
Physics-Guided Recurrent Graph Model for Predicting Flow and Temperature
in River Networks

Xiaowei Jia1, Jacob Zwart2, Jeffrey Sadler2, Alison Appling2, Samantha Oliver2,
Steven Markstrom2, Jared Willard3, Shaoming Xu3, Michael Steinbach3,

Jordan Read2, and Vipin Kumar3
1 University of Pittsburgh, 2U.S. Geological Survey, 3 University of Minnesota
1xiaowei@pitt.edu,2{jzwart,jsadler,aappling,soliver,markstro,jread}@usgs.gov,

3{willa099,xu000114,stei0062,kumar001}@umn.edu

Abstract

This paper proposes a physics-guided machine learning ap-

proach that combines machine learning models and physics-

based models to improve the prediction of water flow and

temperature in river networks. We first build a recurrent

graph network model to capture the interactions among mul-

tiple segments in the river network. Then we transfer knowl-

edge from physics-based models to guide the learning of the

machine learning model. We also propose a new loss func-

tion that balances the performance over different river seg-

ments. We demonstrate the effectiveness of the proposed

method in predicting temperature and streamflow in a sub-

set of the Delaware River Basin. In particular, the proposed

method has brought a 33%/14% accuracy improvement over

the state-of-the-art physics-based model and 24%/14% over

traditional machine learning models (e.g., LSTM) in temper-

ature/streamflow prediction using very sparse (0.1%) train-

ing data. The proposed method has also been shown to

produce better performance when generalized to different

seasons or river segments with different streamflow ranges.

1 Introduction

Machine learning (ML) models, which have found im-
mense success in commercial applications, e.g., com-
puter vision and natural language processing, are be-
ginning to play an important role in advancing scien-
tific discovery [3, 9, 22]. However, scientific problems
often involve non-stationary relationships among phys-
ical variables which can change over space and time. In
the absence of adequate information about the physi-
cal mechanisms of real-world processes, traditional ML
approaches are prone to false discoveries due to the diffi-
culty to capture these complex relationships solely from
data. Moreover, the data available for many scientific
problems is far smaller than what is needed to effectively
train advanced ML models.

The focus of this paper is on modeling physical sys-

tems that have multiple interacting processes. In partic-
ular, we consider the application of predicting flow and
temperature in river networks for both observed and
unobserved river segments. In this problem, segments
in the river network can show different flow and ther-
modynamic patterns driven by differences in catchment
characteristics (e.g. slope, soil characteristics) and me-
teorological drivers (e.g. temperature, precipitation).
These segments also interact with each other through
the water advected from upstream to downstream seg-
ments. Moreover, there are often only a handful of river
segments in a network that are monitored; thus there is
limited data to train ML models. Accurate prediction of
streamflow and water temperature aids in decision mak-
ing for resource managers. For example, drinking water
reservoir operators in the Delaware River Basin need
to supply safe drinking water to New York City while
also maintaining sufficient streamflow and cool water
temperatures in the river network downstream of the
reservoirs [16]. Accurate predictions helps managers op-
timize when and how much water to release downstream
to maintain the flow and temperature regimes.

In scientific domains, physics-based models are of-
ten used to study engineering and environmental sys-
tems. Even though these models are based on known
physical laws that govern relationships between input
and output variables, most physics-based models are
necessarily approximations of reality due to incomplete
knowledge of certain processes or omission of processes
to maintain computational efficiency. In particular, ex-
isting physics-based approaches for predicting river net-
works simulate the target variables (e.g., streamflow
and temperature) based on general physical relation-
ships such as energy and mass conservation. However,
the model predictions still rely on qualitative param-
eterizations (approximations) based on soil and surfi-
cial geologic classification along with topography, land
cover and climate input. Hence, such models can only

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited612

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

provide sub-optimal predictive performance. Further-
more, calibration of these physics-based models is often
extremely time intensive due to interactions among pa-
rameters within segments and across segments.

Intuitively, we can model each river segment inde-
pendently by an individual ML model such as a Re-
current Neural Network (RNN). However, most of the
segments in a real river network are poorly observed
or completely unobserved, which makes it impossible
to build a purely data driven model for each segment
separately. Besides, individual models may ignore the
rich spatial and temporal contextual information, e.g.,
how the streamflows from upstream segments change
the water temperature in downstream segments.

In this paper, we propose a global model, Physics
Guided Recurrent Graph Networks (PGRGrN), which
is applied to all the river segments. The architecture of
PGRGrN includes graph convolutional component and
recurrent component to explicitly capture the spatial
interactions among different river segments as well as
their temporal dynamics. Design of such an architec-
ture for this application faces two challenges. First, ex-
isting graph convolutional networks (GCN)-based mod-
els extract abstract latent variables to propagate over
the network but they do not explicitly embed physical
information about interactions among different nodes.
Such latent variables can become less informative when
they are learned from sparser and less representative
observation data, which can make the GCN model not
generalizable. To address this challenge, we propose
to transfer the knowledge from physics-based models to
guide the learning of latent variables in the proposed
ML model. We implement this by enforcing a physical
interpretation to latent variables using the intermediate
variables simulated by the physics-based model.

