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Abstract

In this paper, we describe and establish iteration-complexity of two accelerated com-
posite gradient (ACG) variants to solve a smooth nonconvex composite optimization
problem whose objective function is the sum of a nonconvex differentiable function
f with a Lipschitz continuous gradient and a simple nonsmooth closed convex func-
tion &. When f is convex, the first ACG variant reduces to the well-known FISTA
for a specific choice of the input, and hence the first one can be viewed as a natural
extension of the latter one to the nonconvex setting. The first variant requires an
input pair (M, m) such that f'is m-weakly convex, Vf is M-Lipschitz continuous, and
m < M (possibly m < M), which is usually hard to obtain or poorly estimated. The
second variant on the other hand can start from an arbitrary input pair (M, m) of pos-
itive scalars and its complexity is shown to be not worse, and better in some cases,
than that of the first variant for a large range of the input pairs. Finally, numerical
results are provided to illustrate the efficiency of the two ACG variants.
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1 Introduction

Accelerated gradient methods for solving convex noncomposite programs were
originally developed by Nesterov in his celebrated work [21]. Subsequently, several
variants of this method (see for example [1, 15, 20, 22, 23, 27]) were developed for
solving convex simple-constrained or composite programs, which we refer generi-
cally to as ACG variants. These variants have also been used as subroutines in sev-
eral inexact-type proximal algorithms for solving convex-concave saddle point and
monotone Nash equilibrium problems (see for example [4, 10, 11, 13, 23, 24]).

In this paper, we study ACG algorithms to solve the smooth nonconvex compos-
ite optimization (SNCO) problem

¢, :=min{p(2) :=f()+h(z) : z € R"} (1)

where i : R" — (—o0, 00] is a proper lower-semicontinuous convex function with
bounded dom / and f is a real-valued differentiable (possibly nonconvex) function
whose gradient is M-Lipschitz continuous on dom 4, i.e., for every z,7’ € dom A,

V() = V@I < M|l -z (@)

The first analysis of an ACG algorithm for solving (1) under the above assumption
appears in [6] where essentially a well-known ACG variant that solves the convex
version of (1) is also shown to solve its nonconvex version in the following sense: for
a given tolerance p > 0, it computes (9, ) € dom i X R” such that ¥ € Vf() + 0h(D)

and||9]| < pin
MmD?  ( Md,\*?
O\—F+ <7> 3)

iterations where d|, is the distance of the initial point x; to the optimal solution set of
(1), D, is the diameter of dom 4 and m is the smallest scalar m > O such that

—%nz’ — 2l <f(@) = f@) = (Vf(2),7 —2). @)

for every z,z7/ € domh. Any pair (M, m) with m < M and satisfying both (2) and
(4) is referred to as a curvature pair. We refer to the ACG variant of [6] as the AG
method and note that each one of its iterations performs exactly two resolvent evalu-
ations of A, i.e., an evaluation of the point-to-point operator (I + toh)~!(-) for some
7 > 0. (Several examples of convex, as well as nonconvex, functions .z whose resol-
vent evaluations are easy to compute can be found in [8].)

This paper describes and establishes the iteration-complexities of two ACG vari-
ants for solving the nonconvex version of (1). The first variant can be viewed as
a direct extension of the FISTA presented in [1] for solving the convex version of
(1). In contrast to an iteration of the AG method, every iteration of the first variant
performs exactly one resolvent evaluation of 4. One drawback of the first variant is
that it requires as input a curvature pair (M, m), which is usually hard to obtain or is
poorly estimated. Letting (44, 712) denote the smallest curvature pair, a second variant
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is proposed to remedy the aforementioned drawback in that it works regardless of
the choice of input pair (M, m) (i.e., not necessarily satisfying (2) and (4)), and its
complexity is shown to be not worse than (3) when M > M and m € [/, M]. Moreo-
ver, when m € [/, M], the complexity of the second variant is empirically argued
to behave as (3) with M = M, for a large range of scalars M such that M < M (see
the second paragraph following Theorem 3.4) and our computational results demon-
strate that taking M relatively smaller than M can substantially improve its perfor-
mance. It is also shown that all iterations of the second variant, with the exception
of a few ones whose total number is log-bounded, perform exactly one resolvent
evaluation of A.

Related works. Inspired by [6], other papers have proposed ACG variants for solv-
ing (1) under the assumption that fis a nonconvex continuously differentiable func-
tion with a Lipschitz continuous gradient, and that 4 is a simple lower semi-continu-
ous convex (see e.g. [5, 7]) or nonconvex (see e.g. [16, 17, 29]) function. Similar to
an iteration of the two ACG variants in our paper, the one of the algorithms in [17,
29] requires exactly one resolvent evaluation of 4. However, while every iteration of
the variants studied here is always accelerated, the ones of the latter algorithms can
be a simple composite gradient (and unaccelerated) step whenever a certain descent
property is not satisfied.

Another approach for solving (1) consists of using a descent unaccelerated inex-
act proximal-type method where each prox subproblem is constructed to be (possi-
bly strongly) convex and hence solved by an ACG variant (see [3, 14, 25]). Moreo-
ver, the approach has the benefit of working with a larger prox stepsize and hence of
having a better outer iteration-complexity than the approaches in the previous para-
graph. However, each of its outer iterations still has to perform a uniformly bounded
number of inner iterations to approximately solve a prox subproblem. Overall, it is
shown that its inner-iteration complexity is better than the iteration-complexities of
the methods in the previous paragraph, particularly when 7 < M. As in the papers
[5,7, 16, 17, 29] in the previous paragraph, it is worth noting that the method in [25]
attempts to perform an accelerated step whenever a certain descent property holds
and, in case of failure, it performs an unaccelerated prox step similar to the one used
in the methods in [3, 14].

Finally, a hybrid approach that borrows ideas from the above group of papers is
presented in [18]. More specifically, the latter work presents an accelerated inexact
proximal point method reminiscent of those presented in [9, 20, 26], but in which
only the convex version of (1) is considered. Each (outer) iteration of the method
requires that a prox subproblem be approximately solved by using an ACG variant
in the same way as in the papers [3, 14]. Hence, similar to the methods in the previ-
ous paragraph, this method performs both outer and inner iterations with a major
difference that every outer iteration is an accelerated step (as in the papers [5, 7, 16,
17, 29]) with a large proximal stepsize (as in the papers [3, 14]).

Organization of the paper. Sect. 1.1 presents basic definitions and notations used
throughout the paper. Section 2 presents assumptions made on the SNCO prob-
lem, describes the first ACG variant, which is an extension of FISTA to the SNCO
problem and is referred to as NC-FISTA, and establishes its iteration-complexity
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for obtaining a stationary point of the SNCO problem. Section 3 presents an adap-
tive variant of NC-FISTA, namely, ADAP-NC-FISTA, and establishes its iteration-
complexity. Section 4 presents computational results showing the efficiency of
NC-FISTA and ADAP-NC-FISTA. Section 5 finishes the paper by presenting a few
concluding remarks. Finally, supplementary technical results are provided in the
appendix.

1.1 Basic definitions and notation

This subsection provides some basic definitions and notations used in this paper.

The set of real numbers is denoted by R. The set of non-negative real numbers
and the set of positive real numbers are denoted by R, and R, ,, respectively. Let
R" denote the standard n-dimensional Euclidean space with inner product and norm
denoted by (-,-) and || - ||, respectively. The Frobenius inner product and Frobe-
nius norm in R"™ " are denoted by (-,-) and || - ||z, respectively. The sets of real
n X n symmetric positive semidefinite matrices are denoted by §. Let Ny(z) denote
the normal cone of X at z, i.e., Ny(2) = {u € R" : (u,z7 —z) <0 V7 € X}. The
indicator function Iy of a set X C R" is defined as Iy(z) = 0 for every z € X, and
I (z) = oo, otherwise. If Q is a nonempty closed convex set, the orthogonal projec-
tion Py : R" — R" onto Q is defined as

Py(z) :=argmin ol —zll VzeR™

Define log*(s) := max{logs,0} and log (s) := max{logs, 1} for s > 0.

