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Abstract
In this paper, we describe and establish iteration-complexity of two accelerated com-
posite gradient (ACG) variants to solve a smooth nonconvex composite optimization 
problem whose objective function is the sum of a nonconvex differentiable function 
f with a Lipschitz continuous gradient and a simple nonsmooth closed convex func-
tion h. When f is convex, the first ACG variant reduces to the well-known FISTA 
for a specific choice of the input, and hence the first one can be viewed as a natural 
extension of the latter one to the nonconvex setting. The first variant requires an 
input pair (M, m) such that f is m-weakly convex, ∇f  is M-Lipschitz continuous, and 
m ≤ M (possibly m < M ), which is usually hard to obtain or poorly estimated. The 
second variant on the other hand can start from an arbitrary input pair (M, m) of pos-
itive scalars and its complexity is shown to be not worse, and better in some cases, 
than that of the first variant for a large range of the input pairs. Finally, numerical 
results are provided to illustrate the efficiency of the two ACG variants.

R. D. C. Monteiro: This work was partially supported by ONR Grant N00014-18-1-2077.
C.-K. Sim: This work is made possible through an LMS Research in Pairs (Scheme 4) grant.

 *	 Jiaming Liang 
	 jiaming.liang@gatech.edu

	 Renato D. C. Monteiro 
	 renato.monteiro@isye.gatech.edu

	 Chee‑Khian Sim 
	 chee-khian.sim@port.ac.uk

1	 School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, 
GA 30332‑0205, USA

2	 School of Mathematics and Physics, University of Portsmouth, Lion Gate Building, Lion 
Terrace, Portsmouth PO1 3HF, United Kingdom

http://orcid.org/0000-0001-7439-3845
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-021-00280-9&domain=pdf


650	 J. Liang et al.

1 3

1  Introduction

Accelerated gradient methods for solving convex noncomposite programs were 
originally developed by Nesterov in his celebrated work [21]. Subsequently, several 
variants of this method (see for example [1, 15, 20, 22, 23, 27]) were developed for 
solving convex simple-constrained or composite programs, which we refer generi-
cally to as ACG variants. These variants have also been used as subroutines in sev-
eral inexact-type proximal algorithms for solving convex-concave saddle point and 
monotone Nash equilibrium problems (see for example [4, 10, 11, 13, 23, 24]).

In this paper, we study ACG algorithms to solve the smooth nonconvex compos-
ite optimization (SNCO) problem

where h ∶ ℝ
n
→ (−∞,∞] is a proper lower-semicontinuous convex function with 

bounded dom h and f is a real-valued differentiable (possibly nonconvex) function 
whose gradient is M-Lipschitz continuous on dom h , i.e., for every z, z� ∈ dom h,

The first analysis of an ACG algorithm for solving (1) under the above assumption 
appears in [6] where essentially a well-known ACG variant that solves the convex 
version of (1) is also shown to solve its nonconvex version in the following sense: for 
a given tolerance 𝜌̂ > 0 , it computes (ŷ, v̂) ∈ dom h ×ℝ

n such that v̂ ∈ ∇f (ŷ) + 𝜕h(ŷ) 
and ‖v̂‖ ≤ 𝜌̂ in

iterations where d0 is the distance of the initial point x0 to the optimal solution set of 
(1), Dh is the diameter of dom h and m̄ is the smallest scalar m ≥ 0 such that

for every z, z� ∈ dom h . Any pair (M,  m) with m ≤ M and satisfying both (2) and 
(4) is referred to as a curvature pair. We refer to the ACG variant of [6] as the AG 
method and note that each one of its iterations performs exactly two resolvent evalu-
ations of h, i.e., an evaluation of the point-to-point operator (I + ��h)−1(⋅) for some 
𝜏 > 0 . (Several examples of convex, as well as nonconvex, functions h whose resol-
vent evaluations are easy to compute can be found in [8].)

This paper describes and establishes the iteration-complexities of two ACG vari-
ants for solving the nonconvex version of (1). The first variant can be viewed as 
a direct extension of the FISTA presented in [1] for solving the convex version of 
(1). In contrast to an iteration of the AG method, every iteration of the first variant 
performs exactly one resolvent evaluation of h. One drawback of the first variant is 
that it requires as input a curvature pair (M, m), which is usually hard to obtain or is 
poorly estimated. Letting (M̄, m̄) denote the smallest curvature pair, a second variant 

(1)�
∗
∶= min {�(z) ∶= f (z) + h(z) ∶ z ∈ ℝ

n
}

(2)‖∇f (z�) − ∇f (z)‖ ≤ M‖z� − z‖.

(3)O

(
Mm̄D2

h

𝜌̂2
+

(
Md0

𝜌̂

)2∕3
)

(4)−
m

2
‖z� − z‖2 ≤ f (z�) − f (z) − ⟨∇f (z), z� − z⟩.
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is proposed to remedy the aforementioned drawback in that it works regardless of 
the choice of input pair (M, m) (i.e., not necessarily satisfying (2) and (4)), and its 
complexity is shown to be not worse than (3) when M ≥ M̄ and m ∈ [m̄,M] . Moreo-
ver, when m ∈ [m̄, M̄] , the complexity of the second variant is empirically argued 
to behave as (3) with M = M̄ , for a large range of scalars M such that M ≤ M̄ (see 
the second paragraph following Theorem 3.4) and our computational results demon-
strate that taking M relatively smaller than M̄ can substantially improve its perfor-
mance. It is also shown that all iterations of the second variant, with the exception 
of a few ones whose total number is log-bounded, perform exactly one resolvent 
evaluation of h.

Related works. Inspired by [6], other papers have proposed ACG variants for solv-
ing (1) under the assumption that f is a nonconvex continuously differentiable func-
tion with a Lipschitz continuous gradient, and that h is a simple lower semi-continu-
ous convex (see e.g. [5, 7]) or nonconvex (see e.g. [16, 17, 29]) function. Similar to 
an iteration of the two ACG variants in our paper, the one of the algorithms in [17, 
29] requires exactly one resolvent evaluation of h. However, while every iteration of 
the variants studied here is always accelerated, the ones of the latter algorithms can 
be a simple composite gradient (and unaccelerated) step whenever a certain descent 
property is not satisfied.

Another approach for solving (1) consists of using a descent unaccelerated inex-
act proximal-type method where each prox subproblem is constructed to be (possi-
bly strongly) convex and hence solved by an ACG variant (see [3, 14, 25]). Moreo-
ver, the approach has the benefit of working with a larger prox stepsize and hence of 
having a better outer iteration-complexity than the approaches in the previous para-
graph. However, each of its outer iterations still has to perform a uniformly bounded 
number of inner iterations to approximately solve a prox subproblem. Overall, it is 
shown that its inner-iteration complexity is better than the iteration-complexities of 
the methods in the previous paragraph, particularly when m̄ ≪ M̄ . As in the papers 
[5, 7, 16, 17, 29] in the previous paragraph, it is worth noting that the method in [25] 
attempts to perform an accelerated step whenever a certain descent property holds 
and, in case of failure, it performs an unaccelerated prox step similar to the one used 
in the methods in [3, 14].

Finally, a hybrid approach that borrows ideas from the above group of papers is 
presented in [18]. More specifically, the latter work presents an accelerated inexact 
proximal point method reminiscent of those presented in [9, 20, 26], but in which 
only the convex version of (1) is considered. Each (outer) iteration of the method 
requires that a prox subproblem be approximately solved by using an ACG variant 
in the same way as in the papers [3, 14]. Hence, similar to the methods in the previ-
ous paragraph, this method performs both outer and inner iterations with a major 
difference that every outer iteration is an accelerated step (as in the papers [5, 7, 16, 
17, 29]) with a large proximal stepsize (as in the papers [3, 14]).

Organization of the paper. Sect. 1.1 presents basic definitions and notations used 
throughout the paper. Section  2 presents assumptions made on the SNCO prob-
lem, describes the first ACG variant, which is an extension of FISTA to the SNCO 
problem and is referred to as NC-FISTA, and establishes its iteration-complexity 
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for obtaining a stationary point of the SNCO problem. Section 3 presents an adap-
tive variant of NC-FISTA, namely, ADAP-NC-FISTA, and establishes its iteration-
complexity. Section  4 presents computational results showing the efficiency of 
NC-FISTA and ADAP-NC-FISTA. Section 5 finishes the paper by presenting a few 
concluding remarks. Finally, supplementary technical results are provided in the 
appendix.

1.1 � Basic definitions and notation

This subsection provides some basic definitions and notations used in this paper.
The set of real numbers is denoted by ℝ . The set of non-negative real numbers 

and the set of positive real numbers are denoted by ℝ
+
 and ℝ

++
 , respectively. Let 

ℝ
n denote the standard n-dimensional Euclidean space with inner product and norm 

denoted by ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ , respectively. The Frobenius inner product and Frobe-
nius norm in ℝm×n are denoted by ⟨⋅, ⋅⟩F and ‖ ⋅ ‖F , respectively. The sets of real 
n × n symmetric positive semidefinite matrices are denoted by Sn

+
 . Let NX(z) denote 

the normal cone of X at z, i.e., NX(z) = {u ∈ ℝ
n
∶ ⟨u, z� − z⟩ ≤ 0 ∀z� ∈ X} . The 

indicator function IX of a set X ⊂ ℝ
n is defined as IX(z) = 0 for every z ∈ X , and 

IX(z) = ∞ , otherwise. If Ω is a nonempty closed convex set, the orthogonal projec-
tion P

Ω
∶ ℝ

n
→ ℝ

n onto Ω is defined as

Define log+(s) ∶= max{log s, 0} and log+
1
(s) ∶= max{log s, 1} for s > 0.

