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Abstract. This is a survey of complex analytic implications of recent develop-
ment in symplectic topology.

To the memory of Gennadi Henkin

The interplay between symplectic geometry and complex analysis was explored in
our book [CiEl12] and since then was further developed, e.g. in [CiEl15, NeSi16].
Meanwhile, the symplectic side of the story was greatly developed. This, in turn,
yields new consequences for complex analysis which we discuss in this survey.

1. Recollections on symplectic geometry and complex analysis

In this section we recall some basic facts about Stein and Weinstein structures and
their relationship from [CiEl12] (see also the survey articles [CiEl14-1, CiEl14-2]), as
well as symplectic criteria for rational and polynomial convexity from [CiEl15].

1.1. Stein structures and their homotopies. We denote a complex manifold
by (V, J), where J is the integrable almost complex structure. A smooth function
φ : V → R is called J-convex (or strictly plurisubharmonic) if −ddCφ(v, Jv) > 0
for all v 6= 0, where dCφ = dφ ◦ J , and exhausting if it is proper and bounded
from below. Stein manifolds are complex manifolds which properly holomorphically
embed into some CN . Equivalently, they can be characterized by the existence of
an exhausting J-convex function φ : V → R. The proof of the equivalence of these
two characterizations was the result of many years of development of the theory
of functions of several complex variables culminating in the work of Hans Grauert
(see [CiEl12] for a brief survey and further references).

The notion of J-convexity (or strict pseudoconvexity) for hypersurfaces in a complex
manifold (V, J) is tightly related to the corresponding notion for functions. A J-
convex hypersurface Σ can be defined as a regular level set of a J-convex function
defined on a neighborhood of Σ. Conversely, a function φ without critical points
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and with compact J-convex level sets can be made J-convex by composing it with a
sufficiently convex increasing function R→ R, see [CiEl12] for details.

Since J-convexity is a C2-open condition, a J-convex function can always be per-
turbed to make it Morse (keeping it J-convex), and a 1-parametric family of J-convex
functions can be perturbed to make them generalized Morse, i.e., all critical points
are nondegenerate or of birth-death type (see [CiEl12]). Moreover, the gradient vec-
tor field ∇φ (with respect to the Kähler metric defined by φ), can be made complete
(i.e., its flow exists for all times) by composing φ with a sufficiently convex function
R→ R. A Stein manifold structure (V, J, φ) is a Stein manifold (V, J) together with
an exhausting J-convex generalized Morse function φ such that ∇φ is complete.

By a Stein domain we mean a regular sublevel set W = {φ ≤ c} of a J-convex
function.1 Equivalently, this is a compact complex manifold with J-convex boundary
whose interior contains no compact analytic subsets of dimension > 0. A Stein
domain structure (W,J, φ) is a Stein domain (W,J) together with a defining (i.e.,
having the boundary as its maximal regular level set) J-convex function φ : W → R/

A Stein homotopy on a domain W is a smooth family (Jt, φt)t∈[0,1] of Stein domain
structures, where we relax the Morse condition on φt to allow birth-death critical
points. Note that, in particular, ∂W is required to be a regular level set of φt
for all t ∈ [0, 1]. For example, each family of domains in Cn with smooth strictly
pseudoconvex boundary gives a homotopy of Stein domains. In the case of a manifold
V we impose the following condition preventing critical points from escaping to
infinity: there exists a partition 0 = t0 < t1 < · · · < tn = 1 and sequences of smooth
functions cik : [ti−1, ti]→ R for i = 1, . . . , N and k ∈ N such that ci1(t) < ci2(t) < · · ·
are regular values of φt and lim

k→∞
cik(t) = +∞ for each t ∈ [ti−1, ti] and i = 1, . . . , N

(see [CiEl12] for further discussion). By [CiEl12, Proposition 11.22], two exhausting
J-convex functions φ0, φ1 on the same manifold (V, J) can always be connected by
a Stein homotopy (J, φt), so we can speak of two Stein complex structures being
homotopic without explicit reference to J-convex functions.

A diffeomorphism f : (W,J, φ)→ (W ′, J ′, φ′) between Stein domains (or manifolds)
is called a deformation equivalence if the pullback Stein structure (f ∗J ′, f ∗φ′) is
homotopic to (J, φ).

On a manifold V , we say that a Stein structure (J, φ) is of finite type if φ has only
finitely many critical points. A Stein homotopy (Jt, φt) on V is of finite type if
the union of all critical points of all the φt is compact. Note that this condition is
stronger than requiring that each (Jt, φt) is of finite type. The interior of a Stein
domain (W,J, φ) becomes naturally a finite type Stein manifold (IntW,J, g ◦ φ)

1Note that our domains are always compact rather than open.
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for a sufficiently convex diffeomorphism g : (−∞,maxφ) → R, and conversely a
sufficiently large sublevel set in a finite type Stein manifold is a Stein domain. Under
these operations, finite type homotopies of Stein manifolds correspond to homotopies
of Stein domains.

The following result from [CiEl12] shows that Morse theoretic properties for J-convex
functions are preserved under Stein homotopy. Here and throughout this paper, by
a diffeotopy we mean a smooth family of diffeomorphisms ht, t ∈ [0, 1], with h0 = id.

Theorem 1.1. Let (Jt, φt) be a Stein homotopy on a manifold V . Then there exist
diffeotopies ht : V → V and gt : R→ R such that gt ◦ φt ◦ ht is J0-convex for each t.

For finite type homotopies one can prove the following stronger result.

Theorem 1.2. Let J0 and J1 be two homotopic Stein structures on a manifold V .
Then for any exhausting J0-convex function φ : V → R there exists a target equivalent
J0-convex function ψ = g ◦ φ, a Stein homotopy Jt connecting J0 and J1, and a
diffeotopy ht : V → V beginning with h0 = Id such that the function ψt := ψ0 ◦h−1t is
Jt-convex for each t ∈ [0, 1]. If J0 (and hence J1) is of finite type, then the exhausting
J0-convex function ψ0 can be chosen in such a way that ψ0 has no critical values ≥ 0
and ht : (Op {ψ0 ≤ 0}, J0)→ (Op {ψt ≤ 0}, Jt) is a biholomorphism for all t ∈ [0, 1].

As far as we know this result did not appear in the literature and we sketch its proof
in Section 1.3 below.