Let ¥ : R" - (—o0,+o0] be given. The effective domain of ¥ is denoted by
domV¥ :={x € R" : w(x) < oo} and ¥ is proper if dom ¥ # @J. Moreover, a proper
function ¥ : R” — (—o0, +0o0]is p-strongly convex for some y > 0 if

B = Pu
PPz + (1 - p7) < PR+ (1 - HYPE) - — =217
for every z,7 € dom¥ and § € [0, 1]. Let 0%¥(z) denote the subdifferential of ¥ at
z € dom Y. If ¥ is differentiable at z € R”, then its affine approximation £y(-;7) at Z
is defined as

Co(z2) (=YY@ +(V¥®@),z-2) VzeR"

Let Conv (R") denote the set of all proper lower semi-continuous convex functions
Y : R" - (—o0,+00].

2 NC-FISTA for solving the SNCO problem

This section describes the assumptions made on our problem of interest, namely,
problem (1). It also presents and establishes the iteration-complexity of the first
ACG variant, namely NC-FISTA, for obtaining an approximate solution of (1).
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Throughout this paper, we consider problem (1) and make the following assump-
tions on it:

(A1) h e Conv (R");

(A2) dom his bounded;

(A3) fis differentiable on a closed convex set Q 2 dom 4 and there exists M > 0 such
that (2) holds for every z,7 € Q;

(A4) fis nonconvex on dom % and there exists m > 0 such that (4) holds for every
2,7 € Q.

Throughout this paper, we denote the diameter of dom / as
Dy, :=sup {|lu' —ull : u,u’ € domh} < oo (5)

where its finiteness is due to (A2). Moreover, let i/ (resp., m) denote the smallest
scalar M (resp., m) satisfying (2) (resp., (4)) for every z,7’ € Q. Clearly, M > in > 0.

We now make a few remarks about the above assumptions. First, (A1)—-(A3)
imply that the set Z* of optimal solutions of (1) is nonempty and compact. Second,
using the fact that M satisfies (2) for every z,z’ € Q in view of the above definition
of M, we easily see that

M
lf(z') - 44(Z52)| < E“Z’ —-7|* Vvz,7 €Q,

and hence that (4) is satisfied with m = M. Thus, it follows that from the definition
of i that /i < M. Third, (A4) implies that 7z > 0. Fourth, our interest is in the case
where /m < M since this case naturally arises in the context of penalty methods for
solving linearly constrained composite nonconvex optimization problems (e.g., see
Section 4 of [14]).

For z € dom & to be a local minimizer of (1), a necessary condition is that z is a
stationary point of (1), i.e., 0 € Vf(z) + 0h(z). Motivated by this remark, the follow-
ing notion of an approximate solution to problem (1) is proposed: a pair (9, V) is said
to be a p-approximate solution to (1), for a given tolerance g > 0, if

v e VF®) +oh(®), 9l < p. (6)
We are now ready to state the NC-FISTA for solving (1).

NC-FISTA

0. Let an initial point y, € dom A, a pair (M, m) € RQH such that M > m > i and M > M, a scalar
A, > 0, and a tolerance p > 0 be given, and set x, =y, A = 1/M, k = 0 and

114,

Ko = o ™
1.  compute
1+4/1+4A;
=5 Aw = Achag ®
2. compute
~ A a,
X = A—:yk + A_iuxk (©)]
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NC-FISTA
Yiq1 = argmin u{ff(u;fck) + h(u) + %(% + %)llu - %1% }, (10)
Fpr = W’ X1 = Po (R ) an
3. compute
Vit =(i+%)()~€k—)’k+1)+vf(h+1)—Vf(ffk)é (12)

if ||vi,q |l < 4 then output (5, ¥) = (y41» Viq ) and stop; otherwise, set k < k4 1and go to step 1.

We now make a few remarks about the NC-FISTA. First, it follows from (10)
that {y,} C dom#A, and hence {y,} is bounded in view of (A2). Second, the defi-
nition of {x;} in (11) implies that {x;} C €, and hence that {¥,} C Q in view of
(9). Hence, if Q is chosen to be compact, then the latter two sequences will also
be bounded but our analysis does not make such an assumption on Q. Third, if
©Q = R", then each iteration of the NC-FISTA requires one resolvent evaluation of
h in (10), i.e., an evaluation of (I + 79h)~! for some 7 > 0. Otherwise, it requires
an extra projection onto Q in (11) , which, depending on the problem instance and
the set 2, might be considerably cheaper than a resolvent evaluation of 4. Fourth,
it follows from (8) that {a; } and {A,;} are strictly increasing sequences of positive
scalars. Fifth, A, is required to be positive so as to guarantee that the quantity
Kk, defined in (7) is well-defined. We will assume later on that A, = ©(1) so as
to eliminate it from the iteration-complexity bounds for NC-FISTA. Sixth, NC-
FISTA requires that M and m be upper bounds for M and i, respectively, due to
technical requirements that appear in its iteration-complexity analysis. Actually,
M is also required to be not too close to M. Seventh, if a scalar M is known, then
setting m to be equal to M fulfills the conditions of step O of NC-FISTA in view
of the fact that M > /. However, NC-FISTA also allows for the possibility that
a sharper scalar m € [m, M) is known due to the fact that its iteration-complexity
bound improves as m decreases (see Theorem 2.6). Eighth, when f'is convex, i.e.,
m = 0, NC-FISTA reduces to FISTA if m is set to zero. Finally, (8) implies that

Ay =4, (13)

We establish a number of technical results. The first one establishes an impor-
tant inequality satisfied by m.

Lemma 2.1 For k > 0, we have

m m
— 4+ — < m.

Ko  dg

Proof Using the assumption m > i, the definition of «, in (7), relation (8) with
k = 0, and the fact that {a, } is increasing, we conclude that for every k > 0,

m_ﬂ><1_i>m=2—m=mzﬂ
1+

Ko V1+44, 9o G
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O

The following results introduce two functions that play important roles in our
analysis of NC-FISTA and establish some basic facts about them.

Lemma 2.2 For every k > 0, if we define

. - Koin ~ 12
7o) 1= £ (k) + h(u) + 2—||M = %% (14)
Ay
o 1. Kom 2
7e(u) 1= yk(yk+1) + z(xk = Vi1 U= Yeg1) g”” = Vil (15)
k

then the following statements hold:

(a) both y, and ¥, are (kym/a,)-strongly convex functions, y, minorizes ¥,
}7k()’k+1) = Vk()’k+1),

. 1 - . 1 -
min { 7,00 + 5 lu=%I? | =min {0+ =l =%} 6)

and these minimization problems have y, ; as a unique optimal solution;
(b) foreveryu € domh,

Vi) — @p(u) < %(ﬁi + %) lle = %1%
(©) Xppy = AEMiN, eq{ @y () + llu — x|/ (24)}.

Proof (a) It clearly follows from (15) that y,(y;,;) = 7x(4s1)- By definitions of 7,
and y, in (14) and (15) respectively, they are clearly (x,m/a,)-strongly convex. By
(10) and the definition of 7, in (14), y,,, is the optimal solution to the first minimiza-
tion problem in (16). Since the objective function of this minimization problem is
[(1/A) + (xym/a;)}strongly convex, it follows that for all u € R”,

- 1 - 1/1 Kym s 1 -
7 (Verr) + ﬁ”ﬂﬂ -5+ 3 <z + a—k> s — ull* < () + ﬂ”u -%I°. a7

On the other hand, the definition of y, in (15) and the relation

~ 12 2 ~ 12 ~
1Yier = Fell™ 4 My — wll™ =l = X ll” = 2¢X = Vo154 — Yiew1)-

imply that
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- 1 - 1
Yk(yk+1) + ﬁ”)’kﬂ —x I+ 5

KoM
(% + 2—k> s = ull> = 7,0 + 5l = 5P
(18)
Thus, it follows from (17) and (18) that y, < 7,. Noting that the objective function
in the second minimization problem in (16) is quadratic and using the first order
optimality condition, we show that y, ,, is a unique optimal solution to the aforemen-
tioned problem.

(b) This statement follows from the assumption (A4) and the definition of 7, («) in
(14).

