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ABSTRACT

LoRa is a popular Low-Power Wide-Area Networking (LP-
WAN) technology that allows devices powered by a ten year
AA battery to connect to radio infrastructure miles away.
One of the most promising features of LoRa is the ability to
track the location of radios from a distance, enabling applica-
tions ranging from inventory tracking, smart infrastructure
monitoring and structural health sensing. Yet, state-of-the-
art LoRa localization systems experience errors of several
tens or even hundreds of meters in location tracking, owing
to the narrow bandwidth and limited battery life of LoRa
devices.

This paper presents OwLL, a LoRa localization system that
limits location error to few meters with commodity LoRa
clients in a wide-area network. Our key innovation is the
development of a distributed base station network made of
individually low-cost components that together span a wide
bandwidth that encompasses the TV whitespaces and offers
high aperture, crucial to localization accuracy. We demon-
strate how this network can aggregate signal measurements
made across multiple different narrowband channels of a
LoRa client to triangulate it at fine accuracy. We implement
and evaluate OWLL on a testbed spanning a large university
campus centered in a major U.S. city and demonstrate a 9 m
(across line-of-sight and non-line-of-sight) median error in
localization.
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CCS CONCEPTS

« Networks — Wireless access points, base stations
and infrastructure; Location based services; « Computer
systems organization — Sensor networks.
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1 INTRODUCTION

Low Power Wide Area Networks (LP-WANSs) are touted to
provide long range ubiquitous connectivity for everyday
devices with a AA battery. One such LP-WAN technology
is LoRa that aims to enable IoT devices to send data at a
few kbps to a base station several kilometers away while
maintaining a 10 year battery life. An important vision with
which LoRa was designed was to provide accurate asset
tracking solutions with high accuracy in urban environments
enabling many applications such as wide-area inventory
tracking, infrastructure monitoring, and structural health
sensing. Yet, there remains a gap in the literature for a LoRa
localization system which can provide enough accuracy to
realize this vision.

While there have been several attempts in both academia
and industry to build LoRa localization solutions [17, 27, 34],
they have achieved accuracy in tens or even hundreds of
meters, depending on topography and testbed size. A key cul-
prit behind this low accuracy is LoRa’s narrow bandwidth-
125 KHz—which only allows for range resolution of more
than a kilometer (with the traditional ¢/B resolution being
2.4 km). Indeed, this low bandwidth rules out most types of
localization approaches which have worked well for other
technologies — time [45], time-difference of arrival [32, 49]
and phase-based location tracking systems [21, 22]. In addi-
tion, traditional RSSI or fingerprinting systems [32] prove
challenging to deploy at high accuracy in the wide-area con-
text due to channel dynamics, multipath and the large area
of coverage.
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Figure 1: OWLL enables accurate outdoor LoRa local-
ization using TV whitespace bands. We use a TDOA
based approach where a LoRa client hops multiple
frequencies spanning a wide bandwidth at TV whites-
paces and ISM bands

This paper presents OWLL! — a LoRa localization system
which can provide high localization accuracy (~9 meters)
over long range using off-the-shelf commodity LoRa radios.
Our approach circumvents the low-bandwidth of LoRa by
stitching together channel responses at multiple TV white-
space and ISM frequency bands. We show how we can piece
together samples of wireless spectrum available in these fre-
quencies to improve the effective range resolution of LoRa
and achieve resilience against multipath. We deploy a net-
work of software radio base stations that operate on the TV
whitespaces based on FCC experimental licenses available to
us. Future commodity LoRa base stations which support ISM
and TV whitespace bands would not require these experi-
mental licenses. Our system deployment achieves 9 meters
median accuracy across both line-of-sight and non-line-of-
sight contexts which is a considerable improvement over
state-of-the-art LoRa localization approaches (~ 50m)[27].

OwLL’s fundamental approach is to give the illusion that
the infrastructure is a network of wideband and perfectly
phase synchronized base stations whose antennas are geo-
distributed to collectively span a wide area. This effective
geo-distributed antenna array can now measure signals re-
ceived from any low-power LoRa client to measure phase
difference across its antennas, which loosely can be trans-
lated to time-difference-of-arrival when measured across
multiple frequencies spanning the wide bandwidth. The time-
difference-of-arrival can then be measured across the wide-
band geo-distributed antenna array to trilaterate the LoRa
device in the cloud. In order to realize such a system, we have
to overcome two critical challenges: (1) We need to create the
illusion of the presence of wideband radios using low-cost

10utdoor whitespace-band LoRa Localization

client and base station hardware; (2) We need to develop
a distributed phase synchronized array of base stations to
mitigate the impact of signal multipath, especially blockages
in city environments.

Emulating Wide Bandwidth in LP-WAN: A OwLL client
performs frequency hopping on new TV whitespaces so that
the channels can be stitched together at the base station.
However, designing base stations that listen across wide
bandwidths of the order of a GHz would significantly in-
crease cost. A more practical solution is to make narrowband
base stations hop along with the client to frequencies on
which the client transmits. This fits in very naturally with
the design of LoRa as the base stations can feedback this fre-
quency information to the client during acknowledgement
packets. While the notion of stitching many narrow band
frequencies to emulate wide bandwidth has been explored
in other contexts (e.g. WiFi [45] and RF backscatter [30]),
the LP-WAN context brings unique challenges. Specifically,
LoRa packets are extremely narrowband (125 kHz), long (up
to seconds each) and energy consuming, meaning that the
act of hopping through all frequencies in the whitespaces is
both time and energy-draining.

To tackle this problem OWLL performs an extensive out-
door experimental study and discovers that sampling LoRa
packets at small number of carefully chosen frequencies re-
sults in highly accurate localization. We believe this stems
from the fact that even while multipath outdoors is rich, it
tends to have a sparse number of dominant paths that can be
discovered from sparse sampling of the spectrum [13]. We
then develop a search space exploration system running in
the cloud that iteratively instructs clients to hop frequency
bands and actively learns which frequency bands to next ex-
plore and maximize localization accuracy. We demonstrate
that our approach achieves significant savings in time and
energy, with minimal impact on localization accuracy. We
further show how our system is designed to be compati-
ble with FCC regulations on access to TV whitespaces and
respects the presence of incumbents.