1.2. Weinstein structures and their homotopies. Now we turn to the symplec-
tic cousins of Stein structures. A Weinstein manifold is an exact symplectic manifold
(V, ω = dλ) such that the corresponding Liouville field X, defined by ιXω = λ, is
complete and gradient-like for an exhausting generalized Morse function φ : V → R.
We refer to a regular sublevel set W = {φ ≤ c} as a Weinstein domain. A Weinstein
(manifold or domain) structure will be denoted by (λ, φ). The notions of Weinstein
homotopy (λt, φt), Weinstein deformation equivalence, and finite type Weinstein ma-
nifold/homotopy are defined as in the Stein case, see [CiEl12] for further discussion.
Weinstein structures were originally introduced in [ElGr91] formalizing the work of
A. Weinstein [Wei91].

The Liouville form λ induces a contact structure ker(λ|∂W ) on the boundary of a
Weinstein domain (W,λ, φ). Similarly, a sufficiently high level set of φ in a finite
type Weinstein manifold carries a well defined contact structure which is sometimes
called its contact structure at infinity.

It is an important basic fact that a Weinstein homotopy changes the underlying
symplectic structure only by a diffeotopy.
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Proposition 1.3 ([CiEl12], Proposition 11.8). Given a Weinstein homotopy (λt, φt)
on a manifold V , there exists a diffeotopy ht : V → V such that h∗tλt−λ0 is exact for
all t. If the homotopy has finite type, then one can also arrange that h∗tλt − λ0 = 0
outside a compact set, so h∗t ξt = ξ0 for the contact structures ξt at infinity.

Hence, after pulling back by a diffeotopy, a Weinstein homotopy can always be viewed
as a deformation of structures on a fixed symplectic manifold (V, ω). It is unknown
whether two Weinstein manifold structures with the same symplectic form are always
Weinstein homotopic.

A Weinstein domain (W,λ, φ) has a canonical completion (Ŵ , λ̂, φ̂) where Ŵ =

W ∪ ([0,∞) × ∂W ), λ̂ equals λ on W and erα on [0,∞) × ∂W with α = λ|∂W
and r the coordinate on [0,∞), and φ̂ equals φ on W = {φ ≤ c} and r + c on
[0,∞) × ∂W . The completion of a Weinstein domain is a finite type Weinstein
manifold, and conversely a sufficiently large sublevel set in a finite type Weinstein
manifold is a Weinstein domain. Under these operations, finite type homotopies of
Weinstein manifolds correspond to homotopies of Weinstein domains.

Every Stein structure (J, φ) has an associated Weinstein structure

W(J, φ) := (−dCφ, φ), dCφ = dφ ◦ J.

It is an easy consequence of the definitions that taking the interior of a Stein domain
corresponds to taking the completion of a Weinstein domain in the sense that the
following diagram commutes up to canonical Weinstein deformation equivalence:

{Stein domains} interior //

W
��

{Stein manifolds}

W
��

{Weinstein domains} completion// {Weinstein manifolds}.

1.3. Stein versus Weinstein. The following theorem summarizes the results in [CiEl12]
on the relation between Stein and Weinstein structures. Here by a target reparametriza-
tion of a function V → R we mean the composition with an increasing diffeomorphism
R → R. Two functions which differ only by a target reparametrization are called
target equivalent.

Theorem 1.4 (Stein versus Weinstein). For Stein/Weinstein structures on a fixed
manifold or domain V , after target reparametrization of the functions φ, φt the fol-
lowing hold.

(a) (Existence) Given a Weinstein structure (λ, φ), there exists a Stein structure
(J, φ) such that W(J, φ) is Weinstein homotopic to (λ, φ) with fixed function φ.
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(b) (Homotopy) Given a Weinstein homotopy (λt, φt), t ∈ [0, 1], connecting W(J0, φ0)
and W(J1, φ1) with φt = φ1 for t ∈ [1

2
, 1], there exists a Stein homotopy (Jt, φt) con-

necting (J0, φ0) and (J1, φ1) such that the paths W(Jt, φt) and (λt, φt) are homotopic
with fixed functions φt and fixed at t = 0, 1.

(c) (Morse-Smale theory) Given a Weinstein homotopy (λt, φt), t ∈ [0, 1], beginning
with W(J, φ), there exists a diffeotopy ht : V → V such that φt ◦ ht is J-convex for
all t ∈ [0, 1]. Moreover, the paths W(ht∗J, φt) and (λt, φt) are homotopic with fixed
functions φt and fixed at t = 0.

Parts (a) and (b) reduce the existence and homotopy questions for Stein structures
to the corresponding questions for Weinstein structures. The term “Morse-Smale
theory” refers to S. Smale’s proof of the generalized Poincaré conjecture [Sm61] by
studying the space of Morse functions on a given manifold (in particular reducing the
number of critical points as much as possible). Part (c) characterizes the equivalence
classes (modulo domain and target reparametrization) of Morse functions which can
be realized by J-convex functions for a given Stein complex structure J : these are
precisely the Morse functions appearing in Weinstein deformations of J .

Sketch of proof of Theorem 1.2. Step 1. A Stein homotopy J̃t between J0 and J1
yields a Weinstein homotopy Wt := W(J̃t, ψt) for a family of exhausting J̃t-convex

functions ψ̃t : V → R. Hence by Theorem 1.4(c) we find target equivalent functions

ψt = gt◦ψ̃t and a diffeotopy h̃t : V → V such that ψt◦ h̃t is J0-convex for all t ∈ [0, 1].

Moreover, there exist a Weinstein homotopy Wt,s between Wt,0 := W(h̃t∗J, ψt) and
Wt,1 := W(Jt, ψt) such that the corresponding family of Lyupunov functions φt,s
is independent of s, i.e. φt,s ≡ ψt. In particular, we get a Weinstein, and hence
according to Theorem 1.4(b) Stein homotopy (Js, ψ1) connecting ((h1)∗J0, ψ1) and
(J1, ψ1).

Step 2. After Step 1 and renaming, we may assume that J0 and J1 are connected
by a Stein homotopy (Jt, ψ) with fixed function ψ. Suppose now that ψ has only
finitely many critical points pi of values ψ(pi) = ci, i = 0, . . . , k. Pick regular values
di satisfying c0 < d0 < c1 < · · · < ck < dk. Now we argue similarly to the proof
of [CiEl12, Theorem 8.43], see also [FoSl05].

We begin by picking a family of biholomorphisms αt : (U0, J0) → (Ut, Jt) between
neighbourhoods of p0 such that α0 = idU0 . Thus for each t, both functions ψ and
ψ◦α−1t are Jt-convex on Ut. By [CiEl12, Proposition 3.26] there exists a family of Jt-
convex functions ψt : V → R such that ψ0 = ψ, ψt = ψ outside Ut, and ψt = ψ ◦α−1t
on a smaller neighbourhood Ũt ⊂ Ut of p0. Moreover, ψt = ψ ◦ h−1t for a family of
diffeomorphisms ht : V → V such that h0 = id, ht = id outside U0, and ht = αt
on Ũ0. After decreasing the regular value d0 we may assume that {ψ ≤ d0} ⊂ Ũ0,
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so that ht : (Op {ψ ≤ d0}, J0) → (Op {ψt ≤ d0}, Jt) is a biholomorphism for all
t ∈ [0, 1].

