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Effects of spatially-varying substrate anchoring on
instabilities and dewetting of thin nematic liquid
crystal films

Michael-Angelo Y.-H. Lam, a Lou Kondic b and Linda J. Cummings b

Partially wetting nematic liquid crystal (NLC) films on substrates are unstable to dewetting-type

instabilities due to destabilizing solid/NLC interaction forces. These instabilities are modified by the

nematic nature of the films, which influences the effective solid/NLC interaction. In this work, we focus

on the influence of imposed substrate anchoring on the instability development. The analysis is carried

out within a long-wave formulation based on the Leslie–Ericksen description of NLC films. Linear stabi-

lity analysis of the resulting equations shows that some features of the instability, such as emerging

wavelengths, may not be influenced by the imposed substrate anchoring. Going further into the non-

linear regime, considered via large-scale GPU-based simulations, shows however that nonlinear effects

may play an important role, in particular in the case of strong substrate anchoring anisotropy. Our

simulations show that instability of the film develops in two stages: the first stage involves formation of

ridges that are perpendicular to the local anchoring direction; and the second involves breakup of these

ridges and formation of drops, whose final distribution is influenced by the anisotropy imposed by the

substrate. Finally, we show that imposing more complex substrate anisotropy patterns allows us to reach

basic understanding of the influence of substrate-imposed defects in director orientation on the

instability evolution.

1 Introduction

Nematic liquid crystal (NLC) is one of several possible liquid

crystalline states of matter, intermediate between a solid (crystal)

and a liquid, that can exist. Typically, the molecules of NLCs

are rod-like and interact electrostatically, which leads to them

exhibiting short-range directional ordering, an elastic response

under deformation, and anisotropic viscosity when they flow.

At interfacial boundaries, whether free or rigid, NLC molecules

typically have a preferred orientation, a phenomenon known as

anchoring. Due to the electrostatic interactions between mole-

cules, anchoring affects strongly molecular orientation within

the bulk of the NLC, and how the sample flows and deforms.

While NLC films are interesting in their own right, we note that

such films, as well as the mathematical models used for their

description, share many common aspects with active fluids,

which often involve rod-like particles that may attain nematic

order. We refer the reader to excellent reviews discussing a

number of related active-matter systems,1,2 as well as to specific

recent research papers that focus on the relation between active

and passive anisotropic films.3–6

A fairly extensive experimental literature exists on the beha-

vior of thin NLC films with a free surface (see, e.g. works by

Cazabat et al.,7 Delabre et al.,8 Herminghaus et al.,9 and van

Effenterre and Valignat10 among many others). In all of these

works it is thought that the anchoring is spatially homoge-

neous; typically homeotropic (molecules perpendicular to inter-

face) at the free surface, and degenerate planar at the substrate

(molecules align parallel to the substrate in the orientation that

minimizes the bulk elastic energy). Our earlier theoretical

work11,12 considered this situation in detail from both an

analytical and numerical perspective, presenting a model that

could replicate the instability and dewetting phenomena

observed in the experiments. Non-degenerate (directional),

spatially-varying substrate anchoring has been considered

experimentally, but primarily within confined rigid geometries

(a sandwich configuration), with a view to engineering multi-

stable liquid crystal display (LCD) devices;13–15 some more

recent works also consider the details of anchoring effects

for active films.6 We are however unaware of experimental

or theoretical work that studies the effects of nonuniform

substrate anchoring on flow, spreading and instability of free
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surface NLC films. Perhaps the most directly relevant work of

which we are aware, which takes account of the effects of local

molecular orientation on flow, is that of Forest et al.,16 who use a

diffuse-interface framework within the Doi–Hess kinetic theory for

liquid crystal polymer droplets to study NLC droplets computa-

tionally under imposed shear in the presence of internal defects.

In this paper we present a minimal model for the flow and

dewetting of thin (nanoscale) films of NLC on a flat substrate at

which the strong planar anchoring is allowed to vary spatially.

Free surface anchoring is assumed to be weak and homeo-

tropic, following our earlier work.11,17 The model is based on

the Leslie–Ericksen theory for NLCs, and accounts for van

der Waals interactions between the NLC and the substrate, in

addition to the bulk elasticity and surface energy contributions.

In the spirit of formulating the simplest model capable of

capturing the key physics, we neglect additional surface effects

such as interfacial dissipation that could play a minor role in

influencing the dynamics. This is also our motivation for

choosing the Leslie–Ericksen model over a more comprehen-

sive (but complicated) theory such as Q-tensor theory: the

model we derive is much more tractable (analytically and

numerically) than would be possible by starting from alterna-

tive models. We refer the reader to the review by Rey18 for an

overview of works that use complementary approaches to

modeling thin NLC films (such as the Landau–de Gennes

formulation); see also more recent relevant work by Rey and

Herrera-Valencia on modeling the isotropic-to-nematic transi-

tion in a dynamic wetting context using this approach,19 as well

as the above-referenced work by Forest et al.16

In the present work, we focus particularly on the effect that

local directionality of substrate anchoring has on the evolution

of the overlying film, and the droplet patterns obtained at large

times after film breakup. Unidirectional anchoring is consi-

dered first by way of illustration, being sufficiently simple that

linear stability analysis can be carried out and used to predict

results. Large-scale simulations are presented using an ADI

scheme implemented on a GPU, first for the unidirectional

anchoring case, and then for more complex anchoring patterns.

