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Dielectrowetting of a thin nematic liquid crystal layer
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We consider a mathematical model that describes the flow of a nematic liquid crystal (NLC) film placed

on a flat substrate, across which a spatially varying electric potential is applied. Due to their polar nature,

NLC molecules interact with the (nonuniform) electric field generated, leading to instability of a flat film.

Implementation of the long wave scaling leads to a partial differential equation that predicts the subsequent time

evolution of the thin film. This equation is coupled to a boundary value problem that describes the interaction

between the local molecular orientation of the NLC (the director field) and the electric potential. We investigate

numerically the behavior of an initially flat film for a range of film heights and surface anchoring conditions.
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I. INTRODUCTION

Dielectrowetting, a consequence of dielectrophoresis, in-

volves the use of a nonuniform electric field to control

spreading of dielectric fluids on a substrate. A common

focus of dielectrowetting experiments is the controlled ma-

nipulation of dielectric droplets using the interaction with

an electric field to spread them into a thin film (see, e.g.,

Brown et al. [1,2]); or vice versa, to break down a large

parent droplet into smaller droplets (see, e.g., McHale et al.

[3]), with numerous possible applications [4–9]. The classic

dielectrowetting experiment, described in pioneering works

such as those of Cheng et al. [4] and Brown et al. [1,2],

involves a dielectric droplet or film spreading over a flat

substrate, which contains interdigitated electrodes. A potential

difference applied across these electrodes generates a nonuni-

form electric field, which acts on the polar molecules, driving

flow. An excellent and comprehensive recent review of the

field is provided by Edwards et al. [10]. A key feature of

dielectrowetting that makes it desirable for applications is

that it works with any dielectric liquid, in contrast to the

more well-known “electrowetting on dielectric” technology,

which relies on the movement of free charge and is limited

to conducting liquids only. Dielectrowetting also offers the

capability of spreading a partially wetting droplet into a fully

wetting film (and vice versa) [11], which opens doors for

new thin-film-based devices in the fields of microfluidics and

optofluidics [10].

Theoretical investigations into dielectrowetting to date

focus mostly on isotropic dielectric liquids [3,11–13]. Con-

sidering their widespread industrial use, it is also important

to develop mathematical models that describe the behavior of

anisotropic dielectric liquids, such as nematic liquid crystals

(NLCs), in a similar setting. The most prevalent current use of

NLCs exploits their birefringence and behavior under applied

electric fields in liquid crystal display (LCD) devices (see

the book by Yakovlev et al. in [14] for a thorough overview

of NLCs and their optical applications). NLCs show rather

complex behavior compared to Newtonian fluids because they

consist of rodlike molecules, which have a dipole moment.

In the absence of an electric field the molecules tend to align

locally, due to interactions between the dipoles, which imparts

elasticity to the material. Molecular alignment is also medi-

ated by surface effects; so-called surface anchoring [15–17].

Applying an electric field also affects molecular alignment:

the long axis of the NLC molecules will align parallel or

perpendicular to the local electric field direction (depending

on the dipole moment). Application of an electric field near a

bounding surface sets up a competition between the dielectric

force on the NLC molecules and the surface anchoring at the

boundary. As a result, mathematical models of NLCs in such

settings can be complex, even without the complication of a

moving free surface (see, e.g., work by Gartland [18,19] and

Feireisl et al. [20]).

In this paper, we seek to develop a mathematical model

that describes the flow of a thin NLC film under the effect

of a nonuniform electric field. We consider a setup similar to

that of Brown et al. [1,2] where a thin layer of dielectric liq-

uid is placed on a substrate containing parallel interdigitated

electrodes, which generate a periodic electric field profile.

We make use of the commonly considered long wave scaling

to derive a version of the thin-film equation governing the

evolution of the film height. This equation is coupled to a

pair of boundary value problems, one for the electric potential

within the film, and one describing the average orientation of

the long axis of the NLC molecules (modeled in the theory by

the director field n, a unit vector). The modeling is simplified

by exploiting a disparity in timescales: both the director field

and electric field are assumed to be in instantaneous equi-

librium for the current free-surface geometry. The resulting

model is still complex, and numerical techniques are used to

explore how the initial film height and anchoring conditions

at the boundaries influence the evolution of the free surface

over time.
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FIG. 1. (a) Diagram showing model setup and key parameters in

dimensional coordinates. (b) Plane view of experimental setup show-

ing the electrode geometry. Dashed rectangle indicates the region that

corresponds to (a).

II. MATHEMATICAL MODEL

In what follows, we develop a mathematical model that

describes the flow and free-surface evolution of a NLC film

under the effect of a nonuniform electric field. The basic setup,

shown in Fig. 1, consists of a thin NLC layer placed on a

horizontal substrate. The substrate contains a pair of planar,

interdigitated electrodes, leading to an electric potential that

is nonuniform in the plane of the substrate. In our model

we will assume that the electrodes are of infinite extent (in

the y∗ direction in Fig. 1), so that the electric field generated

by the applied potential will vary only in x∗, the coordinate

in the plane of the substrate perpendicular to the electrodes,

and z∗, which measures distance perpendicular to the substrate

into the NLC. The main dependent variables that govern the

dynamics are the velocity and director field of the NLC, to-

gether with the electric potential generated by the electrodes.

In line with our assumed electrode geometry, throughout this

paper we restrict attention to the two-dimensional (2D) case

in which the NLC velocity field v∗ = (u∗,w∗) and the direc-

tor field n = (sin θ, cos θ ) are confined to the (x∗, z∗) plane,

so that the electric potential at time t∗ may be written as

�∗(x∗, z∗, t∗), and the director orientation θ , which repre-

sents the angle that the director makes with the z∗ axis, is

θ (x∗, z∗, t∗). Here and below, ∗ superscripts are used to denote

dimensional quantities. Quantities without superscripts are

dimensionless.