Now we consider the next critical point p1. After a similar adjustment as above we
may assume that the ht are (J0, Jt)-holomorphic near p1. Set Wt := {ψt ≤ d0}. Using
[CiEl12, Proposition 10.1] we can further arrange that ht(L0) = Lt for the descending
disks Lt ⊂ V \Wt of p1 with respect to the gradient of ψt. Note that Jt(TLt) is tangent
to the level sets of ψt, and hence we can further adjust ht to make dht : (TV |L0 , J0)→
(TV |Lt , Jt) complex linear. By [CiEl12, Theorem 8.33], we can C2-approximate ht
nearW0∪L0 by a holomorphic map gt : (Op (W0∪L0), J0)→ (V, Jt) such that g0 = id.
Since gt|L0 is a totally real embedding, and after thickening L0 we may assume L0

has half the dimension of V , the gt restrict to biholomorphisms gt : (V0, J0)→ (Vt, Jt)
between neighborhoods Vt of Wt∪Lt. Thus for each t, both functions ψt and ψ0 ◦g−1t
are Jt-convex on Vt. By [CiEl12, Proposition 3.26] there exists a family of Jt-convex

functions ψ̃t : V → R such that ψ̃0 = ψ0, ψ̃t = ψt outside Vt, and ψ̃t = ψ0 ◦ g−1t on

a smaller neighborhood Ṽt ⊂ Vt of Wt ∪ Lt. Moreover, ψ̃t = ψ0 ◦ h̃−1t for a family of

diffeomorphisms h̃t : V → V such that h̃0 = id, h̃t = ht outside V0, and h̃t = gt on

Ṽ0. After applying [CiEl12, Theorem 8.5] on J-convex surroundings we may assume

that {ψ0 ≤ d1} ⊂ Ṽ0, so that h̃t : (Op {ψ0 ≤ d1}, J0) → (Op {ψ̃t ≤ d1}, Jt) is a
biholomorphism for all t ∈ [0, 1]. Inductively continuing this process, we conclude
the proof of Theorem 1.2. �

It turns out that, in real dimension 6= 4, the existence question has a complete answer
in terms of smooth topology, see [El90, CiEl12].

Theorem 1.5 (Existence of Stein structures). Let (V, J) be an almost complex ma-
nifold of dimension 2n 6= 4 and φ : V → R an exhausting Morse function without

critical points of index > n. Then there exists an integrable complex structure J̃ on V

homotopic to J for which the function φ is target equivalent to a J̃-convex function.

In particular, (V, J̃) is Stein.

By contrast, Stein homotopies encounter obstructions from symplectic topology. For
example, for each n ≥ 3 there are infinitely many Stein structures on R2n which are
pairwise not Stein homotopic (but of course homotopic as almost complex structures),
see [SeSm05, McL09, AbSe10].

1.4. Symplectic criteria for rational and polynomial convexity. Here we re-
call from [CiEl15] the symplectic characterizations of rationally and polynomially
convex subsets of Cn. For the purpose of later discussion, we state them in the
context of general Stein manifolds.
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Given a Stein manifold (V, J), we denote by O := O(V, J) the algebra of holo-
morphic functions on (V, J) and by M := M(V, J) its field of fractions, i.e., the
algebra of meromorphic functions on V . We call a compact set K ⊂ V polynomially
(resp. rationally) convex if it equals its O-hull (resp. M-hull). Equivalently, this
means that every holomorphic function on a neighbourhood of K can be approxi-
mated, uniformly on K, by functions from O (resp.M). Given a proper holomorphic
embedding (V, J) ↪→ (CN , i), a compact subset K ⊂ V is polynomially (resp. ratio-
nally) convex in V if and only its image in CN is polynomially (resp. rationally)
convex in CN . This follows from the standard corollary of Cartan’s Theorem B (see
e.g. [CiEl12, Corollary 5.37]) that any holomorphic (resp. meromorphic) function
on V ⊂ CN is the restriction of a holomorphic (resp. meromorphic) function on
CN , together with the fact that any holomorphic (resp. meromorphic) function on
CN can be approximated uniformly on compact sets by polynomials (resp. rational
functions). In particular, for (V, J) = (Cn, i) the notions polynomial and rational
convexity reduce to the usual notions on Cn.

J-convex domains. By a J-convex domain W ⊂ (V, J) we mean a compact
domain with smooth strictly pseudoconvex boundary. Recall that this is equivalent
to the existence of a J-convex function φ : W → R such that W = {φ ≤ 0}.
The following criterion for rational convexity was proved by S. Nemirovski [Ne08]
as a corollary of a result of J. Duval and N. Sibony [DuSi95, Theorem 1.1] (see
also Criterion 3.1 in [CiEl15]), while the one for polynomial convexity goes back to
K. Oka’s paper [Ok53] (see also [St07, Theorem 1.3.8]).

Criterion 1.6. Let W ⊂ V be a J-convex domain in a Stein manifold (V, J).

(a) W is rationally convex if and only if there exists a J-convex function φ : W → R
such that W = {φ ≤ 0}, and the form −ddCφ on W extends to a Kähler form ω on
the whole (V, J).

(b) W is polynomially convex if and only if there exists an exhausting J-convex
function φ : V → R such that W = {φ ≤ 0}.

Here by a Kähler form we mean a symplectic form compatible with J , i.e., the
imaginary part of a Kähler metric on (V, J). In part b) the form ωφ := −ddCφ has
this property.

In the following, by a polynomially (resp. rationally) convex domain2 we will mean a
J-convex domain which is polynomially (resp. rationally) convex. Natural questions
concern the possible topological types of such domains in a given Stein manifold,
e.g. in Cn. Since a J-convex domain W ⊂ V inherits a Stein structure from V ,

2 Thus our polynomially or rationally convex domains always have strictly pseudoconvex smooth
boundary.
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Theorem 1.5 yields necessary conditions on the topology on W and we wish to
understand to what extent these are sufficient.

In order to address these questions, we first consider the following more sophisti-
cated questions: Given a Stein structure on W , is it deformation equivalent to the
induced Stein structure on a J-, rationally, or polynomially convex domain in V ?
The following result from [CiEl15] reduces these questions to questions in symplectic
topology. In Section 3.5 we will explain how to solve these questions and thus an-
swer the original questions concerning the topologies of polynomially and rationally
convex domains.