Our results reveal that local directionality of substrate anchoring

can affect significantly the patterns that emerge when a NLC film

destabilizes and breaks up. It is our hope that future experimental

work will be able to confirm our model predictions.

The remainder of our manuscript is organized as follows.

In Section 2, we present the asymptotic model that we will use

for describing evolution of NLC films. The presentation focuses

in particular on the inclusion of spatially-dependent substrate

anchoring, since other aspects of the model can be found in our

earlier work.11,17 Section 3 discusses linear stability analysis of NLC

films in a few simple setups that outline the influence that

nonuniform substrate anchoring is expected to have on instability

development. The nonlinear stage of the evolution is considered via

fully-implicit large-time simulations that are presented in Section 4.

Here we show that nonlinear effects play an important role in the

instability development and resulting pattern formation. Section 5

is devoted to a summary of key findings and discussion of possible

future research directions.

2 Model description

Associated with each rod-like NLC molecule is an electrical

dipole moment, the interactions between which lead to an

elastic response under deformation, resulting in short-range

directional ordering of the molecules. To describe the flow of

NLC, in addition to the velocity field, v̂ = (v̂1,v̂2,v̂3) = (v̂,û,ŵ), one

must also track the orientation of the NLC molecules, modeled

by a director field, n = (n1,n2,n3), a unit vector representing the

local average orientation. (Throughout this paper, hatted vari-

ables denote dimensional quantities and unhatted variables

denote dimensionless ones.) The unit vector is typically aligned

with the long axis of the NLC molecules, see Fig. 1, and it is

often convenient to characterize the director field in terms of

its polar angle, y, and azimuthal angle, f, considered as

functions of Cartesian space variables (x̂, ŷ, ẑ) = (x̂1, x̂2, x̂3),

i.e., n = (sin y cosf, sin y sinf, cos y).

The flow of NLCs may be modeled using the Leslie–Ericksen

(LE) equations,20 an extension of the Navier–Stokes equations,

with an additional equation modeling conservation of energy.

For brevity, we do not discuss the details of the derivation of the

LE model, but note that it is based on four conservation laws:

energy, linear momentum, angular momentum, and mass.

Assuming isothermal static deformations, the conservation of

energy and angular momentum equations may be combined.

In addition, to model the anisotropic viscosity, the viscous

stress tensor, t̂ij, is assumed to be a linear function of êij, the

symmetric rate of strain tensor; and N̂j, the rotation of the

director field in the reference frame of moving antisymmetric

deformations (characterized by the antisymmetric strain rate

tensor, ôij). The quantity N̂j may be interpreted as the addi-

tional rotational velocity component of the director field due to

the (external) elastic response, which is separate from rotation

imparted by the (internal) velocity field. These quantities are

defined as

êij ¼
1

2

@v̂i
@x̂j

þ
@v̂j
@x̂i

� �

; N̂ i ¼
@ni
@ t̂

� ôijnj ; ôij ¼
1

2

@v̂i
@x̂j

�
@v̂j
@x̂i

� �

:

(1)

Under these broad assumptions, sixteen coefficients are

required to define the viscous stress tensor; however, applying

Fig. 1 Schematic of director field (red arrow) relative to liquid crystal

molecule (blue ellipse), and its description via spherical polar angles.
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the laws of thermodynamics this number may be reduced to

just six, âi, i = 1, 2, 3, 4, 5, 6, simplifying the viscous stress

tensor to

t̂ij = â1nknpêkpninj + â2N̂inj + â3N̂jni + â4êij + â5êiknknj + â6êjknkni.

(2)

Using the Onsager relation, â2 + â3 = â6 � â5, further reduces the

number of independent coefficients to five. Note that â4 here

plays the role of the viscosity coefficient for an isotropic

Newtonian fluid.

In addition to the internal forces captured by the stress

tensor, the LE equations model external body forces on the

director field,

Ĝi = ĝ1N̂i + ĝ2êijnj, (3)

where ĝ1 = â2 � â3 is the rotational viscosity (giving rise to a

force on the NLCmolecules due to rotational flow) and ĝ2 = â5 �

â6 is the irrotational viscosity (giving a shear force on the

molecules). To model the elastic response of the NLC, the bulk

(Frank) elastic energy Ŵ is assumed to be a positive definite

quadratic function of spatial derivatives of the director field.

Specifically,

Ŵ ¼
1

2
K̂1 r̂ � n
� �2

þK̂2 n � r̂ � n
� �2

þK̂3 n� r̂ � n
�

�

�

�

2
h i

; (4)

representing splay (K̂1), twist (K̂2) and bend (K̂3) deformation,

see Fig. 2. It is common to use the so-called one-constant

approximation,8,10,21,22 K̂ = K̂1 = K̂2 = K̂3, a practice we also

follow.

