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Effects of spatially-varying substrate anchoring on
instabilities and dewetting of thin nematic liquid
crystal films

@ Lou Kondic ©

Michael-Angelo Y.-H. Lam, ©and Linda J. Cummings
Partially wetting nematic liquid crystal (NLC) films on substrates are unstable to dewetting-type
instabilities due to destabilizing solid/NLC interaction forces. These instabilities are modified by the
nematic nature of the films, which influences the effective solid/NLC interaction. In this work, we focus
on the influence of imposed substrate anchoring on the instability development. The analysis is carried
out within a long-wave formulation based on the Leslie-Ericksen description of NLC films. Linear stabi-
lity analysis of the resulting equations shows that some features of the instability, such as emerging
wavelengths, may not be influenced by the imposed substrate anchoring. Going further into the non-
linear regime, considered via large-scale GPU-based simulations, shows however that nonlinear effects
may play an important role, in particular in the case of strong substrate anchoring anisotropy. Our
simulations show that instability of the film develops in two stages: the first stage involves formation of
ridges that are perpendicular to the local anchoring direction; and the second involves breakup of these
ridges and formation of drops, whose final distribution is influenced by the anisotropy imposed by the
substrate. Finally, we show that imposing more complex substrate anisotropy patterns allows us to reach
basic understanding of the influence of substrate-imposed defects in director orientation on the

rsc.li/soft-matter-journal instability evolution.

1 Introduction

Nematic liquid crystal (NLC) is one of several possible liquid
crystalline states of matter, intermediate between a solid (crystal)
and a liquid, that can exist. Typically, the molecules of NLCs
are rod-like and interact electrostatically, which leads to them
exhibiting short-range directional ordering, an elastic response
under deformation, and anisotropic viscosity when they flow.
At interfacial boundaries, whether free or rigid, NLC molecules
typically have a preferred orientation, a phenomenon known as
anchoring. Due to the electrostatic interactions between mole-
cules, anchoring affects strongly molecular orientation within
the bulk of the NLC, and how the sample flows and deforms.
While NLC films are interesting in their own right, we note that
such films, as well as the mathematical models used for their
description, share many common aspects with active fluids,
which often involve rod-like particles that may attain nematic
order. We refer the reader to excellent reviews discussing a
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number of related active-matter systems,"> as well as to specific
recent research papers that focus on the relation between active
and passive anisotropic films.*™®

A fairly extensive experimental literature exists on the beha-
vior of thin NLC films with a free surface (see, e.g. works by
Cazabat et al.,” Delabre et al.,* Herminghaus et al,” and van
Effenterre and Valignat'® among many others). In all of these
works it is thought that the anchoring is spatially homoge-
neous; typically homeotropic (molecules perpendicular to inter-
face) at the free surface, and degenerate planar at the substrate
(molecules align parallel to the substrate in the orientation that
minimizes the bulk elastic energy). Our earlier theoretical
work'""'* considered this situation in detail from both an
analytical and numerical perspective, presenting a model that
could replicate the instability and dewetting phenomena
observed in the experiments. Non-degenerate (directional),
spatially-varying substrate anchoring has been considered
experimentally, but primarily within confined rigid geometries
(a sandwich configuration), with a view to engineering multi-
stable liquid crystal display (LCD) devices;*™> some more
recent works also consider the details of anchoring effects
for active films.® We are however unaware of experimental
or theoretical work that studies the effects of nonuniform
substrate anchoring on flow, spreading and instability of free
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surface NLC films. Perhaps the most directly relevant work of
which we are aware, which takes account of the effects of local
molecular orientation on flow, is that of Forest et al.,'® who use a
diffuse-interface framework within the Doi-Hess kinetic theory for
liquid crystal polymer droplets to study NLC droplets computa-
tionally under imposed shear in the presence of internal defects.

In this paper we present a minimal model for the flow and
dewetting of thin (nanoscale) films of NLC on a flat substrate at
which the strong planar anchoring is allowed to vary spatially.
Free surface anchoring is assumed to be weak and homeo-
tropic, following our earlier work.""'” The model is based on
the Leslie-Ericksen theory for NLCs, and accounts for van
der Waals interactions between the NLC and the substrate, in
addition to the bulk elasticity and surface energy contributions.
In the spirit of formulating the simplest model capable of
capturing the key physics, we neglect additional surface effects
such as interfacial dissipation that could play a minor role in
influencing the dynamics. This is also our motivation for
choosing the Leslie-Ericksen model over a more comprehen-
sive (but complicated) theory such as Q-tensor theory: the
model we derive is much more tractable (analytically and
numerically) than would be possible by starting from alterna-
tive models. We refer the reader to the review by Rey'® for an
overview of works that use complementary approaches to
modeling thin NLC films (such as the Landau-de Gennes
formulation); see also more recent relevant work by Rey and
Herrera-Valencia on modeling the isotropic-to-nematic transi-
tion in a dynamic wetting context using this approach,'® as well
as the above-referenced work by Forest et al.*®