Theorem 1.7. Let (V, JV , φV ) be a Stein manifold, (W,JW , φW ) a Stein domain,

and f : W ↪→ V a smooth embedding. Then f is isotopic to an embedding f̃ which
is a deformation equivalence onto

(a) a JV -convex domain f̃(W ) if and only if the pullback complex structure f ∗JV
is homotopic to JW through almost complex structures;

(b) a rationally convex domain f̃(W ) if and only if f is isotopic to a symplectic

embedding f̃ : (W,−ddCφW ) ↪→ (V,−ddCφV );

(c) a polynomially convex domain f̃(W ) if and only if the pushforward Weinstein
structure f∗W(JW , φW ) on f(W ) extends to a Weinstein structure on the
whole V which is Weinstein homotopic to W(JV , φV ).

Totally real submanifolds. Below we will also use the following criterion for
rational and polynomial convexity of a totally real submanifold.

Criterion 1.8 ([Ne19]). Let L ⊂ V be a closed totally real submanifold in a Stein
manifold (V, J).

(a) L is rationally convex if and only there exists a Kähler form ω on V such that
ω|L = 0.

(b) L is polynomially convex if and only if there exists an exhausting J-convex func-
tion φ : V → [0,∞) such that L = φ−1(0).

By the ∂∂̄-lemma (appplied on CN for some proper holomorphic embedding V ⊂
CN), the Kähler form ω in (a) can be taken to be ω = −ddCφ for some function
φ : V → R, in particular ω = dλ can be taken to be exact. Let us call L exact
rationally convex if there exists a Kähler form ω = dλ on V such that λ|L is exact.
This corresponds to the notion of an exact Lagrangian submanifold which plays
an important role in symplectic topology. For example, a fundamental theorem of
Gromov asserts that there are no exact closed Lagrangian submanifolds in (Cn, ωst)
(whereas non-exact ones abound). Of course, exact rational convexity agrees with
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rational convexity if H1(L;R) = 0, so in the sequel the word “exact” can be ignored
when we restrict to such manifolds L (e.g. simply connnected ones).

2. Recent developments in symplectic topology

In this section we review some recent developments in symplectic topology. Their
implications in complex analysis via the Stein–Weinstein correspondence will be dis-
cussed in Section 3.

2.1. Flexible Weinstein structures. Each Weinstein domain (W,λ, φ) with φ
Morse comes equipped with a canonical handle decomposition W = W1 ∪ · · · ∪Wm,
where Wi = φ−1([ci−1, ci]) for regular values ci of φ separating the critical values ai,
i.e., c0 < a0 < c1 < · · · < am−1 < cm = maxφ. Each Wi deformation retracts onto
the union of the stable disks (with respect to the Liouville field X) of its critical
points, where the stable disk of an index k critical point of value ai intersects the
level set Mi = φ−1(ci) in the (k − 1)-dimensional attaching sphere.

The Liouville form λ restricts to a contact form αi on Mi and the attaching spheres
in Mi are isotropic, i.e., tangent to the contact structure kerαi. Let dimW = 2n, so
that dimMi = 2n−1. Now isotropic submanifolds in a (2n−1)-dimensional contact
manifold of dimension k − 1 < n− 1 satisfy an h-principle (see [Gr86, ElMi02]). As
a result, Weinstein structures exhibit a lot of flexibility if they are subcritical, i.e.,
all critical points of φ have index < n. By contrast, the h-principle fails for isotropic
submanifolds of dimension n− 1, a.k.a. Legendrian submanifolds.

The theory of Weinstein structures took a new turn with E. Murphy’s discovery [Mu11]
of a class of loose Legendrian submanifolds in contact manifolds of dimension > 3
which do satisfy an h-principle. Let us call a submanifold a knot if it is connected,
and a link otherwise. Then a loose Legendrian knot is characterized by the presence
of a particular local configuration called a loose chart (somewhat analogous to an
overtwisted disk for contact structures), and a Legendrian link is called loose if each
component is loose in the complement of all the others. Any Legendrian link can be
made loose by a C0-small (non-Legendrian!) smooth isotopy preserving its formal
Legendrian isotopy class, and loose Legendrian links satisfy the following h-principle.

Theorem 2.1 (E. Murphy [Mu11]). Any two loose Legendrian links in a contact
manifold of dimension > 3 which are formally Legendrian isotopic can be connected
by a genuine Legendrian isotopy.

A Weinstein structure (λ, φ) (on a domain or manifold) of dimension 2n ≥ 6 is called
flexible3 if on each level set Mi = φ−1(ci) of its canonical handle decomposition the

3 This definition will be slightly modified in the next subsection.
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attaching spheres of dimension n − 1 form a loose Legendrian link. In particular,
subcritical Weinstein manifolds are flexible. The terminology is justified by the
following h-principle type result (which should be compared to Theorem 1.4).

Theorem 2.2 (Flexible Weinstein structures [CiEl12]). For Weinstein structures on
a fixed manifold or domain V of dimension 2n ≥ 6 the following hold.

(a) (Existence) Given a Weinstein structure (λ, φ), there exists a flexible Weinstein

structure (λ̃, φ) (with the same function φ) such that dλ̃ and dλ are homotopic as
nondegenerate 2-forms.

(b) (Homotopy) Two flexible Weinstein structures (λ0, φ0) and (λ1, φ1) are Weinstein
homotopic if and only if dλ0 and dλ1 are homotopic as nondegenerate 2-forms.

(c) (Morse-Smale theory) Given a flexible Weinstein structure (λ, φ) and any Morse
function ψ : V → R without critical points of index > n, there exists a Weinstein
homotopy (λt, φt) with (λ0, φ0) = (λ, φ) and φ1 = ψ.

Let us denote the flexible Weinstein structure associated to (λ, φ) by part (a) by
Flex(λ, φ); by part (b) it is unique up to Weinstein homotopy.

2.2. Subflexible Weinstein domains. When we wrote our book [CiEl12] it was
unknown whether the flexibility property of a Weistein structure is invariant under
Weinstein homotopy. The problem is the following possible scenario: a Weinstein
cobordism with exactly two Morse critical points on the same level is flexible iff the
attaching spheres form a loose link, while after moving the points to different levels,
flexibility becomes equivalent to the weaker condition that the attaching spheres are
loose knots on their respective (different) level sets. In the meantime, E. Murphy and
K. Siegel [MuSi18] have shown that this actually happens: Every flexible Weinstein
manifold is Weinstein homotopic to one which is nonflexible!