For an incompressible fluid, the LE equations are given by

@Ŵ

@ni
þ

@

@x̂j

@Ŵ

@n̂i;j

 !

� Ĝi ¼ 0; n̂i;j ¼
@ni
@x̂j

; (5)

@p̂

@x̂i
þ
@Ŵ

@x̂i
þ Ĝj

@nj
@x̂i

þ
@t̂ij
@x̂j

¼ 0; (6)

@v̂i
@x̂i

¼ 0; (7)

respectively representing the combined conservation of energy

and angular momentum (for isothermal static deformations of

the NLC), conservation of linear momentum, and conservation

of mass for an incompressible fluid. For brevity, we will refer to

eqn (5) as the energy equation.

2.1 Nondimensionalization and scalings

To nondimensionalize the LE eqn (5)–(7) for the ‘‘thin film’’

scenarios we seek to describe, we define five scaling para-

meters: Ĥ, a representative film thickness; L̂, the lengthscale

of variations in the plane of the substrate, (x̂,ŷ); T̂f, the time-

scale for fluid flow; T̂r, the timescale of elastic reorientation of

NLC molecules; and m̂ = â4, the representative viscosity corres-

ponding to the isotropic Newtonian fluid case. In addition,

we define the film aspect ratio, d = Ĥ/L̂, and assume d { 1

(the long wave approximation). The values assigned to the

scaling parameters are chosen based on the experiments of

Herminghaus et al.9 and Cazabat et al.7 for thin films of NLC,

Ĥ = 100 nm, L̂ = 10 mm, and T̂f = 1 s. We will see that viscosity

appears in our final model via a single dimensionless parameter Z,

a ratio of a linear combination of other system viscosities to â4.

We will discuss its value later. As discussed below, provided

T̂r { T̂f, the exact value of T̂r is irrelevant for our model.

We note that in dewetting experiments, a so-called ‘‘forbidden

range’’ of film thicknesses (10 nm to 100 nm) is observed, within

which NLC films are observed to be unstable, as well as a

minimum film thickness, corresponding to a trilayer of mole-

cules just a few nanometers thick.7 We therefore define b̂ to be

the upper thickness threshold for film stability and b̂ as the

minimum film thickness (which we will refer to as the equili-

brium film thickness). Consistent with available data for NLC

systems, we set these values to b̂ = 100 nm and b̂ = 1 nm.

2.2 Energetics: weak anchoring model

Scaling quantities as follows,

ðx̂; ŷ; ẑÞ ¼ L̂ðx; y; dzÞ; ðv̂; û; ŵÞ ¼
L̂

T̂ f

ðu; v; dwÞ; t̂ ¼ T̂ f t;

âi ¼ â4ai;

(8)

and assuming further that the timescale of elastic reorientation

is much faster than that of fluid flow, T̂r { T̂f, the (dimension-

less) external body forces, Ĝi, in the energy eqn (5), are seen to

be negligible. To leading order then, eqn (5) decouples from

eqn (6) and (7), and reduces simply to an equation for the

director field, n: the problem of minimizing the free energy of

the system11,17,23 with respect to variations in the polar angle y

and the azimuthal angle f. Upon solving, y and f are deter-

mined to be of the form

y(x,y,z,t) = c1(x,y,t)z + c2(x,y,t) and f(x,y,t) = c3(x,y,t), (9)
Fig. 2 Schematics of the deformation types modeled in the bulk elastic

energy (4) representing pure (a) splay, (b) twist, and (c) bend.
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where c1(x,y,t), c2(x,y,t), and c3(x,y,t) are independent of z and

must be chosen to satisfy appropriate ‘‘anchoring’’ boundary

conditions at both the substrate and the free surface. The

director field thus bends but does not twist across the layer:

the degree of bending is determined by the imposed anchoring

conditions, discussed below, thus the director field is a function

of the instantaneous fluid height, z = h(x,y,t).

At an interface, NLC molecules typically have a preferred

orientation, often called the anchoring condition. In many

experiments the substrate is treated, either chemically or

mechanically, such that molecules align in the plane of the

substrate (planar anchoring), while at the free surface mole-

cules often align perpendicular to the surface (homeotropic

anchoring, a special case of conical anchoring in which the

molecules prefer to orient on the surface of a cone of given

angle with axis perpendicular to the free surface), see Fig. 3.

This situation, where the director is required to adopt different

orientations at opposite sides of a layer, is referred to as

‘‘antagonistic anchoring’’. For relatively thick films the director

can bend across the film to accommodate the two different

anchoring conditions (see Fig. 3(a)). However, for very thin

films or close to a contact line, strict imposition of the

antagonistic conditions can lead to large energy penalties in

the bulk of the fluid due to the rapid spatial variations that

result in the director field (see Fig. 3(b)). To alleviate this issue,

we first note that in practice, anchoring strength at the

substrate is usually stronger than at the free surface, therefore,

we impose strong planar anchoring on the substrate and

implement a weak free surface anchoring model as used in

our previous work,11,12,24,25 which allows the polar angle at the

free surface to relax from the homeotropic state (valid for thick

films) to the planar state, as the film thickness h approaches

the equilibrium thickness (see Fig. 4).

