly
doubtful. [19] adopted the Bidirectional Rapidly-exploring
Random Tree (BiRRT) [15] to generate an initial feasible
guess for the TrajOpt trajectory optimizer and demonstrated
the success of their approach on the Atlas robot. However,
only a limited number of testing scenarios were presented;
the robots only needed to avoid no more than two obsta-
cles. [20] presented a planning algorithm that combined
a roadmap and TrajOpt. Besides generating a collision-
free and dynamically-feasible trajectory, they focused on
avoiding singularities in redundant manipulators and meet-
ing Cartesian constraints. However, the algorithm required
long planning time. [21] combined a sparse roadmap with
TrajOpt. However, their methods did not consider complex
environments.

A key challenge in motion planning problem is the narrow
passage problem, which refers to planning problems that
have a very narrow region in between the initial and the
goal in the feasible configuration space. Motion planning
algorithms often take too much time or even cannot find a
solution when encountering a narrow passage problem even
though the solution does exit [12], [22]. This type of problem
is one of the target scenarios in our simulation, which was
not tested in [1], [19], [18], [20], [21].

III. THE PROPOSED ALGORITHM

In this section, we introduce the proposed RRT*-CFS
algorithm as well as its feasibility and global convergence
guarantees.

A. The RRT*-CFS Algorithm

The proposed RRT*-CFS inherits the merits and avoids the
shortcomings of each of the two algorithms. The RRT*-CFS
algorithm solves the non-convex motion planning problem
first by quickly finding a feasible and semi-optimal path, and
then iteratively refining the solution using CFS. The RRT*-
CFS has three main features.

« First, the RRT* layer can be implemented with multi-
thread computation. This allows us to significantly
reduce the computational time.

¢ Second, RRT*-CFS has stochasticity due to the random
sampling process in RRT*. This helps RRT*-CFS to
avoid bad local optima that optimization-based algo-
rithms may get stuck in.

o Finally, RRT*-CFS inherits the properties of CFS so
that feasibility, smoothness and convergence of the final
solution are guaranteed if the problem satisfies the
description in Section II-A.

Denote the configuration of a d-degree-of-freedom (d-DoF)

robot as 6 € RY, the initial configuration as 6y, the goal
configuration as 04041, the maximum number of samples in

one RRT* thread as nsqmpies, and the obstacles as &. The
RRT*-CFS algorithm is summarized as in Algorithm 1.

As shown in Algorithm 1, given the inputs,
00, 0g0als Msamples, and O, each thread of the multi-
thread RRT* starts to find a feasible path that connects
the initial configuration and the goal configuration. If
more than one thread find a path, we choose the shortest
path and set it as @%FT. If no thread finds a solution,
we repeat the multi-thread RRT* until we find a path. By
setting up the ngqmpres properly, we can find a solution
in the first batch almost every time. Let z € R™ and the
planning horizon be H, we generate the initial reference
x0 = [207, 297, [297]T for CFS using the sampled
path @717 This process can be done by feeding the §%FT
to a motion generator that outputs a motion plan, x°, which
is a trajectory that follows the RRT* path. Then, the convex
feasible set, x(¥), is generated by linearizing the constraints
at the reference point x(*) for £ = 0,1,.... The algorithm
terminates when the change of the cost at each iteration is
smaller than a threshold, i.e., || f(x*~1) — f(x())| <e.

B. Theoretical Analysis

Both the feasibility and the global convergence of RRT*-
CFS rely on the fact that the motion planning problem
(Eq. (1) and (2)) satisfies the following assumption:

Assumption (Problem formulation). The cost function f(x)
is strongly convex and smooth. The constraint function h;(x)
is continuous, piece-wise smooth, and convex. The state
constraint I is non-convex and its complement is a collection
of disjoint convex sets, i.e., each of the obstacle-region is
itself convex.