(c) Using the expressions for X, and X,,; in (9) and (11), respectively,
it is easy to see that X, is the (unique) global minimizer of the function
ayy () + |lu — x||>/(24) over the whole space R”". The definition of x,, and the
previous observation then imply that the conclusion of (c) holds. O

The following result states a recursive inequality that plays an important role in the
convergence rate analysis of NC-FISTA.

Lemma 2.3 Foreveryu € Q and k > 0, we have

KomA + 1
2

1
< M () + A ) + Sl = %17,

(1= 2C) A

=2
-
5 Vi1 = Zel

M (Vigr) + llu = xp 1> +

where

2[f(yk+l) - ff'(yk+l;xk)]

Ck = ~
Vit _xkllz

Proof Using the definition of C,, (14) and Lemma 2.2(a), we conclude that

1-AC _ . 1 Kkymi ~
AP (Viw1) + ———Myest = Tl = A7 er) + ( 3 = —— )llygas — Tell?
2 2 2q

- 1 -
< () + §||yk+1 —%|* = e (Visr)

1 -
+ 5 1yeser — xk”z-
(19)

On the other hand, using the fact that y, is convex, y,, is an optimal solution of
(16), and relations (9) and (13), we conclude that for every u € Q,
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)

1 -
Agyi (’lyk<yk+1) + §||yk+1 _xk“2>

Ak + aXig 1 || Ak + GXita
SAk+l<)‘7k<A—+ .|_5 _k7k TRkl
k1

—%
Aps1
2
At | A + @i 20
<A (i) + Aayyi () + 2+ 1 = - % 20)
ket

1
= AMpyi (yk) + Mﬂk(xkﬂ) + §||xk+l - xI?
KomA + 1

1
<A () + Ay () + E”M —x - > llu = x4, 117,
where the last inequality follows from Lemma 2.2(c), the fact that y, is (xym/a;)
-strongly convex in view of Lemma 2.2(a), and hence that Aa,y, (1) + ||u — x,||?/2 is

(xgmA + 1)-strongly convex. The result now follows by combining (19) and (20).

O
Lemma 2.4 Forevery k > 1 and u € dom h, we have
k_ol (1= 2C) A 1yier = XilI* < 2440(d(yo) — b)) — 244, (d(y;) — pw))
) +(;<Om,1+1)(||u—x0||2— llu — x 1)
+ kgmAD?k + mAD? Z
- @)

Proof Leti> 0 and u € dom h be given. It follows from Lemma 2.2(a)—(b) that we
have

- 1(_  Kym =2
7i(w) — () < 7;(w) — Pp(u) < A + W [l — X117 (22)
i
Note that for every A,a € R, and x,y € R", we have

Ay + ax
lly = xII%.

Al + allxll? = (4 + )H

A+

Applying the above identity with A=A, a=aq;, y=y,— % and x =u —X%;, and
using the definition of ¥; in (9) and the relation (13), we obtain

Ayitau

Xi
A

a:
2
+ ——ly; — ull

-2 =12
Ailly; = %17 + a;llu = % |I° = Ay 2
i+1

Aa;
2 2 2 2
= llu—x 0" + —lly; = ull® < llu = x,||* + a;D;,.

Aint
(23)
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where the inequality follows from the fact that A;,; = A; + a; > A, due to (8) and the
definition of D, in (5).
Now, using Lemma 2.3, relations (8), (22) and (23), and some simple algebraic
manipulations, we conclude that for every i > 0,
(1 - Aci)AiH 1yier — %%+ (Kom/1 + 1) llu = xiyg 1> = llu — x;|I?
+ 20411 (¢ (Vi1) — d)) = 224,((y;) — p))
< 22A,(ri(v;) = () + 220, (r:w) — (w))
Kom
< /1<n'1 + %) (Ai”yi %17+ allu - jillz)

Kom
< /1<m+ °—> (Ilu = x;11> + a;D?)
a

i

KoM
= A<ﬁ1+ 0—> [|u —xill2 + (ﬁmi + Kom)ﬂDi.
a.:

It follows from the above inequality and Lemma 2.1 that
(1= 2C) A yier = XilI? + 2441 (d (yipr) — D)) + (omA + 1) [l = x|
< Z/IAl-(d)(yi) - d)(u)) + (Kom/l + 1) [|u — x,-||2 + (n‘wi + Kom)/lDZ.

Inequality (21) now follows by summing the above inequality fromi=0toi =k — 1
and rearranging terms. O

The following result develops a convergence rate bound for the quantity
min ;. Iv;]|>. In view of the stopping criterion in step 3 of NC-FISTA, it plays
a crucial role in establishing an iteration-complexity bound for NC-FISTA in
Theorem 2.6.

Proposition 2.5 Consider the sequences {y,} and {v,} generated by NC-FISTA
according to (10) and (12), respectively. Then, for every k > 1,

Vi € Vf (i) +0h(y) (24)

and

min [|v;]|* < -

4(2M + K()m)2 sz 3KOmDi
1<i<k M-M *

. 3240 (d() — ¢..) + (kgm + M)d23] >
k k2 k3

(25)
u_/here M, m, kyand A, are as described in step 0 of NC-FISTA, D, is defined in (5),
M and m are defined in the paragraph following assumptions (A1)-(A4), and

Proof The first conclusion (24) follows from the optimality condition of (10) and
(12). Next we show the convergence rate bound (25) holds. First note that A; > 0
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and the relation (8) with k = 0 imply that a, > 1. The assumptions that Vf is M-Lip-
schitz continuous (see (A3)), M > M and A = 1/M (see step 0 of NC-FISTA), rela-
tion (12) and the fact that {q, } is increasing then imply that

2
. 1 Kom  _ . 2 .
2 0 ~ 12 ~ 2
n"<(=+=2= | |
min Iy < < G+ +M> Jmin v =51 < (2 k) min e = 5
27
Moreover, due to the first remark after assumptions (A1)—(A4), there exists z* € Z*

such that ||z* — x,|| = d,. Noting that z* € dom A, and using Lemma 2.4 with u = z*,
the fact that C, < Mfork>0and A =1 /M, we conclude that

o k1 k=1

M-M ‘ i )

i (;AiH) pmin [y = %17 < ; (1= 2C) A lyiey — %:11%)
k—

< 2440 (d00) — ¢,) + (kgmA+ 1)d3 + xKgmiDik + mAD} Y a;
i=

—_

1

k-1
= All leO(qb(yo) - ¢,) + (kgm +M)d(2, + KOmDik + mDi Z a; |-
i=0

The bound (25) now follows by combining (27) with the above inequality and using
Lemma A.1 in [18]. O

The following theorem presents the main result of this subsection. It describes an
iteration-complexity bound for NC-FISTA involving both parameters M and m as
described in its step 0.

Theorem 2.6 Assume that the scalars M and A, in step 0 of NC-FISTA are such that

M
——=0(1), A,=0().
YRy o), Ay=06() (28)

Then, NC-FISTA outputs a p-approximate solution (3, V) in at most

M(bGvp) - ¢,) + M2\ (mMmD2\'"? MmD?
o e |\ s +1 (29)

iterations where m is as in step 0 of NC-FISTA, D,, is defined in (5), m is defined in
the paragraph following assumptions (A1)—(A4), and d,, is defined in (26).

Proof Using the assumption that A, = ®(1) and the definition of x, in (7), we eas-
ily see that k, = ®(1). The iteration-complexity bound in (29) follows immediately
from the second result in Proposition 2.5 (see (25)), (28), the stopping criterion
in step 3 of NC-FISTA, and the facts that M > m (see step 0 of NC-FISTA) and
Ky = O(1). O
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Note that if a sharper m € [m, M]is not known and m is simply set to M, then (29)
reduces to

1/3

M — ) + M2 MD, MmD;
o (& (o) ;) 0 +Th+%+1.

Clearly, this special case only requires M as the AG method does and achieves the
same iteration-complexity bound (in regards to the ®(5~2) dominant term).

3 An adaptive variant of the NC-FISTA

This section describes the second ACG variant studied in this paper, namely ADAP-
NC-FISTA, which, in contrast to NC-FISTA, does not require the knowledge of a
curvature pair (M, m) as input. Instead of choosing the parameters M and m as con-
stants, it generates sequences {C; } and {m, } (see (32), (33) and (34) below).