Let Ψ ∶ ℝ
n
→ (−∞,+∞] be given. The effective domain of Ψ is denoted by 

domΨ ∶= {x ∈ ℝ
n
∶ 𝜓(x) < ∞} and Ψ is proper if domΨ ≠ � . Moreover, a proper 

function Ψ ∶ ℝ
n
→ (−∞,+∞] is �-strongly convex for some � ≥ 0 if

for every z, z� ∈ domΨ and � ∈ [0, 1] . Let �Ψ(z) denote the subdifferential of Ψ at 
z ∈ domΨ . If Ψ is differentiable at z̄ ∈ ℝ

n , then its affine approximation 𝓁
Ψ
(⋅;z̄) at z̄ 

is defined as

Let Conv (ℝn
) denote the set of all proper lower semi-continuous convex functions 

Ψ ∶ ℝ
n
→ (−∞,+∞].

2 � NC‑FISTA for solving the SNCO problem

This section describes the assumptions made on our problem of interest, namely, 
problem (1). It also presents and establishes the iteration-complexity of the first 
ACG variant, namely NC-FISTA, for obtaining an approximate solution of (1).

P
Ω
(z) ∶= argmin z�∈Ω‖z� − z‖ ∀z ∈ ℝ

n.

Ψ(�z + (1 − �)z�) ≤ �Ψ(z) + (1 − �)Ψ(z�) −
�(1 − �)�

2
‖z − z�‖2

�
Ψ
(z;z̄) ∶= Ψ(z̄) + ⟨∇Ψ(z̄), z − z̄⟩ ∀z ∈ ℝ

n.
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Throughout this paper, we consider problem (1) and make the following assump-
tions on it: 

	(A1)	 h ∈ Conv (ℝn
);

	(A2)	 dom h is bounded;
	(A3)	 f is differentiable on a closed convex set Ω ⊇ dom h and there exists M > 0 such 

that (2) holds for every z, z� ∈ Ω;
	(A4)	 f is nonconvex on dom h and there exists m > 0 such that (4) holds for every 

z, z� ∈ Ω.

Throughout this paper, we denote the diameter of dom h as

where its finiteness is due to (A2). Moreover, let M̄ (resp., m̄ ) denote the smallest 
scalar M (resp., m) satisfying (2) (resp., (4)) for every z, z� ∈ Ω . Clearly, M̄ ≥ m̄ > 0.

We now make a few remarks about the above assumptions. First, (A1)–(A3) 
imply that the set Z∗ of optimal solutions of (1) is nonempty and compact. Second, 
using the fact that M̄ satisfies (2) for every z, z� ∈ Ω in view of the above definition 
of M̄ , we easily see that

and hence that (4) is satisfied with m = M̄ . Thus, it follows that from the definition 
of m̄ that m̄ ≤ M̄ . Third, (A4) implies that m̄ > 0 . Fourth, our interest is in the case 
where m̄ ≪ M̄ since this case naturally arises in the context of penalty methods for 
solving linearly constrained composite nonconvex optimization problems (e.g., see 
Section 4 of [14]).

For z ∈ dom h to be a local minimizer of (1), a necessary condition is that z is a 
stationary point of (1), i.e., 0 ∈ ∇f (z) + �h(z) . Motivated by this remark, the follow-
ing notion of an approximate solution to problem (1) is proposed: a pair (ŷ, v̂) is said 
to be a 𝜌̂-approximate solution to (1), for a given tolerance 𝜌̂ > 0 , if

We are now ready to state the NC-FISTA for solving (1).

NC-FISTA

0. Let an initial point y0 ∈ dom h , a pair (M,m) ∈ ℝ
2
++

 such that M ≥ m ≥ m̄ and M > M̄ , a scalar 
A0 > 0 , and a tolerance 𝜌̂ > 0 be given, and set x0 = y0 , � = 1∕M , k = 0 and

�0 =
1+

√
1+4A0√

1+4A0−1
; (7)

1. compute

ak =
1+

√
1+4Ak

2
, Ak+1 = Ak + ak; (8)

2. compute

x̃k =
Ak

Ak+1

yk +
ak

Ak+1

xk (9)

(5)Dh ∶= sup
�‖u� − u‖ ∶ u, u� ∈ dom h

�
< ∞

���f (z
�
) − �f (z

�;z)
��� ≤

M̄

2
‖z� − z‖2 ∀z, z� ∈ Ω,

(6)v̂ ∈ ∇f (ŷ) + 𝜕h(ŷ), ‖v̂‖ ≤ 𝜌̂.
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NC-FISTA

yk+1 = argmin u

�
�f

�
u;x̃k

�
+ h(u) +

1

2

�
1

𝜆
+

𝜅0m

ak

�
‖u − x̃k‖2

�
, (10)

x̂k+1 =
(ak+𝜅0m𝜆)yk+1−(ak−1)yk

𝜅0m𝜆+1
, xk+1 = P

Ω

(
x̂k+1

)
; (11)

3. compute

vk+1 =
(

1

𝜆
+

𝜅0m

ak

)(
x̃k − yk+1

)
+ ∇f

(
yk+1

)
− ∇f

(
x̃k
)
; (12)

if ‖vk+1‖ ≤ 𝜌̂ then output (ŷ, v̂) = (yk+1, vk+1) and stop; otherwise, set k ← k + 1 and go to step 1.

We now make a few remarks about the NC-FISTA. First, it follows from (10) 
that {yk} ⊂ dom h , and hence {yk} is bounded in view of (A2). Second, the defi-
nition of {xk} in (11) implies that {xk} ⊂ Ω , and hence that {x̃k} ⊂ Ω in view of 
(9). Hence, if Ω is chosen to be compact, then the latter two sequences will also 
be bounded but our analysis does not make such an assumption on Ω . Third, if 
Ω = ℝ

n , then each iteration of the NC-FISTA requires one resolvent evaluation of 
h in (10), i.e., an evaluation of (I + ��h)−1 for some 𝜏 > 0 . Otherwise, it requires 
an extra projection onto Ω in (11) , which, depending on the problem instance and 
the set Ω , might be considerably cheaper than a resolvent evaluation of h. Fourth, 
it follows from (8) that {ak} and {Ak} are strictly increasing sequences of positive 
scalars. Fifth, A0 is required to be positive so as to guarantee that the quantity 
�0 defined in (7) is well-defined. We will assume later on that A0 = Θ(1) so as 
to eliminate it from the iteration-complexity bounds for NC-FISTA. Sixth, NC-
FISTA requires that M and m be upper bounds for M̄ and m̄ , respectively, due to 
technical requirements that appear in its iteration-complexity analysis. Actually, 
M is also required to be not too close to M̄ . Seventh, if a scalar M is known, then 
setting m to be equal to M fulfills the conditions of step 0 of NC-FISTA in view 
of the fact that M̄ ≥ m̄ . However, NC-FISTA also allows for the possibility that 
a sharper scalar m ∈ [m̄,M) is known due to the fact that its iteration-complexity 
bound improves as m decreases (see Theorem 2.6). Eighth, when f is convex, i.e., 
m̄ = 0 , NC-FISTA reduces to FISTA if m is set to zero. Finally, (8) implies that

We establish a number of technical results. The first one establishes an impor-
tant inequality satisfied by m.

Lemma 2.1  For k ≥ 0 , we have

Proof  Using the assumption m ≥ m̄ , the definition of �0 in (7), relation (8) with 
k = 0 , and the fact that {ak} is increasing, we conclude that for every k ≥ 0,

(13)Ak+1 = a2
k
.

m̄

𝜅0
+

m

ak
≤ m.

m −
m̄

𝜅0
≥

�
1 −

1

𝜅0

�
m =

2m

1 +
√
1 + 4A0

=
m

a0
≥

m

ak
.
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	�  ◻

The following results introduce two functions that play important roles in our 
analysis of NC-FISTA and establish some basic facts about them.

Lemma 2.2  For every k ≥ 0 , if we define

then the following statements hold: 

(a)	 both �k and 𝛾̃k are (�0m∕ak)-strongly convex functions, �k minorizes 𝛾̃k , 
𝛾̃k(yk+1) = 𝛾k(yk+1) , 

 and these minimization problems have yk+1 as a unique optimal solution;
(b)	 for every u ∈ dom h , 

(c)	 xk+1 = argminu∈Ω
�
ak�k(u) + ‖u − xk‖2∕(2�)

�
.

Proof  (a) It clearly follows from (15) that 𝛾k(yk+1) = 𝛾̃k(yk+1) . By definitions of 𝛾̃k 
and �k in (14) and (15) respectively, they are clearly (�0m∕ak)-strongly convex. By 
(10) and the definition of 𝛾̃k in (14), yk+1 is the optimal solution to the first minimiza-
tion problem in (16). Since the objective function of this minimization problem is 
[(1∕�) + (�0m∕ak)]-strongly convex, it follows that for all u ∈ ℝ

n,

On the other hand, the definition of �k in (15) and the relation

imply that

(14)𝛾̃k(u) ∶= �f

�
u;x̃k

�
+ h(u) +

𝜅0m

2ak
‖u − x̃k‖2,

(15)𝛾k(u) ∶= 𝛾̃k
�
yk+1

�
+

1

𝜆
⟨x̃k − yk+1, u − yk+1⟩ +

𝜅0m

2ak
‖u − yk+1‖2,

(16)min
u

�
𝛾̃k(u) +

1

2𝜆
‖u − x̃k‖2

�
=min

u

�
𝛾k(u) +

1

2𝜆
‖u − x̃k‖2

�
,

𝛾̃k(u) − 𝜙(u) ≤
1

2

�
m̄ +

𝜅0m

ak

�
‖u − x̃k‖2;

(17)𝛾̃k
�
yk+1

�
+

1

2𝜆
‖yk+1 − x̃k‖2 + 1

2

�
1

𝜆
+

𝜅
0
m

ak

�
‖yk+1 − u‖2 ≤ 𝛾̃k(u) +

1

2𝜆
‖u − x̃k‖2.