In the present work, we focus particularly on the effect that
local directionality of substrate anchoring has on the evolution
of the overlying film, and the droplet patterns obtained at large
times after film breakup. Unidirectional anchoring is consi-
dered first by way of illustration, being sufficiently simple that
linear stability analysis can be carried out and used to predict
results. Large-scale simulations are presented using an ADI
scheme implemented on a GPU, first for the unidirectional
anchoring case, and then for more complex anchoring patterns.
Our results reveal that local directionality of substrate anchoring
can affect significantly the patterns that emerge when a NLC film
destabilizes and breaks up. It is our hope that future experimental
work will be able to confirm our model predictions.

The remainder of our manuscript is organized as follows.
In Section 2, we present the asymptotic model that we will use
for describing evolution of NLC films. The presentation focuses
in particular on the inclusion of spatially-dependent substrate
anchoring, since other aspects of the model can be found in our
1117 Section 3 discusses linear stability analysis of NLC
films in a few simple setups that outline the influence that
nonuniform substrate anchoring is expected to have on instability
development. The nonlinear stage of the evolution is considered via
fully-implicit large-time simulations that are presented in Section 4.
Here we show that nonlinear effects play an important role in the
instability development and resulting pattern formation. Section 5
is devoted to a summary of key findings and discussion of possible
future research directions.

earlier work.
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2 Model description

Associated with each rod-like NLC molecule is an electrical
dipole moment, the interactions between which lead to an
elastic response under deformation, resulting in short-range
directional ordering of the molecules. To describe the flow of
NLC, in addition to the velocity field, ¥ = (¥,V,,V3) = (V,4,W), one
must also track the orientation of the NLC molecules, modeled
by a director field, n = (n4,n,,n3), a unit vector representing the
local average orientation. (Throughout this paper, hatted vari-
ables denote dimensional quantities and unhatted variables
denote dimensionless ones.) The unit vector is typically aligned
with the long axis of the NLC molecules, see Fig. 1, and it is
often convenient to characterize the director field in terms of
its polar angle, 0, and azimuthal angle, ¢, considered as
functions of Cartesian space variables (%, J, 2) = (£, %5, X3),
i.e., n = (sin 0 cos ¢, sin 0sin ¢, cos 0).

The flow of NLCs may be modeled using the Leslie-Ericksen
(LE) equations,*® an extension of the Navier-Stokes equations,
with an additional equation modeling conservation of energy.
For brevity, we do not discuss the details of the derivation of the
LE model, but note that it is based on four conservation laws:
energy, linear momentum, angular momentum, and mass.
Assuming isothermal static deformations, the conservation of
energy and angular momentum equations may be combined.
In addition, to model the anisotropic viscosity, the viscous
stress tensor, fij, is assumed to be a linear function of é;, the
symmetric rate of strain tensor; and Nj, the rotation of the
director field in the reference frame of moving antisymmetric
deformations (characterized by the antisymmetric strain rate
tensor, @;). The quantity NJ may be interpreted as the addi-
tional rotational velocity component of the director field due to
the (external) elastic response, which is separate from rotation
imparted by the (internal) velocity field. These quantities are
defined as

s L(Oh 0N\ o om 1 (0n 0,
“=0\ox Tox) T e M 1T \ox %)

(1)

Under these broad assumptions, sixteen coefficients are
required to define the viscous stress tensor; however, applying

Director Field n

v

Molecule .

N\ ;

¢

X

Fig. 1 Schematic of director field (red arrow) relative to liquid crystal
molecule (blue ellipse), and its description via spherical polar angles.
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the laws of thermodynamics this number may be reduced to
just six, a;, 1 = 1, 2, 3, 4, 5, 6, simplifying the viscous stress
tensor to

fy‘ = &mknpékpninj + &ZN,-nj + 5(3]\_’1‘71[ + 5(4éy + &séiknkrl_, + &Géjknkni.
(2)

Using the Onsager relation, &, + &3 = & — s, further reduces the
number of independent coefficients to five. Note that &, here
plays the role of the viscosity coefficient for an isotropic
Newtonian fluid.