Emulating Distributed Arrays in LP-WAN: Our approach
leverages the aperture provided by wide bandwidth to ac-
curately localize clients outdoors. A key challenge is signal
multipath which could often cause the line-of-sight path
to disappear. While some multipath resilience is offered by
the wide bandwidth of our system, dealing with blocked
line-of-sight paths in urban contexts is a major challenge.
Our observation is that while the line-of-sight paths could
often be blocked, they are unlikely to completely disappear
across a large number of antennas, each spanning a wide
aperture in terms of bandwidth at sub-GHz frequencies. In
addition, certain large, dominant reflectors in the environ-
ment (e.g. buildings) are likely to affect multiple clients in a
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predictable manner that allows them to be weeded out of con-
sideration. We present a particle filter inspired optimization
problem that explores consistency in the wireless channels
measured from diverse locations to weed out reflected signal
paths and identify the direct path to at least some locations
in the environment. We further tackle various challenges
pertaining to efficient phase synchronization of LoRa base
stations to emulate distributed arrays.

Limitations: (1) OWLL targets localization of quasi-static
devices and is not designed for moving objects owing to
the need for clients to frequency hop and the slow data
rates of LoRa. This should not pose a problem for most LoRa
deployments that are quasi-static (e.g. sensor networks). (2)
The evaluation of this paper is restricted to localization in
2-D space and primarily outdoors, where social distancing
is easier. This is due to COVID-19 related university campus
access restrictions that limited access to multiple buildings
and high vantage points. (3) Like most wireless localization
systems, our system struggles under extreme occlusion, e.g.
deep indoors or underground, where all line-of-sight paths
are completely obscured across frequencies.

Implementation and Evaluation: We implement OwLL
on USRP N210 base stations and off-the-shelf Semtech SX1262
radios as LP-WAN clients. These clients enable us to hop
across a wide spectrum ranging from 500 MHz to 960 MHz.
We hold experimental FCC licenses to operate on the TV
whitespace bands across all our hardware. We evaluate the
system on a testbed spanning 66,000 sq.m. at Carnegie Mel-
lon University campus in Pittsburgh. We also evaluate our
system in the presence of occlusions due to buildings, trees
and topography that obscure line-of-sight. Our results reveal
the following;:

o A median error in time-difference of arrival of 3.6 and
14.8 meters respectively in line-of-sight and non-line-
of-sight environments

e A median error in localization of 3.9 and 15.7 meters
respectively in line-of-sight and non-line-of-sight en-
vironments

o Time and energy savings of 67% compared to exhaus-
tive sampling of available frequencies.

Contributions : This paper’s contributions are as follows:

o The development of the first accurate localization sys-
tem in whitespace frequencies that operates on com-
modity LoRa devices and achieves an accuracy of 9
meters.

e An approach that treats diverse base stations as a wide-
band distributed array, with minimal overhead in terms
of battery life of client devices.

o A detailed experimental evaluation on a large neigh-
borhood of a city, demonstrating high performance.
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2 RELATED WORK

Low-Power Wide-Area Networks: Recent years have wit-
nessed accelerated growth in the field of Low Power Wide
Area Networks (LP-WANSs) [14] encompassing various imple-
mentations and protocols, both proprietary and open source,
supported by various hardware platforms. While cellular
providers use standards like LTE-M [16] and NB-IoT [35] for
low-power IoT communication in licensed spectrum, compa-
nies like Semtech [1, 40] and SigFox [37] focus more on uti-
lizing unlicensed spectrum including the available channels
in the TV whitespaces [12], thereby improving the spectral
availability. Hence, even though the former offers better data
rates, MAC sophistication, and better features for routing,
firmware broadcast, etc., the latter offers a cheaper and a
battery efficient solution for larger city scale deployments.

Localization: As the number of deployed IoT clients has in-
creased, there has been arising interest in leveraging LPWAN
technologies for real time tracking and tagging of objects.
As localization accuracy is a pre-requisite for these applica-
tions, there have been extensive research done in the field
of localization — both indoor and outdoor systems, satisfy-
ing different constraints on power, range, cost, multi-path
resilience, etc. Based on these constraints, a simple classifica-
tion on RF-localization systems can be done. This is captured
in Table. 1. A key observation across technologies is that
there remains a gap for a solution that is simultaneously
accurate, long-range (i.e., operates over hundreds of meters)
and low-power (i.e., supports a 10-year battery life).

Long range systems with high accuracy: Till date, global
positioning systems (GPS) dominate in the category of ex-
isting long range localization systems in terms of accuracy.
However, a key disadvantage of GPS is its power consump-
tion. Military grade GPS systems are expensive with high
power consumption — restricting its reach across smaller
devices. Also, off-the-shelf GPS chips which consume about
the same power as Semtech LoRa devices would incur extra
energy and hardware costs if deployed on an already energy
constrained IoT device leading to significant drop in bat-
tery life. Cost-effective positioning systems involving Blue-
tooth (7, 19, 26] and WiFi [22, 45, 47] provide low power local-
ization with centimeter level accuracy, but are constrained in
their range. Systems for sensor positioning [15, 38], wildlife
tracking [5, 29] and LP-WAN based systems [17, 24, 25, 27],
operate over long distances at low-power outdoors, yet are
highly susceptible to multipath effects, thereby losing accu-
racy in urban environments. Most LoRa based localization
approaches have leveraged extensive RSSI + Fingerprinting
Datasets [3, 9, 11] with some of them being restricted to the-
oretical evaluation [31, 42, 43] or are evaluated indoors[18]
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Papers Features
Class Range Low | Accuracy
Power
[22, 45, 47] | WiFi 12-15m - <50 cm
[7,19, 26] | Bluetooth| <10m v ~ 100 cm
[23, 41] Cellular 35-60m X ~ 85 cm
[4, 15] Sensor- ~ 50m v ~3-5m
based
[29,46] | Wildlife | 500m+ v 15-24m
Track-
ing
[28, 30, 48] | Back- tens of m v <50 cm
scatter
[2, 33] Prior LP-| 500 m+ v 100s of m
WAN
OwLL LP- 500 m+ v ~9m
WANSs

Table 1: Comparison of Related Work

or outdoors in very controlled setting[36]. Using only times-
tamping or RSSI based approaches [2, 33], demonstrate rela-
tively high errors in estimating the location of the client.