‖yk+1 − x̃k‖2 + ‖yk+1 − u‖2 − ‖u − x̃k‖2 = 2⟨x̃k − yk+1, u − yk+1⟩.
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Thus, it follows from (17) and (18) that 𝛾k ≤ 𝛾̃k . Noting that the objective function 
in the second minimization problem in (16) is quadratic and using the first order 
optimality condition, we show that yk+1 is a unique optimal solution to the aforemen-
tioned problem.

(b) This statement follows from the assumption (A4) and the definition of 𝛾̃k(u) in 
(14).

(c) Using the expressions for x̃k and x̂k+1 in (9) and (11), respectively, 
it is easy to see that x̂k+1 is the (unique) global minimizer of the function 
ak�k(u) + ‖u − xk‖2∕(2�) over the whole space ℝn . The definition of xk+1 and the 
previous observation then imply that the conclusion of (c) holds. 	�  ◻

The following result states a recursive inequality that plays an important role in the 
convergence rate analysis of NC-FISTA.

Lemma 2.3  For every u ∈ Ω and k ≥ 0 , we have

where

Proof  Using the definition of Ck , (14) and Lemma 2.2(a), we conclude that

On the other hand, using the fact that �k is convex, yk+1 is an optimal solution of 
(16), and relations (9) and (13), we conclude that for every u ∈ Ω,

(18)

𝛾̃k
�
yk+1

�
+

1

2𝜆
‖yk+1 − x̃k‖2 + 1

2

�
1

𝜆
+

𝜅0m

ak

�
‖yk+1 − u‖2 = 𝛾k(u) +

1

2𝜆
‖u − x̃k‖2.

𝜆Ak+1𝜙
�
yk+1

�
+

𝜅0m𝜆 + 1

2
‖u − xk+1‖2 +

�
1 − 𝜆Ck

�
Ak+1

2
‖yk+1 − x̃k‖2

≤ 𝜆Ak𝛾k
�
yk
�
+ 𝜆ak𝛾k(u) +

1

2
‖u − xk‖2,

Ck ∶=
2
�
f
�
yk+1

�
− �f

�
yk+1;x̃k

��

‖yk+1 − x̃k‖2
.

(19)

𝜆𝜙
�
yk+1

�
+

1 − 𝜆Ck

2
‖yk+1 − x̃k‖2 = 𝜆𝛾̃k

�
yk+1

�
+

�
1

2
−

𝜅0m𝜆

2ak

�
‖yk+1 − x̃k‖2

≤ 𝜆𝛾̃k
�
yk+1

�
+

1

2
‖yk+1 − x̃k‖2 = 𝜆𝛾k

�
yk+1

�

+
1

2
‖yk+1 − x̃k‖2.
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where the last inequality follows from Lemma  2.2(c), the fact that �k is (�0m∕ak)
-strongly convex in view of Lemma 2.2(a), and hence that �ak�k(u) + ‖u − xk‖2∕2 is 
(�0m� + 1)-strongly convex. The result now follows by combining (19) and (20). 	
� ◻

Lemma 2.4  For every k ≥ 1 and u ∈ dom h , we have

Proof  Let i ≥ 0 and u ∈ dom h be given. It follows from Lemma 2.2(a)–(b) that we 
have

Note that for every A, a ∈ ℝ
+
 and x, y ∈ ℝ

n , we have

Applying the above identity with A = Ai , a = ai , y = yi − x̃i and x = u − x̃i , and 
using the definition of x̃i in (9) and the relation (13), we obtain

(20)

Ak+1

�
𝜆𝛾k

�
yk+1

�
+

1

2
‖yk+1 − x̃k‖2

�

≤ Ak+1

�
𝜆𝛾k

�
Akyk + akxk+1

Ak+1

�
+

1

2

�����
Akyk + akxk+1

Ak+1

− x̃k

�����

2
�

≤ 𝜆Ak𝛾k
�
yk
�
+ 𝜆ak𝛾k

�
xk+1

�
+

Ak+1

2

�����
Akyk + akxk+1

Ak+1

− x̃k

�����

2

= 𝜆Ak𝛾k
�
yk
�
+ 𝜆ak𝛾k

�
xk+1

�
+

1

2
‖xk+1 − xk‖2

≤ 𝜆Ak𝛾k
�
yk
�
+ 𝜆ak𝛾k(u) +

1

2
‖u − xk‖2 −

𝜅0m𝜆 + 1

2
‖u − xk+1‖2,

(21)

k−1�
i=0

�
1 − 𝜆Ci

�
Ai+1‖yi+1 − x̃i‖2 ≤ 2𝜆A

0

�
𝜙
�
y
0

�
− 𝜙(u)

�
− 2𝜆Ak

�
𝜙
�
yk
�
− 𝜙(u)

�

+
�
𝜅
0
m𝜆 + 1

��‖u − x
0
‖2 − ‖u − xk‖2

�

+ 𝜅
0
m𝜆D2

h
k + m̄𝜆D2

h

k−1�
i=0

ai.

(22)𝛾i(u) − 𝜙(u) ≤ 𝛾̃i(u) − 𝜙(u) ≤
1

2

�
m̄ +

𝜅0m

ai

�
‖u − x̃i‖2.

A‖y‖2 + a‖x‖2 = (A + a)
����
Ay + ax

A + a

����
2

+
Aa

A + a
‖y − x‖2.

(23)

Ai‖yi − x̃i‖2 + ai‖u − x̃i‖2 = Ai+1

�����
Aiyi + aiu

Ai+1

− x̃i

�����

2

+
Aiai

Ai+1

‖yi − u‖2

= ‖u − xi‖2 +
Aiai

Ai+1

‖yi − u‖2 ≤ ‖u − xi‖2 + aiD
2
h
.
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where the inequality follows from the fact that Ai+1 = Ai + ai ≥ Ai due to (8) and the 
definition of Dh in (5).

Now, using Lemma 2.3, relations (8), (22) and (23), and some simple algebraic 
manipulations, we conclude that for every i ≥ 0,

It follows from the above inequality and Lemma 2.1 that

Inequality (21) now follows by summing the above inequality from i = 0 to i = k − 1 
and rearranging terms. 	�  ◻

The following result develops a convergence rate bound for the quantity 
min1≤i≤k ‖vi‖2 . In view of the stopping criterion in step 3 of NC-FISTA, it plays 
a crucial role in establishing an iteration-complexity bound for NC-FISTA in 
Theorem 2.6.

Proposition 2.5  Consider the sequences {yk} and {vk} generated by NC-FISTA 
according to (10) and (12), respectively. Then, for every k ≥ 1,

and

where M, m, �0 and A0 are as described in step 0 of NC-FISTA, Dh is defined in (5), 
M̄ and m̄ are defined in the paragraph following assumptions (A1)-(A4), and

Proof  The first conclusion (24) follows from the optimality condition of (10) and 
(12). Next we show the convergence rate bound (25) holds. First note that A0 > 0 

�
1 − 𝜆Ci

�
Ai+1‖yi+1 − x̃i‖2 +

�
𝜅0m𝜆 + 1

�‖u − xi+1‖2 − ‖u − xi‖2
+ 2𝜆Ai+1

�
𝜙
�
yi+1

�
− 𝜙(u)

�
− 2𝜆Ai

�
𝜙
�
yi
�
− 𝜙(u)

�

≤ 2𝜆Ai

�
𝛾i
�
yi
�
− 𝜙

�
yi
��

+ 2𝜆ai
�
𝛾i(u) − 𝜙(u)

�

≤ 𝜆

�
m̄ +

𝜅0m

ai

��
Ai‖yi − x̃i‖2 + ai‖u − x̃i‖2

�

≤ 𝜆

�
m̄ +

𝜅0m

ai

��‖u − xi‖2 + aiD
2
h

�

= 𝜆

�
m̄ +

𝜅0m

ai

�
‖u − xi‖2 +

�
m̄ai + 𝜅0m

�
𝜆D2

h
.

�
1 − 𝜆Ci

�
Ai+1‖yi+1 − x̃i‖2 + 2𝜆Ai+1

�
𝜙
�
yi+1

�
− 𝜙(u)

�
+
�
𝜅0m𝜆 + 1

�‖u − xi+1‖2
≤ 2𝜆Ai

�
𝜙
�
yi
�
− 𝜙(u)

�
+
�
𝜅0m𝜆 + 1

�‖u − xi‖2 +
�
m̄ai + 𝜅0m

�
𝜆D2

h
.

(24)vk ∈ ∇f
(
yk
)
+ �h

(
yk
)

(25)

min
1≤i≤k

‖vi‖2 ≤
4
�
2M + 𝜅0m

�2
M − M̄

�
m̄D2

h

k
+

3𝜅0mD
2
h

k2
+

3
�
2A0

�
𝜙(y0) − 𝜙

∗

�
+
�
𝜅0m +M

�
d2
0

�
k3

�

(26)d0 ∶= inf
z∗∈Z∗

‖z∗ − y0‖ = inf
z∗∈Z∗

‖z∗ − x0‖.
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and the relation (8) with k = 0 imply that a0 > 1 . The assumptions that ∇f  is M̄-Lip-
schitz continuous (see (A3)), M > M̄ and � = 1∕M (see step 0 of NC-FISTA), rela-
tion (12) and the fact that {ak} is increasing then imply that

Moreover, due to the first remark after assumptions (A1)–(A4), there exists z∗ ∈ Z∗ 
such that ‖z∗ − x0‖ = d0 . Noting that z∗ ∈ dom h , and using Lemma 2.4 with u = z∗ , 
the fact that Ck ≤ M̄ for k ≥ 0 and � = 1∕M , we conclude that

The bound (25) now follows by combining (27) with the above inequality and using 
Lemma A.1 in [18]. 	�  ◻

The following theorem presents the main result of this subsection. It describes an 
iteration-complexity bound for NC-FISTA involving both parameters M and m as 
described in its step 0.