Since the azimuthal director angle f is found to be inde-

pendent of the vertical coordinate z, we assume it is entirely

determined by the (strong) substrate anchoring, which we allow

to vary spatially: f = fS(x,y). Our particular focus in this paper is

to investigate how such imposed spatially-varying substrate

anchoring can influence the evolution of the overlying NLC

layer. In practice, inhomogeneous anchoring could be achieved

by a variety of techniques, including simple mechanical means

such as rubbing a surface with a cloth in a prescribed direction.

Therefore, we will prescribe fS(x,y) as a boundary condition in

our model.

Under these modeling assumptions the director angles are

given by

yðx; y; zÞ ¼ yS þ yF � ySð Þ
mðhÞ

h
z

and

fðx; yÞ ¼ fSðx; yÞ; (10)

where h = h(x,y,t) is the free surface height, m(h) is a function

that captures the details of the weak anchoring, and for

generality, we use the subscripts S and F to denote the pre-

scribed anchoring angles at the substrate and free surface,

respectively (for the specific case discussed above, yS = p/2 while

yF = 0). Following our earlier work11,12,24,25 the weak anchoring

function is chosen to be of the form

mðhÞ ¼ gðhÞ
h2

h2 þ b2
; gðhÞ ¼

1

2
1þ tanh

h� 2b

w

� �� �

; (11)

where b = b̂/Ĥ is a film thickness at which bulk elastic energies

are comparable to surface anchoring energies and g(h) is a

‘cutoff’ function (with width controlled by w, where we take

w = 0.05 throughout this work) that forces the free surface

anchoring to match that of the substrate for film thicknesses

close to the equilibrium film thickness b = b̂/Ĥ { b. For h c b

we have m(h) E 1, corresponding to the preferred free surface

anchoring angle being attained (y(x,y,h)E yF in (10)). However,

Fig. 3 Schematic of molecular orientation in NLC layer with strong

homeotropic free surface anchoring and strong planar substrate anchoring

for (a) a thick film and (b) a thin film.

Fig. 4 Schematic of molecular orientation in NLC layer with weak homeo-

tropic free surface anchoring and strong planar substrate anchoring for (a) a

thick film and (b) a thin film.
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as h - b (the minimum thickness permitted by the governing

partial differential equation, given in (12) below, on account of

the disjoining pressure term specified in (16)), the function

m(h) becomes very small and y(x,y,h) E yS in (10).

2.3 Long wave equation

We now briefly discuss the long wave model that results from

eqn (6) and (7) with the scalings of Section 2.1, referring the

reader to Lam et al.24 for full details. With the expressions given

in eqn (10) for the director angles y and f, we substitute in

eqn (6) to obtain partial differential equations that depend only

on the free surface height, h; the velocity field, v; and the

pressure, p.

Under the long wave approximation, the leading-order

transverse momentum equation (z-component of eqn (6)) may

be solved for the pressure on application of the normal stress

balance boundary condition, while the leading-order in-plane

momentum equations can be integrated over the film height

from z = 0 to z = h(x,y,t), giving (after application of the usual

no-slip and tangential stress boundary conditions) a fourth-

order partial differential equation for the evolution of the free

surface height. Motivated by previous work,11,12 we choose

to express the resulting long-wave equation in terms of the

variational or gradient dynamics formulation,26,27 in which the

evolution of the free surface height is given by

@h

@t
þr � Qðh;fÞr

dE

dh

� �� �

¼ 0; (12)

where Q is the mobility function and E is total interfacial energy

(Gibbs energy). The mobility function is given by

Qðh;fÞ ¼ lIþ n

cos 2f sin 2f

� sin 2f cos 2f

 !" #

h3; (13)

where I is the identity matrix,

l ¼
2þ Z

4ð1þ ZÞ
; n ¼ �

Z

4ð1þ ZÞ
; Z ¼ a3 þ a6; (14)

are anisotropic viscosities, and we will refer to Z as the anchoring

anisotropy parameter. Note that for all NLCs for which we have

data, Z A (�1,0); we assume this henceforth. In the special case

Z = 0 (studied in our previous work11) the governing equation no

longer depends on the azimuthal director angle, f; this case is

known as degenerate planar substrate anchoring. The Gibbs

energy for our NLC system is given by

E ¼ C 1þ
rh � rh

2

� �

þCðhÞ; (15)

where the first term on the right hand side is the surface tension

contribution; and the second term,

C ¼ �
@P

@h
; PðhÞ ¼ K

b

h

� �3

�
b

h

� �2
" #

þ
N

2

mðhÞ

h

� �2

; (16)

is the contribution from the effective disjoining pressureP(h), the

first part of which is the power-law form of the disjoining pressure

commonly used in the literature (see the review of Craster and

Matar28 for an in depth discussion) consisting of Born repulsion

and the van der Waals force; and the second term is the elastic

contribution due to the antagonistic anchoring conditions.