In addition to the internal forces captured by the stress
tensor, the LE equations model external body forces on the
director field,

Gi = 11N + a8y, 3)

where 9, = &, — &3 is the rotational viscosity (giving rise to a
force on the NLC molecules due to rotational flow) and 7, = &5 —
e is the irrotational viscosity (giving a shear force on the
molecules). To model the elastic response of the NLC, the bulk
(Frank) elastic energy W is assumed to be a positive definite
quadratic function of spatial derivatives of the director field.
Specifically,

oI, o 20 s 5 2 5 5 2

W:i[ 1(V-n)"+K>(n-V xn) +K;|n x V x n| ], (4)
representing splay (K;), twist (K,) and bend (K;) deformation,
see Fig. 2. It is common to use the so-called one-constant
approximation,®'®*%?2 g = K, = K, = K;, a practice we also
follow.

For an incompressible fluid, the LE equations are given by

ow o [ow N R on;
- —_—————=
\ \ / J —_—
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Fig. 2 Schematics of the deformation types modeled in the bulk elastic
energy (4) representing pure (a) splay, (b) twist, and (c) bend.
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respectively representing the combined conservation of energy
and angular momentum (for isothermal static deformations of
the NLC), conservation of linear momentum, and conservation
of mass for an incompressible fluid. For brevity, we will refer to
eqn (5) as the energy equation.

2.1 Nondimensionalization and scalings

To nondimensionalize the LE eqn (5)(7) for the “thin film”
scenarios we seek to describe, we define five scaling para-
meters: H, a representative film thickness; L, the lengthscale
of variations in the plane of the substrate, (£,5); T, the time-
scale for fluid flow; 7,, the timescale of elastic reorientation of
NLC molecules; and /i = &4, the representative viscosity corres-
ponding to the isotropic Newtonian fluid case. In addition,
we define the film aspect ratio, § = H/L, and assume 6 « 1
(the long wave approximation). The values assigned to the
scaling parameters are chosen based on the experiments of
Herminghaus et al.® and Cazabat et al.” for thin films of NLC,
A =100 nm, L =10 um, and T¢ = 1 s. We will see that viscosity
appears in our final model via a single dimensionless parameter #,
a ratio of a linear combination of other system viscosities to a,.
We will discuss its value later. As discussed below, provided
T. « T the exact value of 7 is irrelevant for our model.

We note that in dewetting experiments, a so-called ““forbidden
range” of film thicknesses (10 nm to 100 nm) is observed, within
which NLC films are observed to be unstable, as well as a
minimum film thickness, corresponding to a trilayer of mole-
cules just a few nanometers thick.” We therefore define f to be
the upper thickness threshold for film stability and b as the
minimum film thickness (which we will refer to as the equili-
brium film thickness). Consistent with available data for NLC
systems, we set these values to $ =100 nm and 5 = 1 nm.

2.2 Energetics: weak anchoring model

Scaling quantities as follows,

o = 040,

and assuming further that the timescale of elastic reorientation
is much faster than that of fluid flow, 7, « 7%, the (dimension-
less) external body forces, G;, in the energy eqn (5), are seen to
be negligible. To leading order then, eqn (5) decouples from
eqn (6) and (7), and reduces simply to an equation for the
director field, n: the problem of minimizing the free energy of
the system'"'”** with respect to variations in the polar angle
and the azimuthal angle ¢. Upon solving, 0 and ¢ are deter-
mined to be of the form

H(xvyvzit) = Cl(x)yyt)z + CZ(xy)t) and ¢(xﬁ’,t) = C3(x7y7t)y (9)

Soft Matter, 2020, 16,10187-10197 | 10189
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where ¢;(x,y,t), ca(x,),t), and c3(x,,t) are independent of z and
must be chosen to satisfy appropriate “anchoring” boundary
conditions at both the substrate and the free surface. The
director field thus bends but does not twist across the layer:
the degree of bending is determined by the imposed anchoring
conditions, discussed below, thus the director field is a function
of the instantaneous fluid height, z = A(x,?).

At an interface, NLC molecules typically have a preferred
orientation, often called the anchoring condition. In many
experiments the substrate is treated, either chemically or
mechanically, such that molecules align in the plane of the
substrate (planar anchoring), while at the free surface mole-
cules often align perpendicular to the surface (homeotropic
anchoring, a special case of conical anchoring in which the
molecules prefer to orient on the surface of a cone of given
angle with axis perpendicular to the free surface), see Fig. 3.
This situation, where the director is required to adopt different
orientations at opposite sides of a layer, is referred to as
“antagonistic anchoring”. For relatively thick films the director
can bend across the film to accommodate the two different
anchoring conditions (see Fig. 3(a)). However, for very thin
films or close to a contact line, strict imposition of the
antagonistic conditions can lead to large energy penalties in
the bulk of the fluid due to the rapid spatial variations that
result in the director field (see Fig. 3(b)). To alleviate this issue,
we first note that in practice, anchoring strength at the
substrate is usually stronger than at the free surface, therefore,
we impose strong planar anchoring on the substrate and
implement a weak free surface anchoring model as used in
our previous work,'"'>?*?% which allows the polar angle at the
free surface to relax from the homeotropic state (valid for thick
films) to the planar state, as the film thickness # approaches
the equilibrium thickness (see Fig. 4).