Theorem 2.6  Assume that the scalars M and A0 in step 0 of NC-FISTA are such that

Then, NC-FISTA outputs a 𝜌̂-approximate solution (ŷ, v̂) in at most

iterations where m is as in step 0 of NC-FISTA, Dh is defined in (5), m̄ is defined in 
the paragraph following assumptions (A1)–(A4), and d0 is defined in (26).

Proof  Using the assumption that A0 = Θ(1) and the definition of �0 in (7), we eas-
ily see that �0 = Θ(1) . The iteration-complexity bound in (29) follows immediately 
from the second result in Proposition  2.5 (see (25)), (28), the stopping criterion 
in step 3 of NC-FISTA, and the facts that M ≥ m (see step 0 of NC-FISTA) and 
�0 = Θ(1) . 	�  ◻

(27)

min
1≤i≤k

‖vi‖2 ≤
�
1

𝜆
+

𝜅0m

a0
+ M̄

�2

min
0≤i≤k−1

‖yi+1 − x̃i‖2 ≤
�
2M + 𝜅0m

�2
min

0≤i≤k−1
‖yi+1 − x̃i‖2.

M − M̄

M

�
k−1�
i=0

Ai+1

�
min

0≤i≤k−1
‖yi+1 − x̃i‖2 ≤

k−1�
i=0

��
1 − 𝜆Ci

�
Ai+1‖yi+1 − x̃i‖2

�

≤ 2𝜆A0

�
𝜙(y0) − 𝜙

∗

�
+
�
𝜅0m𝜆 + 1

�
d2
0
+ 𝜅0m𝜆D

2
h
k + m̄𝜆D2

h

k−1�
i=0

ai

=
1

M

�
2A0

�
𝜙(y0) − 𝜙

∗

�
+
�
𝜅0m +M

�
d2
0
+ 𝜅0mD

2
h
k + m̄D2

h

k−1�
i=0

ai

�
.

(28)
M

M − M̄
= O(1), A0 = Θ(1).

(29)O

⎛⎜⎜⎝

�
M
�
𝜙(y0) − 𝜙

∗

�
+M2d2

0

𝜌̂2

�1∕3

+

�
MmD2

h

𝜌̂2

�1∕2

+

Mm̄D2
h

𝜌̂2
+ 1

⎞⎟⎟⎠
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Note that if a sharper m ∈ [m̄,M] is not known and m is simply set to M, then (29) 
reduces to

Clearly, this special case only requires M as the AG method does and achieves the 
same iteration-complexity bound (in regards to the Θ(𝜌̂−2) dominant term).

3 � An adaptive variant of the NC‑FISTA

This section describes the second ACG variant studied in this paper, namely ADAP-
NC-FISTA, which, in contrast to NC-FISTA, does not require the knowledge of a 
curvature pair (M, m) as input. Instead of choosing the parameters M and m as con-
stants, it generates sequences {Ck} and {mk} (see (32), (33) and (34) below).

We begin by describing ADAP-NC-FISTA. Note that it requires as input an initial 
arbitrary pair (M0,m0) of positive scalars. 

ADAP-NC-FISTA

0. Let an initial point y0 ∈ dom h , a scalar 𝜃 > 1 , a pair (M0,m0) ∈ ℝ
2
++

 such that M0 ≥ m0 , and a 
tolerance 𝜌̂ > 0 be given, and set x0 = y0 , A0 = 2 , �0 = 1∕M0 and k = 0;

1. compute ak and Ak+1 as in (8), x̃k as in (9),

ỹk =
Akyk+aky0

Ak+1

, (30)

and

m
k+1

= max
�

2[�f (ỹk ;x̃k )−f (ỹk )]

‖ỹk−x̃k‖2 , 0
�
; (31)

2. call the subroutine SUB(�, �k,mk) stated below to compute (�k+1,mk+1) = (�,m) satisfying
� ≤ �k, m ≥ mk, (32)

�Ck(�,m) ≤ 0.9, (33)

2m
(
�k −

�

ak

)
≥ m

k+1
�, (34)

where

Ck(𝜆,m) ∶=
2[f (yk (𝜆,m))−�f (yk (𝜆,m);x̃k )]

‖yk (𝜆,m)−x̃k‖2 , (35)

yk(𝜆,m) ∶= argmin u

�
�f (u;x̃k) + h(u) +

1

2

�
1

𝜆
+

2m

ak

�
‖u − x̃k‖2

�
, (36)

and go to step 3;
3. compute

yk+1 = yk(�k+1,mk+1), Ck+1 = Ck(�k+1,mk+1), (37)

xk+1 = P
Ω

(
(ak+2mk+1�k+1)yk+1−(ak−1)yk

2mk+1�k+1+1

)
,

vk+1 =
(

1

𝜆k+1
+

2mk+1

ak

)
(x̃k − yk+1) + ∇f (yk+1) − ∇f (x̃k);

if ‖vk+1‖ ≤ 𝜌̂ then output (ŷ, v̂) = (yk+1, vk+1) and stop; otherwise, set k ← k + 1 and go to step 1.

We will now describe the subroutine SUB(�, �,m) used in step 2 of ADAP-NC-
FISTA to compute (�,m) satisfying conditions (32)–(34). 

O

⎛
⎜⎜⎝

�
M
�
𝜙
�
y0
�
− 𝜙

∗

�
+M2d2

0

𝜌̂2

�1∕3

+
MDh

𝜌̂
+

Mm̄D2
h

𝜌̂2
+ 1

⎞
⎟⎟⎠
.
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SUB(�, �,m)

0. Compute Ck(�,m) and yk(�,m) according to (35) and (36), respectively;
1. if (�,m) satisfy both (33) and (34), then output (�,m) and stop; other-

wise, if (33) is not satisfied then set

�+ ← min

{
�

�
,

0.9

Ck (�,m)

}
; (39)

if (34) is not satisfied then set
m+

← 2m; (40)

2. set (�,m) = (�+,m+
) and go to step 0.

We now make a few remarks about ADAP-NC-FISTA. First, ADAP-NC-FISTA 
consists of two types of iterations, namely, the ones indexed by k that we refer to 
as outer iterations and the ones performed inside SUB(�, �,m) that we refer to as 
inner iterations. Second, each inner iteration performs exactly one resolvent evalu-
ation of h to compute yk(�,m) . Third, when the update (39) is performed, the quan-
tity Ck(�,m) in the right hand side of (39) is always positive due to the fact that 
(33) is not satisfied and, as a consequence, �+ is well-defined and positive. Fourth, 
the choice of A0 = 2 , (8) with k = 0 and the fact that {ak} is increasing imply that 
ak ≥ a0 = 2 . Fifth, if f is convex, and hence m̄ = 0 , and m0 is set to 0 in ADAP-NC-
FISTA, then it can be easily seen that the adaptive search for �k is equivalent to the 
adaptive search for the quantity Lk in [1] via the correspondence Lk = 1∕�k . Thus, 
ADAP-NC-FISTA reduces to FISTA with backtracking when m̄ = 0.

The following lemma states some properties of ADAP-NC-FISTA.

Lemma 3.1  The following statements hold for ADAP-NC-FISTA: 

(a)	 for every k ≥ 0 and 𝜆,m > 0 , the quantities Ck(�,m) and Ck+1 defined in (35) and 
(37), respectively, lie in [−m̄, M̄];

(b)	 for every k ≥ 0 , the quantity m
k+1

 defined in (31) lies in [0, m̄];
(c)	 for every k ≥ 1 , 

(d)	 {�k} is non-increasing and {mk} is non-decreasing;
(e)	 for every k ≥ 0 , 

Proof  (a)–(b) It follows from (2) (resp., (4)) and the fact that M̄ (resp., m̄ ) is the 
smallest scalar M (resp., m) satisfying (2) (resp., (4)) that Ck(�,m) and Ck+1 (resp., 
m

k+1
 ) is bounded above by M̄ (resp., m̄ ). The quantities Ck(�,m) and Ck+1 are 

Ck�k ≤ 0.9, 2mk�k−1 ≥ m
k
�k +

2mk�k

ak−1
;

(41)𝜆k ≥ 𝜆 ∶= min

{
0.9

𝜃M̄
, 𝜆0

}
, mk ≤ max{2m̄,m0};
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bounded below by −m̄ follows from m̄ satisfying (4), and m
k+1

 is non-negative due 
to (31).

(c) The two conclusions follow from requirements (33) and (34).
(d) The requirements in (32) on (�,m) immediately imply the two conclusions.
(e) We first prove the first inequality in (41). Indeed, assume for contradiction 

that it does not hold and let k̂ be the smallest k ≥ 0 such that 𝜆k < 𝜆 . Since � ≤ �0 
in view of the definition of � in (41), it follows from the definition of k̂ that 𝜆k̂ is 
obtained from (39), i.e.,

for some (�,m) ∈ (0, �0] ×ℝ
++

 such that (33) does not hold for the pair (�,m) 
where k = k̂ − 1 in (33). Hence Ck̂−1(𝜆,m) > 0 in view of the third remark following 
SUB(�, �,m) . Moreover, it follows from the definition of � in (41), statement (a) and 
the facts that 𝜃 > 1 and Ck̂−1(𝜆,m) > 0 that

Clearly, (42) and (43) imply that 𝜆k̂ = 𝜆∕𝜃 . On the other hand, the fact that � does 
not satisfy (33) and statement (a) imply that 𝜆 > 0.9∕Ck̂−1(𝜆,m) ≥ 0.9∕M̄ and hence 
that 𝜆k̂ = 𝜆∕𝜃 > 0.9∕𝜃M̄ ≥ 𝜆 due to the definition of � . Since the latter inequality 
contradicts our initial assumption, the first inequality in (41) follows.