Let x" € R" be a feasible reference point, i.e., X" € I

Lemma 1 (Feasibility). If x” € T, then x" € X" and
Int(x") # 0, where Int(x") is the interior of the set X"

Proof: When x" is feasible, x" € xj for all j according
to (4). Therefore, X" € x". [6] proved that x(°) has nonempty
interior if the assumption is satisfied. The problems studied
in this work satisfy the assumption; therefore the proof holds
true.

With Lemma 1, we obtain the following theorem:

Theorem 2 (Feasibility of RRT*-CFS). Under Algorithm I,
the sequence {x®)} satisfies x*) € T for k =0,1,2, ...

Proof: RRT* generates x(?) such that x(¥) € T, ie.,
feasibility holds when k = 0. According to Lemma 1, x(?)
has nonempty interior, then x() € T can be attained by
solving the convex optimization problem (5). By induction,
we conclude that x(*) € y(*=1 T for k=1,2,3....

The following shows the convergence of RRT*-CFS.
Given Theorem 2, the remainder of the proof is similar to
that in [6], Theorem 4.1; therefore, we have the following
corollary.

Corollary 2.1 (Global convergence of RRT*-CFS). Under
Algorithm 1, the sequence {x®)} will always converge to

4198

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2021 at 18:49:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 RRT*-CFS

procedure RRT*-CFS (0, 0g0a1, Nsamples, O)
while ! 3 07FT do
OFET Multi_thread_RRT*(8, B g0als Nsamples, O)
x¥ < generate_reference(§7*%7)
while Stop criterion is not satisfied do

> Get the shortest RRT* path among all threads.

> Generat the initial reference x° for CFS based on 67157,
>k=0,1,2,...

X® =Ny s by (W) + VTR () (x = x) > 0}

x(F+D) — argmin f(x).
xex(®)

return x(¥+1)

Fig. 2: A mobile robot (left) and a manipulator (right).

some x* € I'. x* is a strong local optimum of (1) if the
limit is reached. x* is at least a weak local optimum of (1)
if the limit is not reached.

IV. SIMULATION SETUP AND RESULTS
A. Robot Models

We used two different robot platforms (Fig. 2) to test the
RRT*-CFS and other algorithms for comparison.

1) Mobile robot: We use a simple kinematic model to
model a mobile robot on a 2D-plan. Denote the states of
the mobile robot at time step ¢ as z; = [z, 9], the input
velocity as uy = [vg ¢, vyyt]—'—, and the robot configuration as
0 = [x,y] . The linear kinematic model, is

Tt1| 10 Tt + TS 0 Vg, t
Yt+1 01 Yt 0 Ty Uy, t ’

where T is the sampling time.

2) Manipulator: We use a 5-degree-of-freedom manip-
ulator. Denote the states of the manipulator as z;, =
[91, 02, 03,04, 05, w1, ws,ws, W4,UJ5]2—, where 0; and w;, i €
{1,2,3,4,5} are the angle and the angular velocity of ith
joint, respectively. The input contains the angular accelera-
tion at each joint, denoted as u; = [y, aa, a3, g, 5]/ . The
robot configuration is @ = [0, 0s,03,04,05]". The linear
kinematic model is as follows:

(6)

B. The Motion Planning Problem

In this paper, the goal of the motion planning problem
is to plan the command that brings the robot to the goal
configuration while avoiding obstacles. We first solve for a
path using the multi-thread-RRT* with the configuration, 6,
defined previously. After getting the path %77 an optimiza-
tion problem can be formulated. The decision variable for
each time step is u;, and the input vector that the algorithm
optimizes is denoted as u := [ug ,u{ ,--- ,uy]", where H
is the planning horizon. Similarly, the resulting state vector
is z := (2,29, ,24,,) . Given the initial state, zo,
we obtain z = fi;(z0,u) by concatenating the kinematic
function (Eq. (6) or (7)) throughout the planning horizon.
For simplicity, denote the kinematic function as fy; ., (u) :=
fri(20,u). In order to obtain the optimal solution u* given
the constrained feasible set I' and the input constraint U4,
the following optimization problem needs to be solved:

u* = arg m&n [z (@),

fk‘i,ZU (u) e F?
— Umax S u S Umazx-

s.t.)]