We begin by describing ADAP-NC-FISTA. Note that it requires as input an initial
arbitrary pair (M,,, m,) of positive scalars.

ADAP-NC-FISTA

0. Let an initial point y, € dom A, a scalar 8 > 1, a pair (M,, m,) € RL such that M, > m,, and a
tolerance g > 0 be given, and set x, = y,, Ay =2, 4, = 1/M,and k = 0;
1. compute a; and A, as in (8), X, as in (9),
Ji = (30)
and
o ALGEI G }
M = mdx{ 115 =% 117 0 @D
2. call the subroutine SUB(6, 4, m,) stated below to compute (4, ;,m, ;) = (4, m) satisfying
AL Ay m>my, (32)
AC(A4,m) £0.9, (33)
A
2m(h=2) 2 m, (34)
where

20 G (Am) =L (i (Am):5)]
Iy (Am) =5 117

oA m) = argmin“{ff(u;ik) +hu) + %(% + i—'f)llu —%? } (36)
and go to step 3;

C(d,m) = , (35)

3. compute
Yert = VelhessMis1)s Crar = CrlAggr, My, 37

X, =P @ +2myy Ay Vier =( = Dyy
ket @ 2myy Agar +1 ’

Viar = (7 + 222 )G = ye) + Vf O) = VI G

A A

if ||vi,q Il < p then output (3, ¥) = (y;41» V&4 ) and stop; otherwise, set k < k + 1and go to step 1.

We will now describe the subroutine SUB(6, 4, m) used in step 2 of ADAP-NC-
FISTA to compute (4, m) satisfying conditions (32)—(34).
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SUB(0, A, m)
0. Compute C,(4,m) and y, (4, m) according to (35) and (36), respectively;
1. if (4, m) satisty both (33) and (34), then output (4, m) and stop; other-
wise, if (33) is not satisfied then set
+ 409 .
A+« min { 2, } (39)
if (34) is not satisfied then set
mt « 2m; (40)
2. set (A4, m) = (At,m") and go to step 0.

We now make a few remarks about ADAP-NC-FISTA. First, ADAP-NC-FISTA
consists of two types of iterations, namely, the ones indexed by k that we refer to
as outer iterations and the ones performed inside SUB(@, A, m) that we refer to as
inner iterations. Second, each inner iteration performs exactly one resolvent evalu-
ation of & to compute y, (4, m). Third, when the update (39) is performed, the quan-
tity C,(4,m) in the right hand side of (39) is always positive due to the fact that
(33) is not satisfied and, as a consequence, A% is well-defined and positive. Fourth,
the choice of Ay =2, (8) with k =0 and the fact that {a,} is increasing imply that
a, > ay = 2. Fifth, if fis convex, and hence m = 0, and m;, is set to 0 in ADAP-NC-
FISTA, then it can be easily seen that the adaptive search for A, is equivalent to the
adaptive search for the quantity L, in [1] via the correspondence L, = 1/4,. Thus,
ADAP-NC-FISTA reduces to FISTA with backtracking when 7 = 0.

The following lemma states some properties of ADAP-NC-FISTA.

Lemma 3.1 The following statements hold for ADAP-NC-FISTA:

(a) foreveryk > 0and A, m > 0, the quantities C,(A, m) and C,, defined in (35) and
(37), respectively, lie in[—m, M
(b) foreveryk > 0, the quantity me., defined in (31) lies in [0, m];
(c) foreveryk > 1,
2my Ay

CeA £0.9, 2mdyy > m A + ;
B W

(d) {4} is non-increasing and {m,} is non-decreasing;
(e) foreveryk >0,

A=A ::min{g;ﬂ_?[,/lo}, my, < max{2m, m}; 41)

Proof (a)—(b) It follows from (2) (resp., (4)) and the fact that M (resp., /) is the
smallest scalar M (resp., m) satistying (2) (resp., (4)) that C(4,m) and C;, (resp.,
m,, ) is bounded above by M (resp., m). The quantities C (A, m) and C,, are
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bounded below by —n follows from /m satisfying (4), and m, _, is non-negative due
to (31).

(c) The two conclusions follow from requirements (33) and (34).

(d) The requirements in (32) on (4, m) immediately imply the two conclusions.

(e) We first prove the first inequality in (41). Indeed, assume for contradiction
that it does not hold and let k be the smallest k > O such that A, < A. Since 4 < 4,
in view of the definition of 4 in (41), it follows from the definition of k that A; is
obtained from (39), i.e.,

(41 09
A=At = A _09
b mm { 9’ C_,(hm) } (42)

for some (4,m) € (0, 4g] X R, such that (33) does not hold for the pair (4,m)
where k = k — 1in (33). Hence Cj_(4,m) > 0 in view of the third remark following
SUB(8, A, m). Moreover, it follows from the definition of A in (41), statement (a) and
the facts that @ > 1 and C;_,(4,m) > 0 that
09 09 0.9

Ak<iseM< M SC/;_I(/l,m). (43)
Clearly, (42) and (43) imply that A; = 4/6. On the other hand, the fact that A does
not satisfy (33) and statement (a) imply that 4 > 0.9/C;_,(A,m) > 0.9/M and hence
that A; = 1/ > 0.9/0M > A due to the definition of A. Since the latter inequality
contradicts our initial assumption, the first inequality in (41) follows.

To prove the second inequality in (41), assume for contradiction that it does not
hold and let k > 0 be such that m; > max{2m, my}. It follows that m; > m, by the
definition of /& in (41), which, in view of (40), implies that kX > 1 and my = 2m for
some m € R that does not satisfied (34), i.e., m satisfies

2mAg_y <mpA+ 2m_/1 (44)

a1
It then follows from (44), m; </ due to statement (b), 4 < A;_y, and az_; > a5 =2
that m <m. The latter inequality and the fact that m; =2m imply that
my < max{2m, m}, which contradicts our initial assumption. Hence the second ine-
quality in (41) follows. O

We have the following technical results that lead to Proposition 3.3, which then
allows us to establish the iteration-complexity result for ADAP-NC-FISTA in
Theorem 3.4.

Lemma 3.2 Forevery k > 0 andu € R", we define

- My
(X = Virrs U = Y1) + P

- 1
vi(u) i= Vk()’k+1) + P e = Yys I1? (45)
k+1 k

and
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112
el

7u(u) = € (%) + h(u) + L~ (46)
ay
Then, for every k > 0, we have:
A0 + a1, 00) <A (51) + mis v = yoll%, 47
- may 2
Ak+1¢(yk) = A () — a (o) ST”yk - y0|| > (48)
My 1 Ay 2
7)) — G <————Ilyo — x:1I”. 49)

Ak+l ’lk+1

Proof Note that for any quadratic function y : R” - R with a quadratic term
all - ||*, every A,a € R, and x,y € R", we have

AY() +ar(x) = (A +ayy ( ji‘”‘>+ Ly - 4P

Applying the above identity with y =y,, A =A;, a=q;, y =y, and x =y,, and
using the definition of ¥, in (30) and the relation (13), we obtain

A 2 . 2
1ye = Yoll* < Aprvi (yk) + My 1y = yoll

m
A + a i (Vo) = A vk (S’k) +

where the inequality follows from the fact that A, < A,,,. Inequality (47) then fol-
lows. We now show (48). Due to the convexity of %, and relations (8) and (30), we
have

Ap1hGy) — Ah(y) — ah(yy) < 0.

It follows from ¢ = f + h, the above inequality, the fact that A, < A, |, and relations
(4), (8) and (30) that

Ak+1¢()~)k) = A ) — aPp(yp) < Ak+lf(}~)k) = A — af )
. :
< S ol < S5 -l

Next, we show (49). Using similar arguments as in the proof of Lemma 2.2(a),
we have y,(u) < 7,(u) for every u € domh. Hence, using (46), (31), (30), (9) and
Lemma 3.1(c) that for every k > 0, we have

My

7cG) — dG) < TG — dGp) = 5 Gisxy) —FG) + 115 — %ell”
1 2y - 1 2 My 1 My 1 A
<5 (mm + k* >||y - = T, (mk+1 + a; )uy -xl? < m”)’o - xl%.
Inequality (49) then follows. O
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Proposition 3.3 For every k > 1, we have

k-1 -
1 Ay
%(z:; ) l”yzﬂ-X'V”oDz(“mZo
i= —|

z+

> + —Ak(d)(yo) — ..