The nondimensional coefficients C, K, and N, are the ratios

of surface tension forces, disjoining pressure forces, and elastic

forces respectively, to the viscous forces. The values of parameters

used in our model simulations are based on experiments,7,9 as

discussed in some detail in our earlier work,11 and are set to

C = 0.0857, K = 36.0, N = 1.67, b = 1, b = 0.01,

(17)

values that lead to an effective disjoining pressure P of the

form shown in Fig. 5. The parameter Z is the key to the

influence of spatially-varying substrate anchoring in the model:

in line with values for the widely-used NLCs MBBA (Z = �0.4229)

and 5CB (Z = �0.4530) we use values in the range Z A [�0.5,0] in

our simulations.

3 Linear stability analysis

To gain initial insight into the effects of substrate anchoring (f)

and the anchoring anisotropy parameter Z, we first simplify the

governing equation by assuming uniform planar substrate

anchoring (f is constant, while y = p/2 on z = 0). Furthermore,

note that the coordinate system may be rotated such that the x

axis is parallel to the (uniform) anchoring; therefore, with no

loss of generality we may assume f = 0. We begin by using LSA

to understand the stability of such a flat film. We consider flat

films with free surface perturbations either parallel or

perpendicular to the anchoring direction, specifically

h(x,t) = H0[1 + eeo8t+q8xi] or h(y,t) = H0[1 + eeo>t+q>yi],

(18)

where e { 1; q and o are the wavenumber and growth rate of

the perturbations; and 8 and > subscripts respectively denote

quantities parallel (x-direction) and perpendicular (y-direction)

to the substrate anchoring f.

Substituting eqn (18) into eqn (12) with f = 0, the general

form (dropping subscript notation) of the dispersion

relations is

o = �sH0
3q2[Cq2 � P0(H0)]. (19)

Fig. 5 Plot of the disjoining pressure eqn (16) as a function of the film

height, for the parameter values of (17). Region between the vertical

dashed red lines denotes the linearly unstable regime.
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The sH0
3 factor here arises from the mobility function of

eqn (13) and is present also for Newtonian films (for which

N = 0 = n). The term in square brackets is a result of the Gibbs

energy (15), which determines the transition between linear

stability (P0(H0) o 0) and instability (P0(H0) 4 0) as a function

of the initial film thickness (see Fig. 5 for the stability regimes

as they relate to the effective disjoining pressure and film

height). By computing the most unstable wavenumber,

qk;m ¼ q?;m ¼ qm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0 H0ð Þ

2C

r

; (20)

it may be seen that the Gibbs energy determines the lengthscale

of instabilities. We fix the mean film thickness to the linearly

unstable value H0 = 0.2, referring the reader to our previous

work11,12 for a detailed study of how stability properties depend

on mean film thickness.

For a given value of H0, the scaling factor s affects only the

time-scale of instability. The most unstable growth rates are

ok;m ¼ skom; o?;m ¼ s?om; om ¼
H0

3 P0 H0ð Þ½ �
2

4C
: (21)

The scaling factors s8 = [2(1 + Z)]�1 (solid blue curve) and s> = 0.5

(dashed horizontal red line) are plotted in Fig. 6 showing that,

while perturbations in both x and y directions develop on the

same timescale when Z = 0, the instability timescale increases with

|Z| in the x-direction, while in the y-direction it is unchanged.

Considering the ratio of the growth rates

r ¼
ok

o?
¼

sk

s?
¼

lþ n

l� n

¼
1

1þ Z
; (22)

it may be seen that for Z A (�1,0) increasing |Z| increases the

anisotropic viscous effects. Similar to our previous works11,12

for two-dimensional flow (where f = 0 at the substrate), we

define a new timescale,

t̃ = (l + n)t. (23)

Under the new timescale, the scaled growth rates are ~o8,m = om

and ~o>,m = (1 + Z)om, and for Zo 0, the maximum growth rate

is independent of Z. It is therefore expected that dewetting and

drop formation occur on the time scale t̃ for all considered Z

values and any observed differences in simulation results may

likely be due to the influence of the value of Z on the nonlinear

stages of instability development.

To extend the LSA to a general three-dimensional film with

height h(x,y,t) (again in the special case f = 0, strong substrate

anchoring parallel to the x-direction), we first note that the

governing eqn (12) takes the form of a conservation law,

@h

@t
þr � F ¼ 0; F ¼ QðhÞr

dE

dh

� �

¼ QðhÞ Crr2h�P0ðhÞrh

 �

;

(24)

with flux F (E is defined in eqn (15)). Rescaling time as in (23),

the governing equation may be expressed as

@h

@~t
þr � ~F ¼ 0; (25)

where F̃ = (F̃x,F̃y) = (F̃8,F̃>), with

~Fk ¼ Ch3@xxxh� h3P0ðhÞ@xhþ Ch3@xyyh;

and

~F? ¼ ð1þ ZÞ Ch3@yyyh� h3P0ðhÞ@yhþ Ch3@yxxh

 �

: (26)

The limit Z - �1 (or |1 + Z| { 1), corresponding to strong

anisotropic effects, indicates that flux (flow) perpendicular to

the substrate anchoring (y direction) is negligible. Dependence

on y enters in this limit only via the last term in F̃8, which acts

(via surface tension) to smooth any nonuniformities in the

y-direction.