Since we are mainly interested in properties up to Weinstein homotopy, we will
follow the suggestion in [MuSi18] and redefine the notion of flexibility: refering to
our original notion as explicit flexibility, we now call a Weinstein structure flexible if
it is Weinstein homotopic to an explicitly flexible one. Theorem 2.2 clearly continues
to hold with this new definition of flexibility, which is now invariant under Weinstein
homotopy. In this terminology, the main result in [MuSi18] takes the following form.

Theorem 2.3 (E. Murphy and K. Siegel [MuSi18]). Every flexible Weinstein mani-
fold has, after a Weinstein homotopy, a nonflexible sublevel set.

A Weinstein domain is called subflexible if it is deformation equivalent to a sublevel
set of a flexible Weinstein manifold. It follows that each subflexible Weinstein domain
has vanishing symplectic homology [McL09]. Nonflexibility of a subflexible Weinstein
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domain is detected in [MuSi18] by nonvanishing of a suitably twisted version of
symplectic homology.

2.3. Weinstein cobordisms with few critical points. Following [La18], let us
introduce the following notations for a Weinstein domain W = (W,λ, φ) of dimension
2n. We call W smoothly subcritical if it admits a defining Morse function without
critical points of index ≥ n, and smoothly critical otherwise. We call W Weinstein
subcritical if there exists a Weinstein structure homotopic to (λ, φ) whose Morse
function has no critical points of index ≥ n, and Weinstein critical otherwise. We
denote by Crit(W ) the minimal number of critical points of a Morse function on
W , and by WCrit(W ) the minimal number of critical points of a Morse function
appearing in a Weinstein structure homotopic to (λ, φ).

Clearly WCrit(W ) ≥ Crit(W ), and it follows from Theorem 2.2 that equality holds
if W is flexible. On the other hand, each exotic Weinstein structure on R2n must
have an index n critical point, so the inequality is strict in this case. Moreover,
M. McLean’s infinitely many Weinstein structures on R2n are distinguished by the
number of idempotent elements in their symplectic homology, so one might expect the
number WCrit to become arbitrarily large in this family of examples. Surprisingly,
this is not the case:

Theorem 2.4 (O. Lazarev [La18]). For each Weinstein domain W = (W,λ, φ) of
dimension 2n ≥ 6 we have WCrit(W ) ≤ Crit(W ) + 2. More precisely,

WCrit(W ) =


Crit(W ) if W is Weinstein subcritical,

Crit(W ) if W is smoothly critical,

Crit(W ) + 2 otherwise.

O. Lazarev derives this result from the following one which is of independent interest
(and which may be viewed as a kind of converse to Theorem 2.3).

Theorem 2.5 (O. Lazarev [La18]). Each Weinstein domain (W,λ, φ) of dimension

2n ≥ 6 is homotopic to some (W, λ̃, φ̃) for which the Weinstein subdomain {φ̃ ≤ 0}
is flexible, and the cobordism {φ̃ ≥ 0} has exactly two smoothly canceling critical
points of index n− 1 and n.

It follows that C := {φ̃ ≥ 0} is diffeomorphic to [0, 1] × ∂W and {φ̃ ≤ 0} is the
flexibilization Flex(W ) of W = (W,λ, φ), so we can state Theorem 2.5 concisely as

W ∼ Flex(W ) ∪ C.
Note that the first case in Theorem 2.4 follows from Theorem 2.2 and the third case
from Theorem 2.5, while the second case requires additional arguments.
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2.4. Flexible h-cobordisms. A cobordism from M to M ′ is a triple (C;M,M ′),
where C is a compact oriented manifold together with a decomposition ∂C = ∂+Cq
∂−C of its boundary and orientation preserving diffeomorphisms ∂−C → −M and
∂+C → M ′. It is called an h-cobordism if both inclusions ∂±C ↪→ C are homotopy
equivalences.

Theorem 2.6 (S. Courte [Co14]). Let (M, ξ) be a contact manifold of dimension
≥ 5. Then for each h-cobordism (C;M,M ′) there exists a contact structure ξ′ on M ′

with the following properties.

(a) The symplectizations of the contact manifolds (M, ξ) and (M ′, ξ′) are exact sym-
plectomorphic.

(b) For every Weinstein domain (W,λ, φ) with contact boundary (M, ξ) there exists
a Weinstein domain (W ′ = W ∪ C, λ′, φ′) with contact boundary (M ′, ξ′) such that

the completions (Ŵ , λ̂, φ̂) and (Ŵ ′, λ̂′, φ̂′) are deformation equivalent as Weinstein
manifolds.

For the proof, S. Courte observes that C can be given the structure of a flexible
Weinstein cobordism with negative contact boundary (M, ξ). Then ξ′ is the induced
contact structure on the positive boundary of C, and assertions (a) and (b) follow
from Theorem 2.2 and a telescope construction.

Remark 2.7. (i) By Proposition 1.3, the manifolds (Ŵ , dλ̂) and (Ŵ ′, dλ̂′) in Theo-
rem 2.6 (b) are exact symplectomorphic.

(ii) There exist h-cobordisms (C;M,M ′) for which M and M ′ are not diffeomorphic
(explicit examples are constructed in [Co14]).

2.5. Weinstein fillings of contact manifolds. A Weinstein filling of a contact
manifold (M, ξ) is a Weinstein domain (W,λ, φ) together with a contactomorphism
(∂W, ker(λ|∂W )→ (M, ξ). Since the book [CiEl12] was published, many new results
about contact structures on high-dimensional manifolds and their symplectic and
Weinstein fillings have been proven. Here we collect some of these results which are
relevant to complex analysis. The collection is by no means complete, in particular
we have omitted all results concerning non-Weinstein symplectic fillings.

In [BEM15] it was shown that every almost contact structure on an odd-dimensional
manifold is homotopic to a contact structure, generalizing a classical result of J. Mar-
tinet [Ma71] and R. Lutz [Lu77] in dimension three. Moreover, these structures can
be made overtwisted, in particular they do not admit any Weinstein (or more gener-
ally symplectic) fillings.

In [BCS14] J. Bowden, D. Crowley and A. Stipsicz found a necessary and sufficient
condition for a smooth odd-dimensional manifold of dimension ≥ 5 endowed with an
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almost complex structure to admit a Weinstein fillable contact structure. Without
formulating their general result, we state here some of its consequences.

Theorem 2.8 (J. Bowden, D. Crowley and A. Stipsicz [BCS14, BCS15]).
(a) Let M be a closed simply connected 7-manifold with torsion free second homotopy
group π2(M). Then M admits an almost contact structure, and every almost contact
structure is homotopic to a Weinstein fillable contact structure.
(b) Every homotopy sphere carries a contact structure, and there exist homotopy
spheres which carry no Weinstein fillable contact structure.
(c) For k ≥ 2, the standard sphere S8k−1 carries an almost contact structure which
is not homotopic to a Weinstein fillable contact structure.