(50
Proof Using similar arguments as in the proof of Lemma 2.3 and the definition of C;
in (37), we conclude that for everyi > O and u € Q,

221 Ai1 PG + (Zmi+l/1i+l + 1) llu = xi 117+ (1= A1 Cop DA i — Xl
< 221 A7) + 2404y, + llu = x|,
(51)
where y; and 7; are defined by (45) and (46), respectively. Using the relation (51)
with u = x, Lemmas 3.2, 3.1(c)—(d), the facts that x, = y, and 4; < A, fori > 0, and
the definition of D,, in (§) we conclude that for every 0 <i <k — 1,

%Am 1Yirr = %ill? + 2201401 (B(iar) = D (0)) + (2 Ay + 1) g = i 1]

— [22i11A4:(60) = $00)) + Il = 1]

< 22 Ai (1) = dOD) + 24010, (7,000) — d(Op))

=224 [Aﬂ/i(yi) +a;7,(vo) — Ai+1¢(}~’i)] + 22i44[A1119() — A9 — a,$(vo)]

< 2241 [Ai 03 (532) = (7)) + megy i = yollP] + ma Az ||y; = )’0”2

< 2myy Aqlvo = xi||2 + 22 mi 1 = Yoll” + ma; Ay ||y, - }’o”2

< 2myg, Allxg —)ci||2 + (2mi+l + ﬁiai)AODi

where the second inequality follows from (47) and (48), the third inequality follows

from (49). Dividing the above inequality by 2m,, ;, rearranging terms and using the
fact that, by Lemma 3.1(d), m; < m,,;, we obtain

A

S0 = #00)) + (5 + 4 o~
A 1

- [ﬁAi+l (¢(y,—+1) - ¢(y0)) + <% + '11'+1> llxo _xi+1”2:|

'11 j’1+l

] i ma;
+ (Z e >Ai(¢(y0) - ¢0)) + <1 * o >,1(JDZ_

Summing the above inequality from i = O to i = k — 1 and using the facts ¢(y;) > ¢,
fori > 0 and { 4;/m;} is non-increasing due to Lemma 3.1(d), we obtain

i —EII* <

i+1
20m;

i+
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k-1
1 Aip 2 Ak 1 2
%@) e o min Wies =Tl < ZEA(#00) = #00) = ( g + 4 |50 =l
k-1
'11' /11+1 >
+2 (== $00) =~ $0)
; <mi i+1 ( 0 ' )
k-1 a
+ ADj( k+m :
0 h< ; 2myy >
A

AO = i j'i+l
< nToAk(d)(yo) —¢.) + (d00) — bs) Z <E - E)Ai

=0
S
+/LODZ<k+mZ2 ! )
=

=0 <Mi+1

Now, using the fact that {A, } is increasing and { 4, /m, } is non-increasing, we have

k= k-1
A i 4o /1 4o
— = A < —A + A —-A_)— < o+ A —A_))— < —A
,Zd <mi mi+1> 0 z:’ m B 2( - 1) My .
Combining the above two inequalities, we then conclude that (50) holds. O

The next theorem is the main result of this section presenting the iteration-
complexity for finding a p-approximate solution of (1) by ADAP-NC-FISTA.

Theorem 3.4 The following statements hold:

(a) every iterate (y;, v,) generated by ADAP-NC-FISTA satisfies
Vi € V() + 0h(y);

moreover, ADAP-NC-FISTA outputs a p-approximate solution (¥, ) in a num-
ber of outer iterations 7 bounded by

_ _ 1/2 _
o <C1M[¢()’0)—¢*]>1/3+ (cleoDi> G G/ At Y

p* p* p*

where D, is defined in (5), n and M are defined in the paragraph following
assumptions (A1)—(A4), and

2
n M, M
c, :=C2max{m—0,l}, C, = \/ﬁoﬂlﬁo ; (53)

(b) if my > m, then an alternative bound on T is
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Co[p(vy) — b, + Mu2) \'" [ CoitmD2 ' CytmD?
=0 — + —~ +
p P
where C, is defined in (53) and d) is defined in (26);

(c) the total number of inner iterations, and hence resolvent evaluations of h, per-
formed by ADAP-NC-FISTA is bounded by

T+ O(logf <max{%,mﬂo}>> (55)

where logf(-) is defined in Subsection 1.1.

Proof (a) The first conclusion follows from the same argument as in the proof of
Proposition 2.5. Using the facts that a, > a; =2 from the fourth remark after
SUB(@, A, m) and Lemma 3.1(e), we have

2m
I < % + max{2m, mg}

A1 ay

for every k > 0. This conclusion together with the definition of M in the paragraph
following assumptions (A1)—(A4), assumption (A3) and (38) then implies that

min fvill < min (= + 220 i)y, -
Isisk ' T 0sisk—1 \ Ay a; e

(56)
0<i<k-1

< (% + max{2m, my} +1\7I> min |y, — %]l

Moreover, using the definition of 4 in (41), the facts that m < M and 4, = 1/M,, and
the definition of C, in (53), we have

L max{2m, my) + i1 < <i+3)(M + M) < (20 +5) _CiMMymy
A o =109 0 = max {2/, my}

Using Proposition 3.3, Lemma 3.1 (d)—(e), the above two inequalities, the fact that
k-1 . .
A=Ay + X, a;due to (8), and rearranging terms, we obtain

k=1
1 . )
%<§A,«H> min v,

_ —D2 k—1
< (26 +5)°C,M l2A0(¢(yO) —¢,) +moD2k + l% +2(p0vg) — ¢*)] > ai] .

i=0

The complexity bound (52) now follows immediately from the above inequality and
Lemma A.1 in [18].

(b) The proof of this statement is similar to the proof of (a) except that Proposi-
tion A.1 is used in place of Proposition 3.3.
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(c) It suffices to argue that the total number of times that the pair (4, m) is updated
inside all calls to the subroutine SUB(8, 4, m) is bounded by the second term in (55).
Indeed, this assertion follows from the following facts: the initial value of (4, m) is
(A9, my) (see step 0 of ADAP-NC-FISTA); in view of (33) and (34), the pair (4, m)
is no longer updated whenever A4 < 0.9/M and m > 27, and; due to (39) and (40), A
is reduced by a factor less than or equal to 8 > 1 and m is increased by a factor of 2
each time either one of them is updated. a

We now make two remarks about ADAP-NC-FISTA in light of NC-FISTA. First, in
contrast to NC-FISTA, the input pair (M, m,) of ADAP-NC-FISTA can be an arbitrary
pair in Ri " Second, if (M, m) denotes a pair as in step 0 of NC-FISTA, then it can
be easily seen that (M), m,) = (M, m) satisfies the assumption of Theorem 3.4(b) and
the complexity bound (54) for ADAP-NC-FISTA with input pair (M), m,) = (M, m)
reduces to the complexity bound (29) for NC-FISTA.

We end this section by making a few final remarks about the iteration-complexity
bound derived in Theorem 3.4(b) for the case in which M, = O(M). First, in this case,
the dominant term of the complexity bound (54) is O(M*mD? /(M,4*)), and hence it
increases as M|, decreases. Second, the best choice of M|, that minimizes the constant
C, in (53) is M, = ®(M). However, computational experiments indicate that taking
smaller values for M|, improves the performance of the method. One reason that may
explain this phenomenon is that the constant M that appears in (56), and as a conse-
quence in C;, C,, and the other terms that appear in the bounds (52) and (54), is very
conservative and close examination of the proof of Theorem 3.4 shows that it can actu-
ally be replaced by the sharper (and potentially smaller) quantity

IVF () = VF (%) I

lyz =%l

k

k]

where k = argmin {|ly; — %,_,|| : 1 <i < k).