Indeed, there remains a gap for accurate RF-based posi-
tioning that spans outdoor spaces that is suited to low-power
wide-area networks.

3 OVERVIEW OF OWLL

OwLL aims to achieve a few meters of localization accuracy
using commodity LoRa radios. Our choice of system design
is motivated by two important constraints: (1) First, we seek
to be compatible with commodity LoRa clients. This will
allow our system to be deployed at scale on existing LoRa
deployments; (2) Second, we do not seek to build complex
multi-antenna base stations, since these antennas would be
bulky and expensive to deploy at sub-GHz frequencies. In
other words, we seek to preserve the simplicity of LoRa
infrastructure that has been key to its adoption.

Our constraint on the simplicity of base stations leads
us to a natural design point — what if we can fuse multiple
individual base stations together to operate as one virtual
multi-antenna array. Specifically, we aim to develop algo-
rithms that synchronize distributed base stations in time,
frequency and phase. We further allow these base stations
to hop frequency bands without losing synchronization - ef-
fectively behaving as a wide band distributed array. We then
fuse signal measurements received on multiple frequency
bands from a commodity LoRa client to triangulate its loca-
tion. Our system will span frequencies starting from the TV
whitespaces through the unlicensed 915 MHz ISM band. The
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Figure 2: OWLL iteratively requests client trans-
missions at specific frequencies to localize accu-
rately at low power.

resulting array has two desirable properties that are key to
achieving high localization accuracy: (1) It emulates wide
bandwidth that is key to accurate time-of-flight and there-
fore range estimates of the LoRa clients; (2) It achieves wide
spatial aperture owing to the significant spatial separation
between base stations, allowing for effective triangulation
of LoRa clients.

The rest of this paper describes two key components of
OwLL’s design that relate to the above two properties: how
do we achieve high bandwidth and coordinate distributed
base stations?

Emulating Wide Bandwidth: We first describe our ap-
proach to emulate wide bandwidths by frequency hopping
over available spectrum in the TV whitespace bands and 915
MHz ISM band. While there has been much literature on
frequency stitching in Wi-Fi, LoRa packets often last much
longer (~seconds) and are energy constrained, meaning that
we would need to minimize this hopping. We also consider
the policy implications as well as the choice of frequencies in
the TV whitespaces needed to perform effective frequency
hopping to optimize for multipath resilience. Sec. 4 describes
our solution to these challenges.

Emulating Distributed Arrays: Next, we describe our so-
lution to deal with signal multipath, a common problem in
localization systems in general. We focus especially on block-
ages of the direct path in urban settings — demonstrating
how the distributed location of base stations, as well as an
effective modeling of multipath due to dominant reflectors,
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can help mitigate this problem to some degree. We also con-
sider challenges pertaining to phase synchronizing these
base stations. Sec. 5 describes our approach.

4 EMULATING WIDE BANDWIDTH

The core idea of OWLL is to combine wide swaths of band-
widths available at the TV whitespaces to improve local-
ization accuracy of LoRa. We use phase information from
the I/Q samples received at 2 different base stations across
all frequencies to estimate the Time Difference of Arrival
(TDOA) between them, which in turn provides the location
of the client if extended to multiple such pairs. While the
notion of stitching together frequencies has been explored
in prior work in domains such as Wi-Fi [45], UWB [20] and
RFIDs [28], the LP-WAN context brings forth unique chal-
lenges and policy implications. We discuss these challenges
and our solutions to overcome them in this section.

4.1 Challenges unique to LP-WAN

The core challenge that makes frequency stitching challeng-
ing to implement on LP-WANSs is that it can be quite expen-
sive in terms of both time and energy. This is in contrast to
Wi-Fi where hopping across all frequency bands can be effi-
ciently performed with tiny packets over a few milliseconds.

LP-WAN Packets are Long: First, LP-WAN packets are
much longer - often lasting seconds. This is not accidental -
it is designed as such to provide low data rate connectivity
at extended distances over which LP-WAN packets need
to be decoded from extremely battery-starved clients. This
means that simply transmitting short packets on any given
frequency band is latency-intensive.

LP-WAN Clients are Narrowband: Another challenge
that complicates the aforementioned problem is the fact that
LP-WAN clients are narrowband. This once again is by de-
sign, due to the battery-constraints of Low-power clients.
For instance, LoRa’s bandwidth is 125 kHz — a factor of 160x
smaller than that of Wi-Fi. A natural consequence of this low
bandwidth is the huge number of frequencies that need to
be hopped to span even a modest bandwidth (~160 packets
for 20 MHz). This scales to an inordinately large number of
packets required to span the 400 MHz of frequency bands
available in the TV whitespaces.

LP-WAN Clients are Energy-Starved: A third challenge
that makes hopping difficult is that LP-WAN clients are
energy-starved. Prior work has shown that data transmission,
particularly transmission time is a critical power bottleneck
in LoRa sensor networks [10]. This means that the simple act
of hopping between frequency bands and transmitting short
packets, when repeated over many frequencies can quickly
lead to energy drain.
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4.2 Can we Minimize Frequency Hopping?

The above challenges lead us to a simple conclusion: to per-
form localization in a both time and energy-efficient manner,
OwLL must minimize the number of frequencies that need
to be hopped. Thus, it is critical for OWLL to carefully se-
lect frequencies that provide the most bang for the buck -
i.e. maximize localization accuracy with the minimum
number of frequencies hopped. However, which subset
of frequencies need to be hopped to achieve this may vary
depending on the location of an LP-WAN radio and its en-
vironment. This leads us to a natural question: “how do we
choose which frequencies to hop to if we do not already
know where the radio is located in the first place?”.