The cost function is quadratic that has the form: f,,(u) =
| fii 2o (W) — Zgoar]|3 + AlJu|3, which is convex and regular.
The first term penalizes the deviation from the goal and the
second term penalizes the input.

C. Implementation

CFS updates z*) = f;ﬂ-,ZO(u(k’l)) at iteration k =
2,3.... Notice that z(!) is determined by 8757 and u(®
is initialized as a zero vector. (A more sophisticated way
is to initialize u(®) with a motion generator that commands
the robot to track HRRT.) The convex feasible set, X(k), is

Zt+1 = Az + Buy, (7) determined by z*). Given the feasible set I' = N;. iz :
b hj(z) > 0} (j numerates over obstacles and ¢ numerates
where, " 71 over time steps), the results of the previous iteration (u(*~1)
A= {05“’ ; 5X5} , and z®)), and the function fri,z (u), we can construct the
55 55 convex feasible set as:
and,
2 k _
B—| 0 Lxs | X = (M b, (w28 a=0) > 0},)
TIsx5 it
4199

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2021 at 18:49:45 UTC from IEEE Xplore. Restrictions apply.

I Obstacles ——CHOMP ~ * CFS Initial
* Goal —6—PRMpath O PRM-CFS
0.1
E o
-
-0.1 :
-0.1 0 0.1 0.2 0.3 0.4 0.5

(a) Planning result using CFS, CHOMP, and PRM-CFS.

I Obstacles O RRT* samples —*—RRT* path
* RRT*-CFS Initial * Goal
0.1
8
B 3°
O
= 2 ®
= 0
el
o)
0.1 I I I I S I |
-0.1 0 0.1 0.2 0.3 0.4 0.5

X [m]
(b) Planning result using RRT*-CFS.
Fig. 3: Simulation results of a 2D motion planning.
k k _

where 1, = hy(z") + VT hy () fi . (0 (1 -
u(*=1). Therefore, the iterative sub-problem is as follows:
fzo (),
st. ue X(zﬁ)(u(k_l),z(k)),

— Umazx § u S Umaz-

*(k)

u = argmin
u

(10)

D. Simulation Setup

We show the motion planning simulation results in the
following sections. The simulation is conducted in Matlab
R2020a on a desktop with 3.2GHz Intel Core i7-8700 CPU.
The stopping criteria for optimization-based methods (i.e.,
CFS, SQP, CHOMP, and the CFS layer of RRT*-CFS) are
the same. In other words, if either (1) the algorithm reaches
the maximum number of iterations (i.e., 40 iterations) or (2)
the change of the cost is smaller than the threshold (i.e.,
e = 1073), the algorithm terminates.

E. 2D Motion Planning Benchmark

The 2D scenarios are designed to simulate general 2D
motion planning scenes of mobile platforms. Notice that
the obstacles in these scenarios are convex and the robot
kinematics is simplified as a point mass. Therefore, the
motion planning problems satisfy the conditions mentioned
in Section II-A. The benchmark has two categories, which
are collision avoidance planning in multiple obstacles scenes
and in narrow passage scenes. In both cases, the planning
horizons of optimization-based algorithms are set to be H =
30.

Multiple Obstacles. One exemplar simulation environment
is shown in Fig. 3, where Fig. 3a shows the planning result
of CHOMP (red-star-line), PRM-CFS (blue-circle), and CFS
(blue-star-line) and Fig. 3b shows the planning result of
RRT*-CFS (blue-line). By comparing the two figures, we

=1 Obstacles —+— CHOMP —«— SQP —+— CFS

Initial * Goal RRT* samples RRT* path
PRM-CFS o0 RRT*-CFS
0.2 |
0.1 i
E 0 M * %ﬁo
~ 01
—0.2 ! ! J
—0.1 0 0.1 0.2 0.3 0.4 0.5

X [m]