The second challenge is about the variability of tar-
get variables in a complex system. For example, stream-
flow can vary by several orders of magnitude across seg-
ments in a river network. When we train a global ML
model, the training process using traditional loss func-
tions (e.g., mean squared loss) defined over the entire
network can be dominated by river segments that con-
tribute most to the overall error (e.g., segments with
high streamflow). However, it is also important to ac-
curately predict river segments with lower streamflow,
as accurate prediction for these segments provides im-
portant information regarding the habitat for aquatic
life and aquatic biogeochemical cycling. To address this
challenge, we design a new loss function to ensure that
the global ML model can simultaneously capture the
local patterns of all the different segments. The local
patterns of each segment can be extracted using an in-
dividual ML model trained only for this segment us-

ing simulation data (which is plentiful). Then during
the training of the global ML model, we use a distance-
based contrastive loss function to enforce its consistency
with the extracted local patterns.

We implement our proposed method in a real-world
dataset collected over 36 years from the Delaware River
Basin located in the Northeast US and demonstrate our
method’s superior predictive performance over existing
methods. Moreover, we show that the proposed method
produces much better predictive performance using
sparse observations and also has better generalizability.

2 Related Work

Physics can be incorporated into ML models in sev-
eral ways [25], including developing new model archi-
tectures [1], applying additional loss functions [5, 18],
and modeling prediction residuals [11]. New ML ar-
chitectures have been designed to enforce known physi-
cal relationships among multiple internal processes that
jointly convert inputs to outputs [1, 14], thus reduc-
ing the space for searching parameters. In the context
of modeling river networks, Moshe et al. [13] propose
HydroNets, which combines the information from its
upstream segments for predicting streamflow. It also
learns local patterns for each basin by introducing basin-
specific model layers. This method focuses on predicting
well-observed basins but remains limited in generalizing
to different scenarios or learning with less data. Another
interesting direction is to build a hybrid architecture of
physics-based and machine learning models [24], which
is beyond the scope of this paper.

Recently, the Graph Convolutional Networks
(GCN) model has shown great promise in modeling
node interactions in a graph [4, 8] and also produced
improved prediction accuracy in several scientific prob-
lems [15,28]. Besides, the idea of combining GCN with
Long-Short Term Memory (LSTM) has been explored
in several applications to extract spatio-temporal fea-
tures [2, 20, 27]. However, the information propagated
amongst nodes in GCN is essentially an abstract rep-
resentation learned by end-to-end training. Such ab-
stract representations are not meant to enforce consis-
tency with known physical relationships among different
processes. Given limited training data collected from
certain regions and time periods, as in most scientific
applications, the learning of these abstract representa-
tions can be highly biased towards these regions and
time periods, which makes the model less generalizable.

Simulation data have been used to assist in training
ML models. Since many ML models require an initial
choice of model parameters before training, researchers
have explored different ways to physically inform a
model starting state. Poor initialization can cause

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited613

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

models to anchor in local minima, which is especially
true for deep neural networks. One way to harness
physics-based modeling knowledge is to use the physics-
based model’s simulated data to pre-train the ML
model, which also alleviates data paucity issues [7]. In
addition, Read et al. [18] show that such models are
able to generalize better to unseen scenarios than pure
physics-based models.

3 Problem Definition and Preliminaries

3.1 Problem definition Our objective is to model
the dynamics of temperature and streamflow in a set
of connected river segments that together form a river
network. The connections amongst these river segments
can be represented in a graph structure G = {V, E ,A},
where V represents the set of river segments and E rep-
resents the set of connections amongst river segments.
Specifically, we create an edge (i, j) ∈ E if the segment
i is anywhere upstream of the segment j. The matrix
A represents the adjacency level between each pair of
segments, i.e., Aij = 0 means there is no edge from the
segment i to the segment j and a higher value of Aij

indicates that the segment i is closer to the segment j in
terms of the river distance. More details of how we gen-
erate the adjacency matrix are discussed in Section 5.1.

For each river segment i, we have access to its input
features at multiple time steps Xi = {x1

i ,x
2
i , ...,x

T
i }.

The input features xt
i are a D-dimensional vector, which

include meteorological drivers, geometric parameters
of the segments, etc. (detailed in Section 5.1). We
also have a set of observed target variables Y = {yti}
but they are only available for certain time steps t ∈
{1, ..., T} and certain segments i ∈ {1, ..., N}.