To apply LSA, we assume a solution of the form

h(x,y,t) = H0[1 + eeot+q8xi+q>yi], (27)

with

o = �H0
3[q8

2 + (1 + Z)q>
2][C(q8

2 + q>
2) � P0(H0)]. (28)

Alternatively, if we express (q8,q>) in terms of a plane polar

representation, i.e., q8 = q cos(W) and q> = q sin(W), the disper-

sion relation eqn (28) may be expressed as

o ¼ �H0
3q2 Cq2 �P0 H0ð Þ

 �

1þ
Z

2
½1� cosð2WÞ�

� 


; (29)

an extension of the one-dimensional LSA dispersion relation

eqn (19) with s ¼ 1þ
Z

2
½1� cosð2WÞ�.

4 Nonlinear regime

In this section we present simulation results for the model

outlined in the previous section. We focus in particular on the

effects of imposed substrate anchoring patterns on dewetting,

as revealed by the evolution of perturbed flat films. We refer the

reader to our previous works11,12 for a detailed analysis of

the stability properties of thin films of NLC in the presence

of degenerate planar substrate anchoring (as opposed to the

Fig. 6 Plot of the scaling factors s8 = l + n = [2(1 + Z)]�1 (solid blue curve)

and s> = l � n = 0.5 (dashed horizontal red line) as a function of

Z A (�1,0).
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non-degenerate, directed planar substrate anchoring consid-

ered here). The numerical scheme is a hybrid finite volume/

finite difference method with Crank–Nicholson type discretiza-

tion. To reduce the computational complexity, an alternating

direction implicit (ADI) scheme is implemented, and to account

for implicit nonlinear terms a (pseudo)-Newton iterative

scheme is applied. The reader is referred to our previous work

for further details on the code.12

We divide our simulation results into three main categories:

(1) uniform (unidirectional) anchoring (as discussed in Section 3

above); (2) smoothly-varying nontrivial anchoring patterns; and

(3) imposed substrate anchoring patterns that mimic defects in

the director field. To simulate the evolution of a randomly

perturbed flat film of NLC, perturbations are generated with

pseudo-Perlin noise, sufficiently exciting all modes in the two-

dimensional Fourier transform independently, see Lam et al.12

for more details. Briefly, for all simulations in this paper, the

initial condition is of the form

h(x,y,t = 0) = H0(1 + e|z(x,y)|), x,y A [0,L], (30)

where H0 = 0.2, L = Plm, P is a positive integer (set to 40 for all

simulations in this paper), and lm = 2p/qm is the wavelength of

maximum growth, with qm given by eqn (20). The perturbations

are specified by z(x,y), which is the inverse Fourier transform of

z(qx,qy) = |[qx
2 + qy

2]�a/2 exp(2pa(qx,qy)i)|, (31)

e = 0.01 characterizes the noise amplitude, a is a positive

constant, and a(qx,qy) is a random variable, uniformly distrib-

uted on [�1,1] for each (qx,qy). In addition, z(x,y) is scaled so

that |z(x,y)| r 1 and we fix a = 200/N, where N is the number of

discretization points in the x and y directions.

4.1 Uniform substrate anchoring

As noted earlier in Section 3, with uniform anchoring (f

constant) the coordinate system may be rotated appropriately,

so that it is sufficient to consider the case f = 0. To study the

effect of the anchoring anisotropy parameter Z, which measures

the strength of the directionality in the substrate anchoring via

eqn (13) and (14), we perform simulations for Z = 0, �0.1, �0.2,

�0.25, �0.35, and �0.5, which correspond to the growth rate

ratios (defined by eqn (22)) r E 1, 1.1, 1.25, 1.33, 1.5, and 2, i.e.

the growth rate of perturbations in the x direction ranges from

the same, up to twice as fast, as that in the y-direction. In

addition, to quantify the effect of the value of Z on the film

evolution, we compute the magnitude of the two-dimensional

Fourier transform of the perturbation to the free surface height.

To reduce the amount of noise, the Fourier transform is

convoluted with a Gaussian filter.12

Fig. 7 and 8 show early-time results for a flat film, perturbed

as in eqn (30), evolving on a substrate with uniform anchoring

in the x-direction. (Later times are shown in Fig. 9 and 10, and

very late times in Fig. 11 and 12, discussed below.) The top rows

show snapshots of the free surface evolution for the range of

chosen Z-values (Z = 0, �0.1, and �0.2 for Fig. 7, and Z = �0.25,

�0.35, and �0.5 for Fig. 8). The free surface height in each case

is plotted at the time t̃ = 5om
�1 (see eqn (23)), so that the

instability should be equally well-developed for each case

shown. The simulations show that, as |Z| increases (left to right),

Fig. 7 Snapshots of simulations with increasing absolute values (left to

right) of the anchoring anisotropy parameter Z = 0, �0.1, �0.2, shown at

scaled time t̃ = 5om
�1 (see eqn (23)). Top row shows contour plots of free

surface height h, obtained by solving eqn (12), while bottom row shows the

corresponding magnitude of the two-dimensional Fourier transform of the

free surface height. For this figure (and all following ones) the domain size

in both x and y directions is L = 40lm, where lm = 2p/qm is the wavelength

of maximum growth, with qm given by eqn (20).