Fig. 4: A simulation result of motion planning in the narrow passage
(close to y = 0.1) scenario.

see that all four trajectories are smooth and can successfully
bring the robot to the goal (at (0,0)). More importantly,
RRT*-CFS converges to the global optimum, while others
stuck in local optima. TABLE I shows the result averaging
over 100 trials (obstacles are randomly located in each trials).
Benefiting from the first layer, the proposed RRT*-CFS has
a success rate of 100% and also requires less iterations
to converge comparing to CFS, SQP, CHOMP, and PRM-
CFS. RRT*-CFS also has the lowest average cost, which is
contributed by the semi-optimal initial path given by RRT*
and the optimization process by CFS. This also indicates
that RRT*-CFS is more likely to converge to nearly-global
optima. Comparing RRT*-CFS and RRT*-SQP, we see that
RRT*-CFS requires less computational time. This is due
to the fact that CFS exploits the geometry of the motion
planning problem. Also, RRT*-CFS is faster than PRM-CFS
due to the fact that RRT* is faster than PRM in these motion
planning problems. Even though CFS is the fastest algorithm
besides RRT* in both 4-obstacle and 1-obstacle cases, RRT*-
CFS is faster than CFS in the 10-obstacle complex scenarios
due to a better initialization and faster convergence rate. Also
notice that CFS is more vulnerable to be trapped in bad local
optima and cannot find a path to reach the goal in complex
scenarios; whereas RRT*-CFS can always find a path (the
failure cases indicate the resulting solutions do not bring the
robot to the goal).

Narrow Passages. We also test RRT#*-CFS in the narrow
passage scenario. The goal of the robot is again to plan a path
to the goal point. However the robot has to navigate through
a narrow pathway in order to reach the goal point. Fig. 4
shows a planning result in one of these scenarios. RRT*-
CFS successfully explores the narrow passage and plans
a feasible trajectory (blue-circle-line). On the other hand,
CFS, SQP, and CHOMP failed to find a solution. The CFS
trajectory (blue-star-line) and the SQP trajectory (gray-star-
line, under the CFS trajectory) stop in front of the wall while
the CHOMP trajectory (red-star-line) directly penetrates the
wall. These two failures are due to the lack of local gradient
information, which is crucial for optimization-based methods
that solve each iteration by calculating the gradient using
the result of the previous iteration. The 99% success rate in
TABLE I for CFS and CHOMP is due to the same reason,

4200

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2021 at 18:49:45 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Simulation comparison of 2D planning. (Average of 100 trials.)

Algorithm | # obstacles | Computational time [s] | # iterations Cost Success rate (%)
RRT* 1 0.006 N/A 1.266 100
PRM 1 1.1859 N/A 1.3547 100
CFS 1 0.038 7.40 1.007 99
SQP 1 1.73 7.40 1.006 100

CHOMP 1 0.053 137.2 1.100 99

PRM-CFS 1 1.261 7.22 1.009 100

RRT*-SQP 1 0.994 7.01 1.001 100

RRT*-CFS 1 0.038 7.01 1.001 100
RRT#* 4 0.03 N/A 1.272 100
PRM 4 4.24 N/A 1.379 100
CFS 4 0.12 12.63 1.048 99
SQP 4 4.29 12.80 1.031 100

CHOMP 4 0.23 199.42 1.110 99

PRM-SQP 4 4.35 11.04 0.102 100

RRT*-SQP 4 2.63 10.58 1.011 100

RRT*-CFS 4 0.15 10.58 1.011 100
RRT* 10 0.042 N/A 1.266 100
CFS 10 0.695 14.46 1.107 87

RRT*-CFS 10 0.510 12.69 1.061 100

TABLE II: Simulation comparison of 2D-narrow-passage
planning. (Average of 20 trials.)