A Strawman Solution: Prior to answering this question,
let us design a néive version of the frequency-hopping sys-
tem that relies on all frequencies available to OwLL, and
therefore can maximize localization accuracy. For simplicity,
we consider the case of estimating the Time-Difference of
Arrival (TDOA) between the signals received at two different
LP-WAN base stations from an LP-WAN client. We note that
should this time-difference be accurately calculated relative
to four or more base stations, the location of the client can be
accurately triangulated. We also assume in this section that
the clocks of the two LP-WAN base stations are perfectly
synchronized in time, frequency and phase — we explain how
this can be achieved later in Sec. 5.1.

Mathematically, let us estimate the time-of-flight between
two base stations that estimate wireless channels of h;; and
hyi (wherei =1,...,N) respectively on a set of N frequen-
cies among {fi, ..., f,} that are uniformly spaced. We then
leverage the Bartlett algorithm [8], which effectively has the
structure of the Discrete Fourier transform to compute P(7),
the power of the signal component received corresponding
to a time-difference of arrival of z:

n
P(2) = D hyshs e e
i=1

We note that the above P(7) function could peak at multiple
time-difference of arrival values due to signal multipath —
a topic we discuss in Sec. 5.2. Clearly however, the above
formulation does assume that frequencies are uniformly sep-
arated and finely sampled. If they are not, this would cause
artifacts such as spurious peaks that would appear in the P(7)
profile due to aliasing, when frequencies are not sufficiently
separated. It should be noted that to maximize accuracy, one
should choose as many frequencies that are available - both
finely sampled and measured across a wide bandwidth. Un-
fortunately, this remains impractical in the real world for two
reasons: (1) First, hopping all frequencies across 400 MHz
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Figure 3: Carefully hopping over a small fraction (20%)
of all frequencies leads to dramatic performance im-
provements.

bands would consume 3%? of client battery life and require
several minutes to hours making it latency-impractical. (2)
FCC rules only allow LoRa clients to utilize unutilized TV
whitespace bands. This means across the wide bandwidth,
OwLL client can only hop in a few frequency bands that
change every day and must be constantly monitored.

Does Sub-sampling Frequencies Work? A trivial opti-
mization on the above approach would then be to choose a
subset of frequencies to hop from the expansive list of fre-
quencies that may be available in the TV whitespaces. Of
course, in this case, we should not directly use the Discrete
Fourier Transform based Bartlett algorithm which would
cause unnecessary artifacts in P(z) due to the non-uniformity
of frequencies sampled. Instead, we would use the Non-
Uniform Discrete Fourier Transform (NDFT), an approach
that extends the Fourier Transform to non-uniform frequen-
cies and has been used in other localization contexts (e.g.
Wi-Fi [45]). The flavor of the NDFT algorithm we use that is
LoRa compatible is summarized in Algm. 1. Inherently, NDFT
removes artifacts by making an assumption that the number
of dominant multipath peaks in P(7) is sparse. Fortunately,
prior studies specific to LoRa have shown that this is indeed
the case [13] in urban outdoor testbeds, which means NDFT
could indeed hold promise.

We now empirically evaluate based on field measurements
in a large outdoor testbed (details of the testbed are described
in Sec. 7) consisting of two LP-WAN base stations and a client
moved across line-of-sight and non-line-of-sight locations.

We then choose a large number of random sub-samples
of these frequencies containing a different number of them
ranging from 10% through 90%. Note that the fraction is
only in relation to available bands, and not all bands in the
TV whitespaces (typically, about 30 MHz of total bandwidth
inter-spersed between 500 to 800 MHz is available in our city).

2 Available Battery Energy: 2900 mAh; 125 kHz channels in 400 MHz: 3200;
Energy of a typical LoRa packet: 100 mAs; Battery spent: 3.06%

Algorithm 1: Algorithm to estimate TDOA

Input :h: Measured relative channels at selected
frequencies f;
F: Non-Uniform DFT matrix such that
Fir = e /2% for some set of 7
Qmin and Qpmqy: range of sparsity parameter
a e: Convergenceparameter

Initialize y = ||FlH2 ;
2

while a < a4, do
Initialize po to a random value,
converged = false, t = 0;
while ||pts1 — ptll, > e do
Pt+1 = pt — YF (Fpt — ﬁ) with values < ya
zeroed;
t=t+1;

numberpeaks = Number of peaks in piyq;
if numberpeaks # 1 then
‘ Increase «;
else
t return rrpo4 = argmax piit;
t

In each instance, we report the max accuracy across these

sub-samples. Fig. 3 plots the accuracy achieved in estimat-

ing time-difference of arrival vs. the fraction of frequencies

chosen (%) among the entire range of available frequencies.
Our experiments reveal two surprising results:

e Sampling a small number of frequencies is sufficient:
First, we observe that sampling as few as 20% of all
available frequencies yields localization error that is
equivalent to the 75%ile error achieved across these
locations when all frequencies are used. This shows
that one can gain remarkable benefits in hopping la-
tency and energy overhead should we somehow know
which frequencies to hop in advance.

e Optimal Frequencies change over time: Second, we see
that these so-called optimal frequencies do not remain
static over time or across clients. We observe that
changes in the environment or client locations can
substantially change which frequencies are sampled.
This tells us that a static approach (~ say uniformly
sub-sampled) to choose these frequencies would not
suffice.

Observation #1: Hopping a small fraction of available
frequencies suffices for accurate localization with mini-
mal loss, yet these optimal frequencies vary dynamically.
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Figure 4: OWLL’s approach to select initial frequen-
cies.