4 Computational results

This section reports experimental results obtained by our implementation of NC-
FISTA, ADAP-NC-FISTA, and three variants of the latter method, on four problems
that are instances of the SNCO problem (1), namely: nonconvex quadratic program-
ming problem in both vector (Sect. 4.1) and matrix versions (Sect. 4.2), matrix com-
pletion (Sect. 4.3) and nonnegative matrix factorization (NMF, Sect. 4.4). Note that
NMF is a problem for which dom % is unbounded.

We start by describing the three variants of ADAP-NC-FISTA considered in our
computational benchmark, namely, R-ADAP-NC-FISTA, ADAP-NC-FISTA-BB
and R-ADAP-NC-FISTA-BB. The first one is a restart variant of ADAP-NC-FISTA,
namely, it restarts the latter method with input y, =y, and (M,,my) = (M, m;)
whenever ¢(y,,;) > ¢(y,) (hence, without resetting k to 0, this is equivalent to
rejecting y,,; and setting x; =y, A, = A, and 4, = Ay). The last two variants are
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heuristic variants of ADAP-NC-FISTA and R-ADAP-NC-FISTA, respectively,
which invokes in step 2 the subroutine SUB with input (6, 4,, m;) where

BB ._ (4-18-1) ¢ 1BB .

~k={ik .—lw, lfik >O,
e otherwise

where s;_; =X, —y,and g,y = VG_) = VIO

For the sake of simplicity, we use the abbreviations NC, AD, AD(B), RA and
RA(B) to refer to NC-FISTA, ADAP-NC-FISTA, ADAP-NC-FISTA-BB, R-ADAP-
NC-FISTA and R-ADAP-NC-FISTA-BB, respectively, both in the discussions and
tables below. The triples (M, m,A,) and (M, m;, &) which are used as input for NC
and AD, respectively, depend on the problem under consideration and are described
in the four subsections below. Moreover, AD(B), RA and RA(B) use the same input
triple as AD.

We compare our methods with four others: the AG method proposed in [6], the
NM-APG method proposed in [16], and the UPFAG and UPFAG-BB methods pro-
posed in [7]. Note that all four methods are natural extensions of ACG variants for
solving convex programs to the context of nonconvex optimization problems. For
the sake of simplicity, we use the abbreviations NM, UP and UP(B) to refer to NM-
APG, UPFAG and UPFAG-BB, respectively, both in the discussions and tables
below.

We now provide the details of our implementation of the four methods mentioned
in the previous paragraph. AG was implemented as described in Algorithm 1 of [6]
with sequences {a; }, { §;} and { 4, } chosen as (ay, f;, 4;) = (2/(k +1),0.99/M,kp, /2)
for k > 1. NM was implemented as described in Algorithm 2 of [16] with the quad-
ruple (a,, ay, 1, 6) chosen to be (0.99/M, 0.99/M, 0.9, 1) . The code for UP was made
available by the authors of [7] where UP is described (see Algorithm 1 of [7]). In
particular, we have used their choice of parameters but have modified the code
slightly to accommodate for the termination criterion (6) used in our benchmark.
More specifically, the parameters (io, ﬁo, 71,72, V3, 0) needed as input by UP were set
to (1 /]\71, 1 /1\7[ ,0.4,0.4,1,1073). UP(B) also requires the same parameters as UP and
an additional one denoted by ¢ in [7] which were set to the same values used in UP
and to ¢ = 10719, respectively.

It is worth making the following remarks about the above method: (1) AG and
NM require two resolvent evaluations of % per iteration while NC requires only one
(see the third remark after NC); (2) NM reduces to the composite gradient method
when a certain descent property is not satisfied; (3) AD, AD(B), RA, RA(B), UP
and UP(B) can work without the knowledge of a curvature pair (M, m) ; and (4) UP
and UP(B) adaptively compute both accelerated steps and unaccelerated ones using
line searches.

We implement all methods in MATLAB 2017b scripts and run them on a Mac-
Book Pro with a 4-core Intel Core i7 processor and 16 GB of memory.
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4.1 Nonconvex quadratic programming problem

This subsection discusses the performance of NC and its adaptive variants to solve
the same quadratic programming problem as in [14, 18], namely:

. %M 2, % 2.

min {f(z) 1= _?”DBZ” + 7||Az —-b||I*:z€ An}, (57)
where (a, a,) € Ri +» D € R™"is a diagonal matrix with diagonal entries sampled
from the discrete uniform distribution &{ 1, 1000}, matrices A € R>*", B € R™" and
vector b € R/ are such that their entries are generated from the uniform distribution
Uo,1],and A, := {z eR™: Z?:I =1, z; 2 O} is the (n — 1)-dimensional stand-
ard simplex. The dimensions are set to be (/,n) = (20, 1200). For some chosen cur-
vature pairs (7, M) € Ri . the scalars a; and &, were chosen so that M = A, (V%)
and —n = A,,;,(V?f) where A, (-) and A;,(-) denote the largest and smallest eigen-
values functions, respectively. Note that we set Q = R” in this subsection.

In addition to the nine methods described at the beginning of Sect. 4, this subsec-
tion (and only this one) also reports the performance of a quasi-Newton variant of
UPFAG, called QN, as described in [7] (see its paragraph containing (2.13)). Each
iteration of QN performs an unaccelerated step with respect to a variable metric and
whose computation requires the evaluation of a point-to-point operator of the form
(I +V~'om)~'(:) for some V € 8", (see [2]). More specifically, QN is almost the
same as UP (and hence has the same set of parameters as UP), except that it replaces
(2.10) by (2.13) in [7], where the quasi-Newton matrix G, in (2.13) is updated as in
the symmetric-rank-1 method (see [2]).

In our implementation, all methods use the centroid of A, as the initial point z,
and terminate with a pair (z, v) satisfying

vl <107
IV z)ll + 1

The input triple of NC is set to (M, m,A,) = M /0.99, m, 1000) and that of AD is set
to (M, mg,0) = (1,1, 1.25).

Test cases specified by pairs (M, 7iz) are generated by choosing the correspond-
ing a; and a, as discussed in the first paragraph in this subsection. Computational
results for ten methods with fixed M = 16777216 are presented Table 1 and with
fixed m = 1 are presented in Table 2. In each table, the first column gives the val-
ues of /m or M used to generate the instances, the second to eighth (resp., ninth
to eleventh) columns provide the number of iterations and running times of AG,
UP, QN, NM, NC, AD and RA (resp., UP(B), AD(B) and RA(B)). The objective
function values obtained by all methods are not reported since they are essentially
the same on all instances. The bold numbers highlight the methods (using and
without using Barzilai-Borwein stepsizes) that have the best performance for each
case. The numbers marked with * indicate that the maximum number of iterations
has been reached.

In summary, computational results demonstrate that: (1) among the methods
which do not use the Barzilai-Borwein stepsize (see columns 2—8 of Tables 1 and

v E V(@) + N, (2), (58)
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Table 1 Numerical results for instances with fixed M = 16777216

m Iteration count / Running time (s) Iteration count / Running
time (s)
AG UpP QN NM NC AD RA UPB) ADB) RA(B)
16777216 638 220 219 251 2376 3 3 605 3 3
97 47 64 31 286 1 1 258 3 2
1048576 1358 1176 103 1157 3469 318 58 10 19 17
224 252 34 184 421 63 12 6 9 6
65536 22293 5676 2737 44705 3832 747 80 30 57 30
3524 1284 959 6525 459 157 18 16 20 10
4096 31385 8286 919 50000*% 17585 1000 74 39 90 36
5184 1918 320 7070 2101 211 18 21 34 14
256 26961 7464 3410 49602 31333 969 76 35 95 44
4369 1667 1126 7001 3713 216 18 18 34 17
16 26918 7334 665 49515 32517 967 75 30 80 34
4215 1609 221 6806 3958 223 18 15 29 13

Table 2 Numerical results for instances with fixed m = 1

M Iteration count / Running time (s) Iteration count / Running
time (s)
AG UP QN NM NC AD RA UPB) ADB) RA(B)
4000 31403 7857  50000%  50000%* 17577 244 105 43 58 58
5284 1682 16214 7270 2244 50 20 15 18 17
16000 20193 7857  50000*  50000* 30239 472 79 35 51 34
3504 1739 14850 7884 3638 105 18 15 18 12
64000 26962 7464  50000% 49592 31334 560 77 38 64 37
4891 1652 15511 7628 3803 125 18 16 23 13
256000 26926 7364 3488 49534 32527 930 75 38 72 36
4759 1522 1131 7541 3980 206 18 20 27 14
1024000 26918 7364 3234 49521 32518 967 74 38 77 35
4717 1601 1028 7815 4092 227 18 22 29 13
4096000 26916 7264 99 49523 32515 967 719 39 82 36
4547 1602 33 7847 4265 231 18 21 32 13

2), RA has the best performance in terms of running time; (2) UP(B) is comparable
with RA (see columns 8 and 9 of Tables 1 and 2); and (3) RA(B) has the best per-
formance among the three methods which use the Barzilai-Borwein stepsize (see
columns 9-11 of Tables 1 and 2).