A. Leslie-Ericksen equations

The flow of NLC may be described by the standard Leslie-

Ericksen model [21,22], which comprises the energy, (zero

inertia) momentum balance, and mass conservation equations

as follows:

−
∂W ∗

∂n
+ ∇∗ ·

(

∂W ∗

∂∇∗n

)

+ G∗ = 0, (1)

−∇∗W ∗ + (∇∗n) · G∗ + ∇∗ · σ ∗ = 0, (2)

∇∗ · v∗ = 0, (3)

where W ∗ is the bulk free energy density and σ ∗ is the

stress tensor; these and the other quantities in Eqs. (1)–(3) are

defined below:

W ∗ = W ∗
e + W ∗

d , (4)

2W ∗
e = K∗{(∇∗ · n)2 + [n × (∇∗ × n)]

2
}, (5)

2W ∗
d = −ε∗

0 (ε‖ − ε⊥)(n · E∗)2 − ε∗
0ε⊥E∗ · E∗, (6)

G∗
i = −γ ∗

1 N∗
i − γ ∗

2 e∗
iknk, e∗

i j =
1

2

(

∂v
∗
i

∂x∗
j

+
∂v

∗
j

∂x∗
i

)

, (7)

N∗
i = ṅi − ω∗

iknk, ω∗
i j =

1

2

(

∂v
∗
i

∂x∗
j

−
∂v

∗
j

∂x∗
i

)

. (8)

Here, subscripts i, j, k denote vector indices and the Ein-

stein summation convention is assumed. The bulk free energy

density W ∗ consists of elastic and dielectric contributions.

Nematic molecules prefer to align with their neighbors locally,

a preference modeled by a bulk elastic (Frank) energy, W ∗
e ,

where in Eq. (5) the widely used one-constant approximation

is used [16]. In addition, NLC molecules respond to an applied

electric field E∗, which induces a force causing them to align

parallel or perpendicular to the field direction, giving rise

to a dielectric free energy contribution modeled by W ∗
d in

Eq. (6). The constant ε∗
0 is the permittivity of free space and

ε‖ and ε⊥ are the relative dielectric permittivities parallel and

perpendicular to the long axis of the nematic molecules. The

molecular orientation induced by the field depends on the sign

of the dielectric anisotropy, ε‖ − ε⊥; in line with the most

common situations we mostly assume parallel orientation,

associated with ε‖ − ε⊥ > 0. For our setup the electric field

E∗ = ∇∗�∗ is generated by applying a potential difference

V ∗
0 across the electrode pair; for modeling simplicity we fol-

low the approach of Brown et al. [1,2] and approximate the

piecewise continuous substrate potential by �∗(x∗, 0, t∗) =

V ∗
0 cos( πx∗

2d∗ ), where d∗ is the electrode spacing. The param-

eters γ ∗
1 and γ ∗

2 in G∗ are constant viscosities, while e∗
i j and

ω∗
i j are symmetric and antisymmetric rate-of-strain tensors for

the material.
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The stress tensor σ ∗ for the NLC can be written as

σ ∗ = −p∗I + σ e∗ + σ d∗ + σ v∗, (9)

where σ e∗, σ d∗, and σ v∗ are the elastic, dielectric, and vis-

cous contributions, respectively, and are defined as

σ e∗ = −K∗∇∗n · (∇∗n)T , (10)

σ d∗ = ε∗
0 (∇∗�∗ ⊗ ∇∗�∗)ε(n), (11)

(σ v∗)i j = α∗
1nknpe∗

kpnin j + α∗
2N∗

i n j + α∗
3N∗

j ni

+α∗
4e∗

i j + α∗
5e∗

iknkn j + α∗
6e∗

jk, nkni, (12)

where ε(n) = ε⊥I + (ε‖ − ε⊥)n ⊗ n is the dielectric tensor,

and the α∗
i are constant viscosities related to γ ∗

i in Eq. (7)

by γ ∗
1 = α∗

3 − α∗
2 , γ

∗
2 = α∗

6 − α∗
5 and to each other by the

Onsager relation, α∗
2 + α∗

3 = α∗
6 − α∗

5 .

In addition to the electric field, NLC molecular orientation

is sensitive to interactions with the bounding surface, a phe-

nomenon known as anchoring. At a solid substrate, anchoring

is determined by the chemical interactions between the NLC

and the substrate. It is a common practice in applications to

treat the substrate (chemically or mechanically) to impose

strong planar anchoring with respect to the surface, therefore

we assume a Dirichlet condition θ (x∗, 0, t∗) = π/2 at the

lower substrate. At a free surface, the director typically prefers

to align normal to the surface (homeotropic anchoring), hence

at z∗ = h∗(x∗, t∗) we impose weak homeotropic anchoring

with associated anchoring strength A∗, modeled by a Rapini-

Papoular surface energy contribution,

γ ∗ − (A∗/2)(n · ν)2

(where ν is the unit outward normal to the free surface), to

the total energy [23]. In experiments, typical values for weak

anchoring vary between 10−5 and 10−6J m−2 [24]. For the

velocity v∗, we assume no-slip and no-penetration conditions

at the lower boundary, and a kinematic boundary condition

together with a balance of normal and tangential stresses at

the free surface.

B. Thin-film model derivation

We employ standard long-wave theory scalings to nondi-

mensionalize the governing equations:

x∗ = d∗x, z∗ = δd∗z, u∗ = U ∗u, w
∗ = δU ∗

w,

t∗ =
d∗

U ∗
t, p∗ =

μ∗U ∗

δ2d∗
p, W ∗ =

W K∗

δ2d∗2
. (13)

Here, d∗ is the length scale of the electrode spacing along

the x∗ axis, U ∗ is the typical flow speed in the x∗ direction,

and μ∗ = α∗
4/2 is the representative viscosity scaling in the

pressure.

In the absence of experimental data for free-surface di-

electrowetting of NLCs, we base certain parameter choices

on the available data for isotropic dielectric liquids (IDLs).

Experiments by Brown et al. [1,2,12] involve an IDL film

in which the typical film height h∗
0 is much smaller than the

electrode spacing (h∗
0 ∼ 15 μm and d∗ ∼ 120 μm), hence we

set δ = h∗
0/d∗ � 1 to be the aspect ratio of the film. Typical

values of δ range from 0.05 to 0.5 in the IDL experiments

[1,2]. If the free surface in the dimensional variables is given

by z∗ = h∗(x∗, t∗), then we write h∗ = h∗
0h and the dimension-

less free-surface representation is z = h(x, t ).