4.3 OwLL’s Frequency Hopping Design

Based on our observations in the previous section, our ap-
proach to localize a client in a time and energy-efficient
manner hinges on selecting this small set of optimal fre-
quencies instead of exhaustively sampling all possible fre-
quencies. Our approach must naturally be dynamic - i.e.
learn progressively which frequencies to hop based on prior
measurements. There is a natural exploration vs. exploita-
tion trade-off here however. To achieve better accuracy, we
need to explore as many frequencies as possible. However,
at some point, we do also need to terminate our algorithm to
report time-difference of arrival (and in turn remain energy
efficient). To counter this problem, we design an iterative
maximum-likelihood algorithm which tries to progressively
glean on an increasingly clear view of multipath propagation
through the space to guide its choice of frequencies in an
environment-invariant manner.

An Iterative Approach to Model Multipath: OwLL’s al-
gorithm effectively seeks to build a model of signal multipath
based on measurements seen so far to then guide which mea-
surements to take next. (see Fig. 2). Initially, OWLL begins
with a small number (10% in our implementation) of initial
frequencies among our available frequencies (see Observa-
tions). We then run the NDFT algorithm ( Algm. 1) to obtain
a sparse set of candidate TDOA values and their correspond-
ing signal amplitudes and phases. Now, we identify the fact
that given the amplitudes and phases of these TDOA peaks,
there exists a frequency (f;,;) which, given this prior, would
amplify the peaks the most. The best case scenario would be
to transmit a packet at that f;,;, and only pick out the peaks
that get amplified (the ones that did not are likely spurious).
Unfortunately, this frequency fp; is often not one of the
frequencies that we are allowed to transmit on (e.g. due to
incumbents or licensed users).
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Thus, to select a frequency from within our spectrum
constraints we define a goodness metric which measures
how much a given frequency theoretically should amplify
our prior belief of the TDOA. In other words, should this
frequency be added to our pool of frequencies, it would max-
imize the amplitudes of TDOAs seen so far. We iterate over
all available frequencies and select a few (5% in our imple-
mentation) that maximize goodness. We then explore those
frequencies and validate whether the TDOAs discovered are
truly amplified, new peaks emerge or spurious peaks are
dampened. If the former occurs (to within a threshold), we
terminate — otherwise, we repeat the algorithm with newly
discovered peaks.

Mathematical Details: More formally, let us assume that
the result of the NDFT algorithm based on the channels
from the frequencies sampled so far h,,., are a set of time
of flights r and the corresponding amplitudes and phases
p- Should our NDFT algorithm be a good approximation
of our observed channels, the wireless channel at any new
frequency f should be given by:

hpred,f: Z ae 2T

aEP,TET

We then define the goodness metric as the frequencies that
would truly maximize the powers at the peaks previously
observed, i.e.

goodness(f) = Z |l l?,

AEPf.new

where pf new < NDFT(hprevs hpred,f)

We then pick the set of frequencies that maximize goodness( f)

and stop when the goodness measured from observed chan-
nels closely aligns (or exceeds) that of the predicted channels.
Algm. 2 summarizes our approach in greater detail.

Algorithm 2: Identify next frequency to be queried

flprev,ﬁprev :Current channels and current estimate of
TDOA
Sopt :Next Frequency to be queried
Vf € Unoccupied Frequency Bands
hPVEd,f = ZaEp,TGT aeizﬂfr 5
goodness(f) = Xoep,,., 1]l
where pfpew NDFT(hprevs hpred,f) 5

2

return f,,; = arg max goodness(f);
f

Compatibility with LoRa: We note that our system can
be designed without modifications to the LoRa protocol on
the client’s end. OWLL can provide the clients an initial set
of frequencies to hop with further suggestions on which
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frequencies to hop piggy-backed on acknowledgment pack-
ets. Note that all of this computation is performed at the
resource-rich cloud connected to the base stations and not
on the low-power client devices themselves.

Observations: A few points are worth noting:

o Choice of Initial Frequencies: A natural question one
might ask is if the system could be misled by a poor
choice of initial frequencies that mislead us with er-
roneous peaks. Further, the choice of these initial fre-
quencies cannot be highly environment specific. To
circumvent this, we require a minimum of extra 10%
frequencies to be hopped to ensure that our data is not
entirely dominated by our initial choices. Furthermore,
we provide a very intuitive approach to choose initial
frequencies which would be true for any environment.
We ensure that this choice of frequencies allows us
to fully span the desired range of TDOAs based on
testbed geometry. However, choosing frequencies that
are individually well separated could lead to aliasing,
where a measured channel leads to multiple TDOA
peaks due to 27 wraparound. This problem is particu-
larly acute outdoors where the range of possible TDOA
values can be large. However, this phenomenon can be
easily avoided by ensuring the set of frequencies also
include a few that are closely separated. How close
these frequencies should be is easily calculated using
the maximum TDOA value possible in the testbed ge-
ometry. We compare in Fig. 4 the different approaches
one can take to decide initial frequencies, including our
own which maximizes bandwidth while minimizing
aliasing amongst the various TDOA values.

Energy and Time Overhead: Our results in Sec. 8.3 show
that in practice, we need to hop around 40 frequencies,
requiring 20% (~ 20.97s) of time required by exhaus-
tive sampling to achieve roughly 75th percentile error
bound of our TDOA estimation, effectively increas-
ing energy efficiency by 66%. We note that the time
overhead is practical for most quasi-static LoRa deploy-
ments such as sensor networks, given the slow data
transmission rate of the LoRa protocol. Our system is
therefore limited to quasi-static LoRa localization.

4.4 TV Whitespace Policy Considerations

OWwLL leverages 400 MHz of available bandwidth in the TV
whitespaces and ISM bands between 500 to 960 MHz. Thus,
it is critical to understand the implication of TV whitespace
policy on OwLL.

Hardware Compatibility: OwLL exploits readily avail-
able LoRa hardware that is increasingly allowing for support
on the TV whitespace bands. We use the SemTech SX-1262
client devices which operate in the TV whitespaces and have

native support for a wide frequency range from 150 MHz to
960 MHz. While effectively they traverse upto 800 MHz of
spectrum, FCC rules in US enable us to only leverage the va-
cant TV whitespace spectrum spanning from 500 to 960 MHz.
Our base stations are USRP N210 software radios to allow for
maximum flexibility in I/Q channel processing and we hold
FCC experimental licenses to operate these USRPs in the TV
whitespaces in the U.S. city where our network operates. We
believe that with recent SemTech hardware allowing for I/Q
channel measurement (e.g. SX1257), our approach can be ex-
tended to future commodity LoRa base station deployments
with no license requirements whatsoever.