4.2 Matrix problem

In this subsection, we test our methods on a matrix version of the nonconvex quad-
ratic programming problem
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min {f(Z) := =S IDBDIP + ZIA@) - bl : Z€ P, |,

where A © 8 — R’and B : S§" — R"are linear operators defined by

[AD)]; =(A;, Z)pforA, e R and 1 <i <,
[B(2)]; = (B;,Z) for B, e R"" and 1 <j < n,

with entries of A, Bj sampled from the uniform distribution U[0, 1], P, denotes the
spectraplex

P, :={ZeS! :u@)=1}.

and (ay,@,), D and b are defined as those in Sect. 4.1. Note that we set Q = §' in
this subsection.

All methods used the centroid of P, as the initial point Z,, i.e., Z, =1I,/n,
where I, is the identity matrix of size n X n. Termination criterion is the
same as (58) except that A, is replaced by P,. The input triple of NC is set to
(M, m,A,) = (M/0.99,m,1000) and that of AD is set to (M, mg, 8) = (1, 1000, 1.25)

Test cases specified by pairs (M, ) are generated by choosing the correspond-
ing @, and a, as discussed in the first paragraph in this subsection. Computational
results of all methods with fixed M = 1000000 are presented in Tables 3, 4, and 5.
Their formats are the same as that of Table 1. The objective function values obtained
by all methods are not reported since they are essentially the same on all instances.
The bold numbers highlight the methods (using and without using Barzilai-Borwein
stepsizes) that have the best performance for each case.

In Table 3, the dimensions are set to be (/,n) = (50,200) and 2.5% of entries in
A;, B; are nonzero.

In Table 4, the dimensions are set to be (/,n) = (50,400) and 0.5% of entries in
A;, B; are nonzero.

In Table 5, the dimensions are set to be (/,n) = (50,800) and 0.1% of entries in
A;, B; are nonzero.

In summary, computational results demonstrate that: (1) among the methods
which do not use the Barzilai-Borwein stepsize (see columns 2—7 of Tables 3, 4, and
5), RA has the best performance in terms of running time; (2) UP(B) is comparable
with RA in many instances (see columns 7 and 8 of Tables 3, 4, and 5); and (3)
RA(B) has the best performance among the three methods which use the Barzilai-
Borwein stepsize (see columns 8—10 of Tables 3, 4, and 5).

4.3 Matrix completion

This subsection focuses on a constrained version of the nonconvex low-rank matrix
completion problem studied in [19, 28].
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Table 3 Numerical results for instances with fixed M = 1000000

m Iteration count / Running time (s) Iteration count / Running
time (s)
AG UpP NM NC AD RA UP(B) AD(B) RA(B)
1000000 46 12 80 33 12 12 9 11 12
2 1 2 1 1 1 1 1 1
100000 3809 2577 6242 3960 2206 597 2573 593 282
138 113 191 94 87 25 274 41 21
10000 5400 7697 10404 1247 2591 1290 6811 835 569
198 347 328 29 103 54 671 57 40
1000 4621 6759 11053 4424 2637 1211 6384 721 581
163 308 360 111 104 51 646 48 41
100 4476 6620 11271 8870 2639 1373 6876 812 535
157 299 312 218 113 57 683 54 37

Table 4 Numerical results for instances with fixed M = 1000000

m Iteration count / Running time (s) Iteration count / Running
time (s)
AG UP NM NC AD RA UP(B) AD(B) RA(B)
1000000 44 12 75 32 12 12 10 12 12
4 1 5 2 2 2 2 2 2
100000 1411 621 3151 635 530 240 57 151 61
134 69 224 40 52 25 13 28 11
10000 1963 1733 5071 1104 868 198 109 211 137
195 191 373 69 86 21 31 39 25
1000 1935 1792 5172 3823 900 215 97 208 160
193 197 382 244 94 23 25 38 29
100 1934 1803 5045 5771 904 210 112 225 147
190 197 367 391 95 23 29 40 27

Given an incomplete observed matrix O with the set O of observed entries,
parameters f > 0 and 7 > 0 and letting p : R — R, denote the log-sum penalty

P(D) = py (1) := flog (1 ' ﬂ)

and I, denote the linear operator that maps a matrix A to the matrix whose entries
in Q have the same values of the corresponding ones in A and whose entries outside
of Q are all zero, then the constrained version of the matrix completion problem is
formulated as

min f(X)+h(X), (59)
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Table 5 Numerical results for instances with fixed M = 1000000

m Iteration count / Running time (s) Iteration count / Running
time (s)
AG UP NM NC AD RA UP(B) AD(B) RA(B)
1000000 69 16 117 39 11 11 13 11 11
22 6 26 8 5 6 8 7 7
100000 277 58 502 165 24 8 9 8 8
119 21 118 39 10 3 7 4 4
10000 491 141 1030 703 60 60 13 13 13
173 52 246 168 23 21 10 7 8
1000 531 161 1144 1326 70 70 13 15 15
169 60 259 309 26 25 10 9 9
100 535 163 1156 1482 71 71 13 16 16
172 61 260 336 26 25 10 10 10
where

100 = 2o = 02+ 1 Y, [p(6,00) = poo, ().

i=1
HOO = upglIXI, + Lo ). py =P =2,

R is a positive scalar, B(R) := {X € R*" : ||X||» <R}, O € R? is an incomplete
observed matrix, y > 0 is a parameter, r := min{/,n} and 0;(X) is the i-th singular
value of X and || - ||, denotes the nuclear norm defined as || - ||, := 2;1 o;(+). Note
that we set Q = R’ in this subsection. It is shown in [19, 28] that the problem in
(59) falls into the general class of SNCO problems,

FOO) = fX) = (VAX), X' = X)p < %MX’ “X[2, VXX €Q

for M = 1and that the pair
_ L2 2
(M,m) = <max {M, TLzﬂ } Lﬁ) (60)

satisfies (2) and (4).

We use the MovieLens dataset' to obtain the observed index set Q and the incom-
plete observed matrix O. The dataset includes a sparse matrix with 100,000 ratings
of {1,2,3,4,5} from 943 users on 1682 movies. The radius R is chosen as the Frobe-
nius norm of the matrix of size 943 X 1682 containing the same entries as O in Q
and 5 in the entries outside of Q.

! http://grouplens.org/datasets/movielens/.
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Table 6 Numerical results for matrix completion instances

M Function value / Iteration count Running time (s)

AG UpP UP(B) NM NC AD AG Up UPB) NM NC AD

44 2257 2670 2605 1809 2605 2625 4568 2214 1545 1033 1114 1021
3856 898 521 1036 1491 1219

8.9 3886 4322 4261 3359 4154 4203 10251 2592 1621 1605 1202 1089
9158 1782 576 1617 1642 1302

20 4282 4736 4637 3635 4637 4582 29274 5850 1914 2836 1178 1822
22902 3962 898 2875 676 2177

30 5967 6475 6753 5237 6292 6293 41673 8159 1628 4182 1233 1633
37032 5857 606 3717 1646 1952

All methods take a random matrix Z, sampled from the standard Gaussian distri-
bution as the initial point, where the random number generation seed is fixed, and
terminates with a pair (Z, V) satisfying

\%
& <5%x 1074
IVf (Zo)llr +1

The input triple of NC is set to (M, m,A,) = (M, M, ?2), since M is the one actually
needed in the convergence analysis of this algorithm (see Lemma 2.4). The input
triple of AD is set to (M, my, 0) = (1,0.5, 1.25).