3.2 Physics-based Streamflow and Tempera-
ture Model The Precipitation-Runoff Modeling Sys-
tem (PRMS) [12] and the coupled Stream Network Tem-
perature Model (SNTemp) [21] is a physics-based model
that simulates daily streamflow and water temperature
for river networks, and other variables. PRMS is a
one-dimensional, distributed-parameter modeling sys-
tem that translates spatially-explicit meteorological in-
formation into water information including evaporation,
transpiration, runoff, infiltration, groundwater flow, and
streamflow. PRMS has been used to simulate catch-
ment hydrologic variables at regional [10] to national
scales [19] in support of resource management decisions.
The SNTemp module for PRMS simulates mean daily
stream water temperature for each river segment by
solving an energy mass balance model which accounts
for the effect of inflows (upstream, groundwater, sur-
face runoff), outflows, and surface heating and cooling
on heat transfer in each stream segment. Calibration of

PRMS-SNTemp is extremely time-consuming because it
involves a large number of parameters (84 parameters)
and the parameters interact with each other both within
segments and across segments.

3.3 Recurrent Neural Networks (RNN) and
Long-Short Term Memory (LSTM) The RNN
model defines transition relationships for the extracted
hidden representation through a recurrent cell struc-
ture. In this work, we adopt the LSTM cell which has
proven to be effective in capturing long-term dependen-
cies. Each LSTM cell has a cell state ct, which serves as
a memory and allows preserving information from the
past. Here we omit the subscript i as we do not target
a specific river segment. Specifically, the LSTM first
computes the candidate cell state c̄t and a set of gating
variables, as follows:

(3.1)

c̄t = tanh(Wh
ch

t−1 + Wx
cx

t + bc),

ft = σ(Wh
fh

t−1 + Wx
fx

t + bf),

gt = σ(Wh
gh

t−1 + Wx
gx

t + bg),

ot = σ(Wh
oh

t−1 + Wx
ox

t + bo).

The forget gate ft is used to filter the information
inherited from ct−1, and the input gate gt is used to
filter the candidate cell state at t. Then we compute the
new cell state and the hidden representation as follows:

(3.2)
ct = ft ⊗ ct−1 + gt ⊗ c̄t,

ht = ot ⊗ tanh(ct),

where ⊗ denotes the entry-wise product. According to
the above equations, we can observe that the compu-
tation of ht combines the information at current time
step (xt) and previous time step (ht−1 and ct−1), and
thus encodes the temporal patterns learned from data.

4 Method

In this section, we start with introducing details of the
model architecture. Then we propose a strategy to help
enforce physical relationships by leveraging the physical
knowledge embedded in physics-based models. Finally,
we introduce a contrastive loss function that attempts
to ensures that the model performance on individual
river segments is not compromised while optimizing the
performance on the entire set of segments.

4.1 Recurrent Graph Network We introduce a
global ML model architecture, Recurrent Graph Net-
work (RGrN), which is trained using data collected from
all the river segments. Effective modeling of river seg-
ments requires the ability to capture their temporal dy-
namics and the influence received from upstream seg-
ments. Hence, we incorporate the information from

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited614

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

(a) (b)

Figure 1: (a) The RGrN architecture for an example
river network shown in (b). Here segments a and b are
upstream of the segment i. Grey arrows indicate the
modeling components for upstream segments.

both previous time steps and neighbors (i.e., upstream
segments) when modeling each segment (Fig. 1).

Here we describe the recurrent process of generating
the hidden representation ht from ht−1, and we repeat
this process for the entire sequence from t = 2 to T
(h1 learned from an LSTM model). For each river
segment i at time t − 1, the model extracts latent
variables which contain relevant information to pass
to its downstream segments. We refer to these latent
variables as transferred variables. For example, the
amount of water advected from each segment and its
water temperature can directly impact the change of
water temperature for its downstream segments. We
generate the transferred variables qt−1

i from the hidden
representation ht−1

i , as follows:

(4.3) qt−1
i = tanh(Wqh

t−1
i + bq),

where Wq and bq are model parameters.
After gathering the transferred variables for all the

segments, we develop a new recurrent cell structure for
each segment i that integrates the transferred variables
from its upstream segments into the computation of the
cell state cti. This can be expressed as follows:

(4.4) cti = fti ⊗ (ct−1
i +

∑
(j,i)∈E

Ajiq
t−1
j) + gt

i ⊗ c̄ti

We can observe that the forget gate not only filters
the previous information from the segment i itself but
also from its neighbors (i.e., upstream segments). Each
upstream segment j is weighted by the adjacency level
Aji. When a river segment has no upstream segments
(i.e., head water), the computation of cti is the same
as with the standard LSTM. In Eq. 4.4, we use qt−1

j

from the previous time step because of the time delay in
transferring the influence from upstream to downstream
segments (the maximum travel time is approximately
one day according to PRMS).

After obtaining the cell state, we can compute the
hidden representation ht

i by following Eq. 3.2. Finally,

we generate the predicted output from the hidden
representation as follows:

(4.5) ŷt
i = Wyh

t
i + by,

where Wy and by are model parameters.
After applying this recurrent process to all the time

steps, we define a loss using true observations Y = {yt
i}

on the available time steps and segments, as follows:

(4.6) LRGrN =
1

|Y|
∑

{(i,t)|yt
i∈Y}

(yt
i − ŷt

i)
2.