Since the azimuthal director angle ¢ is found to be inde-
pendent of the vertical coordinate z, we assume it is entirely

\
N
N

(a) (b)

Fig. 3 Schematic of molecular orientation in NLC layer with strong
homeotropic free surface anchoring and strong planar substrate anchoring
for (a) a thick film and (b) a thin film.
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Fig. 4 Schematic of molecular orientation in NLC layer with weak homeo-
tropic free surface anchoring and strong planar substrate anchoring for (a) a
thick film and (b) a thin film.

determined by the (strong) substrate anchoring, which we allow
to vary spatially: ¢ = ¢s(x,y). Our particular focus in this paper is
to investigate how such imposed spatially-varying substrate
anchoring can influence the evolution of the overlying NLC
layer. In practice, inhomogeneous anchoring could be achieved
by a variety of techniques, including simple mechanical means
such as rubbing a surface with a cloth in a prescribed direction.
Therefore, we will prescribe ¢g(x,y) as a boundary condition in
our model.

Under these modeling assumptions the director angles are
given by

m(h)
h

0(x,y,z) = 0s + (0 — 0s)

Z

and
qb(x,y) = ¢S(x7y)7 (10)

where A = h(x,y,t) is the free surface height, m(h) is a function
that captures the details of the weak anchoring, and for
generality, we use the subscripts S and F to denote the pre-
scribed anchoring angles at the substrate and free surface,
respectively (for the specific case discussed above, 05 = /2 while
0r = 0). Following our earlier work'"**?*23 the weak anchoring
function is chosen to be of the form

%2[}2; g(h) = %[1 + tanh (%)] , (11

m(h) = g(h)
where f§ = ﬁ/ﬁ is a film thickness at which bulk elastic energies
are comparable to surface anchoring energies and g(h) is a
‘cutoff’ function (with width controlled by w, where we take
w = 0.05 throughout this work) that forces the free surface
anchoring to match that of the substrate for film thicknesses
close to the equilibrium film thickness b = b/H « p.Forh » f
we have m(h) ~ 1, corresponding to the preferred free surface
anchoring angle being attained (0(x,y,k) ~ 0 in (10)). However,

This journal is © The Royal Society of Chemistry 2020
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as h — b (the minimum thickness permitted by the governing
partial differential equation, given in (12) below, on account of
the disjoining pressure term specified in (16)), the function
m(h) becomes very small and 0(x,y,h) ~ 0s in (10).

2.3 Long wave equation

We now briefly discuss the long wave model that results from
eqn (6) and (7) with the scalings of Section 2.1, referring the
reader to Lam et al.>* for full details. With the expressions given
in eqn (10) for the director angles 6 and ¢, we substitute in
eqn (6) to obtain partial differential equations that depend only
on the free surface height, &; the velocity field, v; and the
pressure, p.

Under the long wave approximation, the leading-order
transverse momentum equation (z-component of eqn (6)) may
be solved for the pressure on application of the normal stress
balance boundary condition, while the leading-order in-plane
momentum equations can be integrated over the film height
from z = 0 to z = A(x,y,t), giving (after application of the usual
no-slip and tangential stress boundary conditions) a fourth-
order partial differential equation for the evolution of the free
surface height. Motivated by previous work,"'"'*> we choose
to express the resulting long-wave equation in terms of the
variational or gradient dynamics formulation,”®”” in which the
evolution of the free surface height is given by
% +V- {Q(h, ¢)V(Z—5)] =0, (12)

where Q is the mobility function and E is total interfacial energy
(Gibbs energy). The mobility function is given by

cos2¢p  sin2¢
A+ 1/( )} ", (13)
—sin2¢ cos2¢

Q(hv ¢) =

where I is the identity matrix,

) 241 n

A:m, u:—m, N =03+ s, (14)
are anisotropic viscosities, and we will refer to 5 as the anchoring
anisotropy parameter. Note that for all NLCs for which we have
data, n € (—1,0); we assume this henceforth. In the special case
1 = 0 (studied in our previous work'") the governing equation no
longer depends on the azimuthal director angle, ¢; this case is
known as degenerate planar substrate anchoring. The Gibbs
energy for our NLC system is given by

Vh-Vh

E:%"(1+ 3 )+¥'(h), (15)

where the first term on the right hand side is the surface tension
contribution; and the second term,

- _%_1/17, n(h) = # {(%)3— (1‘}1)2} +§[ﬂ1§lh)}27 (16)

is the contribution from the effective disjoining pressure I1(#4), the
first part of which is the power-law form of the disjoining pressure
commonly used in the literature (see the review of Craster and

This journal is © The Royal Society of Chemistry 2020
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I1(h)

Linearly Unstable

_6 L
1072 107! 10° 10
h

1

Fig. 5 Plot of the disjoining pressure eqn (16) as a function of the film
height, for the parameter values of (17). Region between the vertical
dashed red lines denotes the linearly unstable regime.