1. Energetics

Following an approach similar to that of Lin et al. [25]

(which does not include electric field effects), if the inverse

Ericksen number N = K∗/(μ∗U ∗d∗) and the dielectric pa-

rameter D [defined in Eq. (15) below] are both O(1), the

leading-order director energetics reduce to the Euler-Lagrange

equations for minimizing total dimensionless free energy per

unit length in the x direction. The assumption underlying

this simplification is that the timescale on which the NLC

molecules reorient (driven either by elastic or electric field ef-

fects) is very much shorter than that on which the free-surface

geometry evolves. The latter is the timescale associated with

the flow, τ ∗ = d∗/U ∗. The former may be estimated by the

ratio of the rotational viscosity γ ∗
1 = α∗

3 − α∗
2 of the NLC

and the associated free energy density (W ∗
e or W ∗

d ), giv-

ing timescales τ ∗
e = γ ∗

1 (δd∗)2/K∗ (reorientation under elastic

effects) or τ ∗
d = γ ∗

1 (δd∗)2/(ε∗
0V ∗2

0 ) (reorientation under the

electric field), respectively. Fixing the velocity scale using

N = O(1), it is easily verified that τ ∗
e,d/τ

∗ = O(δ2). Hence

it is reasonable to assume that the director field is always in

quasistatic equilibrium, adapting instantaneously to the slowly

changing free-surface geometry.

The dimensionless free energy to be minimized is given by

J =

∫ h

0

NW (θ, θz, �z )dz + g(θ )|z=h, (14)

where W is the total dimensionless bulk energy density and

g(θ ) is the Rapini-Papoular surface energy density, given in

dimensionless form by

W =
1

2
θ2

z − D�2
z (� + cos2 θ ), (15)

D =
V ∗2

0 ε∗
0 (ε‖ − ε⊥)

2K∗
, � =

ε⊥

ε‖ − ε⊥

,

g(θ )|z=h = γ −
A

2
(n · ν)2|z=h = γ −

A

2
cos2 θ |z=h. (16)

Here, D represents the relative strength of the dielectric

anisotropy and elasticity, γ = δ2d∗2γ ∗/(K∗h∗
0 ) is the dimen-

sionless surface tension coefficient defined in terms of the

dimensional surface tension γ ∗, and A = δA∗d∗/K∗ is the

dimensionless anchoring strength at the free surface.

We follow the approach described by Cummings et al. [26]

to minimize the total free energy density of the layer with

respect to variations in θ and �. The first variations must

vanish at an extremum and the signs of the second variations

indicate whether an energy minimum is reached. The bulk

terms lead to the Euler-Lagrange equations,

θzz − D�2
z sin 2θ = 0, (17)

D[�z(� + cos2 θ )]z = 0, (18)

while the surface terms lead to one term that can be elimi-

nated, giving the weak anchoring condition,

Wθz
= gθ on z = h,
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a free-surface boundary condition on θ . The remaining bound-

ary conditions on θ and � are taken to be Dirichlet conditions:

strong planar substrate anchoring for θ on z = 0; specified

substrate potential �(x, 0, t ) to approximate the interlaced

electrodes on z = 0; and, in order to retain a maximally

tractable model, we assume the free film surface is an equipo-

tential.1 This gives the following complete set of boundary

conditions for θ and �:

θ = π/2 on z = 0, (19)

θz +
A

2
sin 2θ = 0 on z = h, (20)

� = cos
(π

2
x
)

on z = 0, (21)

� = 0 on z = h. (22)

Although both θ and � are functions of the three inde-

pendent variables x, z, t , in much of the following we will

suppress the explicit t dependence due to the quasistatic nature

of the boundary value problem these functions satisfy. We will

also, where convenient, suppress the independent variables

altogether in θ and � (likewise in h).

2. Momentum equations

We use the pressure scale μ∗U ∗/(δ2d∗) to nondimen-

sionalize the stress tensor σ ∗. Then, provided that the

inverse Ericksen number K∗/(μ∗U ∗d∗) = O(1), the momen-

tum equations reduce to the condition that the stress tensor

be divergence-free, and the equations governing the fluid flow

can be extracted by retaining the leading-order terms in

δ
∂σ11

∂x
+

∂σ13

∂z
= 0, (23)

δ
∂σ31

∂x
+

∂σ33

∂z
= 0, (24)

where subscripts 1 and 3 refer to the x and z coordinate

directions, respectively, in our 2D geometry. As a result, the

leading-order equations are found to be

px = 2DN [�x�z(� + cos2 θ )]z + [A1(θ )uz]z − N [θxθz]z,

(25)

pz = 0, (26)

for the x and z components, respectively, where

A1(θ ) = 1 + (α5 − α2) cos2 θ + 2α1 sin2 θ cos2 θ

+ (α3 + α6) sin2 θ. (27)

Following the approach taken by Lin et al. [25,27], the nor-

mal and tangential stress balance boundary conditions may be

derived. The normal stress is balanced by the surface tension

contribution in the Young-Laplace condition, which yields

p + 2NW = −Chxx on z = h(x, t ), (28)

1More accurately, one should also solve for the electric potential

in the region above the film, imposing appropriate continuity condi-

tions, but this leads to a much more complex system.

where C = δ3γ ∗/(μ∗U ∗) is an inverse capillary number. The

tangential stress is balanced by the surface energy gradients

along the free surface, which (after some algebra) reduces to

the boundary condition

uz = 0 on z = h(x, t ). (29)

Equation (26) together with the normal stress condition of

Eq. (28) gives the pressure p(x, t ) throughout the layer as

p = −2NW |z=h − Chxx, (30)

while Eq. (25) together with the tangential stress condition in

Eq. (29) gives the velocity gradient across the layer as

A1(θ )uz = N

[

θx(x, z)θz(x, z) −
A

2
θx(x, h) sin 2θ (x, h)

]

− 2DN�z(x, z)[� + cos2 θ (x, z)]

× [�x(x, z) − �x(x, h)]

− 2N (z − h)[Wx + hxWz]|z=h − C(z − h)hxxx.