In a somewhat different direction, O. Lazarev proved the following result.

Theorem 2.9 (O. Lazarev [La16]). For every Weinstein fillable contact manifold
(M, ξ) of dimension ≥ 5 with vanishing first Chern class, there are infinitely many
pairwise non-isomorphic contact structures on M in the same homotopy class of
almost contact structures having flexible Weinstein fillings.

Next we turn to the question of uniqueness of Weinstein filings of a given contact
manifold. In dimension three, the following manifolds (each with their standard
contact structure) are known to have unique Weinstein fillings up to deformation
equivalence: S3, S2 × S1, the lens spaces L(p, 1) for p 6= 4, and connected sums of
these [El97, CiEl12, Hi03]. (We will not discuss here uniqueness results in dimension
3 up to diffeomorphism or symplectomorphism such as [Li08, Wen10].) In higher
dimensions, no uniqueness results up to deformation equivalence are known. How-
ever, uniqueness of Weinstein fillings up to diffeomorphism has been established for
(S2n−1, ξst) by Y. Eliashberg, A. Floer and D. McDuff [McD91], and more generally
for contact manifolds admitting a subcritical Weinstein filling by K. Barth, H. Geiges
and K. Zehmisch [BGZ16].

As for nonuniqueness, I. Smith [Sm01] and B. Ozbagci and A. Stipsicz [OzSt04] found
contact 3-manifolds with infinitely many pairwise homotopy inequivalent Weinstein
fillings. A. Akhmedov, J. Etnyre, T. Mark and I. Smith [AEMS08] found contact
3-manifolds with infinitely many simply connected Weinstein fillings which are all
homeomorphic but pairwise non-diffeomorphic. In higher dimension, T. Oba proved
the following result.

Theorem 2.10 (T. Oba [Ob18]). In any dimension 4k − 1 ≥ 7 there exist contact
manifolds which admit infinitely many pairwise homotopy inequivalent Weinstein
fillings.
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In dimension 4k + 1 there are no known analogs of Theorem 2.10, though T. Oba
communicated to us that he constructed examples of contact 5-manifolds having
distinct Weinstein fillings.

2.6. The Nearby Lagrangian Conjecture. The so-called Nearby Lagrangian Con-
jecture, usually attributed to V.I.Arnold, states that any closed exact Lagrangian
submanifold of a cotangent bundle T ∗M (with its standard symplectic structure) is
Hamiltonian isotopic to the zero section. While the problem is still wide open, there
are some strong results towards its positive resolution.

Theorem 2.11. (a) The Nearby Lagrangian Conjecture holds for M = S2 (R. Hind [Hi12])
and M = T 2 (G. Dimitroglou-Rizell, E. Goodman and A. Ivrii [DRGI16]).
(b) Given a closed exact Lagrangian L ⊂ T ∗M , the restriction π|L : L → M of
the cotangent bundle projection is a simple homotopy equivalence (M. Abouzaid and
T. Kragh [AbKr18]).

Theorem 2.11(b) implies that if M is a homotopy sphere, then L is a homotopy
sphere as well. A theorem of M. Abouzaid with an improvement by T. Ekholm,
T. Kragh and I. Smith provides in this case the following refinement.

Theorem 2.12 (M. Abouzaid [Ab12], T. Ekholm, T. Kragh and I. Smith [EKS16]).
Suppose M is a homotopy n-sphere and L ⊂ T ∗M is a closed exact Lagrangian sub-
manifold. Let Θn denote the group of oriented homotopy n-spheres and bPn+1 ⊂ Θn

the subgroup of oriented homotopy n-spheres bounding parallelizable (n+1)-manifolds.
Then for suitable orientations the classes of M and L in Θn/bPn+1 coincide.

We finish this section by quoting another related result in the paper [DRGI16].

Theorem 2.13 (G. Dimitroglou-Rizell, E. Goodman and A. Ivrii [DRGI16]). Any
two Lagrangian tori in the standard symplectic R4 are Lagrangian isotopic.

We stress the point that here tori are considered as submanifolds, and not as parametrized
Lagrangian embeddings. We also remark that the torus is the only closed oriented
surface which admits a Lagrangian embedding into the standard symplectic R4, hence
Theorem 2.13 can be equivalently formulated by saying that any two orientable closed
Lagrangian submanifolds in the standard symplectic R4 are Lagrangian isotopic.

3. New applications to complex analysis

3.1. Morse theoretic properties of plurisubharmonic functions. For a Stein
domain (W,J) we denote by SCrit(W,J) the minimal number of critical points of a
defining J-convex Morse function W → R. Theorem 2.4 immediately implies
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Corollary 3.1 (O. Lazarev [La18]). For each Stein domain (W,J) of dimension
2n ≥ 6 we have SCrit(W,J) ≤ Crit(W ) + 2. More precisely,

SCrit(W,J) =


Crit(W ) if (W,J) is Stein subcritical,

Crit(W ) if W is smoothly critical,

Crit(W ) + 2 otherwise.

For example, on the standard ball B2n of dimension 2n ≥ 6 we have SCrit(B2n, i) = 1,
and SCrit(B2n, Jk) = 3 for all of McLean’s infinitely many exotic Stein structures Jk
in [McL09].

3.2. Boundaries of Stein domains. It is well-known that the biholomorphism
type of the interior of a Stein domain determines the diffeomorphism type of its
boundary [Fe74]. The following immediate consequence of Theorem 2.6 together
with Remark 2.7 implies that this is not the case for the Stein deformation class of
the interior.

Corollary 3.2 (S. Courte [Co14], Corollary 4.7). Let (W,J) be a Stein domain of
dimension 2n ≥ 6 with boundary M = ∂W . Then for every h-cobordism (C;M,M ′)
there exists an exhausting J-convex function ψ : IntW → R such that all critical
points are contained in {ψ < 0} and ψ−1(0) is diffeomomorphic to M ′ (which may
be non-diffeomorphic to M).