Computational results of all methods are summarized in Table 6. Specifically, the
first column gives the values of M computed according to (60) with four different
triples (u, f, 7), the second to seventh columns provide the function values of (59) at
the last iteration and the number of iterations, and the eighth to thirteenth columns
present the running times. The bold numbers highlight the methods that have the
best performance for each case. The results of RA are not reported since they are
the same as those of AD, which is due to the fact that {¢(y,)} generated by AD is a
decreasing sequence and hence no restart is performed in RA.

In summary, computational results demonstrate that: (1) NM always finds the
smallest function values, since it requires objective function values to satisfy a
descent property, and if violated, a projected gradient step is taken to ensure the
descent in function values; (2) NC and AD have the best performance in terms of the
running time; and (3) since NC and AD are good enough compared with UP(B), we
do not presents the results of AD(B) and RA(B).

V e Vf(Z) + oh(Z),

4.4 Nonnegative matrix factorization

In this subsection, we further test AD on a real life application rather than artifi-
cially generated problems and data. NMF is a popular dimension reduction method
in which a data matrix X is factored into two matrices V and W, with constraints that
each entry in V and W is nonnegative.
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min { F(V. W) :=%||X—VW||§ vzowz2o), 1)

where X € R™, V € R™ and W € R*. Note that we set Q = R™/ in this subsec-
tion. Intuitively, the data matrix X is a collection of m data points in R", the columns
of V can be viewed as the basis of all data points, and hence each data point is a
linear combination of the basis, with weights in the corresponding column in W.
Because of its ability of extracting easily interpretable factors and automatically per-
forming clustering, NMF finds a wide range of applications in practice, from text
mining to image processing. Most of the NMF algorithms solve (61) in a two-block
coordinate descent manner, by alternatively minimizing with respect to one of the
two blocks, V or W, while keeping the other one fixed. Alternating minimization is a
natural idea for NMF, since the subproblem in one block is convex.

In this subsection, we apply AD to solve the nonconvex problem (61) directly by
minimizing in (V, W) jointly.

For a preliminary computational test, we apply AD to facial feature extraction.
The problem is as described in (61), to factor out a data matrix into two matrices.
The facial image dataset is provided by AT&T Laboratories Cambridge”. There are
ten different images of each of 40 distinct subjects, and each image contains 92 X 112
pixels, with 256 gray levels per pixel. It results in a matrix of size 10,304 x 400,
where each column of the data matrix is the vectorization of an image. It is hard to
estimate M in (2) due the unboundedness in NMF, so we can only apply AD, which
has the benefit of working without the knowledge of M. AD is benchmarked against
the ANLS (Alternating Nonnegative Least Squares) method [12]. ANLS alterna-
tively solves minimization subproblems in V and W with nonnegative constraints
and the other variable being fixed. We use the implementation of ANLS?® provided
by the authors of [12] as a benchmark for comparison. The ANLS code is slightly
modified to accommodate for the termination criterion (62).

Both methods use the initial point (V,, W,,) = (1 /(nk), 1< /(kl)), where 1™ and
1% are all one matrices of size n X k and k X [. k is set to be 20. AD terminates with a
pair ((V, W), (Sy, Sy)) satisfying

I(Sy»Sw )l ¢
Sy, Sy) € VF(V, W)+ NAV, W), <1077, (62
(Sy-5w) d IVF (Vo Wo) Il + 1 ©

where F = {(V, W) € R> x R®™! : V >0, W > 0}. The input triple of AD is set to
(M, my, 8) = (1, 1000, 1.25). Computational results are summarized in Table 7.

In summary, computational results demonstrate that ANLS reaches the maximum
number of iterations (i.e., 1000), and AD outperforms ANLS in terms of the running
time.

2 https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
3 https://www.cc.gatech.edu/~hpark/nmfsoftware.html.
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Table 7 Numerical results for

Method Function value Iteration count Running time(s)
NMF

AD 2.80E+09 28 4.6

ANLS 1.20E+09 1000* 137.6

5 Concluding remarks

This paper presents two ACG variants and establishes their iteration-complexities for
obtaining an approximate solution of the SNCO problem. Numerical results are also
given showing that they are both efficient in practice.

We have not assumed in our analysis that the set Q as in assumption (A3) is bounded.
However, we remark that if Q is bounded then it can be shown using a simpler analy-
sis than the one given in this paper that the version of the NC-FISTA with m = 0 and
A =1/(2M)has an

w2\ (mmp\'"?  MaD?

@) B + > + 7 +1
iteration-complexity where D¢ :=sup, ,cq ||’ — u|| < co. Moreover, it can be
shown that a version of the ADAP-NC-FISTA in which 4, is updated in a simi-
lar way and m;, = 0 for every k has a guaranteed iteration-complexity that lies in
between the one above and the one in (52).

Finally, we have implemented the two versions mentioned in the previous paragraph

and tested them on problems for which Q is bounded but have observed that they are
not as efficient as the corresponding ones studied in this paper.

Supplementary results

This section provides a bound on the quantity ming;<;_; |ly;4; — %]|* for the case
in which the parameter m of the ADAP-NC-FISTA satisfies m, > /. Note that an
alternative bound on this quantity has already been developed in Proposition 3.3 for

any mg > 0.

Proposition A.1 For every k > 1, for my > in, we have
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k-1
1 . - *
1—0<2A,-+1> Jmin 1y =517 24040 (6 (30) = b.) + g —x°I?
i=0 -

k=1
+ /lODi (Zmo + 2mgk + i Z ai>.

i=0

Proof Using the assumption of the lemma that n, > 7n, the facts that a; > 2 fori > 0
from the fourth remark following SUB(@, A,m), and {4;} is non-increasing from
Lemma 3.1(d), we have

_ 2my 2
Mot —= A Smo{ 1+ - ) Ay < 2mo k. (63)

l 1

The above inequality implies that (34) is always satisfied with m = myand A = 4, ;.
Hence, m, is never updated in SUB(0, A, m), i.e., m; = my, for i > 0. Using similar
arguments as in the proof of Lemma 2.3, we conclude that for every i > 0 and u € Q

i

21[+1Ai+1¢(yi+1) + (2’”01,41 + 1)”” —xpl? + (1 - )'i+lci+1)Ai+1”yi+l - %P
< 22 A7 (Vi) + 22147, + llu = x|,
(64)
where

N my 2
(% = Vi1 U= Yip1) + a—”” = Yisll
i

- 1
i) 1= 7 (i) + T
i+l

and
~ =7 . h ) ~ 112
7i(u) = f(u,x,-) + h(u) + a—illu - % (65)

As in Lemma 2.2(a), we have y;(u) < 7,(v) for every u € dom h. Hence, it follows
from (65) and (4) that for every k > 0 and u € dom &, we have

2
70 = ) < 7,0) = $lw) = £, (1) = )+ =2 [lu = 5> < %<m + ?) e =%
(66)

Taking u = x*, and using (64), (23), (66), (63), Lemma 3.1(c), and the facts that
Xo = Yo A; < Agand @(y;) > ¢, fori > 0, we conclude that for every 0 <i <k —1,
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O'1A1‘+l ||y,-+1 _7?[”2 - 2)»,-A,-(¢(y,«) - d’*) — |lx* - x,‘”2

+ 2014001 (D (Vigr) = B2) + (2moAigy + 1) I = xip 112
< 2/1i+lAi(yi (Yi) - d)(yi)) + 2’1i+1ai(yi(x>k) - d’*) + 2(’1i+l - Ai)Ai(d)(yi) - d)*)
2
< <m + ?) (Al = %P + alx* — % 1?)

2

_ 2’nO %
< Ain <m + a_> (||x —)c,-||2 +aiDi)

2
< 2moAllx; = x| + (ma; +2mg) 4y, D;
< 2moAillx; = x*|1* + (ma; + 2mg) AyD;.

The conclusion is obtained by rearranging terms and summing the above inequality
fromi=0tok— 1. O
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