To prove the second inequality in (41), assume for contradiction that it does not 
hold and let k̄ ≥ 0 be such that mk̄ > max{2m̄,m0} . It follows that mk̄ > m0 by the 
definition of m̂ in (41), which, in view of (40), implies that k̄ ≥ 1 and mk̄ = 2m for 
some m ∈ ℝ

++
 that does not satisfied (34), i.e., m satisfies

It then follows from (44), m
k̄
≤ m̄ due to statement (b), 𝜆 ≤ 𝜆k̄−1 , and ak̄−1 ≥ a0 = 2 

that m < m̄ . The latter inequality and the fact that mk̄ = 2m imply that 
mk̄ < max{2m̄,m0} , which contradicts our initial assumption. Hence the second ine-
quality in (41) follows. 	�  ◻

We have the following technical results that lead to Proposition 3.3, which then 
allows us to establish the iteration-complexity result for ADAP-NC-FISTA in 
Theorem 3.4.

Lemma 3.2  For every k ≥ 0 and u ∈ ℝ
n , we define

and

(42)𝜆k̂ = 𝜆+ ∶= min

{
𝜆

𝜃
,

0.9

Ck̂−1(𝜆,m)

}

(43)𝜆k̂ < 𝜆 ≤
0.9

𝜃M̄
<

0.9

M̄
≤

0.9

Ck̂−1(𝜆,m)
.

(44)2m𝜆k̄−1 < m
k̄
𝜆 +

2m𝜆

ak̄−1
.

(45)𝛾k(u) ∶= 𝛾̃k
�
yk+1

�
+

1

𝜆k+1
⟨x̃k − yk+1, u − yk+1⟩ +

mk+1

ak
‖u − yk+1‖2
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Then, for every k ≥ 0 , we have:

Proof  Note that for any quadratic function � ∶ ℝ
n
→ ℝ with a quadratic term 

�‖ ⋅ ‖2 , every A, a ∈ ℝ
+
 and x, y ∈ ℝ

n , we have

Applying the above identity with � = �k , A = Ak , a = ak , y = yk and x = y0 , and 
using the definition of ỹk in (30) and the relation (13), we obtain

where the inequality follows from the fact that Ak ≤ Ak+1 . Inequality (47) then fol-
lows. We now show (48). Due to the convexity of h, and relations (8) and (30), we 
have

It follows from � = f + h , the above inequality, the fact that Ak ≤ Ak+1 , and relations 
(4), (8) and (30) that

Next, we show (49). Using similar arguments as in the proof of Lemma  2.2(a), 
we have 𝛾k(u) ≤ 𝛾̃k(u) for every u ∈ dom h . Hence, using (46), (31), (30), (9) and 
Lemma 3.1(c) that for every k ≥ 0 , we have

Inequality (49) then follows. 	�  ◻

(46)𝛾̃k(u) ∶= �f

�
u;x̃k

�
+ h(u) +

mk+1

ak
‖u − x̃k‖2.

(47)Ak𝛾k(yk) + ak𝛾k(y0) ≤Ak+1𝛾k
�
ỹk
�
+ mk+1‖yk − y0‖2,

(48)Ak+1𝜙
(
ỹk
)
− Ak𝜙(yk) − ak𝜙(y0) ≤

m̄ak

2
‖‖yk − y0

‖‖2,

(49)𝛾k(ỹk) − 𝜙(ỹk) ≤
mk+1𝜆k

Ak+1𝜆k+1
‖y0 − xk‖2.

A�(y) + a�(x) = (A + a)�

�
Ay + ax

A + a

�
+

Aa

A + a
�‖y − x‖2.

Ak𝛾k(yk) + ak𝛾k(y0) = Ak+1𝛾k
�
ỹk
�
+

mk+1Ak

Ak+1

‖yk − y0‖2 ≤ Ak+1𝛾k
�
ỹk
�
+ mk+1‖yk − y0‖2

Ak+1h(ỹk) − Akh(yk) − akh(y0) ≤ 0.

Ak+1𝜙
(
ỹk
)
− Ak𝜙(yk) − ak𝜙(y0) ≤ Ak+1f

(
ỹk
)
− Akf (yk) − akf (y0)

≤
m̄Akak

2Ak+1

‖‖yk − y0
‖‖2 ≤

m̄ak

2
‖‖yk − y0

‖‖2.

𝛾k(ỹk) − 𝜙(ỹk) ≤ 𝛾̃k(ỹk) − 𝜙(ỹk) = �f (ỹk;x̃k) − f (ỹk) +
mk+1

ak
‖ỹk − x̃k‖2

≤
1

2

�
m
k+1

+
2mk+1

ak

�
‖ỹk − x̃k‖2 = 1

2Ak+1

�
m
k+1

+
2mk+1

ak

�
‖y0 − xk‖2 ≤

mk+1𝜆k

Ak+1𝜆k+1
‖y0 − xk‖2.
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Proposition 3.3  For every k ≥ 1 , we have

Proof  Using similar arguments as in the proof of Lemma 2.3 and the definition of Ci 
in (37), we conclude that for every i ≥ 0 and u ∈ Ω,

where �i and 𝛾̃i are defined by (45) and (46), respectively. Using the relation (51) 
with u = x0 , Lemmas 3.2, 3.1(c)–(d), the facts that x0 = y0 and �i ≤ �0 for i ≥ 0 , and 
the definition of Dh in (5) we conclude that for every 0 ≤ i ≤ k − 1,

where the second inequality follows from (47) and (48), the third inequality follows 
from (49). Dividing the above inequality by 2mi+1 , rearranging terms and using the 
fact that, by Lemma 3.1(d), mi ≤ mi+1 , we obtain

Summing the above inequality from i = 0 to i = k − 1 and using the facts �(yi) ≥ �
∗
 

for i ≥ 0 and {�i∕mi} is non-increasing due to Lemma 3.1(d), we obtain

(50)

1

20

�
k−1�
i=0

Ai+1

mi+1

�
min

0≤i≤k−1
‖yi+1 − x̃i‖2 ≤ 𝜆0D

2
h

�
k + m̄

k−1�
i=0

ai

2mi+1

�
+

2𝜆0

m0

Ak(𝜙(y0) − 𝜙
∗
).

(51)

2𝜆i+1Ai+1𝜙(yi+1) +
�
2mi+1𝜆i+1 + 1

�‖u − xi+1‖2 + (1 − 𝜆i+1Ci+1)Ai+1‖yi+1 − x̃i‖2
≤ 2𝜆i+1Ai𝛾i(yi) + 2𝜆i+1ai𝛾i(u) + ‖u − xi‖2,

1

10
Ai+1‖yi+1 − x̃i‖2 +

�
2𝜆i+1Ai+1

�
𝜙
�
yi+1

�
− 𝜙

�
y0
��

+
�
2mi+1𝜆i+1 + 1

�‖x0 − xi+1‖2
�

−
�
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.
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Now, using the fact that {Ak} is increasing and {�k∕mk} is non-increasing, we have

Combining the above two inequalities, we then conclude that (50) holds. 	�  ◻

The next theorem is the main result of this section presenting the iteration-
complexity for finding a 𝜌̂-approximate solution of (1) by ADAP-NC-FISTA.

Theorem 3.4  The following statements hold: 

(a)	 every iterate (yk, vk) generated by ADAP-NC-FISTA satisfies 

 moreover, ADAP-NC-FISTA outputs a 𝜌̂-approximate solution (ŷ, v̂) in a num-
ber of outer iterations T  bounded by 

 where Dh is defined in (5), m̄ and M̄ are defined in the paragraph following 
assumptions (A1)–(A4), and 

(b)	 if m0 ≥ m̄ , then an alternative bound on T  is 

1

20
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+ 𝜆k

�
‖x0 − xk‖2

+

k−1�
i=0

�
𝜆i

mi

−
𝜆i+1

mi+1

�
Ai

�
𝜙(y0) − 𝜙(yi)
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 where C2 is defined in (53) and d0 is defined in (26);
(c)	 the total number of inner iterations, and hence resolvent evaluations of h, per-

formed by ADAP-NC-FISTA is bounded by 

 where log+
1
(⋅) is defined in Subsection 1.1.

Proof  (a) The first conclusion follows from the same argument as in the proof of 
Proposition  2.5. Using the facts that ak ≥ a0 = 2 from the fourth remark after 
SUB(�, �,m) and Lemma 3.1(e), we have

for every k ≥ 0 . This conclusion together with the definition of M̄ in the paragraph 
following assumptions (A1)–(A4), assumption (A3) and (38) then implies that

Moreover, using the definition of � in (41), the facts that m̄ ≤ M̄ and �0 = 1∕M0 , and 
the definition of C1 in (53), we have

Using Proposition 3.3, Lemma 3.1 (d)–(e), the above two inequalities, the fact that 
Ak = A0 +

∑k−1

i=0
ai due to (8), and rearranging terms, we obtain

The complexity bound (52) now follows immediately from the above inequality and 
Lemma A.1 in [18].

(b) The proof of this statement is similar to the proof of (a) except that Proposi-
tion A.1 is used in place of Proposition 3.3.
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(c) It suffices to argue that the total number of times that the pair (�,m) is updated 
inside all calls to the subroutine SUB(�, �,m) is bounded by the second term in (55). 
Indeed, this assertion follows from the following facts: the initial value of (�,m) is 
(�0,m0) (see step 0 of ADAP-NC-FISTA); in view of (33) and (34), the pair (�,m) 
is no longer updated whenever 𝜆 ≤ 0.9∕M̄ and m ≥ 2m̄ , and; due to (39) and (40), � 
is reduced by a factor less than or equal to 𝜃 > 1 and m is increased by a factor of 2 
each time either one of them is updated. 	�  ◻

We now make two remarks about ADAP-NC-FISTA in light of NC-FISTA. First, in 
contrast to NC-FISTA, the input pair (M0,m0) of ADAP-NC-FISTA can be an arbitrary 
pair in ℝ2

++
 . Second, if (M, m) denotes a pair as in step 0 of NC-FISTA, then it can 

be easily seen that (M0,m0) = (M,m) satisfies the assumption of Theorem 3.4(b) and 
the complexity bound (54) for ADAP-NC-FISTA with input pair (M0,m0) = (M,m) 
reduces to the complexity bound (29) for NC-FISTA.