Proof. Let φ : W → (−∞, 0] be a defining J-convex function with ∂W = φ
−1

(0).
Let g : (−∞, 0) → R be a convex increasing diffeomorphism such that φ = g ◦ φ :
IntW → R is J-convex, so (V = IntW,J, φ) is a finite type Stein manifold. By
Theorem 2.6 there exists a homotopy of Weinstein manifold structures (λt, φt) on V
with (λ0, φ0) = W(J, φ) such that all critical points of φ1 have value < 0 and φ−11 (0)
is diffeomorphic to M ′. By Theorem 1.4(c), there exist diffeotopies ht : V → V and
gt : R → R such that ψt = gt ◦ φt ◦ ht : V → R is J-convex for all t. Choosing gt
such that g1(0) = 0, the J-convex function ψ1 : V = IntW → R has the desired
properties. �

Remark 3.3. In Corollary 3.2 consider the Stein subdomain W ′ = {ψ ≤ 0} of (W,J).
Its interior (IntW ′, J) is Stein deformation equivalent (via the sublevel sets {ψ < c})
to (IntW,J). However, the Stein homotopy (J, ψt) on IntW provided by [CiEl12,
Proposition 11.22] connecting the function ψ0 = φ in the proof to ψ1 = ψ cannot be
of finite type because the diffeomorphism type of high level sets changes.

3.3. Stein fillings of J-convex CR-manifolds. By a CR structure on an odd-
dimensional manifold M we mean a germ of a complex structure J on an open
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neighbourhood of 0×M in R×M . The maximal J-invariant distribution on 0×M
defines a hyperplane distribution ξ on M with complex structure J |ξ. The CR struc-
ture is called J-convex (or strictly pseudoconvex) if 0×M is a J-convex hypersurface.
In this case ξ is a contact structure. A CR structure induces a complex structure
on the bundle TM ⊕ ε1, where ε1 is a trivial R-bundle over M . We will refer to
such a structure as an almost contact structure. Sometimes it is also called a “stable
complex structure”. One should, however, be warned that usually the term “stable
complex structure” refers to a complex structure on TM ⊕ εk for sufficiently large
k. While an individual stable complex structure in this sense always descends to
TM ⊕ ε1, the homotopy classes of these two structures are different.

Theorem 1.4 allows us to translate results about Weinstein fillings of contact ma-
nifolds to Stein fillings of CR structures. In particular, Theorems 2.8, 2.9 and 2.10
imply

Theorem 3.4. (a) Each closed simply connected 7-manifold M with torsion free sec-
ond homotopy group π2(M) appears as the boundary of a Stein domain. Moreover,
one can prescribe the homotopy class of the induced CR-structure on M as an almost
contact structure.
(b) There exist homotopy spheres which cannot appear as boundaries of Stein do-
mains.
(c) Let W be a Stein domain of complex dimension n > 2. Then ∂W admits infin-
itely many Stein fillable strictly pseudoconvex CR-structures which are pairwise non-
homotopic as strictly pseudoconvex CR-structures, but homotopic as almost contact
structures.
(d) In every dimension 4` ≥ 8 there exists an infinite sequence of pairwise homotopy

non-equivalent Stein domains (Wk, Jk), k ∈ N, and diffeomorphisms fk : ∂Wk

∼=→
∂W1 such that the pushforward strictly pseudoconvex CR-structures (fk)∗Jk on ∂W1

have the same underlying contact structure.

3.4. Koras-Russel cubics. P. Seidel and I. Smith’s original example in [SeSm05]
of a Stein manifold diffeomorphic but not symplectomorphic to C4 was in fact an
affine algebraic 4-fold (the product of Ramanujam’s surface with itself), and before
their proof it was not even known whether it was biholomorphic to C4. There is a
class of other examples of this kind. One of them is the so-called Koras-Russel cubic
(see [KoRu97])

C := {x+ x2y + w3 + z2 = 0} ⊂ C4.

L. Makar-Limanov [ML96] has proved that the cubic C is not algebraically isomorphic
to C3, but it is unknown whether it is biholomorphic to C3. In view of Seidel-Smith’s
success there were many attempts to prove that C is not even symplectomorphic to
C3 by computing various symplectic invariants. However, it recently turned out that
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Theorem 3.5 (R. Casals and E. Murphy [CaMu19]). The Koras-Russel cubic is
flexible, and hence Stein deformation equivalent (in particular symplectomorphic) to
the standard C3.

3.5. Topology of rationally and polynomially convex domains. Now we ad-
dress the question about the possible topological types of polynomially and rationally
convex domains in a given Stein manifold (V, J). The following theorem was stated
without proof in [CiEl15], so we include the proof here.

Theorem 3.6. Let (V, J) be a Stein manifold of complex dimension n ≥ 3 and
W ⊂ V be a compact domain.

(a) W is smoothly isotopic to a rationally convex domain if and only if it admits a
defining Morse function without critical points of index > n.

(b) W is smoothly isotopic to a polynomially convex domain if and only if it satisfies,
in addition, the following topological condition:

(T) The inclusion homomorphism Hn(W ;G) → Hn(V ;G) is injective for every
abelian group G.

Proof. Note first that we may assume without loss of generality that (V, J) is of
finite type. For this, simply choose a Stein subdomain W0 ⊂ V containing W in its
interior and apply the result to the finite type Stein manifold (IntW0, J), noting that
rational/polynomial convexity of W in IntW0 implies rational/polynomial convexity
of W in V . Now the proof of part (a) is identical with that of Theorem 1.7 in [CiEl15].

For part (b), suppose first that (V, J, φ) is flexible. By an argument analogous to the
proof of [CiEl15, Lemma 2.1], the hypothesis of part (a) together with condition (T)
imply the existence an exhausting Morse function ψ : V → R without critical points
of index > n such that W = {ψ ≤ 0}, where 0 is a regular value. By Theorem 2.2(c),
the flexible Weinstein structure W(J, φ) on V is homotopic to a Weinstein structure
(λ, ψ) with the given function ψ. Thus W = {ψ ≤ 0} is a Weinstein subdomain of
(V, λ, ψ) and the result follows from Theorem 1.7(c) above. If (V, J) is not flexible
we use the splitting V = Flex(V ) ∪ C from Theorem 2.5 (transfered to the Stein
setting) and apply the previous argument to the flexible Stein manifold Flex(V ). �

In the case (V, J) = (Cn, i), condition (T) in Theorem 3.6(b) reads Hn(W ;G) = 0
for every abelian group G. By the universal coefficient theorem, this is equivalent
to Hn(W ;Z) = 0 and Hn−1(W ;Z) having no torsion. We constructed in [CiEl15]
a domain W satisfying this condition which is smoothly critical, i.e., it admits no
defining Morse functions without critical points of index ≥ n.
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Stein deformation types of polynomially convex domains. In [CiEl15]
we had conjectured that every Stein domain which is deformation equivalent to a
polynomially convex domain in Cn, n ≥ 3, must be flexible. This conjecture is
disproved by Murphy and Siegel’s discovery of subflexible Weinstein domains: By
Theorem 2.3 there exists a nonflexible Stein domain (W,J) which is deformation
equivalent to a Weinstein subdomain of (Cn, i), hence to a polynomially convex
domain by Theorem 1.7(c).