4.2 Transferring knowledge from physics-based
models Training RGrN directly in an end-to-end fash-
ion can only learn abstract representation for trans-
ferred variables while ignoring their physical interpreta-
tion. These variables can become less informative when
they are learned from sparser and less representative ob-
servation data. To this end, we introduce a new strat-
egy to enforce the prior physical relationships amongst
different river segments which are encoded by physics-
based models. It helps make RGrN model more gen-
eralizable and also reduces the amount of observation
data required to train a high-quality model. This strat-
egy can be applied to a wide range of scientific problems
that are modeled as a set of interacting processes.

Here we use the river temperature modeling as an
example to illustrate the proposed strategy. For each
river segment, its temperature change is driven by en-
ergy exchanges caused by solar radiation, rainfall, evap-
oration, conductive and convective heat transfer, and
net heat advected into river segments (e.g., groundwa-
ter flow, upstream flow, downstream flow). These en-
ergy fluxes can be summarized into three categories:

(4.7) ∆Temperature ∝ Fin − Fout + Fup,

where Fin denotes the incoming energy fluxes from so-
lar radiation, rainfall and other natural sources, Fout

denotes the outgoing energy fluxes including long-wave
emission, evaporation, conductive and convective heat
transfer, and Fup denotes the net heat advected from
upstream segments. The term Fup can be estimated by
a set of intermediate physical variables from upstream
segments, which include upstream flow, upstream wa-
ter temperature, humidity, and other physical charac-
teristics. These intermediate physical variables can be
simulated by PRMS-SNTemp internally.

Our goal is to ensure that the transferred variables
qt
i at each segment contain sufficient information to

represent these intermediate physical variables so that
downstream segments can gather all the information
needed for capturing Fup. For each segment i at time
t, we first simulate the set of intermediate variables sti

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited615

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

by running PRMS-SNTemp. Then we use sti to add
supervision on the transferred variables qt

i such that we
can extract sti from qt

i. More formally, we define a loss
function on transferred variables as follows:

(4.8) Ltrans =
1

NT

∑
i

∑
t

||sti − (Wsq
t
i + bs)||2,

where Ws and bs are model parameters. We call this
model as Physics-Guided Recurrent Graph Networks
(PGRGrN) because we leverage the physical relation-
ships between different river segments.

Since the computation of loss Ltrans does not re-
quire observation data, we can use it to pre-train RGrN
to enforce physical relationships. The pre-training not
only explicitly enforces the physical relationships among
river segments, but also enables full usage of physical in-
termediates obtained from physics-based models to en-
hance the representation learned for qt

i and its previous
layer ht

i. In particular, the intermediate physical vari-
ables used in this work include streamflow, stream tem-
perature, relative humidity, cloud cover, groundwater
and shallow subsurface flow, and surface runoff.

By using intermediate physical variables in the
pre-training phase, the ML model is guided but not
constrained by the physics-based model output, which
allows for more flexibility in the fine-tuning phase to
automatically learn information in qt

i that is poorly
known or not yet discovered while also remaining helpful
for modeling the interactions among river segments.

At the same time, we can run PRMS-SNTemp to
simulate the final target variables, which are represented
as ỹt

i. Although the simulated data are not accurate
reflection of the observation data, we can generate ade-
quate simulations on every day and for every segment.
The simulation data also follow many general physi-
cal relationships used to build the physics-based model.
Given that observation data is often scarce, we can use
simulated target variables to initialize the model via pre-
training. Hence, we define another pre-training loss on
target variables as follows:

(4.9) Ltar =
1

NT

∑
i

∑
t

(ỹt
i − ŷt

i)
2,

Combining Eqs. 4.8 and 4.9, we get the final pre-
training loss as follows:

(4.10) Lpre-train = Ltar + λLtrans,

where λ is a hyper-parameter to balance two losses. We
call this model (pre-trained using simulation data and
then fine-tuned with true observations) as PGRGrNptr.

4.3 Segment-wise contrastive loss The relation-
ship between input features and target variables can

be very complex in environmental systems, e.g., slight
changes in segment slope and catchment size can dras-
tically alter the streamflow. Traditional loss functions
for regression problems, such as mean squared loss,
tend to be dominated by river segments with larger
errors while degrading the performance on other seg-
ments with smaller errors. This issue can be further ex-
acerbated given limited observation data on most river
segments, especially low-flow segments. Although im-
proving the segments with smaller errors does not con-
tribute much to reducing the overall error, accurately
predicting streamflow at these segments provides im-
portant information regarding habitat for aquatic life
and biogeochemical cycling.

Our goal is to ensure that the global ML model
trained on all the river segments should also be consis-
tent with the local patterns extracted from each river
segment. In particular, we train N individual LSTM
models, M1 to MN , for each segment using the sim-
ulation data. Each individual model Mi is trained to
predict simulated target variables (i.e., ỹi) for a specific
segment i. Even though there is a gap between simu-
lation data and true observation data, these individual
models have a better chance at capturing the local tem-
poral patterns of each river segment.