Policy and Impact on System: We note that recent policy
changes to the TV whitespaces [39] allow dedicated powered-
radios (e.g. base stations) to periodically (every day) check
the shared whitespace database on behalf of the clients to
check for and avoid incumbents. This eliminates the bur-
den from low-power clients to coordinate with the database.
It further aligns well with our design where base stations
guide clients on which frequencies to hop. We note that the
presence of whitespace incumbents may necessitate OwLL
base stations to identify vacant frequency bands from the
TV whitespaces every 12 hours and only run its optimiza-
tion algorithm (Algm. 2) over available frequencies in the
whitespaces.

5 EMULATING DISTRIBUTED ARRAYS

In this section, we describe the various challenges in building
a localization system that uses distributed LP-WAN base
stations that serve as a wideband and multi-antenna array.
We discuss challenges such as synchronization and signal
multipath.

5.1 Ensuring Phase Synchronization

Our discussion so far has assumed that base stations are
synchronized in time, frequency and phase — however this
is challenging to implement with geo-distributed base sta-
tions, some potentially indoors. To this end, we build on
Chime [13], a prior approach that has demonstrated syn-
chronization across base stations for a different problem —
radio configuration. At a high level, this approach uses a
known reference transmitter (typically a base station) that
transmits a long LoRa packet concurrently at a frequency ad-
jacent to the LoRa client. The algorithm then interpolates the
wireless channel from both the reference and client across
two different base stations at the common guard band be-
tween these frequencies. It then shows that if the location
of the reference transmitter is known, a combination of four
wireless channels (reference and client to each base station)
can be used to infer time-difference of arrival to the desired
client. We refer the reader to Chime [13] for more details on
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Figure 5: OWLL Enhanced Phase Estimation balances
between SNR resilience and phase accuracy outdoors

the algorithm. While Chime was intended for radio config-
uration, we highlight two important modifications that are
needed to extend it to OwWLL’s localization context:

Interpolation at the Guard Band: In performing interpo-
lation at the guard band, OWLL must ensure that the phases
of the wireless channel obtained are extremely stable for a
static client in a quasi-static environment. Thus, OwLL de-
signs the reference base station to sense and align its chirps
at sample accuracy (~ 10 ps) by listening for the client’s
preamble and turning around to transmit on the adjacent
band. Further, we note that we must only interpolate phases
at specific points in the guard band when two chirps — one
each of the reference and the client “meet” as highlighted
in Fig. 5. This is important because chirps are sparse signals
transmitting at different frequencies over time and the high-
lighted spot is one of the few where both transmitters truly
agree in time and frequency (modulo time-of-flight, that we
seek to measure).

One important consideration when performing this in-
terpolation is the case of low-signal to noise ratio ( SNR).
In noisy settings, interpolation of the chirp signals (espe-
cially in phase) tends to loose robustness. To mitigate this,
one approach could be to rely on correlation rather than
interpolation. Specifically, one could correlate each received
preamble symbol with the corresponding ideal up-chirp in
both bands to compute phase values. Unlike interpolation of
phase, correlation is known to be highly noise resilient. How-
ever, correlation would not allow for the ability to find the
phase value at the guard band, meaning that the result would
still be error-prone to timing offsets due to the frequency
separation between the bands. OWLL therefore adopts a hy-
brid approach between these two extremes of interpolation
and correlation. Rather than correlating with an ideal pream-
ble up-chirp that spans all frequencies, we splice this chirp
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into smaller chunks that span smaller chunks of frequen-
cies. We use the computed correlations to obtain multiple
noise-resilient phase values. This allows us to then perform
interpolation across these phase values at the guard band.
Fig. 5 illustrates our enhanced phase estimation approach.
Our results in Sec. 8.1 demonstrate the utility of this solution
in achieving phase stability and noise resilience simultane-
ously.

Designing the Reference: We note that unlike Chime,
the reference must hop alongside OwLL on an adjacent fre-
quency based on the pre-determined schedule provided by
the base stations. Should the adjacent frequency be unavail-
able (e.g. due to the presence of incumbents), the reference
could transmit a non-interfering simultaneous LoRa packet
on the same frequency using a different spreading factor, but
at the expense of some resilience owing to the near-far effect.
It is also prudent to choose the base station closest to the
client as reference to ensure minimal detection delays as well
as low TDOA values which are more noise resilient. Thus,
before localizing any client, we run a quick calibration step
where client transmits a packet to enable us to determine
which base station to designate as the reference base station
(coarsely, based on similarity of RSSI values). We elaborate
in Sec. 5.3.

5.2 Impact of Multipath

Next, we make some experimental observations regarding
signal multipath — a key challenge in any localization sys-
tem. We specifically ask: “How frequently is the direct path
between the clients and base station completely blocked in
the urban LP-WAN context?”. Given that our system has
multiple base station locations and spans multiple frequency
bands, we want to characterize the importance of both of
these factors in truly discovering the TDOA corresponding
to the direct path even in completely occluded settings.

Fig. 6 describes the accuracy of localization measured
across the number of base station pairs based on our wide-
area testbed described in Sec. 7. This result demonstrates
that as we use more number of base stations pairs from the
raw samples, we get better and better accuracy improving
from 10.5 m for 3 pairs to 6.2 m for 6 pairs for the chosen
clients.