(31)

Imposing the no-slip and no-penetration boundary conditions,

u = v = 0 at z = 0, the kinematic boundary condition at z =

h(x, t ), together with mass conservation and the integral rela-

tion
∫ h

0
u dz =

∫ h

0
uz(h − z)dz, gives

∂h

∂t
+

∂

∂x

(∫ h

0

uz(h − z)dz

)

= 0. (32)

Substituting Eq. (31) into Eq. (32) above, we obtain a partial

differential equation that governs the evolution of the NLC

film height h,

ht + C
∂

∂x

[

hxxx

∫ h

0

(h − z)2

A1(θ )
dz

+N

∫ h

0

(h − z)[T1(x, z) + T2(x, h) + T3(x, h)(h − z)]

A1(θ )
dz

]

= 0, (33)

where the functions T1(x, z), T2(x, h), and T3(x, h) take the

following forms:

T1(x, z) = θx(x, z)θz(x, z)

− 2D�x(x, z)�z(x, z){� + cos2 [θ (x, z)]}, (34)

T2(x, h) = −
A

2
θx(x, h) sin [2θ (x, h)]

+ 2D�x(x, h)�z(x, h){� + cos2 [θ (x, h)]}, (35)

T3(x, h) = A sin [2θ (x, h)][θzx(x, h) + hxθzz(x, h)]

+ 2D�2
z (x, h) sin 2θ (x, h)[θx(x, h) + hxθz(x, h)]

− 4D�z(x, h){� + cos2 [θ (x, h)]}

× [�zx(x, h) + hx�zz(x, h)]. (36)

In order to simulate a thin film of infinite lateral extent

overlying a periodic array of electrodes, we impose periodic
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boundary conditions in the x direction as follows:

h(0, t ) = h(L, t ), hx(0, t ) = hx(L, t ),

hxx(0, t ) = hxx(L, t ), hxxx(0, t ) = hxxx(L, t ), (37)

where the length of the computational domain L is taken to

be an even integer (corresponding to simulating flow over an

integer number of electrode pairs). We use L = 4 for all sim-

ulations presented in this paper, representing a single period

unit of the interdigitated electrode setup.

C. Solution scheme and discretization

Equation (33), coupled with the boundary-value system

Eqs. (17) and (18), subject to the boundary conditions given

by Eqs. (37) and Eqs. (19)–(22), respectively, describe the

flow of a NLC film driven by the nonuniform electric field

generated by the interdigitated substrate electrodes.

Solving these equations simultaneously, even for the 2D

geometry considered here, poses a significant computa-

tional challenge. Since the boundary-value problem (BVP)

Eqs. (17)–(22) is quasistatic (reflecting the assumptions on the

much slower timescale of the flow relative to the timescales on

which NLC molecules and electric field respond to changes

in film geometry) we are able to solve it independently for

a dense grid of film heights h. To do this, we rewrite the

BVP as a vector system of four first-order ordinary differential

equations for θ , θz, �, and �z and apply the MATLAB routine

bvp4c. An initial guess [θ0, �0] is required to start the routine;

for this we use the results of the analogous uniform field

problem, obtained as outlined by Mema et al. [26,28], for each

height h. The procedure builds a “library” that consists of the

director configuration θ (x, z) and electric potential �(x, z) for

a range of film heights 0.01 � h � 2.00 with �h = 0.01, as

an electric potential �(x) = cos( π
2

x) is applied at z = 0 for

0 � x � 4 with �x = 0.02 (the value of �z to compute the

solutions θ,� for each pair (x, h) is selected by the routine).

Once the BVP is solved for all discrete film heights h ∈

[0.01, 2.0] and all discrete x ∈ [0, 4], we solve Eq. (33) nu-

merically. The integrals in Eq. (33) are difficult to evaluate

directly; in the interests of retaining maximum tractability

we follow Lin et al. [25,29] in using a two-point trapezoidal

rule to approximate them and hence obtain the following

fourth-order nonlinear partial differential equation for the film

thickness h(x, t ),

∂h

∂t
+ C

∂

∂x
[h3hxxx] + N

∂

∂x
{h2[T1(x, 0) + T2(x, h)]

+ h3T3(x, h)} = 0, (38)

where C = C/[2(1 + α3 + α6)], N = N /[2(1 + α3 + α6)].

The arguments of h are suppressed in Eq. (38) and

those for Ti are understood to be (x, z); the quantities

T1(x, 0), T2(x, h), T3(x, h) are then given by Eqs. (34)–(36),

respectively. We use a finite difference method based on cen-

tral differences to discretize the spatial terms in Eq. (38) and

use the built-in MATLAB routine ode15s, which is a variable-

step variable-order solver [30], to approximate the height of

the film at each time step. The procedure used to obtain the

numerical results is as follows: given an initial film profile,

h0(x), we solve Eq. (38) at each time step, extracting the

director and electric potential configurations in the process as

necessary from our previously built library.

III. RESULTS

In this section we use the above-derived model comprising

Eq. (38) coupled with Eqs. (17)–(22) to investigate the flow of

an initially flat film in the presence of a nonuniform electric

field. We focus on the evolution of the free-surface height

h(x, t ), as well as the director and electric fields within the

layer, as we vary the initial film height, h0, and the anchoring

conditions at the upper bounding surface. With a view to later

qualitative comparison with the experiments of Brown et al.

[1,2,12] we explore a range of initial film heights: h0 = 1.5 is

taken to be representative of a thick film in our model, h0 =

1.0 an intermediate film, and h0 � 0.5 a thin film. Depending

on the thickness of the NLC film, dimensionless weak anchor-

ing strength can lie in the approximate range A ∈ (0.125, 50).

Consistent with this range of values, in our simulations we use

values A = 1, 10, 50 to represent a range of weak anchoring

conditions.

Figures 2–6 present results for evolution of a NLC film

with positive dielectric anisotropy (D > 0), strong planar an-

choring at z = 0, and weak homeotropic anchoring of strength

A = 10 at the free surface z = h(x, t ), for several different

values of h0. Figures 7–12 illustrate the analogous evolu-

tion for weaker (A = 1) and stronger (A = 50) free-surface

anchoring. Figures 13 and 14 show film evolution for nega-

tive dielectric anisotropy D < 0 and weak planar free-surface

anchoring of strength A = 10 (again substrate anchoring is

strong and planar). In all cases, the layer is subjected to

a dimensionless electric potential �(x, 0) = cos( πx
2

) on the

substrate, and an equipotential boundary condition �(x, h) =

0 at the free surface. We set the inverse capillary number

and Ericksen number to C = N = 0.625 and the relative

strength of the dielectric anisotropy D = ±10 throughout.

Our simulations are stopped either when the film height h

falls below 0.1 (after which the numerics become unreliable,

though we conjecture film breakup would ensue if we were

able to continue the simulations), or when a steady state is

reached.