We end this section by making a few final remarks about the iteration-complexity 
bound derived in Theorem 3.4(b) for the case in which M0 = O(M̄) . First, in this case, 
the dominant term of the complexity bound (54) is O

(
M̄2m̄D2

h
∕(M0𝜌̂

2
)
)
 , and hence it 

increases as M0 decreases. Second, the best choice of M0 that minimizes the constant 
C2 in (53) is M0 = Θ(M̄) . However, computational experiments indicate that taking 
smaller values for M0 improves the performance of the method. One reason that may 
explain this phenomenon is that the constant M̄ that appears in (56), and as a conse-
quence in C1 , C2 , and the other terms that appear in the bounds (52) and (54), is very 
conservative and close examination of the proof of Theorem 3.4 shows that it can actu-
ally be replaced by the sharper (and potentially smaller) quantity

where k̂ = argmin i{‖yi − x̃i−1‖ ∶ 1 ≤ i ≤ k}.

4 � Computational results

This section reports experimental results obtained by our implementation of NC-
FISTA, ADAP-NC-FISTA, and three variants of the latter method, on four problems 
that are instances of the SNCO problem (1), namely: nonconvex quadratic program-
ming problem in both vector (Sect. 4.1) and matrix versions (Sect. 4.2), matrix com-
pletion (Sect. 4.3) and nonnegative matrix factorization (NMF, Sect. 4.4). Note that 
NMF is a problem for which dom h is unbounded.

We start by describing the three variants of ADAP-NC-FISTA considered in our 
computational benchmark, namely, R-ADAP-NC-FISTA, ADAP-NC-FISTA-BB 
and R-ADAP-NC-FISTA-BB. The first one is a restart variant of ADAP-NC-FISTA, 
namely, it restarts the latter method with input y0 = yk and (M0,m0) = (M0,mk) 
whenever �(yk+1) ≥ �(yk) (hence, without resetting k to 0, this is equivalent to 
rejecting yk+1 and setting xk = yk , Ak = A0 and �k = �0 ). The last two variants are 

Lk ∶=
‖∇f �yk̂

�
− ∇f

�
x̃k̂−1

�‖
‖yk̂ − x̃k̂−1‖

,
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heuristic variants of ADAP-NC-FISTA and R-ADAP-NC-FISTA, respectively, 
which invokes in step 2 the subroutine SUB with input (𝜃, 𝜆̃k,mk) where

where sk−1 = x̃k−1 − yk and gk−1 = ∇f (x̃k−1) − ∇f (yk).
For the sake of simplicity, we use the abbreviations NC, AD, AD(B), RA and 

RA(B) to refer to NC-FISTA, ADAP-NC-FISTA, ADAP-NC-FISTA-BB, R-ADAP-
NC-FISTA and R-ADAP-NC-FISTA-BB, respectively, both in the discussions and 
tables below. The triples (M,m,A0) and (M0,m0, �) which are used as input for NC 
and AD, respectively, depend on the problem under consideration and are described 
in the four subsections below. Moreover, AD(B), RA and RA(B) use the same input 
triple as AD.

We compare our methods with four others: the AG method proposed in [6], the 
NM-APG method proposed in [16], and the UPFAG and UPFAG-BB methods pro-
posed in [7]. Note that all four methods are natural extensions of ACG variants for 
solving convex programs to the context of nonconvex optimization problems. For 
the sake of simplicity, we use the abbreviations NM, UP and UP(B) to refer to NM-
APG, UPFAG and UPFAG-BB, respectively, both in the discussions and tables 
below.

We now provide the details of our implementation of the four methods mentioned 
in the previous paragraph. AG was implemented as described in Algorithm 1 of [6] 
with sequences {�k} , {�k} and {�k} chosen as (�k, �k, �k) = (2∕(k + 1), 0.99∕M, k�k∕2) 
for k ≥ 1 . NM was implemented as described in Algorithm 2 of [16] with the quad-
ruple (�x, �y, �, �) chosen to be (0.99/M, 0.99/M, 0.9, 1) . The code for UP was made 
available by the authors of [7] where UP is described (see Algorithm 1 of [7]). In 
particular, we have used their choice of parameters but have modified the code 
slightly to accommodate for the termination criterion (6) used in our benchmark. 
More specifically, the parameters (𝜆̂0, 𝛽0, 𝛾1, 𝛾2, 𝛾3, 𝛿) needed as input by UP were set 
to (1∕M̄, 1∕M̄, 0.4, 0.4, 1, 10−3) . UP(B) also requires the same parameters as UP and 
an additional one denoted by � in [7] which were set to the same values used in UP 
and to � = 10−10 , respectively.

It is worth making the following remarks about the above method: (1) AG and 
NM require two resolvent evaluations of h per iteration while NC requires only one 
(see the third remark after NC); (2) NM reduces to the composite gradient method 
when a certain descent property is not satisfied; (3) AD, AD(B), RA, RA(B), UP 
and UP(B) can work without the knowledge of a curvature pair (M, m) ; and (4) UP 
and UP(B) adaptively compute both accelerated steps and unaccelerated ones using 
line searches.

We implement all methods in MATLAB 2017b scripts and run them on a Mac-
Book Pro with a 4-core Intel Core i7 processor and 16 GB of memory.

𝜆̃k =

�
𝜆BB
k

∶=
⟨sk−1,gk−1⟩
‖gk−1‖2 , if 𝜆BB

k
> 0;

1

M0

, otherwise
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4.1 � Nonconvex quadratic programming problem

This subsection discusses the performance of NC and its adaptive variants to solve 
the same quadratic programming problem as in [14, 18], namely:

where (�1, �2) ∈ ℝ
2
++

 , D ∈ ℝ
n×n is a diagonal matrix with diagonal entries sampled 

from the discrete uniform distribution U{1, 1000} , matrices A ∈ ℝ
l×n , B ∈ ℝ

n×n and 
vector b ∈ ℝ

l are such that their entries are generated from the uniform distribution 
U[0, 1] , and Δn ∶=

�
z ∈ ℝ

n
∶
∑n

i=1
zi = 1, zi ≥ 0

�
 is the (n − 1)-dimensional stand-

ard simplex. The dimensions are set to be (l, n) = (20, 1200) . For some chosen cur-
vature pairs (m̄, M̄) ∈ ℝ

2
++

 , the scalars �1 and �2 were chosen so that M̄ = 𝜆max(∇
2f ) 

and −m̄ = 𝜆min(∇
2f ) where �max(⋅) and �min(⋅) denote the largest and smallest eigen-

values functions, respectively. Note that we set Ω = ℝ
n in this subsection.

In addition to the nine methods described at the beginning of Sect. 4, this subsec-
tion (and only this one) also reports the performance of a quasi-Newton variant of 
UPFAG, called QN, as described in [7] (see its paragraph containing (2.13)). Each 
iteration of QN performs an unaccelerated step with respect to a variable metric and 
whose computation requires the evaluation of a point-to-point operator of the form 
(I + V−1�h)−1(⋅) for some V ∈ Sn

++
 (see [2]). More specifically, QN is almost the 

same as UP (and hence has the same set of parameters as UP), except that it replaces 
(2.10) by (2.13) in [7], where the quasi-Newton matrix Gk in (2.13) is updated as in 
the symmetric-rank-1 method (see [2]).

In our implementation, all methods use the centroid of Δn as the initial point z0 
and terminate with a pair (z, v) satisfying

The input triple of NC is set to (M,m,A0) = (M̄∕0.99, m̄, 1000) and that of AD is set 
to (M0,m0, �) = (1, 1, 1.25).

Test cases specified by pairs (M̄, m̄) are generated by choosing the correspond-
ing �1 and �2 as discussed in the first paragraph in this subsection. Computational 
results for ten methods with fixed M̄ = 16777216 are presented Table 1 and with 
fixed m̄ = 1 are presented in Table 2. In each table, the first column gives the val-
ues of m̄ or M̄ used to generate the instances, the second to eighth (resp., ninth 
to eleventh) columns provide the number of iterations and running times of AG, 
UP, QN, NM, NC, AD and RA (resp., UP(B), AD(B) and RA(B)). The objective 
function values obtained by all methods are not reported since they are essentially 
the same on all instances. The bold numbers highlight the methods (using and 
without using Barzilai-Borwein stepsizes) that have the best performance for each 
case. The numbers marked with * indicate that the maximum number of iterations 
has been reached.

In summary, computational results demonstrate that: (1) among the methods 
which do not use the Barzilai-Borwein stepsize (see columns 2–8 of Tables 1 and 

(57)min
�
f (z) ∶= −

�1

2
‖DBz‖2 + �2

2
‖Az − b‖2 ∶ z ∈ Δn

�
,

(58)v ∈ ∇f (z) + N
Δn
(z),

‖v‖
‖∇f (z0)‖ + 1

≤ 10−7.
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2), RA has the best performance in terms of running time; (2) UP(B) is comparable 
with RA (see columns 8 and 9 of Tables 1 and 2); and (3) RA(B) has the best per-
formance among the three methods which use the Barzilai-Borwein stepsize (see 
columns 9–11 of Tables 1 and 2).