The case of complex dimension 2. Theorem 3.6 completely answers the question
about the possible topological types of rationally and polynomially convex domains
in Cn for n ≥ 3. In complex dimension 2 these questions are wide open. S. Ne-
mirovski and K. Siegel recently answered the question on rational convexity in C2

for a special class of domains, disk bundles over surfaces. For integers χ, e let D(χ, e)

(resp. D̃(χ, e)) denote the disk bundle of Euler number e over the closed orientable
(resp. nonorientable) surface of Euler characteristic χ (see [NeSi16] for the definition
of e in the nonorientable case).

Theorem 3.7 (S. Nemirovski and K. Siegel [NeSi16]). (a) Precisely the following
disk bundles over surfaces can be realized as i-convex domains in C2:

• D(χ, 0) for χ 6= 2;

• D̃(χ, e) for e ∈ {2χ− 4, 2χ, 2χ+ 4, . . . ,−2χ− 4 + 4[χ/4 + 1]}.
(b) All the disk bundles in (a) can also be realized as rationally convex domains in

C2, except for D̃(0, 0) and D̃(1,−2) which cannot.

Note that, in contrast to the case of complex dimension n ≥ 3, not every i-convex
domain in C2 can be realized as a rationally convex domain. According to Theo-

rem 1.7(b), the obstructions come from symplectic topology: D̃(0, 0) and D̃(1,−2)
do not admit symplectic embeddings into (R4, ωst). Nemirovski and Siegel derive this

from the classification of tight contact structures on the boundaries of D̃(0, 0) and

D̃(1,−2) and the nonexistence of a Lagrangian embedding of the Klein bottle into

(R4, ωst). (Note that D̃(0, 0) is the unit disk cotangent bundle of the Klein bottle).

3.6. Topology of rationally convex totally real submanifolds. Here we dis-
cuss some consequences of the results in Section 2.6 for the topology of rationally
convex totally real submanifolds. We will need the following easy consequence of
Criterion 1.8.

Lemma 3.8. Let (V, J, φ) be a Stein manifold of complex dimension n and L ⊂ V
a closed n-dimensional totally real submanifold. If L is (exact) rationally convex,
then it is isotopic through (exact) rationally convex totally real submanifolds to a
submanifold L1 ⊂ V such that −dCφ|L1 is closed (resp. exact).
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Proof. If L is (exact) rationally convex, then by Criterion 1.8 there exists an exact
Kähler form dλ on (V, J) with λ = −dCφ outside a compact set such that λ|L is closed
(exact). The 1-form λt := (1− t)λ− t dCφ agrees with −dCφ outside a compact set
and dλt is a Kähler form on (V, J) for all t ∈ [0, 1]. By Moser’s theorem (see [CiEl12,
Theorem 6.8]), there exists a diffeotopy ht : V → V such that h∗tλt − λ is exact for
all t. Then λt|Lt is closed (exact) for Lt := ht(L), so Lt ⊂ (V, J) is (exact) rationally
convex by Criterion 1.8. Moreover, L0 = L and −dCφ|L1 is closed (exact). �

Consider now a closed smooth manifold M . A Grauert tube structure for M is a
Stein structure (J, φ) on its tangent bundle TM such that φ : TM → [0,∞) has
a Morse-Bott minimum along the zero section M = φ−1(0) and no other critical
points. Every manifold possesses a Grauert tube structure, and any two Grauert
tube structures on TM are Stein homotopic through Grauert tube structures. The
pushforward of the Weinstein structure W(TM, J, φ) associated to a Grauert tube
under a bundle isomorphism TM ∼= T ∗M is Weinstein homotopic to the canonical
Weinstein structure on T ∗M .

For example, let Qn = {z21 + · · · + z2n+1 = 1} ⊂ Cn+1 be the complex n-dimensional
affine quadric, equipped with the restriction of the standard complex structure i and
the function φst(z) = |z|2. Then (Qn, i, φst) is a Grauert tube of the sphere Sn. In
fact, in this case one can directly find a diffeomorphism h : Qn ∼= T ∗Sn identifying
Qn ∩ Rn+1 with the zero section and −dCφ with the canonical 1-form λst = p dq.

Now we can state the complex geometric versions of Theorems 2.11 and 2.12.

Theorem 3.9. (a) Every rationally convex totally real 2-sphere L in the quadric Q2

is isotopic through rationally convex totally real spheres to the real sphere Q2 ∩ R3.
(b) Let V be a Grauert tube of a closed manifold M . Then every exact rationally
convex totally real closed n-dimensional submanifold L ⊂ V is simply homotopy
equivalent to M .
(c) Every exact rationally convex totally real closed n-dimensional submanifold of the
quadric Qn is homeomorphic to the sphere Sn and bounds a parallelizable (n + 1)-
manifold.

Proof. (a) By Lemma 3.8, L is isotopic through rationally convex totally real spheres
to a sphere L1 ⊂ V such that −dCφst|L1 is exact (exactness is automatic because L
is simply connected). Via the above identification Q2 ∼= T ∗S2, Theorem 2.11(a)
provides a Hamiltonian isotopy Lt ⊂ Q2, t ∈ [1, 2], from L1 to L2 = Q2 ∩ R3. The
Hamiltonian property means that −dCφ|Lt is exact for all t ∈ [1, 2], so Lt is rationally
convex by Criterion 1.8.
By the same argument, part (b) follows from Theorem 2.11(b) and the fact that the
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Grauert tube of M is Weinstein deformation equivalent to T ∗M with its canonical
Weinstein structure, and part (c) follows from Theorem 2.12. �

An analogous proof yields the following complex geometric version of Theorem 2.13.

Theorem 3.10. Any two orientable rationally convex totally real surfaces in C2 are
isotopic as rationally convex totally real surfaces.

In view of Theorem 3.9, we can ask more generally

Question 3.11. Let (V, J, φ) be a Stein manifold of complex dimension n and L ⊂ V
an exact rationally convex totally real n-dimensional submanifold. Is L isotopic
through (exact) rationally convex totally real submanifolds to a polynomially convex
one? In particular, is [L] ⊂ Hn(V ) indivisible for L orientable?

Theorem 3.9(a) gives an affirmative answer to this question for V = Q2 = T ∗S2, and
Theorem 3.9(b) gives indivisibility of [L] for V = T ∗M . More generally, the Nearby
Lagrangian Conjecture would imply an affirmative answer for V = T ∗M .
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