In many of our simulation plots, we superimpose rep-

resentative snapshots of the director field as short directed

line segments. We note that our model is invariant under the

transformation θ → −θ (a limitation of our restriction to a 2D

thin-film model), hence a choice must be made when selecting

θ . Although numerically our code selects values continuously

in the range θ ∈ [0, π/2], our plots show line segment repre-

sentations of the director that align visually with the electric

potential lines (there is no mathematical distinction between

the two possible states in our model).

A. Effect of initial film height on free-surface evolution

We consider NLC films subject to strong planar substrate

anchoring θ (x, 0) = π/2, and weak homeotropic anchoring

at z = h(x, t ) with dimensionless anchoring strength A = 10.

We first demonstrate film stability in the absence of an applied

electric field. In Fig. 2(a), a slightly perturbed film of initial

thickness h0(x) = 1.0 + 1
4π

cos(πx) is seen to flatten in this
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FIG. 2. (a) Evolution of the surface height for a perturbed film

of initial height h(x) = 1.0 + 1

4π
cos(πx), anchoring strength A =

10, C = N = 0.625 when no electric field is applied: D = 0 for

various times t = Nt/N where N = 8000 and Nt is specified in the

legend. (b) Evolution of the free-surface height of a flat film with

initial height h0 = 1.0, A = 10, C = N = 0.625, and D = 10 for

various times t = Nt/N where N = 8000 and Nt is specified in the

legend.

case, indicating the stability of a flat film to perturbations.

With no external field the NLC molecules align with their

neighbors within the layer, while respecting the anchoring

conditions at the boundaries.

We next consider a flat film, of initial dimensionless

height h0 = 1.0 (intermediate thickness), on application of the

nonuniform electric field. In this case the film rapidly deforms,

as seen in Fig. 2(b). The fluid collects around x = 1 and x = 3

(points of zero substrate potential) and begins to thin around

x = 0, 2, and 4 (where the substrate potential takes values

+1,−1,+1, respectively). In the presence of the nonuniform

potential the polar nature of the NLC molecules induces a

force that tends to align them parallel to the local electric field,

competing with the forces due to the internal elasticity and the

anchoring boundary conditions at z = 0, h, respectively. As a

result, molecules begin to migrate from the regions directly

FIG. 3. Evolution of the electric potential �(x, z) and its level

curves for the film of Fig. 2(b).

above the electrodes, x = 0, 2 and x = 4 where �(x, 0) = ±1

and �z(x, 0) is large, towards the interelectrode regions above

x = 1 and x = 3 where the electric potential �(x, 0) and its

gradient �z(x, 0) are both small. This may be seen in Fig. 3,

which illustrates the electric potential �(x, z) and its level

curves within the NLC layer at the same times shown in Fig. 2.

Figure 4 shows the corresponding behavior of the director

field: the director angle θ (x, z) and its level curves are plotted

within the layer. We see that the director gradient |θz| is large

in the regions above the electrodes, x = 0, 2 and x = 4, and

smaller in the regions between electrodes, at x = 1 and x = 3.

This behavior is qualitatively consistent with the exper-

imental results reported by Brown et al. [1,2,12] where a

similar setup is considered: a layer of an isotropic dielec-

tric liquid (1-decanol oil), rather than NLC, coats a glass

substrate on which interdigitated indium tin oxide electrodes

are patterned. The authors observe that liquid flows from

FIG. 4. Evolution of the director field θ (x, z) and its level curves

for the film of Fig. 2(b).
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FIG. 5. (a) Evolution of the free-surface height of a film with

initial height h0 = 0.5 for A = 10, C = N = 0.625 and D = 10

for various times t = Nt/N where N = 8000 and Nt is specified in

the legend. (b) Electric potential �(x, z) and director field θ (x, z) at

final time: t = 52/N with director configuration shown in red.

regions where the electric potential gradients are small to

those regions where gradients are highest. Though this broad

agreement is encouraging, no quantitative comparison is

possible at this stage due to the different rheology of the

(isotropic) fluid in the experiments and the several simpli-

fying assumptions we made in developing our model. We

will briefly address ways in which the specific nematic nature

of the film in our study may impact results later, when we

consider how the details of the anchoring conditions affect the

surface height evolution.

We now investigate how changing the initial film height

affects evolution. We first consider a thinner film of initial

dimensionless thickness h0 = 0.5, then a thicker film with

h0 = 1.5, both initially flat. Figure 5 presents the evolution

of the thinner film in time. For early times we observe the for-

mation of wrinkling patterns, where the film thickens at x =

0.5, 1.5, 2.5 and x = 3.5 (representing the edges of the elec-

trodes in our simple model); and thins at x = 0, 2, 4 (electrode

midpoints) and at x = 1, 3 (points midway between adjacent

FIG. 6. (a) Evolution of the free-surface height of a film with

initial height h0 = 1.5 for A = 10, C = N = 0.625 and D = 10 for

various times t = Nt/N where N = 8000 and Nt is specified in the

legend. (b) Electric field potential �(x, z) and director field θ (x, z) at

final time: t = 315/N with director configuration shown in red.

electrodes). As time progresses the film continues to thin

significantly at the electrode midpoints x = 0, 2, 4 where the

potential gradient is large; these are the global film minima.

Between the electrodes, where the potential gradient is small,

further thinning of the film is suppressed and local minima

persist at x = 1 and x = 3. We halt our simulations when the

film height dips below 0.1 at the global minima. Though our

numerics become unreliable if continued beyond this point,

we believe that under these conditions, the film would proceed

to dewet, similar to the behavior observed in the prototypical

optical shutter presented by Russell et al. [7]. Prior to halting

the simulation, the evolution of the electric potential and the

director field is qualitatively similar to the intermediate film

height case: both director and electric potential gradients are

small in the regions between electrodes (x = 1 and x = 3)

and large in the regions above the electrodes (x = 0, 2, 4);

however, the gradients are larger for thinner films.

Figure 6 shows the free-surface evolution of the thicker

NLC film, h0 = 1.5. For early times the evolution is similar

to the intermediate film case h0 = 1.0 (Fig. 2), with the fluid

032702-7



E. MEMA, L. KONDIC, AND L. J. CUMMINGS PHYSICAL REVIEW E 103, 032702 (2021)

collecting in regions where the electric potential gradients are

small. As time progresses, however, the thicker film reaches

a steady state, with approximately sinusoidal profile, exhibit-

ing local minima of height h ≈ 1.42 at electrode midpoints

x = 0, 2, and 4 and local maxima of height h ≈ 1.55 at x = 1

and x = 3, midway between electrodes. Our simulations stop

when |h(x, tn) − h(x, tn−1)| < 10−5, as we deem a steady state

to have been reached.