Matar®® for an in depth discussion) consisting of Born repulsion
and the van der Waals force; and the second term is the elastic
contribution due to the antagonistic anchoring conditions.
The nondimensional coefficients &, %", and ./, are the ratios
of surface tension forces, disjoining pressure forces, and elastic
forces respectively, to the viscous forces. The values of parameters
used in our model simulations are based on experiments,”® as
discussed in some detail in our earlier work,'" and are set to

% =0.0857, A =36.0, N =167, f=1, b=0.01,

(17)

values that lead to an effective disjoining pressure IT of the
form shown in Fig. 5. The parameter 5 is the key to the
influence of spatially-varying substrate anchoring in the model:
in line with values for the widely-used NLCs MBBA (i = —0.42>°)
and 5CB (17 = —0.45°°) we use values in the range € [—0.5,0] in
our simulations.

3 Linear stability analysis

To gain initial insight into the effects of substrate anchoring (¢)
and the anchoring anisotropy parameter #, we first simplify the
governing equation by assuming uniform planar substrate
anchoring (¢ is constant, while § = ©/2 on z = 0). Furthermore,
note that the coordinate system may be rotated such that the x
axis is parallel to the (uniform) anchoring; therefore, with no
loss of generality we may assume ¢ = 0. We begin by using LSA
to understand the stability of such a flat film. We consider flat
films with free surface perturbations either parallel or
perpendicular to the anchoring direction, specifically

h(x,t) = Ho[1 + ee®'™ ™ or h(y,t) = H[1 + ee® 7],

(18)

where ¢ « 1; ¢ and w are the wavenumber and growth rate of
the perturbations; and || and L subscripts respectively denote
quantities parallel (x-direction) and perpendicular (y-direction)
to the substrate anchoring ¢.

Substituting eqn (18) into eqn (12) with ¢ = 0, the general
form (dropping subscript notation) of the dispersion
relations is

o = —cHy ¢*[6q* — IT'(Hy)]. (19)

Soft Matter, 2020, 16, 10187-10197 | 10191
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The ¢H,> factor here arises from the mobility function of
eqn (13) and is present also for Newtonian films (for which
A" =0=v). The term in square brackets is a result of the Gibbs
energy (15), which determines the transition between linear
stability (II'(H,) < 0) and instability (II'(H,) > 0) as a function
of the initial film thickness (see Fig. 5 for the stability regimes
as they relate to the effective disjoining pressure and film
height). By computing the most unstable wavenumber,

[T’ (H,
q|m = 4dLm = qdm = 2((50)7 (20)

it may be seen that the Gibbs energy determines the lengthscale
of instabilities. We fix the mean film thickness to the linearly
unstable value H, = 0.2, referring the reader to our previous
work' ™" for a detailed study of how stability properties depend
on mean film thickness.

For a given value of H,, the scaling factor ¢ affects only the
time-scale of instability. The most unstable growth rates are

_ HO T (Ho)”

4% (21)

D|m = 0|Wm, DI m =01Wn, Wy
The scaling factors ¢ = [2(1 + )] " (solid blue curve) and ¢, = 0.5
(dashed horizontal red line) are plotted in Fig. 6 showing that,
while perturbations in both x and y directions develop on the
same timescale when 7 = 0, the instability timescale increases with
|#7| in the x-direction, while in the y-direction it is unchanged.

Considering the ratio of the growth rates

r—ﬂ—ﬂ—iij— 1
oL oL A—v 147

(22)

W 0]
it may be seen that for n € (—1,0) increasing || increases the
anisotropic viscous effects. Similar to our previous works'"'?
for two-dimensional flow (where ¢ = 0 at the substrate), we
define a new timescale,

f=(1+ L. (23)
6 -
4 L
5
2 L
0 1 |
-1 -0.8 -0.6 -04 -0.2 0

Fig. 6 Plot of the scaling factors g = A + v =[2(1 + 1t (solid blue curve)
and ¢, = A — v = 0.5 (dashed horizontal red line) as a function of
n € (=1,0).
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Under the new timescale, the scaled growth rates are @ m = ®m
and @ | ;m = (1 +1)wm, and for y < 0, the maximum growth rate
is independent of 7. It is therefore expected that dewetting and
drop formation occur on the time scale 7 for all considered 7
values and any observed differences in simulation results may
likely be due to the influence of the value of » on the nonlinear
stages of instability development.