When we apply the global PGRGrN model to a spe-
cific segment i, the patterns predicted by the PGRGrN
model should be similar to the local patterns learned by
the individual model Mi. Specifically, we compute the
hidden representation ht

i from PGRGrN at each time
t, which encodes dynamic patterns that directly output
target variables. We also run the individual model Mi

to compute its hidden representation h̃
t

i, which encodes
the local temporal patterns for this segment. The hid-
den representation ht

i from PGRGrN should be close

to the corresponding local hidden representation h̃
t

i and

different from the h̃
t

j of other segments, i.e., j 6= i. More
formally, we define a contrastive loss as follows:

(4.11) Lctr = − 1

NT

∑
i

∑
t

log
exp(ht

i
T
Wctrh̃

t

i)∑
j exp(ht

i
T
Wctrh̃

t

j)
,

where Wctr is model parameters for computing the
similarity of hidden representation. To ensure that the
hidden representation produced by PGRGrN (h) and
by individual models (h̃) are comparable, we use shared
parameters {Wy, by} in the last layer (Eq. 4.5) for
individual models and the global PGRGrN model and
they are fitted when training individual models.

By combining the contrastive loss and the loss of
RGrN (Eq. 4.6), we get the fine-tuning loss as follows:

(4.12) Lfinetune = LRGrN + γLctr,

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited616

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

where γ is a hyper-parameter to balance the supervised
loss of PGRGrN and the contrastive loss.

The proposed contrastive loss provides an alterna-
tive way in which different segments are comparable
with each other. Traditional loss functions do not per-
form well for every segment because they are defined on
target variables which may vary drastically across dif-
ferent segments. Instead, the contrastive loss matches
temporal patterns encoded in the space of hidden rep-
resentation, which alleviates this issue.

5 Experimental Results

We evaluate the proposed method for predicting stream
temperature and streamflow using real-world data col-
lected from the Delaware River Basin, which is an eco-
logically diverse region and a societally important wa-
tershed along the east coast of the United States as it
provides drinking water to over 15 million people [26].
We first describe our dataset and baselines. Then we
discuss the results about the predictive performance us-
ing sparse data, the effectiveness of pre-training, the
spatial distribution of errors, and model generalization.

5.1 Dataset and baselines The dataset is pulled
from U.S. Geological Survey’s National Water Informa-
tion System [23] and the Water Quality Portal [17], the
largest standardized water quality data set for inland
and coastal waterbodies [17]. The river segments were
defined by the national geospatial fabric used for the
National Hydrologic Model [19], and the river segments
are split up to have roughly a one day water travel
time. We study a subset of the Delaware River Basin
with 42 river segments that feed into the mainstream
Delaware River at Wilmington, DE. We use input fea-
tures at the daily scale from Oct 01, 1980 to Sep 30, 2016
(13,149 dates). The input features have 10 dimensions
which include daily average precipitation, daily aver-
age air temperature, date of the year, solar radiation,
shade fraction, potential evapotranspiration and the ge-
ometric features of each segment (e.g., elevation, length,
slope and width). Water temperature observations were
available for 32 segments but only on certain dates. The
number of temperature observations available for each
segment ranges from 1 to 9,810 with a total of 51,103
observations across all dates and segments. Streamflow
observations were available for 18 segments. The num-
ber of streamflow observations available for each seg-
ment ranges from 4,877 to 13,149 with a total of 206,920
observations across all dates and segments.

We generate the adjacency matrix A based on
the river distance between each pair of river segment
outlets, represented as dist(i, j). We standardize the
stream distance and then compute the adjacency level

as Aij = 1/(1 + exp(dist(i, j))) for each edge (i, j) ∈ E .
We compare model performance to multiple base-

lines, including the physics-based PRMS-SNTemp
model, artificial neural networks (ANN), RNN with the
LSTM cell, and the state-of-the-art PGRNN method [5]
which uses simulation data to pre-train an LSTM model
and then fine-tunes it with true observation data (rep-
resented as RNNptr). Since a region-specific calibration
PRMS-SNTemp is extremely time-consuming, a ver-
sion with default values of parameters is widely used
in the hydrologic domain [19], and is also adopted for
comparison in this paper. We evaluate three vari-
ants of the proposed method, RGrN (trained to mini-
mize LRGrN), PGRGrNptr (pre-training using the strat-
egy in Section 4.2 and fine-tuning to minimize LRGrN,
Eq. 4.6), and PGRGrNptr,ctr (pre-training using the
strategy in Section 4.2 and fine-tuning to minimize
Lfinetune, Eq. 4.12). All the ML models are trained and
applied to all the river segments (i.e., all models are
global). In the following experiments, we train each ML
model using data from the first 24 years (Oct 01, 1980
to Sep 30, 2004) and then test in the next 12 years (Oct
01, 2004 to Sep 31, 2016). The hidden representation in
these ML models is in 20 dimension (same for qt

i).