B. Effect of anchoring conditions on the

evolution of surface height

We next investigate the influence of different anchoring

conditions on the evolution of an initially flat film. Specifi-

cally, we first study how, in the model described above, the

strength of the weak homeotropic anchoring at the free surface

affects the surface height evolution. Then, with a view to

conducting simulations that are closer in spirit to the isotropic

dielectric case studied by Brown and co-workers [1,2,12], we

briefly study the evolution of NLC films with negative dielec-

tric anisotropy, subject to planar anchoring at both boundaries.

1. Varying weak homeotropic anchoring strength

We consider the model described above, comprising

Eq. (38) coupled with Eqs. (17)–(22), with strong planar

anchoring at the lower substrate and weak homeotropic an-

choring at the upper free surface. All previous simulations

were for dimensionless (Rapini-Papoular) anchoring strength

A = 10; we now simulate initially flat films where A = 1 and

A = 50 at the free surface. We again compare results for three

different initial film thicknesses, h0 = 0.5, 1.0, and 1.5.

Figures 7 and 8 show the evolution of an initially flat film

of height h0 = 1.0 and the corresponding electric potential

�(x, z) and director field θ (x, z) at the final computed time,

for anchoring strengths A = 1 and A = 50, respectively. The

evolution of the corresponding film with dimensionless free-

surface homeotropic anchoring strength A = 10 was shown

in Fig. 2(a). Again, simulations are stopped if the layer be-

comes too thin and the numerical solution for the director field

becomes unreliable; or if a steady state is reached. While the

evolution of the film is similar for all three anchoring strengths

considered, there are some differences: first, in the weaker

anchoring case (dimensionless anchoring strength A = 1), the

director at the free surface deviates significantly from the pre-

ferred homeotropic orientation [see Fig. 7(b)]; this deviation is

especially apparent in regions between the electrodes (where

the electric potential is close to zero). For (relatively) strong

anchoring A = 50, by contrast, the director almost perfectly

respects the preferred anchoring conditions at the free surface

[see Fig. 8(b)]. Additionally, we note that the maxima in the

free-surface height profile at x = 1 and x = 3 become more

diffuse as the anchoring strength increases [peaks shown in

Fig. 8(a) are wider than those in Fig. 7(a)]. We now discuss

the effect of anchoring strength on a thinner film. Figures 9

and 10 illustrate the evolution for a film of initial height

h0 = 0.5, with weak homeotropic free-surface anchoring of

strengths A = 1 and A = 50, respectively, together with the

corresponding electric potential and director field at the final

computed time. The corresponding evolution with A = 10

is shown in Fig. 5. As in that figure, we observe here that

FIG. 7. Evolution of an initially flat film, h0 = 1.0, with weak

homeotropic free-surface anchoring of dimensionless strength A =

1 and parameters C = N = 0.625 and D = 10. Various times t =

Nt/N are shown in (a) where N = 8000 and Nt is specified in the

legend. (b) Electric potential �(x, z) and director field θ (x, z) at final

time t = 153/N with director configuration shown in red.

the film surface exhibits wrinkle formation and develops a

distinctly nonsinusoidal profile. The formation of wrinkling

patterns appears to depend primarily on the initial film height

and not on free-surface anchoring strength. We expand on this

conjecture in the next section when we discuss how planar

anchoring conditions on both boundaries affect the surface

height evolution.

There are, however, some qualitative differences in the

evolution as anchoring strength varies. First, for weaker an-

choring strength and in the regions between electrodes where

the electric potential is near zero, the film height slowly in-

creases in time [see Fig. 9(a) at x = 1 and x = 3]. By contrast,

as anchoring strength increases to A = 10 and A = 50, at the

same locations the film height decreases [compare Figs. 5(a)

and 10(a)]. Moreover, the director orientation at the free

surface deviates significantly from the preferred orientation

when A = 1; in fact for this weakest anchoring strength the

director orientation is planar throughout the film in the regions
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FIG. 8. Evolution of an initially flat film, h0 = 1.0, with weak

homeotropic free-surface anchoring of dimensionless strength A =

50 and parameters C = N = 0.625 and D = 10. Various times t =

Nt/N are shown in (a) where N = 8000 and Nt is specified in the

legend. (b) Electric potential �(x, z) and director field θ (x, z) at final

time t = 207/N with director configuration shown in red.

between electrodes, where the electric field is weakest: here

θ = π
2

is a stable (constant) steady solution to the governing

equations (cf. Mema et al. [24]). The strong planar substrate

anchoring dominates over both the weak homeotropic an-

choring and the weak electric field in regions between the

electrodes, forcing the director to align parallel to the substrate

throughout the layer: θ (1, z) = θ (3, z) = π/2.

As the anchoring strength increases to A = 10 and A = 50

the constant stable steady state for the director ceases to ex-

ist, even in the weak-field regions; the director bends across

the layer at all x locations, deviating only slightly from the

preferred homeotropic orientation at z = h. In regions above

the electrodes (assuming positive dielectric anisotropy), the

electric field helps the director align closely with the free-

surface homeotropic anchoring orientation, independently of

the anchoring strength.

Finally, we comment briefly on the effect of anchoring

strength for thicker films: Figs. 11 and 12 illustrate the evolu-

FIG. 9. Evolution of an initially flat film, h0 = 0.5, with weak

homeotropic free-surface anchoring of dimensionless strength A =

1 and parameters C = N = 0.625 and D = 10. Various times t =

Nt/N are shown in (a) where N = 8000 and Nt is specified in the

legend. (b) Electric potential �(x, z) and director field θ (x, z) at final

time t = 48/N with director configuration shown in red.

tion of an initially flat film of thickness h0 = 1.5 with strong

planar substrate anchoring and weak homeotropic free-surface

anchoring, of strengths A = 1 and A = 50 (respectively). The

analogous evolution with A = 10 is shown in Fig. 6(a): simi-

lar to that case, both films reach a steady-state near-sinusoidal

profile [shown in Figs 11(a) and 12(a)]. Small differences in

the free-surface height are observed for the different cases: as

anchoring strength increases, the amplitude of the perturba-

tions to the steady-state surface height decreases, and the film

height maxima become more diffuse. In all cases the maxima

are achieved at the points midway between the electrodes,

x = 1 and x = 3. For the smallest anchoring strength A = 1

the maximum film height at the final time tf , h(1, tf ) ≈ 1.6.