To extend the LSA to a general three-dimensional film with
height A(x,y,t) (again in the special case ¢ = 0, strong substrate
anchoring parallel to the x-direction), we first note that the
governing eqn (12) takes the form of a conservation law,

% LV F=0, F= Q(h)v(z_lf) = Q(h)[¢VVh — IT'(h)Vh],

(24)

with flux F (E is defined in eqn (15)). Rescaling time as in (23),
the governing equation may be expressed as

oh o
V.= 25
ot 0, (25)

where F = (F,F) = (F),F ), with
F| = G 0cxch — WIT (h)Och + €1 Dy,
and
Fi = (1+n)[6h0,,h — K IT'()d,h + €1 0yih].  (26)

The limit n - —1 (or |1 + 5| « 1), corresponding to strong
anisotropic effects, indicates that flux (flow) perpendicular to
the substrate anchoring (y direction) is negligible. Dependence
on y enters in this limit only via the last term in F|, which acts
(via surface tension) to smooth any nonuniformities in the
y-direction.

To apply LSA, we assume a solution of the form

h(x,y,t) — Ho[l + SequHxiJquyi]’ [27)
with
_ 3r., 2 2o (- 2 2 /
w = —Ho'[q" + (1 +n)q."[¢(q)" + q.7) — T'(Ho)].  (28)
Alternatively, if we express (g,4.) in terms of a plane polar

representation, ie., g, = gcos($) and g, = gsin($), the disper-
sion relation eqn (28) may be expressed as

o=—-Heq [fg(f — IT'(Hp)] <1 + g[l - <:os(2.9)]>7 (29)

an extension of the one-dimensional LSA dispersion relation

eqn (19) with o = 1 +g[1 —cos(29)].

4 Nonlinear regime

In this section we present simulation results for the model
outlined in the previous section. We focus in particular on the
effects of imposed substrate anchoring patterns on dewetting,
as revealed by the evolution of perturbed flat films. We refer the
reader to our previous works'"'? for a detailed analysis of
the stability properties of thin films of NLC in the presence
of degenerate planar substrate anchoring (as opposed to the
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non-degenerate, directed planar substrate anchoring consid-
ered here). The numerical scheme is a hybrid finite volume/
finite difference method with Crank-Nicholson type discretiza-
tion. To reduce the computational complexity, an alternating
direction implicit (ADI) scheme is implemented, and to account
for implicit nonlinear terms a (pseudo)-Newton iterative
scheme is applied. The reader is referred to our previous work
for further details on the code."

We divide our simulation results into three main categories:
(1) uniform (unidirectional) anchoring (as discussed in Section 3
above); (2) smoothly-varying nontrivial anchoring patterns; and
(3) imposed substrate anchoring patterns that mimic defects in
the director field. To simulate the evolution of a randomly
perturbed flat film of NLC, perturbations are generated with
pseudo-Perlin noise, sufficiently exciting all modes in the two-
dimensional Fourier transform independently, see Lam et al.*?
for more details. Briefly, for all simulations in this paper, the
initial condition is of the form

h[x’y’t = O) = Ho(l + Slc[x’y)l)r X)) € [O’L]’ (30)

where H, = 0.2, L = Pl P is a positive integer (set to 40 for all
simulations in this paper), and i, = 21/qy, is the wavelength of
maximum growth, with g, given by eqn (20). The perturbations
are specified by {(x,y), which is the inverse Fourier transform of

]701/2

{(q09y) = g + ¢y°T "2 exp(2na(gsg,)d)],  (31)

¢ = 0.01 characterizes the noise amplitude, o is a positive
constant, and a(q,q,) is a random variable, uniformly distrib-
uted on [—1,1] for each (g.,q,). In addition, {(x,y) is scaled so
that |{(x,y)] < 1 and we fix o = 200/N, where N is the number of
discretization points in the x and y directions.

4.1 Uniform substrate anchoring

As noted earlier in Section 3, with uniform anchoring (¢
constant) the coordinate system may be rotated appropriately,
so that it is sufficient to consider the case ¢ = 0. To study the
effect of the anchoring anisotropy parameter #, which measures
the strength of the directionality in the substrate anchoring via
eqn (13) and (14), we perform simulations for # = 0, —0.1, —0.2,
—0.25, —0.35, and —0.5, which correspond to the growth rate
ratios (defined by eqn (22)) r ~ 1, 1.1, 1.25, 1.33, 1.5, and 2, i.e.
the growth rate of perturbations in the x direction ranges from
the same, up to twice as fast, as that in the y-direction. In
addition, to quantify the effect of the value of # on the film
evolution, we compute the magnitude of the two-dimensional
Fourier transform of the perturbation to the free surface height.
To reduce the amount of noise, the Fourier transform is
convoluted with a Gaussian filter."?