Algorithm | Computational time [s] | # iterations | Cost
RRT* 0.27 N/A 1.22
PRM 20.05 N/A 1.22

PRM-CFS 20.64 6.6 1.02

RRT*-CFS 0.43 8.26 1.01

where the initial point and the goal point are both lying on
the symmetric axis of the obstacle. Even though using local
higher-order information can enable the algorithms to deal
with some of these scenarios (e.g., SQP), solving the narrow
passage problem is still hard for optimization-based methods
alone; because sometimes there is no information contained
in the higher-order terms in these scenarios (e.g., when facing
the wall, the second order derivative of a line is zero).
This observation again demonstrates the need of a sampling
mechanism in the motion planning algorithm so that the
algorithm can explore beyond the local gradient information.
The simulation result of narrow passage environments is
summarized in TABLE II. We see that RRT*-CFS improves
the cost without sacrificing too much computational time.
Although PRM-CFS also finds a solution and requires fewer
iterations, its computational time is two magnitudes larger
than RRT*-CFS.

F. 5D Motion Planning for a Manipulator

In 5D motion planning simulations, the goal of the ma-
nipulator is to reach the goal configuration from the initial
configuration while avoiding obstacles. TABLE III shows
the result averaging over 20 trials. Similar to the trend in
2D cases, RRT*-CFS has lower average cost comparing to
CFS. In terms of computational time, CFS performs better
in scenarios with one or two obstacles, while RRT*-CFS
shows its strength in complex environment and performs
better in scenarios with three or four obstacles. Benefiting
from the first layer, the proposed RRT*-CFS has a success
rate higher than that of CFS. RRT*-CFS also requires less
iterations to converge comparing to CFS. One of the simula-
tion environments is shown in Fig. 5, where the manipulator

moves to the goal configuration without colliding with the
obstacles. Notice that CFS fails to plan a trajectory that
brings the manipulator to the goal configuration in this
scenario. With the initial path from RRT*, RRT*-CFS plans
a smoother trajectory that navigates through the complex en-
vironment comparing to the original RRT* trajectory. Notice
that these planning problems do not satisfy the descriptions
in Section II-A, however, RRT*-CFS still converges well
empirically.

V. CONCLUSION

This paper presented a comprehensive benchmark that
compares motion planning algorithms from different cat-
egories and introduced a fast motion planning algorithm,
RRT*-CFS, that combined the merits of sampling-based
planning methods and optimization-based planning methods.
The RRT*-CFS quickly found a feasible and semi-optimal
path using RRT* and iteritavly refined the solution using
CFS. RRT*-CFS had feasibility and global convergence
guarantees inherited from CFS in scenarios where obstacles
could be represented by disjoint convex objects. Simulation
results showed that RRT*-CFS benefited from the hybrid
structure. Comparing to RRT*, PRM, CFS, SQP, CHOMP,
and PRM-CFS, RRT*-CFS had the lowest cost and con-
verged with less number of iterations. RRT*-CFS could
also solve planning problems in complex scenarios such as
the narrow passage problem, in which CHOMP, SQP, and
CFS failed. Even though RRT*-CFS has two layers, the
computational time is still competitive in simple scenarios
and outperforms other algorithms (except RRT* in terms of
time) in complex scenarios. We concluded that the hybrid
structure indeed brought strong performance. The future
work is to improve both the sampling-based layer and the
optimization-based layer as well as the connection between
them.

ACKNOWLEDGEMENT

The authors thank Changliu Liu for helpful discussions.
This work was supported by the National Science Foun-

4201

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2021 at 18:49:45 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Simulation

comparison of 5D Motion planning. (Average of 20 trials.)

Algorithm | # obstacles | Computational time [s] | # iterations Cost | Success rate (%)
RRT* Tor2 5.7 NJA NJA 100
CFS 1or2 4.74 20 1.94 95
RRT*-CFS 1or2 12.42 15.56 1.66 99
RRT* 3or4 8.45 N/A N/A 100
CFS 3ord 114.10 20 3.78 85
RRT*-CFS 3ord 59.675 18.58 3.39 89
ylm]
7.5 8 8.5 9 9.5
2.8
3
3.2 E RRT* samples
.2 N RRT#* path
34 | * RRT*CFS
'g i O init
3.6 | + goal
3.8
4
4.2 x[m]

Fig. 5: Planning results using RRT*-CFS in 5D manipulation planning problems.

dation under Grant No.1734109. Any opinion, finding, and
conclusion expressed in this paper are those of the authors
and do not necessarily reflect those of the National Science
Foundation.