Fig. 8 Simulation results using (left to right) Z = �0.25, �0.35, �0.5; the

other parameters are as in Fig. 7.

Fig. 9 Setup from Fig. 7 at t̃ = 8.
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the instability pattern becomes more wavelike, with ridges

forming perpendicular to the anchoring direction.

Focusing on the plots of the magnitude of the Fourier

transform (bottom rows in Fig. 7 and 8), we observe that for

degenerate planar substrate anchoring (Z = 0, bottom left part

of Fig. 7), the dominant wavenumbers form a ring, (qx/qm)
2 +

(qy/qm)
2 = 1; as expected, all wavenumbers that correspond to

the most unstable wavenumber, qm from LSA eqn (20), are

equally excited. Increasing |Z| concentrates the dominant wave

numbers around (qx/qm)
2 = 1, indicating that perturbations

along the x-axis dominate, confirming the LSA prediction, see

eqn (22), for the ratio in growth rates: i.e., as |Z| increases, for

the chosen uniform anchoring, perturbations in the x-direction

grow faster than in the y-direction.

It may also be seen by comparing Fig. 7 and 8 (top row in

each) that for smaller values of |Z|, more green/blue regions are

observed in the height plots, indicating that dewetting occurs

for early times. This conclusion is also supported by Fig. 9 and

10, which show the same simulations as Fig. 7 and 8, but at the

later time, t̃ = 8. These figures show that, while drops have

formed for smaller values of |Z| (see Fig. 9), they have yet to do

so for larger values (see Fig. 10). This result is expected, as the

maximum growth rate in the x-direction is independent of Z,

while in the y-direction it decreases with increasing |Z|.

Therefore, for small values of |Z|, the drop formation is

effectively a one-step process, since the instability develops on

a similar timescale in both x and y directions. However, for

larger values of |Z|, drop formation is a two-step process: first

the ridges (approximately parallel to the y-axis) need to form due to

the (fast) instability in the x direction, and then these ridges need

to break, a process that occurs on a slower timescale.

To conclude this section, we show the simulations for the

same parameters used in Fig. 7–10 at a very late time t̃ = 500

(chosen to be sufficiently large that the film has fully dewetted

and no further evolution is anticipated). Fig. 11 and 12 show

that by this stage complete film breakup into droplets has

occurred in all cases. Although the drop sizes and spacing do

not differ significantly as |Z| varies, for strong anchoring

anisotropy we observe drops forming along aligned ‘tracks’.

This drop alignment is due to the ridge formation that occurred

prior to drop formation, and is confirmed by the slight aniso-

tropy observed in the Fourier transform data (see in particular

the bottom row of Fig. 12). These very large time results confirm

that the effect of directed substrate anchoring will always be

evident in the system, even after complete dewetting.

4.2 Spatially continuous substrate anchoring

Having gained some insight into the effect of the anchoring

anisotropy parameter Z, we now fix Z = �0.5 for the remaining

results and investigate the initial dewetting process (before the

final drop formation) for more exotic substrate anchoring

patterns. The value chosen for Z here is representative of typical

values for common NLCs, motivated by the values reported for

two widely-used NLCs MBBA (Z = �0.4229) and 5CB (Z = �0.4530).

We first consider a continuous choice for the imposed azimuthal

substrate anchoring pattern, the so-called ‘‘egg carton’’ potential,

fS(x,y):

fSðx; yÞ ¼
p

2
cos

8x

L

� �

cos
4y

L

� �

; x; y 2 ½0;L�; (32)

(recall the polar angle y is fixed at p/2 on the substrate due to the

strong planar anchoring) where as before, L = Plm with P = 40.

Fig. 13 shows snapshots of the evolving free surface height

at two time instances, before dewetting and as dewetting is

occurring, as in Fig. 7 and 9, respectively. The anchoring

Fig. 10 Setup from Fig. 8 at t̃ = 8. Fig. 11 Setup from Fig. 7 at t̃ = 500.

Fig. 12 Setup from Fig. 8 at t̃ = 500.
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pattern specified by eqn (32) is overlaid in white. This simula-

tion demonstrates that the general predictions from the LSA

results for uniform anchoring extend to this more complicated

anchoring scenario: ridge formation occurs first perpendicular

to the local anchoring direction. At later times (not shown here)

the ridges themselves undergo breakup along their length, into

droplets. As with the uniform substrate anchoring case, the

final droplet configuration obtained at large times retains the

characteristics of the underlying anchoring pattern, with droplets

aligned along ‘‘tracks’’ where the initial ridges formed.

4.3 Anchoring with ‘‘defect’’ patterns

To conclude our numerical study, we present selected simula-

tions of film evolution over substrates with anchoring patterns

that contain imposed topological defects at the origin; specifi-

cally, f is of the form

fDðx; y; sÞ ¼ s arctanðx=yÞ; x; y 2 �
L

2
;
L

2

� �

; (33)

where s is the topological winding number of the defect,

measuring the number of rotations of the director angle f as

a small planar circuit is traversed anticlockwise around the

defect (i.e., traversing such a circuit, f changes from 0 to 2ps).