Fig. 7 and 8 show early-time results for a flat film, perturbed
as in eqn (30), evolving on a substrate with uniform anchoring
in the x-direction. (Later times are shown in Fig. 9 and 10, and
very late times in Fig. 11 and 12, discussed below.) The top rows
show snapshots of the free surface evolution for the range of
chosen #-values (n = 0, —0.1, and —0.2 for Fig. 7, and # = —0.25,
—0.35, and —0.5 for Fig. 8). The free surface height in each case
is plotted at the time 7 = 5w, ' (see eqn (23)), so that the
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Fig. 7 Snapshots of simulations with increasing absolute values (left to
right) of the anchoring anisotropy parameter n = 0, —0.1, —0.2, shown at
scaled time t = 5w, (see eqn (23)). Top row shows contour plots of free
surface height h, obtained by solving eqn (12), while bottom row shows the
corresponding magnitude of the two-dimensional Fourier transform of the
free surface height. For this figure (and all following ones) the domain size
in both x and y directions is L = 401, where /i, = 21/gn, is the wavelength
of maximum growth, with g, given by eqn (20).
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Fig. 8 Simulation results using (left to right) n = —0.25, —0.35, —0.5; the
other parameters are as in Fig. 7.
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Fig. 9 Setup from Fig. 7 att = 8.

instability should be equally well-developed for each case
shown. The simulations show that, as |n| increases (left to right),
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Fig. 10 Setup from Fig. 8 at = 8.

the instability pattern becomes more wavelike, with ridges
forming perpendicular to the anchoring direction.

Focusing on the plots of the magnitude of the Fourier
transform (bottom rows in Fig. 7 and 8), we observe that for
degenerate planar substrate anchoring (1 = 0, bottom left part
of Fig. 7), the dominant wavenumbers form a ring, (¢./qm)” +
(4y/9m)* = 1; as expected, all wavenumbers that correspond to
the most unstable wavenumber, g,, from LSA eqn (20), are
equally excited. Increasing || concentrates the dominant wave
numbers around (g,/¢m)* = 1, indicating that perturbations
along the x-axis dominate, confirming the LSA prediction, see
eqn (22), for the ratio in growth rates: i.e., as |n| increases, for
the chosen uniform anchoring, perturbations in the x-direction
grow faster than in the y-direction.

It may also be seen by comparing Fig. 7 and 8 (top row in
each) that for smaller values of ||, more green/blue regions are
observed in the height plots, indicating that dewetting occurs
for early times. This conclusion is also supported by Fig. 9 and
10, which show the same simulations as Fig. 7 and 8, but at the
later time, £ = 8. These figures show that, while drops have
formed for smaller values of || (see Fig. 9), they have yet to do
so for larger values (see Fig. 10). This result is expected, as the
maximum growth rate in the x-direction is independent of #,
while in the y-direction it decreases with increasing |g].
Therefore, for small values of |y|, the drop formation is
effectively a one-step process, since the instability develops on
a similar timescale in both x and y directions. However, for
larger values of |y|, drop formation is a two-step process: first
the ridges (approximately parallel to the y-axis) need to form due to
the (fast) instability in the x direction, and then these ridges need
to break, a process that occurs on a slower timescale.

To conclude this section, we show the simulations for the
same parameters used in Fig. 7-10 at a very late time = 500
(chosen to be sufficiently large that the film has fully dewetted
and no further evolution is anticipated). Fig. 11 and 12 show
that by this stage complete film breakup into droplets has
occurred in all cases. Although the drop sizes and spacing do
not differ significantly as |n| varies, for strong anchoring
anisotropy we observe drops forming along aligned ‘tracks’.
This drop alignment is due to the ridge formation that occurred
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Fig. 11 Setup from Fig. 7 at t = 500.
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Fig. 12 Setup from Fig. 8 at T = 500.

prior to drop formation, and is confirmed by the slight aniso-
tropy observed in the Fourier transform data (see in particular
the bottom row of Fig. 12). These very large time results confirm
that the effect of directed substrate anchoring will always be
evident in the system, even after complete dewetting.