We make the following broad conclusions based on these
observations that guide our localization algorithm that fol-
lows:

e Adding more base stations to take multiple views of
the object increases the likelihood that we check con-
sistency across more base stations. Given that base
stations are highly distributed, the likelihood that the
line-of-sight across all of them is severely attenuated
becomes low.
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Figure 6: OWLL location accuracy across base station
pairs

Figure 7: OwWLL uses particle filtering atop the mea-
sured TDOA hyperbolas to estimate the location of the
client

e A similar argument can be made about more diverse
frequencies over the wide TV whitespaces bands, where
frequency selective fading allows the direct path to
survive in some frequency bands even while being
attenuated at others.

e We note that the low frequencies of the LoRa band
and TV whitespaces have an improved ability to pene-
trate through obstacles compared to higher frequen-
cies. This in part contributes to some of our observa-
tions above.

Observation #2: Even in occluded settings, combin-
ing wireless channels from multiple base stations and
frequencies can improve detection of the line-of-sight
path.

5.3 Localization Design

Motivated by the above observations, we now seek to com-
bine the diverse TDOA measurements made across base
stations to obtain the true location of the device. While we
could naively do so by trilateration across base stations, this
misses two key additional advantages of our system: (1) First,
the synchronization approach in Sec. 5.1 ensures that all

base stations are phase-sychronized, which means that we
could effectively treat the entire system as one holistic dis-
tributed array; (2) Second, trilateration may miss opportuni-
ties from considering obvious geometric constraints of the
layout of our testbed. (3) Third, choosing a relatively proxi-
mate reference (based on RSSI) helps constrain the range of
possible locations of the client even further (see Sec. 5.1). (4)
Finally, OwLL can account for sources of known multipath
from large, dominant reflectors that have previously been
observed for other clients in the environment, if any.

A Particle Filter Based Search: Our approach to iden-
tify the true location of the device uses a particle filter [44]
to weave in the geometric constraints of the system along
with prior TDOA estimates as well as phase estimates from
distributed base stations. We point to Fig. 7 that visualizes
our solution. Our approach initially chooses a set of ran-
domly chosen candidate locations in the space of interest
uniformly sampled while respecting geometric constraints
of the testbed. For each sample, we compute a goodness met-
ric that is the sum of two components: (1) How well does
this estimate fit the observed TDOA peak values (inverse
of the mean squared error) across pairs of base stations? (2)
How well does this location agree with the observed wireless
channels across base stations and frequencies (we define this
quantity in Algm. 3 below)? (3) Are the TDOA values consis-
tent with the location of the chosen reference base station
based on RSSI? (i.e., locations extremely far from the refer-
ence are unlikely) (4) We further add a penalty discounting
consistent sources of multipath peaks resulting from large
reflectors discovered in localizing prior clients (or reference
base stations).

Based on these four observations, we assign probabilities
to each region of space surrounding where the particles were
originally obtained. We now re-sample the space while re-
specting geometric constraints, with the sampling biased by
this new probability distribution. We repeat this process un-
til the probability of a specific location within the geometric
constraints surpasses a set threshold.

Mathematical Details: Algm. 3 describes the design of
our particle filter and the goodness metric used to assign
probabilities to the different particles.

Observations: A few points are worth noting:

e Geometry of Base Stations: Our approach is agnostic to
the arrangement of base stations, however the precise
layout can impact accuracy just as in any antenna ar-
ray. In this paper, we assume that the relative geometry
of the base station is given (e.g. based on logistic con-
straints) and leave to the precise optimization of this
geometry to improve localization accuracy to future
work.
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Algorithm 3: Localization algorithm

Input :Base Station locations BS;; and Reference
locations Rj, (fl f) for all possible Base
station pairs (BS™, BS™) from a client
Set of Geometric constraints - (X, Y) a110weds
TDOA margin mar, Probability distribution
variance o, Penalty(x,y): penalizes dominant
reflectors discovered when localizing other
clients

Output:Estimated Client location (x,p¢, Yopr)

Initial Calibration:- Reference Base Stations R
receive a single packet from client C to select
Roptimal§

Ruask (x, y) =1V(x, y)l(”(x, y) - Roptimal“Z <

”(x’ y) - R“ZVR * Roptimal)
(X, Y)allowed = (Xs Y)allowed' * Rasks

P(x’ y) =0 V(x, y) € (X’ Y)allowed§

for each (BS™, BS™) pair do
L tdoaMeasured™" = argmax InoerseNDFT(fl, f)

t

tdoaActual™" = tdoaMeasured™" + tdoaRe R':;':imal;
return ParticleFilter((X, Y) 110 wed, GetProbability);
/* Run Particle filter [44] sampling
allowed space using GetProbability(.) =*/
Function GetProbability(x,y):
for each (BS™, BS™) pair do
if z = |[|(x,y) = BS™[|2 — ||(x,y) = BS"||2 —
tdoaActual™"| < mar[Penalty(x,y) then
| P(x,y) = P(x,y) + 722

o Temporal Constraints: We note that our algorithm does
not implement additional temporal filters (e.g. Kalman
Filtering), however these can readily be incorporated
to improve accuracy (at the cost of energy).

6 DISCUSSIONS AND LIMITATIONS
We highlight a few important limitations of OwLL:

Mobility: Our system is not designed for moving objects
owing to the need for clients to frequency hop. This should
not pose a problem for most LoRa deployments are quasi-
static (e.g. building sensor networks). We believe it may be
possible to extend OwWLL to aggregate measurements across
frequency hops for a continuously moving object to trace
out its trajectory, if the object moves relatively slowly. We
leave this for future work.

Extending to 3-D: The evaluation of this paper is restricted
to localization in 2-D space owing to COVID-19 related re-
strictions that reduced our access to multiple buildings and
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Figure 8: OWLL’s campus-scale deployment.

different floors. We had to place our base stations on tem-
porary mobile platforms in open spaces outdoors, where
social distancing was easier to ensure, both in line-of-sight
and occluded settings. We expect new challenges to arise for
extending it to 3-D localization which remains an exciting
direction for future work.

Extreme Multipath/Occlusion: While our system does
consider the impact of obstructions, including buildings, it
assumes that the line-of-sight path is present (i.e. above
noise) at least in a subset of frequencies and base stations,
even if intermingled with other paths. However, under ex-
treme occlusion (e.g. devices in the basement, or deep inside
buildings), this assumption may not hold. One may be able to
detect these extreme occlusion cases by carefully observing
the phase trends across frequencies, but this has not been
evaluated in this paper. However, performing localization
even in these occluded scenarios continues to remain an
open problem for future work.