4.2 � Matrix problem

In this subsection, we test our methods on a matrix version of the nonconvex quad-
ratic programming problem

Table 1   Numerical results for instances with fixed M̄ = 16777216

m̄ Iteration count / Running time (s) Iteration count / Running 
time (s)

AG UP QN NM NC AD RA UP(B) AD(B) RA(B)

16777216 638
97

220
47

219
64

251
31

2376
286

3
1

3
1

605
258

3
3

3
2

1048576 1358
224

1176
252

103
34

1157
184

3469
421

318
63

58
12

10
6

19
9

17
6

65536 22293
3524

5676
1284

2737
959

44705
6525

3832
459

747
157

80
18

30
16

57
20

30
10

4096 31385
5184

8286
1918

919
320

50000*
7070

17585
2101

1000
211

74
18

39
21

90
34

36
14

256 26961
4369

7464
1667

3410
1126

49602
7001

31333
3713

969
216

76
18

35
18

95
34

44
17

16 26918
4215

7334
1609

665
221

49515
6806

32517
3958

967
223

75
18

30
15

80
29

34
13

Table 2   Numerical results for instances with fixed m̄ = 1

M̄ Iteration count / Running time (s) Iteration count / Running 
time (s)

AG UP QN NM NC AD RA UP(B) AD(B) RA(B)

4000 31403
5284

7857
1682

50000*
16214

50000*
7270

17577
2244

244
50

105
20

43
15

58
18

58
17

16000 20193
3504

7857
1739

50000*
14850

50000*
7884

30239
3638

472
105

79
18

35
15

51
18

34
12

64000 26962
4891

7464
1652

50000*
15511

49592
7628

31334
3803

560
125

77
18

38
16

64
23

37
13

256000 26926
4759

7364
1522

3488
1131

49534
7541

32527
3980

930
206

75
18

38
20

72
27

36
14

1024000 26918
4717

7364
1601

3234
1028

49521
7815

32518
4092

967
227

74
18

38
22

77
29

35
13

4096000 26916
4547

7264
1602

99
33

49523
7847

32515
4265

967
231

79
18

39
21

82
32

36
13
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where A ∶ Sn
+
→ ℝ

l and B ∶ Sn
+
→ ℝ

n are linear operators defined by

with entries of Ai , Bj sampled from the uniform distribution U[0, 1] , Pn denotes the 
spectraplex

 and (�1, �2) , D and b are defined as those in Sect. 4.1. Note that we set Ω = Sn
+
 in 

this subsection.
All methods used the centroid of Pn as the initial point Z0 , i.e., Z0 = In∕n , 

where In is the identity matrix of size n × n . Termination criterion is the 
same as (58) except that Δn is replaced by Pn . The input triple of NC is set to 
(M,m,A0) = (M̄∕0.99, m̄, 1000) and that of AD is set to (M0,m0, �) = (1, 1000, 1.25)

.
Test cases specified by pairs (M̄, m̄) are generated by choosing the correspond-

ing �1 and �2 as discussed in the first paragraph in this subsection. Computational 
results of all methods with fixed M̄ = 1000000 are presented in Tables 3, 4, and 5. 
Their formats are the same as that of Table 1. The objective function values obtained 
by all methods are not reported since they are essentially the same on all instances. 
The bold numbers highlight the methods (using and without using Barzilai-Borwein 
stepsizes) that have the best performance for each case.

In Table 3, the dimensions are set to be (l, n) = (50, 200) and 2.5% of entries in 
Ai,Bj are nonzero.

In Table 4, the dimensions are set to be (l, n) = (50, 400) and 0.5% of entries in 
Ai,Bj are nonzero.

In Table 5, the dimensions are set to be (l, n) = (50, 800) and 0.1% of entries in 
Ai,Bj are nonzero.

In summary, computational results demonstrate that: (1) among the methods 
which do not use the Barzilai-Borwein stepsize (see columns 2–7 of Tables 3, 4, and 
5), RA has the best performance in terms of running time; (2) UP(B) is comparable 
with RA in many instances (see columns 7 and 8 of Tables  3, 4, and 5); and (3) 
RA(B) has the best performance among the three methods which use the Barzilai-
Borwein stepsize (see columns 8–10 of Tables 3, 4, and 5).

4.3 � Matrix completion

This subsection focuses on a constrained version of the nonconvex low-rank matrix 
completion problem studied in [19, 28].

min
�
f (Z) ∶= −

�1

2
‖DB(Z)‖2 + �2

2
‖A(Z) − b‖2 ∶ Z ∈ Pn

�
,

[A(Z)]i = ⟨Ai, Z⟩F for Ai ∈ ℝ
n×n and 1 ≤ i ≤ l,

[B(Z)]j = ⟨Bj, Z⟩F for Bj ∈ ℝ
n×n and 1 ≤ j ≤ n,

Pn ∶=
{
Z ∈ Sn

+
∶ tr(Z) = 1

}
.
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Given an incomplete observed matrix O with the set Q of observed entries, 
parameters 𝛽 > 0 and 𝜏 > 0 and letting p ∶ ℝ → ℝ

+
 denote the log-sum penalty

and ΠQ denote the linear operator that maps a matrix A to the matrix whose entries 
in Q have the same values of the corresponding ones in A and whose entries outside 
of Q are all zero, then the constrained version of the matrix completion problem is 
formulated as

p(t) = p�,�(t) ∶= � log

(
1 +

|t|
�

)

(59)min
X∈ℝl×n

f (X) + h(X),

Table 3   Numerical results for instances with fixed M̄ = 1000000

m̄ Iteration count / Running time (s) Iteration count / Running 
time (s)

AG UP NM NC AD RA UP(B) AD(B) RA(B)

1000000 46
2

12
1

80
2

33
1

12
1

12
1

9
1

11
1

12
1

100000 3809
138

2577
113

6242
191

3960
94

2206
87

597
25

2573
274

593
41

282
21

10000 5400
198

7697
347

10404
328

1247
29

2591
103

1290
54

6811
671

835
57

569
40

1000 4621
163

6759
308

11053
360

4424
111

2637
104

1211
51

6384
646

721
48

581
41

100 4476
157

6620
299

11271
312

8870
218

2639
113

1373
57

6876
683

812
54

535
37

Table 4   Numerical results for instances with fixed M̄ = 1000000

m̄ Iteration count / Running time (s) Iteration count / Running 
time (s)

AG UP NM NC AD RA UP(B) AD(B) RA(B)

1000000 44
4

12
1

75
5

32
2

12
2

12
2

10
2

12
2

12
2

100000 1411
134

621
69

3151
224

635
40

530
52

240
25

57
13

151
28

61
11

10000 1963
195

1733
191

5071
373

1104
69

868
86

198
21

109
31

211
39

137
25

1000 1935
193

1792
197

5172
382

3823
244

900
94

215
23

97
25

208
38

160
29

100 1934
190

1803
197

5045
367

5771
391

904
95

210
23

112
29

225
40

147
27
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where

R is a positive scalar, B(R) ∶= {X ∈ ℝ
l×n

∶ ‖X‖F ≤ R} , O ∈ ℝ
Q is an incomplete 

observed matrix, 𝜇 > 0 is a parameter, r ∶= min{l, n} and �i(X) is the i-th singular 
value of X and ‖ ⋅ ‖

∗
 denotes the nuclear norm defined as ‖ ⋅ ‖

∗
∶=

∑r

i=1
�i(⋅) . Note 

that we set Ω = ℝ
l×n in this subsection. It is shown in [19, 28] that the problem in 

(59) falls into the general class of SNCO problems,

for M̃ = 1 and that the pair

satisfies (2) and (4).
We use the MovieLens dataset1 to obtain the observed index set Q and the incom-

plete observed matrix O. The dataset includes a sparse matrix with 100,000 ratings 
of {1,2,3,4,5} from 943 users on 1682 movies. The radius R is chosen as the Frobe-
nius norm of the matrix of size 943 × 1682 containing the same entries as O in Q 
and 5 in the entries outside of Q.

f (X) =
1

2
‖ΠQ(X − O)‖2

F
+ �

r�
i=1

�
p(�i(X)) − p0�i(X)

�
,

h(X) = �p0‖X‖∗ + IB(R)(X), p0 = p�(0) =
�

�
,

f (X�
) − f (X) − ⟨∇f (X�

),X�
− X⟩F ≤

M̃

2
‖X�

− X‖2
F
, ∀X,X�

∈ Ω

(60)
(
M̄, m̄

)
=

(
max

{
M̃,

2𝜇𝛽

𝜏2

}
,
2𝜇𝛽

𝜏2

)

Table 5   Numerical results for instances with fixed M̄ = 1000000

m̄ Iteration count / Running time (s) Iteration count / Running 
time (s)

AG UP NM NC AD RA UP(B) AD(B) RA(B)

1000000 69
22

16
6

117
26

39
8

11
5

11
6

13
8

11
7

11
7

100000 277
119

58
21

502
118

165
39

24
10

8
3

9
7

8
4

8
4

10000 491
173

141
52

1030
246

703
168

60
23

60
21

13
10

13
7

13
8

1000 531
169

161
60

1144
259

1326
309

70
26

70
25

13
10

15
9

15
9

100 535
172

163
61

1156
260

1482
336

71
26

71
25

13
10

16
10

16
10

1  http://​group​lens.​org/​datas​ets/​movie​lens/.

http://grouplens.org/datasets/movielens/
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All methods take a random matrix Z0 sampled from the standard Gaussian distri-
bution as the initial point, where the random number generation seed is fixed, and 
terminates with a pair (Z, V) satisfying

The input triple of NC is set to (M,m,A0) = (M̃, M̃, 2) , since M̃ is the one actually 
needed in the convergence analysis of this algorithm (see Lemma 2.4). The input 
triple of AD is set to (M0,m0, �) = (1, 0.5, 1.25).