4.2 Spatially continuous substrate anchoring

Having gained some insight into the effect of the anchoring
anisotropy parameter #, we now fix n = —0.5 for the remaining
results and investigate the initial dewetting process (before the
final drop formation) for more exotic substrate anchoring
patterns. The value chosen for # here is representative of typical
values for common NLCs, motivated by the values reported for
two widely-used NLCs MBBA (i = —0.42>°) and 5CB (i = —0.45%°).
We first consider a continuous choice for the imposed azimuthal
substrate anchoring pattern, the so-called “egg carton” potential,

Ps(xy):
ds(x,y) = gcos (8%) cos (4L_y)’ x,y €10, L], (32)

(recall the polar angle 6 is fixed at 7/2 on the substrate due to the
strong planar anchoring) where as before, L = P/,,, with P = 40.
Fig. 13 shows snapshots of the evolving free surface height
at two time instances, before dewetting and as dewetting is
occurring, as in Fig. 7 and 9, respectively. The anchoring
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Fig. 13 Plot of the evolving free surface height att = 5 (left) and t = 8
(right) with continuous spatially-varying substrate anchoring (overlaid in
white) given by eqgn (32). Anchoring anisotropy parameter n = —0.5.

pattern specified by eqn (32) is overlaid in white. This simula-
tion demonstrates that the general predictions from the LSA
results for uniform anchoring extend to this more complicated
anchoring scenario: ridge formation occurs first perpendicular
to the local anchoring direction. At later times (not shown here)
the ridges themselves undergo breakup along their length, into
droplets. As with the uniform substrate anchoring case, the
final droplet configuration obtained at large times retains the
characteristics of the underlying anchoring pattern, with droplets
aligned along “tracks” where the initial ridges formed.

4.3 Anchoring with ‘“defect” patterns

To conclude our numerical study, we present selected simula-
tions of film evolution over substrates with anchoring patterns
that contain imposed topological defects at the origin; specifi-
cally, ¢ is of the form

op(x,y;s) = sarctan(x/y), x,y€ [—%, %], (33)

where s is the topological winding number of the defect,
measuring the number of rotations of the director angle ¢ as
a small planar circuit is traversed anticlockwise around the
defect (i.e., traversing such a circuit, ¢ changes from 0 to 27xs).
Note that at the defect location the underlying Leslie-Ericksen
model breaks down (an accurate description of defects in NLCs
requires a more sophisticated model, such as Landau-de
Gennes, with an order parameter that allows for localized
“melting” of the director structure at the defect core); none-
theless, we expect that our model eqn (12) may provide a
reasonable qualitative indication of how the presence of a
defect influences the overlying flow, in particular, the film
thickness evolution.

In Fig. 14 and 15, the free surface height is plotted at the
same dimensionless scaled times as before, f = 5 and 7 = 8
respectively, for four different values of the topological winding
number s: (a) s = 1/2; (b) s = —1; (¢) s = —1/2; and (d) s = 1. The
anchoring patterns are again overlaid on the free surface
contour plot to emphasise how ridges form in the surface
perpendicular to the anchoring pattern.

To complete this section, we present a simulation of flow
over an anchoring pattern that incorporates multiple such
idealized defects. To construct a multi-defect pattern, the
domain is divided into quadrants, each containing one defect,
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Fig. 15 Setup from Fig. 14 att = 8.

and hyperbolic tangent functions are used to connect neighbor-
ing quadrants smoothly. Fig. 16 plots the free surface height at
£=5(a)and ¢ = 8 (b) for a simulation with an anchoring pattern
containing all four of the defects from Fig. 14. Similarly to our
previous results, initial dewetting leads to rivulets, which very
clearly form perpendicular to the underlying substrate anchor-
ing pattern. Ultimately (not shown here for brevity), these
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Fig. 16 Free surface height evolution over a substrate with variable
anchoring incorporating all four considered defect types.

rivulets undergo breakup into droplets, the arrangement of
which reflects the imposed substrate pattern.

5 Conclusions

We have presented a simple model that allows us to explore
the effects of inhomogeneous planar substrate anchoring on
the free surface evolution of dewetting thin NLC films. Multiple
simulations show that with sufficiently large anisotropic
viscous effects, represented by larger absolute values of the
(negative) parameter n (see eqn (14)), the intermediate-
time dynamics of the film are strongly affected relative to the
degenerate planar anchoring case, with ridges, and later
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rivulets, forming perpendicular to the imposed local anchoring
direction, a result consistent with the predictions of linear
stability analysis (LSA). Furthermore, the underlying charac-
teristic lengthscale of instability, given by 2n/g., (see eqn (20)),
is unaffected by the value of the anchoring anisotropy para-
meter #. At very long times our numerical results show that »
has a clear effect on the final spatial distribution of drops.

In addition to our simulations on substrates with imposed
smoothly-varying anchoring patterns, we also present a number
of simulations of thin film flow over idealized substrate
“defects”. Though such structures clearly influence the mor-
phology of the evolving film, they do not (within the limitations
of the model presented here) themselves destabilize the film, as
might be expected. It would, therefore, be of interest in future
to consider physically-motivated modifications to the governing
equation (based, e.g. on the Landau-de Gennes framework, which
allows for a more realistic treatment of defects), to determine with
greater certainty whether defects may be capable of inducing
instability.
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