5.2 Overall predictive performance We report
the testing performance of different methods for temper-
ature prediction and streamflow prediction in Table 1
and Table 2, respectively. We also test the capacity
of each model to learn using less training data by ran-
domly selecting 0.1% and 2% labeled data from first 24
years for training the model. For RNNptr, PGRGrNptr

and PGRGrNptr,ctr, we assume the access to simulation
data on every single date from Oct 01 1980 to Sep 20
2016 because they can be generated by simply running
PRMS-SNTemp model on input drivers. We repeat each
experiment five times with random model initialization
and random selection of sparser data (0.1%, 2%) and re-
port the mean and standard deviation of the root mean
square error (RMSE).

We can observe that the proposed method out-
performs baselines by a considerable margin (Tables 1
and 2). The improvement from ANN to RNN shows
that the recurrent component is helpful for capturing
temporal patterns. RGrN performs better than RNN
because it utilizes upstream-downstream dependencies
which are critical for an accurate accounting of temper-
ature and streamflow.

We also observe that PGRGrNptr has much bet-
ter performance than RGrN using just 0.1% or 2%
data. This is because we leverage the physical knowl-
edge to learn representative latent variables with-
out risking overfitting small amount of observations.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited617

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

Table 1: Prediction RMSE (± standard deviation)
for temperature modeling using 0.1%, 2% and 100%
training labels. Rows in grey color represent methods
using simulation data.
Method 0.1% 2% 100%

PRMS-SNTemp 3.661 3.661 3.661
ANN 3.706±0.114 2.159±0.059 1.575±0.035

RNN 3.234±0.057 1.908±0.048 1.546±0.045

RNNptr 2.818±0.059 1.810±0.057 1.444±0.039

RGrN 2.849±0.049 1.906±0.063 1.408±0.068
PGRGrNptr 2.556±0.045 1.715±0.041 1.406±0.035

PGRGrNptr,ctr 2.464±0.105 1.636±0.056 1.402±0.034

Table 2: Prediction RMSE for streamflow modeling
using 0.1%, 2% and 100% training labels.
Method 0.1% 2% 100%

PRMS-SNTemp 6.834 6.834 6.834
ANN 7.116±0.120 5.777±0.063 4.801±0.055

RNN 6.885±0.068 5.718±0.114 4.406±0.064
RNNptr 6.367±0.067 5.529±0.053 4.104±0.049

RGrN 6.299±0.053 5.473±0.064 4.139±0.067
PGRGrNptr 5.824±0.075 4.708±0.032 4.106±0.046
PGRGrNptr,ctr 5.895±0.069 4.679±0.082 4.076±0.059

PGRGrNptr,ctr further improves the performance by en-
forcing local patterns of each segment. The standard
pre-training method is also helpful for the RNN model
given the improvement from RNN to RNNptr.

(a) (b)

Figure 2: Distribution of prediction errors in (a) low
and medium-low segments, and (b) medium-high and
high-flow segments.

To understand how the performance varies across
different types of river segments, we show the stream-
flow prediction errors for four types of segments, low
(<0.5m3/s), medium low (0.5-2m3/s), medium high
(2-5m3/s) and high (>5m3/s) in Fig. 2. RGrN and
PGRGrNptr generally perform better than other meth-
ods in medium-high and high-flow segments but per-
form much worse in low-flow segments. This is because
the neighboring river segments tend to have similar em-
beddings after graph convolution and thus the training
of RGrN pays even less attention to low-flow segments
given the fact that there are only a few low-flow seg-
ments in the river network. As shown in Fig. 2 (a), this
issue is partly addressed by using the contrastive loss.
An alternative solution to this issue is to intelligently se-
lect the most suitable model for different types of river
segments, which we suggest as future work.

Table 3: RMSE of temperature prediction on individual
segments after removing training observation data.
Segment Method With Obs Without Obs

RNN 2.297±0.082 3.328±0.132

Seg A RGrN 2.135±0.060 2.749±0.079

PGRGrNptr,ctr 2.084±0.053 2.501±0.037

RNN 1.116±0.064 1.384±0.065
Seg B RGrN 0.981±0.037 1.214±0.032

PGRGrNptr,ctr 1.047±0.024 1.205±0.016

RNN 1.082±0.083 1.804±0.041

Seg C RGrN 1.013±0.033 1.796±0.077
PGRGrNptr,ctr 0.989±0.026 1.589±0.040

RNN 0.955±0.053 1.805±0.064
Seg D RGrN 0.902±0.026 1.597±0.024

PGRGrNptr,ctr 0.996±0.025 1.297±0.017

RNN 1.067±0.045 1.646±0.075

Seg E RGrN 0.977±0.031 1.357±0.033
PGRGrNptr,ctr 1.013±0.025 1.345±0.041

5.3 Assessing performance on unobserved seg-
ments Here we aim to test the performance of temper-
ature prediction for the segments which have no obser-
vation data (Tables 3). Such segments commonly exist
in a real-world basin system. Seg A to Seg E are five
river segments which have sufficient observation data
for both stream temperature and streamflow. Each row
shows the results for an individual experiment where we
intentionally remove the temperature observations for
a specific segment during the training period (Oct 01,
1980 to Sep 30, 2004). Then we report the predictive
performance of RNN, RGrN, and PGRGrNptr,ctr only
on this segment during the testing period (Oct 01, 2004
to Sep 31, 2016).