Computational results of all methods are summarized in Table 6. Specifically, the 
first column gives the values of M̄ computed according to (60) with four different 
triples (�, �, �) , the second to seventh columns provide the function values of (59) at 
the last iteration and the number of iterations, and the eighth to thirteenth columns 
present the running times. The bold numbers highlight the methods that have the 
best performance for each case. The results of RA are not reported since they are 
the same as those of AD, which is due to the fact that {�(yk)} generated by AD is a 
decreasing sequence and hence no restart is performed in RA.

In summary, computational results demonstrate that: (1) NM always finds the 
smallest function values, since it requires objective function values to satisfy a 
descent property, and if violated, a projected gradient step is taken to ensure the 
descent in function values; (2) NC and AD have the best performance in terms of the 
running time; and (3) since NC and AD are good enough compared with UP(B), we 
do not presents the results of AD(B) and RA(B).

4.4 � Nonnegative matrix factorization

In this subsection, we further test AD on a real life application rather than artifi-
cially generated problems and data. NMF is a popular dimension reduction method 
in which a data matrix X is factored into two matrices V and W, with constraints that 
each entry in V and W is nonnegative.

V ∈ ∇f (Z) + �h(Z),
‖V‖F

‖∇f �Z0
�‖F + 1

≤ 5 × 10−4.

Table 6   Numerical results for matrix completion instances

M̄ Function value / Iteration count Running time (s)

AG UP UP(B) NM NC AD AG UP UP(B) NM NC AD

4.4 2257
3856

2670
898

2605
521

1809
1036

2605
1491

2625
1219

4568 2214 1545 1033 1114 1021

8.9 3886
9158

4322
1782

4261
576

3359
1617

4154
1642

4203
1302

10251 2592 1621 1605 1202 1089

20 4282
22902

4736
3962

4637
898

3635
2875

4637
676

4582
2177

29274 5850 1914 2836 1178 1822

30 5967
37032

6475
5857

6753
606

5237
3717

6292
1646

6293
1952

41673 8159 1628 4182 1233 1633
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where X ∈ ℝ
n×l , V ∈ ℝ

n×k and W ∈ ℝ
k×l . Note that we set Ω = ℝ

n×l in this subsec-
tion. Intuitively, the data matrix X is a collection of m data points in ℝn , the columns 
of V can be viewed as the basis of all data points, and hence each data point is a 
linear combination of the basis, with weights in the corresponding column in W. 
Because of its ability of extracting easily interpretable factors and automatically per-
forming clustering, NMF finds a wide range of applications in practice, from text 
mining to image processing. Most of the NMF algorithms solve (61) in a two-block 
coordinate descent manner, by alternatively minimizing with respect to one of the 
two blocks, V or W, while keeping the other one fixed. Alternating minimization is a 
natural idea for NMF, since the subproblem in one block is convex.

In this subsection, we apply AD to solve the nonconvex problem (61) directly by 
minimizing in (V, W) jointly.

For a preliminary computational test, we apply AD to facial feature extraction. 
The problem is as described in (61), to factor out a data matrix into two matrices. 
The facial image dataset is provided by AT&T Laboratories Cambridge2. There are 
ten different images of each of 40 distinct subjects, and each image contains 92 × 112 
pixels, with 256 gray levels per pixel. It results in a matrix of size 10, 304 × 400 , 
where each column of the data matrix is the vectorization of an image. It is hard to 
estimate M in (2) due the unboundedness in NMF, so we can only apply AD, which 
has the benefit of working without the knowledge of M. AD is benchmarked against 
the ANLS (Alternating Nonnegative Least Squares) method [12]. ANLS alterna-
tively solves minimization subproblems in V and W with nonnegative constraints 
and the other variable being fixed. We use the implementation of ANLS3 provided 
by the authors of [12] as a benchmark for comparison. The ANLS code is slightly 
modified to accommodate for the termination criterion (62).

Both methods use the initial point (V0,W0) = (�
n×k

∕(nk), �k×l∕(kl)) , where �n×k and 
�
k×l are all one matrices of size n × k and k × l . k is set to be 20. AD terminates with a 

pair ((V ,W), (SV , SW )) satisfying

where F = {(V ,W) ∈ ℝ
n×k

×ℝ
k×l

∶ V ≥ 0,W ≥ 0} . The input triple of AD is set to 
(M0,m0, �) = (1, 1000, 1.25) . Computational results are summarized in Table 7.

In summary, computational results demonstrate that ANLS reaches the maximum 
number of iterations (i.e., 1000), and AD outperforms ANLS in terms of the running 
time.

(61)min
�
f (V ,W) ∶=

1

2
‖X − VW‖2

F
∶ V ≥ 0,W ≥ 0

�
,

(62)
�
SV , SW

�
∈ ∇f (V ,W) + NF(V ,W),

‖�SV , SW
�‖F

‖∇f �V0,W0

�‖F + 1
≤ 10−7,

2  https://​www.​cl.​cam.​ac.​uk/​resea​rch/​dtg/​attar​chive/​faced​ataba​se.​html.
3  https://​www.​cc.​gatech.​edu/​~hpark/​nmfso​ftware.​html.

https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://www.cc.gatech.edu/%7ehpark/nmfsoftware.html
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5 � Concluding remarks

This paper presents two ACG variants and establishes their iteration-complexities for 
obtaining an approximate solution of the SNCO problem. Numerical results are also 
given showing that they are both efficient in practice.

We have not assumed in our analysis that the set Ω as in assumption (A3) is bounded. 
However, we remark that if Ω is bounded then it can be shown using a simpler analy-
sis than the one given in this paper that the version of the NC-FISTA with m = 0 and 
� = 1∕(2M) has an

iteration-complexity where D
Ω
∶= supu,u�∈Ω ‖u� − u‖ < ∞ . Moreover, it can be 

shown that a version of the ADAP-NC-FISTA in which �k is updated in a simi-
lar way and mk = 0 for every k has a guaranteed iteration-complexity that lies in 
between the one above and the one in (52).

Finally, we have implemented the two versions mentioned in the previous paragraph 
and tested them on problems for which Ω is bounded but have observed that they are 
not as efficient as the corresponding ones studied in this paper.

Supplementary results

This section provides a bound on the quantity min0≤i≤k−1 ‖yi+1 − x̃i‖2 for the case 
in which the parameter m0 of the ADAP-NC-FISTA satisfies m0 ≥ m̄ . Note that an 
alternative bound on this quantity has already been developed in Proposition 3.3 for 
any m0 > 0.

Proposition A.1  For every k ≥ 1 , for m0 ≥ m̄ , we have

O

⎛⎜⎜⎝

�
M2d2

0

𝜌̂2

�1∕3

+

�
Mm̄D2

Ω

𝜌̂2

�1∕2

+

Mm̄D2
h

𝜌̂2
+ 1

⎞⎟⎟⎠

Table 7   Numerical results for 
NMF

Method Function value Iteration count Running time(s)

AD 2.80E+09 28 4.6
ANLS 1.20E+09 1000* 137.6
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Proof  Using the assumption of the lemma that m0 ≥ m̄ , the facts that ai ≥ 2 for i ≥ 0 
from the fourth remark following SUB(�, �,m) , and {�i} is non-increasing from 
Lemma 3.1(d), we have

The above inequality implies that (34) is always satisfied with m = m0 and � = �i+1 . 
Hence, mk is never updated in SUB(�, �,m) , i.e., mi = m0 , for i ≥ 0 . Using similar 
arguments as in the proof of Lemma 2.3, we conclude that for every i ≥ 0 and u ∈ Ω

,

where

and

As in Lemma 2.2(a), we have 𝛾i(u) ≤ 𝛾̃i(u) for every u ∈ dom h . Hence, it follows 
from (65) and (4) that for every k ≥ 0 and u ∈ dom h , we have

Taking u = x∗ , and using (64), (23), (66), (63), Lemma  3.1(c), and the facts that 
x0 = y0 , �i ≤ �0 and �(yi) ≥ �

∗
 for i ≥ 0 , we conclude that for every 0 ≤ i ≤ k − 1,

1

10

�
k−1�
i=0

Ai+1

�
min

0≤i≤k−1
‖yi+1 − x̃i‖2 ≤2𝜆0A0

�
𝜙
�
y0
�
− 𝜙

∗

�
+ ‖x0 − x∗‖2

+ 𝜆0D
2
h

�
2m0 + 2m0k + m̄

k−1�
i=0

ai

�
.

(63)
(
m̄ +

2m0

ai

)
𝜆i+1 ≤ m0

(
1 +

2

ai

)
𝜆i+1 ≤ 2m0𝜆i.

(64)

2𝜆i+1Ai+1𝜙
�
yi+1

�
+
�
2m0𝜆i+1 + 1

�‖u − xi+1‖2 +
�
1 − 𝜆i+1Ci+1

�
Ai+1‖yi+1 − x̃i‖2

≤ 2𝜆i+1Ai𝛾i
�
yi
�
+ 2𝜆i+1ai𝛾i(u) + ‖u − xi‖2,

𝛾i(u) ∶= 𝛾̃i
�
yi+1

�
+

1

𝜆i+1
⟨x̃i − yi+1, u − yi+1⟩ +

m0

ai
‖u − yi+1‖2

(65)𝛾̃i(u) ∶= �f

�
u;x̃i

�
+ h(u) +

m0

ai
‖u − x̃i‖2.

(66)

𝛾i(u) − 𝜙(u) ≤ 𝛾̃i(u) − 𝜙(u) = �f

�
u;x̃i

�
− f (u) +

m0

ai
‖u − x̃i‖2 ≤ 1

2

�
m̄ +

2m0

ai

�
‖u − x̃i‖2.
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The conclusion is obtained by rearranging terms and summing the above inequality 
from i = 0 to k − 1 . 	�  ◻
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