Note that at the defect location the underlying Leslie–Ericksen

model breaks down (an accurate description of defects in NLCs

requires a more sophisticated model, such as Landau–de

Gennes, with an order parameter that allows for localized

‘‘melting’’ of the director structure at the defect core); none-

theless, we expect that our model eqn (12) may provide a

reasonable qualitative indication of how the presence of a

defect influences the overlying flow, in particular, the film

thickness evolution.

In Fig. 14 and 15, the free surface height is plotted at the

same dimensionless scaled times as before, t̃ = 5 and t̃ = 8

respectively, for four different values of the topological winding

number s: (a) s = 1/2; (b) s = �1; (c) s = �1/2; and (d) s = 1. The

anchoring patterns are again overlaid on the free surface

contour plot to emphasise how ridges form in the surface

perpendicular to the anchoring pattern.

To complete this section, we present a simulation of flow

over an anchoring pattern that incorporates multiple such

idealized defects. To construct a multi-defect pattern, the

domain is divided into quadrants, each containing one defect,

and hyperbolic tangent functions are used to connect neighbor-

ing quadrants smoothly. Fig. 16 plots the free surface height at

t̃ = 5 (a) and t̃ = 8 (b) for a simulation with an anchoring pattern

containing all four of the defects from Fig. 14. Similarly to our

previous results, initial dewetting leads to rivulets, which very

clearly form perpendicular to the underlying substrate anchor-

ing pattern. Ultimately (not shown here for brevity), these

Fig. 13 Plot of the evolving free surface height at t̃ = 5 (left) and t̃ = 8

(right) with continuous spatially-varying substrate anchoring (overlaid in

white) given by eqn (32). Anchoring anisotropy parameter Z = �0.5.

Fig. 14 Plot of the evolving free surface height at t̃ = 5 for defect

anchoring patterns (overlaid in white) defined by eqn (33) with winding

numbers (a) s = 1/2, (b) s = �1, (c) s = �1/2, and (d) s = 1. Anchoring

anisotropy parameter Z = �0.5.

Fig. 15 Setup from Fig. 14 at t̃ = 8.
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rivulets undergo breakup into droplets, the arrangement of

which reflects the imposed substrate pattern.

5 Conclusions

We have presented a simple model that allows us to explore

the effects of inhomogeneous planar substrate anchoring on

the free surface evolution of dewetting thin NLC films. Multiple

simulations show that with sufficiently large anisotropic

viscous effects, represented by larger absolute values of the

(negative) parameter Z (see eqn (14)), the intermediate-

time dynamics of the film are strongly affected relative to the

degenerate planar anchoring case, with ridges, and later

rivulets, forming perpendicular to the imposed local anchoring

direction, a result consistent with the predictions of linear

stability analysis (LSA). Furthermore, the underlying charac-

teristic lengthscale of instability, given by 2p/qm (see eqn (20)),

is unaffected by the value of the anchoring anisotropy para-

meter Z. At very long times our numerical results show that Z

has a clear effect on the final spatial distribution of drops.

In addition to our simulations on substrates with imposed

smoothly-varying anchoring patterns, we also present a number

of simulations of thin film flow over idealized substrate

‘‘defects’’. Though such structures clearly influence the mor-

phology of the evolving film, they do not (within the limitations

of the model presented here) themselves destabilize the film, as

might be expected. It would, therefore, be of interest in future

to consider physically-motivated modifications to the governing

equation (based, e.g. on the Landau–de Gennes framework, which

allows for a more realistic treatment of defects), to determine with

greater certainty whether defects may be capable of inducing

instability.
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22 P. Ziherl and S. Žumer, Eur. Phys. J. E: Soft Matter Biol. Phys.,

2003, 12, 361.

23 L. J. Cummings, Eur. J. Appl. Math., 2004, 15, 651.

24 M. A. Lam, L. J. Cummings, T.-S. Lin and L. Kondic, J. Eng.

Math., 2014, 94, 97.

25 M. A. Lam, L. J. Cummings, T.-S. Lin and L. Kondic, Eur.

J. Appl. Math., 2015, 25, 647.

26 V. S. Mitlin, J. Colloid Interface Sci., 1993, 156, 491.

27 U. Thiele, A. Archer and L. Pismen, Phys. Rev. Fluids, 2016,

1, 083903.

28 R. Craster and O. Matar, Rev. Mod. Phys., 2009, 81, 1131.

29 H. Kneppe, F. Schneider and N. Sharma, J. Chem. Phys.,

1982, 77, 3203–3208.

30 K. Skarp, S. Lagerwall and B. Stebler, Mol. Cryst. Liq. Cryst.,

1980, 60, 215–236.

Soft Matter Paper

P
u
b
li

s
h
e
d
 o

n
 0

9
 O

c
to

b
e
r 

2
0
2
0
. 
D

o
w

n
lo

a
d
e
d
 o

n
 1

1
/1

8
/2

0
2
0
 5

:5
1
:2

7
 P

M
. 

View Article Online