We can observe larger errors produced by all the
three models after we remove training data for a seg-
ment. This is expected because segment-specific ob-
servation data has not been used for refinement of the
model. However, we observe that the drop in perfor-
mance of PGRGrNptr,ctr is consistent and often signifi-
cantly smaller than that of the RNN model.

(a) (b)

Figure 3: The predictions of pre-trained and fine-tuned
models for (a) temperature and (b) streamflow.

5.4 Effectiveness of pre-training In Fig. 3, we
randomly select two example segments to show how
predictions change from the pre-trained model to the
fine-tuned model using 2% training data. Here the fine-
tuned model is the same with the PGRGrNptr model

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited618

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

(a) (b)

Figure 4: Prediction errors across different segments for (a) temperature prediction and (b) streamflow prediction.
Here we show the error as the RMSE of each method minus the RMSE of PRMS-SNTemp simulation data to get
a better contrast. Darker blue indicates better performance of the ML model over the physics-based model. In
(a), we do not discuss the red colored segment on the bottom (predicted poorly by all the three methods) and
head water (75.7◦W, 39.95◦N) predicted poorly by RNN because they just have one test observation.

used in the previous results but is only fine-tuned us-
ing 2% observations and the pre-trained model does not
use observations for fine-tuning. We can observe that
the pre-trained model matches the simulated tempera-
tures very well and thus can capture general tempera-
ture or streamflow patterns even without using obser-
vation data. There is still a gap from the pre-trained
model to the true observations since it emulates PRMS-
SNTemp, which has inherent bias due to an incomplete
representation of physics. Nevertheless, after learning
general patterns from simulation data, the model can
be fine-tuned to match true observations using much
less training data. This can be verified as we show that
the model fine-tuned with just 2% data can match true
observations much better.

5.5 Spatial distribution of errors Fig. 4 shows
the distribution of prediction errors across different
segments. In Fig. 4 (a), we can observe that RGrN
and PGRGrNptr,ctr produce smaller temperature error
than RNN in many segments. We find one segment
(in dashed circle) where RNN performs much worse
than the proposed methods. This is the only segment
in the data set for which we have no training data
but sufficient testing data. The reason why RGrN can
produce better predictions for this unlabeled segment is
that it leverages the dependencies with other segments
to learn the temperature patterns even without training
data from this specific segment.

For streamflow prediction (Fig. 4 (b)), it can be
seen that RGrN and PGRGrNptr,ctr have lower RMSE
in several high-flow segments (e.g., the segments in red
dashed circles). However, RGrN performs worse than
RNN on headwater segments (in black dashed circles)
and these segments have lower streamflow. Compared
with RGrN, it can be seen that PGRGrNptr,ctr alleviates
this issue and produces smaller errors in these low-flow
segments by using the contrastive loss.

Table 4: Temperature RMSE in summers from 2005
to 2016. Each model is trained using observation data
from colder seasons (column 1) or all the observations
data (column 2) from Oct 1980 to Sep 2004.

Method Train on cold seasons Train on all

ANN 2.138±0.093 1.794±0.032
RNN 2.104±0.080 1.789±0.034
RNNptr 1.893±0.085 1.555±0.021

RGrN 1.939±0.062 1.539±0.024
PGRGrNptr 1.853±0.034 1.530±0.014
PGRGrNptr,ctr 1.744±0.053 1.416±0.019

5.6 Generalization test Here we test model gen-
erazability for temperature modeling. In particular,
we test the model performance on predicting tempera-
tures in a season that was not included in training data.
We train each model using data only from colder sea-
sons (spring, fall and winter) in the first 24 years and
then test in summers in the next 12 years, as shown
in Table 4. We also include the testing performance
of the model trained using all the observations from
first 24 years as a baseline in the second column of Ta-
ble. 4. Note that PGRGrNptr and PGRGrNptr,ctr per-
forms much better than other methods because the in-
corporation of physical knowledge and minimizing the
contrastive loss force the model to learn generalizable
patterns for each segment. It can be seen that ANN
and RNN have large errors because they do not fully
capture spatial and temporal processes that drive tar-
get physical phenomena. We include the generalization
test for streamflow using training data from segments
of different streamflow ranges and include the results in
the full version of the paper [6].

6 Conclusion

In this paper, we propose a novel method PGRGrN for
modeling interacting segments in river networks. We
leverage the prior physical knowledge about segment-to-
segment interactions embedded in physics-based models

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited619

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

to enhance the learning of the proposed ML model.
Moreover, we improve the loss function to optimize
both the overall performance over the river network and
the local performance on each individual river segment.
We have demonstrated the superiority of the proposed
method in handling the scarcity of labeled data and in
generalizing to unseen scenarios. The proposed method
can also be adjusted to model other complex systems
which involve interacting processes. For example, this
method could be potentially used for material discovery,
biological research and quantum chemistry to capture
interactions between different atoms or molecules.