As anchoring strength increases to A = 10 and A = 50, the

maximum film height decreases slightly: h(1, tf ) ≈ 1.55. We

note also that the director at the free surface deviates slightly

from the preferred homeotropic orientation at the weakest

anchoring strength A = 1 when compared to the simulations
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FIG. 10. Evolution of an initially flat film, h0 = 0.5, with weak

homeotropic free-surface anchoring of dimensionless strength A =

50 and parameters C = N = 0.625 and D = 10. Various times t =

Nt/N are shown in (a) where N = 8000 and Nt is specified in the

legend. (b) Electric potential �(x, z) and director field θ (x, z) at final

time t = 50/N with director configuration shown in red.

with stronger anchoring strengths A = 10 and A = 50. As

expected, however, this difference is less pronounced than for

thinner films.

2. Planar anchoring at both boundaries and negative

dielectric anisotropy

Motivated by the wish to distinguish between the effects of

internal elasticity due to director field distortions, and dielec-

tric effects due solely to the electric field, we now discuss the

evolution of an initially flat NLC film with negative dielectric

anisotropy, subject to strong planar anchoring at the lower

substrate and weak planar anchoring of strength A = 10 at

the free surface. With dielectric anisotropy parameter D < 0

the nematic molecules align perpendicular to the electric field,

rather than parallel to it, so that all external effects here

favor a director field that orients parallel to the substrate,

with θ = π/2 throughout and zero bulk distortion [the elastic

contribution We = θ2
z /2 to the bulk free energy density in

FIG. 11. Evolution of an initially flat film, h0 = 1.5, with weak

homeotropic free-surface anchoring of dimensionless strength A =

1 and parameters C = N = 0.625 and D = 10. Various times t =

Nt/N are shown in (a) where N = 8000 and Nt is specified in the

legend. (b) Electric potential �(x, z) at final time t = 265/N with

director configuration (shown in red) at that time.

Eq. (15) is zero]. We present results for three different initial

film thicknesses, h0 = 0.3, 1.0, 1.5 and compare them with

the analogous simulations presented above (with strong planar

anchoring at the substrate and weak homeotropic anchoring at

the free surface, which we refer to as the planar-homeotropic

case). Here, we choose the smaller value h0 = 0.3 as represen-

tative of a thin film (rather than h0 = 0.5 considered earlier)

in order to observe free-surface wrinkling patterns, which are

not exhibited when h0 = 0.5.

Figure 13 shows the evolution of an initially flat film

of intermediate height h0 = 1.0. As noted above, the direc-

tor aligns parallel to the substrate throughout the layer [see

Fig. 13(b)], which illustrates the director configuration super-

imposed on the electric field potential at the final computed

time. There are similarities to the evolution of the initially

flat planar-homeotropic film of the same height shown in

Fig. 2(b): the film thickens around the points x = 1 and x = 3

midway between the electrodes where electric field gradients
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FIG. 12. Evolution of an initially flat film, h0 = 1.5, with weak

homeotropic free-surface anchoring of dimensionless strength A =

50 and parameters C = N = 0.625 and D = 10. Various times t =

Nt/N are shown in (a) where N = 8000 and Nt is specified in the

legend. (b) Electric potential �(x, z) at final time t = 307/N with

director configuration (shown in red) at that time.

are small, and begins to thin directly above the electrode

midpoints at x = 0, 2, and 4, where electric field gradients

are large. There are some differences, however: the surface

height profile in Fig. 13 has well-defined peaks exactly at

x = 1 and x = 3; while the surface height profile for the

planar-homeotropic case in Fig. 2 has more diffuse maxima.

We attribute the diffuseness to the competing forces that

the director experiences in the planar-homeotropic case. This

competition becomes more intense as free-surface anchoring

strength is increased, hence the film maxima are even more

diffuse at the largest anchoring strength considered [A = 50

in Fig. 8(a)].

We next discuss the thin film of initial height h0 = 0.3.

The evolution, shown in Fig. 14, is compared to that of the

flat planar-homeotropic film of height h0 = 0.5 as shown

in Fig. 5(a) [see also Figs. 9(a) and 10(a) for different

free-surface anchoring strengths]. Complex, strongly nonsi-

nusoidal wrinkling patterns emerge in all cases, with the

FIG. 13. Evolution of initially flat film, h0 = 1.0, with strong

planar substrate anchoring and weak planar free-surface anchoring

of dimensionless strength A = 10 and parameters C = N = 0.625,

D = −10. Various times t = Nt/N are shown in (a) where N = 8000

and Nt is specified in the legend. (b) Electric potential �(x, z) at final

time t = 1234/N with director configuration shown in red.

films thinning (thickening) in regions of large (small) electric

field gradients. We here highlight key differences between the

cases: first, note that in Fig. 14 the fluid collects in regions

midway between the electrodes where the electric potential

gradient is small, forming local film maxima at x = 1 and

x = 3 [local minima are formed at these points for the planar-

homeotropic case in Figs. 5, 9(a), and 10(a)]. Second, we

observe four small additional peaks in regions of high electric

potential gradients, near x = 0, x = 2 (one on either side),

and x = 4, which were not observed in the earlier simulations

(where surface height decreases over time at these locations).

Despite these differences, the reemergence of wrinkling pat-

terns for these different anchoring conditions reinforces our

conjecture that they are ubiquitous for sufficiently thin films

(though the details of the anchoring and dielectric anisotropy

may modulate the specific wrinkling patterns observed).