[1]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

REFERENCES

C. Liu, C. Lin, Y. Wang, and M. Tomizuka, “Convex feasible set
algorithm for constrained trajectory smoothing,” in 2017 American
Control Conference (ACC), May 2017, pp. 4177-4182.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.
A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in IN PROCEEDINGS OF THE IEEE INTERNA-
TIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, 1994,
pp. 3310-3317.

S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, ‘“Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566-580, Aug 1996.

C. Liu, C.-Y. Lin, and M. Tomizuka, “The convex feasible set algo-
rithm for real time optimization in motion planning,” SIAM Journal
on Control and Optimization, vol. 56, no. 4, pp. 2712-2733, 2018.
N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
2009 IEEE International Conference on Robotics and Automation,
2009, pp. 489-494.

J. Leu, R. Lim, and M. Tomizuka, “Safe and coordinated hierarchical
receding horizon control for mobile manipulators,” in 2020 American
Control Conference (ACC). 1EEE, 2020, pp. 2143-2149.

J. Van Den Berg and M. Overmars, “Kinodynamic motion planning on
roadmaps in dynamic environments,” in 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2007, pp. 4253—
4258.

D. J. Webb and J. Van Den Berg, “Kinodynamic rrt*: Asymptotically
optimal motion planning for robots with linear dynamics,” in 2013
IEEE International Conference on Robotics and Automation. 1EEE,
2013, pp. 5054-5061.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research,
vol. 30, no. 7, pp. 846-894, 2011.

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

4202

S. Rodriguez, X. Tang, J. Lien, and N. Amato, “An obstacle-based
rapidly-exploring random tree,” Proceedings 2006 IEEE International
Conference on Robotics and Automation, 2006. ICRA 2006., pp. 895—
900, 2006.

N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“Obprm: An obstacle-based prm for 3d workspaces,” in Robotics:
The Algorithmic Perspective: 1998 Workshop on the Algorithmic
Foundations of Robotics, 1998, pp. 155-168.

R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in
Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), vol. 1. IEEE, 2000, pp. 521-528.

J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No.0OOCH37065), vol. 2, 2000, pp.
995-1001 vol.2.

F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, “Rrt-smart: Rapid
convergence implementation of rrt towards optimal solution,” in 2012
IEEE International Conference on Mechatronics and Automation.
IEEE, 2012, pp. 1651-1656.

P. Spellucci, “A new technique for inconsistent qp problems in the sqp
method,” Mathematical Methods of Operations Research, vol. 47, pp.
355-400, 1998.

J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, pp. 1251-1270, 08 2014.

L. Li, X. Long, and M. A. Gennert, “Birrtopt: A combined sam-
pling and optimizing motion planner for humanoid robots,” in 2016
IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), 2016, pp. 469-476.

C. Park, F. Rabe, S. Sharma, C. Scheurer, U. E. Zimmermann, and
D. Manocha, “Parallel cartesian planning in dynamic environments
using constrained trajectory planning,” in 2015 IEEE-RAS 15th In-
ternational Conference on Humanoid Robots (Humanoids), 2015, pp.
983-990.

S. Dai, M. Orton, S. Schaffert, A. Hofmann, and B. Williams,
“Improving trajectory optimization using a roadmap framework,” 10
2018, pp. 8674-8681.

Liangjun Zhang and D. Manocha, “An efficient retraction-based rrt
planner,” in 2008 IEEE International Conference on Robotics and
Automation, 2008, pp. 3743-3750.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on August 14,2021 at 18:49:45 UTC from IEEE Xplore. Restrictions apply.