While our method performs much better than ex-
isting models, it remains limited in precisely predict-
ing special segments (e.g., segments with extremely low
streamflows). To advance understanding, future ML
modeling efforts may consider uncertainty of the global
ML model and determine whether ML should be used
to replace physics-based models in different situations.

7 Acknowledgments

This research was supported by the NSF award 1934721.
Any use of trade, firm, or product names is for descrip-
tive purposes only and does not imply endorsement by
the U.S. Government.

References

[1] Brandon Anderson et al. Cormorant: Covariant molec-
ular neural networks. In NeurIPS, 2019.

[2] Jinyin Chen et al. Gc-lstm: Graph convolution embed-
ded lstm for dynamic link prediction. arXiv preprint
arXiv:1812.04206, 2018.

[3] D Graham-Rowe et al. Big data: science in the
petabyte era. Nature, 2008.

[4] Will Hamilton et al. Inductive representation learning
on large graphs. In NeurIPS, 2017.

[5] Xiaowei Jia et al. Physics guided rnns for modeling
dynamical systems: A case study in simulating lake
temperature profiles. In SDM, 2019.

[6] Xiaowei Jia et al. Physics-guided recurrent graph
networks for predicting flow and temperature in river
networks. arXiv preprint arXiv:2009.12575, 2020.

[7] Xiaowei Jia, Jared Willard, Anuj Karpatne, Jordan
Read, Jacob Zwart, Michael Steinbach, and Vipin
Kumar. Physics guided rnns for modeling dynamical
systems: A case study in simulating lake temperature
profiles. In SDM, 2019.

[8] Xiaowei Jia, Handong Zhao, Zhe Lin, Ajinkya Kale,
and Vipin Kumar. Personalized image retrieval with
sparse graph representation learning. In SIGKDD,
2020.

[9] TO Jonathan, AM Gerald, B Sandrine, et al. Special
online collection: dealing with data. Science, 2011.

[10] Jacob H LaFontaine et al. Application of the
precipitation-runoff modeling system (prms) in the
apalachicola-chattahoochee-flint river basin in the
southeastern united states. USGS, 2013.

[11] Dehao Liu and Yan Wang. Multi-fidelity physics-
constrained neural network and its application in ma-
terials modeling. Journal of Mechanical Design, 2019.

[12] Steven L Markstrom et al. Prms-iv, the precipitation-
runoff modeling system, version 4. USGS, 2015.

[13] Zach Moshe et al. Hydronets: Leveraging river struc-
ture for hydrologic modeling. 2020.

[14] Junyoung Park and Jinkyoo Park. Physics-induced
graph neural network: An application to wind-farm
power estimation. Energy, 2019.

[15] Yanlin Qi, Qi Li, Hamed Karimian, and Di Liu. A
hybrid model for spatiotemporal forecasting of pm2. 5
based on graph convolutional neural network and long
short-term memory. STOTEN, 2019.

[16] Arun Ravindranath et al. An environmental perspec-
tive on the water management policies of the upper
delaware river basin. Water Policy, 2016.

[17] Emily K Read et al. Water quality data for national-
scale aquatic research: The water quality portal. Wa-
ter Resources Research, 2017.

[18] Jordan S Read et al. Process-guided deep learning
predictions of lake water temperature. WRR, 2019.

[19] R Steven Regan et al. Description of the national
hydrologic model for use with the precipitation-runoff
modeling system. Technical report, USGS, 2018.

[20] Luana Ruiz et al. Gated graph recurrent neural
networks. arXiv preprint arXiv:2002.01038, 2020.

[21] Michael J Sanders et al. Documentation of a daily
mean stream temperature module—an enhancement
to the precipitation-runoff modeling system. Technical
report, US Geological Survey, 2017.

[22] Terrence J Sejnowski et al. Putting big data to good
use in neuroscience. Nature neuroscience, 2014.

[23] US Geological Survey. National water information
system data available on the world wide web (usgs
water data for the nation). 2016.

[24] Rui Wang, Karthik Kashinath, Mustafa Mustafa,
Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction.
In SIGKDD, 2020.

[25] Jared Willard, Xiaowei Jia, Shaoming Xu, Michael
Steinbach, and Vipin Kumar. Integrating physics-
based modeling with machine learning: A survey.
arXiv preprint arXiv:2003.04919, 2020.

[26] Tanja N Williamson et al. Summary of hydrologic
modeling for the delaware river basin using the water
availability tool for environmental resources (water).
Technical report, US Geological Survey, 2015.

[27] Bing Yu et al. Spatio-temporal graph convolutional
networks: A deep learning framework for traffic fore-
casting. arXiv preprint arXiv:1709.04875, 2017.

[28] Di Zhu et al. Understanding place characteristics
in geographic contexts through graph convolutional
neural networks. AAG, 2020.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited620

D
ow

nl
oa

de
d

08
/1

4/
21

to
73

.5
.1

50
.2

31
.R

ed
is

tr
ib

ut
io

n
su

bj
ec

tt
o

SI
A

M
lic

en
se

or
co

py
ri

gh
t;

se
e

ht
tp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