Finally, we compare the evolution of a thick film, h0 =

1.5, to that observed in the planar-homeotropic case shown
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FIG. 14. Evolution of an initially flat film, h0 = 0.3, with strong

planar substrate anchoring and weak planar free-surface anchoring

of dimensionless strength A = 10 and parameters C = N = 0.625

and D = −10. Various times t = Nt/N are shown in (a) where N =

8000 and Nt is specified in the legend. (b) Electric potential �(x, z)

at final time t = 100/N with director configuration shown in red.

previously in Fig. 6 (see also Figs. 11 and 12 for differ-

ent free-surface anchoring strengths). Figure 15 shows the

evolution of a film with strong planar substrate anchoring,

weak planar free-surface anchoring of strength A = 10, and

negative dielectric anisotropy. As in the planar-homeotropic

cases of Figs. 6, 11, and 12 we observe that the film thickens in

regions between electrodes where electric field gradients are

small and thins directly above electrodes, where electric field

gradients are large. In addition, and again similar to the planar-

homeotropic cases, a steady state is quickly reached. The

surface height profile in Fig. 15 has well-defined maxima at

x = 1 and x = 3 while the corresponding planar-homeotropic

surface height profile in Fig. 6 exhibits more diffuse maxima

at these points. As with the intermediate film thickness h0 = 1

simulations, we conjecture that this difference is due to the

competition between different forces on the NLC molecules

in the planar-homeotropic case.

FIG. 15. Evolution of an initially flat film, h0 = 1.5 with strong

planar substrate anchoring and weak planar free-surface anchoring

of dimensionless strength A = 10 and parameters: C = N = 0.625

and D = −10. Various times t = Nt/N are shown in (a) where N =

8000 and Nt is specified in the legend. (b) Electric potential �(x, z)

at final time t = 219/N with director configuration shown in red.

From a modeling perspective one might anticipate that this

case of NLC film evolution with planar anchoring conditions

and negative dielectric anisotropy should provide results most

analogous to those for an IDL, due to the uniform director

orientation throughout the layer. However, a closer qualitative

agreement with the IDL experiments reported by Brown et al.

[2] is found with our earlier planar-homeotropic simulations

(Figs. 2–12) than with the results of this section. There are

several possible reasons for this discrepancy, not least the fact

that a NLC, even with uniform director orientation, is not the

same as an IDL. For this reason we refrain from attempting

any direct comparison with experiments for IDLs.

IV. CONCLUSION

We have presented a mathematical model that describes the

flow of a thin NLC film in the presence of a nonuniform elec-

tric field. Specifically, we consider a thin layer of NLC coated
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on a substrate z = 0 that contains embedded planar interlaced

electrodes, the effect of which we approximate by a periodic

electric field profile on z = 0 in the x-coordinate direction.

The mathematical model derived consists of a fourth-order

nonlinear parabolic partial differential equation for the height

h(x, t ) of the film, coupled to a boundary value system for

the electric potential �(x, z, t ) and the director field n =

(sin θ, cos θ ), characterized in our 2D setup by a single angle

θ (x, z, t ).

Numerical techniques were used to investigate the tempo-

ral evolution of an initially flat film, with initial dimensionless

height representative of thick (h0 = 1.5), intermediate (h0 =

1.0), or thin (h0 = 0.5 or h0 = 0.3) films. For thick films, the

surface height evolves to an undulating steady-state profile

in all cases considered: fluid collects in the regions between

electrodes where the electric potential is near zero and electric

field gradients are small, and thins at the electrode midpoints,

where the electric and director field gradients are large. For

thin and intermediate thickness films, fluid accumulates in

regions of high electric potential and director field gradients,

migrating from regions of small gradients. Unlike the thicker

films, thin and intermediate films thin significantly in these

high-gradient regions; no steady state is found and our sim-

ulations are halted when accuracy is lost in the solution for

the director field. For the thinnest films, complex wrinkling

patterns form, with the film thickening at the edges of the

electrodes and further thinning observed at the electrode mid-

points where the electric potential gradients are large, leading

to global film minima at these points. Between the electrodes,

film thinning is suppressed and local minima form above

x = 1 and x = 3.

Additionally, we investigated the effect of different an-

choring conditions on NLC film evolution; specifically

we considered the effect of free-surface homeotropic an-

choring strength A on the surface height evolution by

considering three different values: A = 1, A = 10, and A =

50. Changing A primarily affects the director configuration

and its gradients, which in turn affect the surface height evo-

lution. We observed that as A is increased the maxima of

the film surface profile become more diffuse, possibly due

to increased competition of different forces within the film.

For sufficiently weak anchoring, in the thinnest film simulated

(h0 = 0.5) we also observe regions in the film where the

director field is uniform and planar (Fig. 9), reflecting the

fact that θ = π/2 is a stable steady solution to the governing

equations under the local film conditions.

With the goal of gaining insight into the behavior of film

evolution when there are no elastic forces within the film

layer, we also considered an NLC film with negative dielectric

anisotropy, subject to strong planar anchoring at the lower

substrate and weak planar free-surface anchoring. Negative

dielectric anisotropy means that the nematic molecules align

perpendicular to the direction of the electric field instead of

parallel to it; the director in this case is uniform throughout the

layer, and the elastic energy is negligible. While surface height

evolution was generally similar to that of analogous films

with planar-homeotropic anchoring, the films with planar an-

choring and negative dielectric anisotropy had well-defined

maxima, which we attribute to the lack of competition be-

tween opposing forces in the film. The thinnest films in this

case exhibit complex nonsinusoidal wrinkling profiles, behav-

ior that appears to depend primarily on the initial film height.

Finally, though the results are not reported here, we briefly

explored the effect of increasing D on the film evolution, find-

ing that the qualitative behavior is not sensitive to the value of

D; however, the amplitude of the perturbations increases as D

increases. We plan to explore the effect of varying D, and the

features of the electric field more generally, in future work.

Our numerical results are in qualitative agreement with

the experiments of Brown et al. [1] who investigate dielec-

trophoresis of an IDL over interlaced electrodes. They observe

that fluid collects above electrodes, where electric potential

gradients are highest, and is removed from regions between

electrodes where electric potential gradients are small. A simi-

lar experiment carried out by the same group [2] demonstrated

that as the initial height of the IDL film decreases, wrinkled,

strongly nonsinusoidal profiles emerge, similar to those in

our thinnest film simulations. Though we anticipated that our

simulations for NLC films with planar free-surface anchoring

and negative dielectric anisotropy might be a closer analog

to the IDL (having zero net elastic energy), this expectation

was not borne out: our simulations of planar-homeotropic flat

films provide the best agreement with the experimental results

of Brown et al. [1]. Given the rheological differences between

IDLs and NLCs, we are unable to make any meaningful

quantitative comparison of our model simulations with these

results. We hope that our new model and computational results

will inspire future experimental investigations of dielectrowet-

ting with NLCs, that may provide further insight and lead to

improvement of our mathematical model.
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