7 IMPLEMENTATION AND EVALUATION

We implement OwLL using off-the-shelf Semtech SX1262
radios as LP-WAN clients, and NI USRP N210s as software-
radio base stations. These clients enable us to hop across a
wide spectrum ranging from 500 MHz to 960 MHz. We hold
experimental FCC licenses to operate on the TV whitespace
bands across all our hardware and explicitly avoid bands
with incumbent transmitters.

An important factor to take into consideration is the choice
of antenna. Most off-the-shelf antennas either have narrow-
band gains in signal or provide a low gain or directionality
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Figure 9: Log Periodic Ettus LP0410 antenna used in
OwLL’s evaluation.

across such a wide bandwidth. This is due to the large differ-
ence in wavelength (31cm - 75cm) across the spectrum we
are aiming to hop. While there exist highly specialized white-
space antennae providing high gains across this spectrum
(and there remain interesting open questions in this regard),
we used multiple Ettus LP0410 log-periodic directional an-
tennas (shown in Fig. 9) connected using SMA splitters to
emulate a high gain omnidirectional whitespace antenna.
With scale, omnidirectional white space antennas will be-
come cheaper and ubiquitously deployed commercially

We receive packets from the USRP base stations using
UHD/C++. Our base station software is implemented in
python for live processing of packets as they are collected
and a hybrid python/MATLAB script in the cloud to localize
the client. Note that this live processing of packets provides
upto 25X compression by only transferring the I/Q data when
the packet was transmitted.

We evaluate our system on a campus-scale testbed of
66,000 sq. m. with 4 base stations and client moved across 50
locations. Our client locations face various outdoor wireless
obstructions such as hills, trees, buildings, etc. Chosen client
locations ensure diversity in terms of being in LOS or NLOS
to every base station and deployed across a varied topogra-
phy. To enable our solution, we also place the reference at 4
locations to ensure coverage across all areas.

Ground Truth: An important problem with measuring ac-
curate localization errors in outdoor environments is mea-
suring the locations with enough accuracy. In fact, a typical
GPS receiver has a 3-5 m median variance in location track-
ing. Instead, we use a Nikon Forestry Pro II to accurately
survey our testbed with a central reference point. We use
these measured distances between points to formulate a
L2-minimization to estimate the location of all clients, base

stations and references. The average error in our estimates
falls below 10 cm between any two locations surveyed.

Base Line: LoRa localization has been explored with vari-
ous side channels using satellite images, GPS locations along
with other sensors[27]. However, our system localizes off-
the-shelf LoRa clients, without using other side-channel in-
formation, and thus we compare OwLL to a LoRa localization
system purely based on RSSI. For every client, we calculate
the distances from the client to all the base stations using rel-
ative RSSI value taken with respect to the RSSI of the signal
from the reference base station. We find the location of the
client using simple trilateration. This acts as baseline system
to compare our results against.

8 EXPERIMENTAL RESULTS

We first evaluate the primitives that work together to enable
OwLL’s time difference of arrival estimates (Sec. 8.1-8.3). We
then evaluate OwLL’s capability to accurately estimate the
time difference of arrival and location across LOS and NLOS
scenarios across our campus-scale testbed. (Sec. 8.4-8.5)

8.1 Phase Stability and SNR resilience

In this experiment, we attempt to ascertain the SNR resilience
and phase stability of OwLL’s approach over prior work.

Method: We transmit 100 packets from transmitter and ref-
erence at known locations at a single frequency (915 MHz).
We compute the phase after synchronization (described in
Sec. 5.1) from their signals using two approaches: (i) Interpo-
lation approach (Fig. 5 left) and (ii) OWLL Enhanced Phase
Estimation (Fig. 5 center). We then find the error in measured
phase from the actual phase to demonstrate SNR resilience
and phase stability.

Results: Fig.10a shows that OwLL’s enhanced phase esti-
mation is ~ 25 dB more resilient when compared to direct
interpolation of phase across frequencies. Due to the inher-
ent error in interpolating the phase across frequencies from
a large number of points, we see that even at high SNRs,
enhanced phase estimation outperforms the interpolation
method. The smaller graph on the top right depicts the phase
over 100 packets for both approaches.

8.2 Initial Frequency Selection

In this section, we compare OwLL’s approach of identifying
the initial frequencies vs. other baseline approaches.

Method: We chose 10 locations with less than median local-
ization error to identify what choice of frequencies contain
the most amount of information in identifying the accurate
time-difference-of-arrival of client across base stations. As
proposed in Sec. 4.3, we typically choose a few initial frequen-
cies to create a rough estimate of TDOA which we reinforce
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using Algm. 2. However, it is critical to understand that a bad
choice in these initial frequencies can adversely change the
TDOA as well as localization accuracy. Based on our obser-
vations in Sec. 4.3, we devise a custom initial frequency se-
lection policy that chooses two chunks of frequencies across
the first and last available band for transmission. We also
choose the frequencies near the center frequencies of re-
ceivers as typical software radio filters provide the highest
SNR gain at these frequencies. We compare OwLL’s initial
frequency selection policy with two baselines: (i) choosing
the frequencies randomly and (ii) choosing the frequencies
uniformly.

Results: Fig. 10b shows significant benefits of OwLL when
the number of initial frequencies chosen is small. This is es-
pecially important as we would like to minimize the number
of frequencies queried to save power on these power-starved
LoRa clients. However, as we choose more frequencies we
see that the baseline policies do approach similar errors to
that of OWLL. Note, however, in really large TDOA scenarios
OwLL’s policy will be superior to others due to its ability to

disambiguate large range of TDOA values as well as provid-
ing reasonably large bandwidth.

8.3 Accuracy-Power Tradeoff

In this result, we address the key drawback of hopping fre-
quencies — the additional power consumption incurred.
Method: We attempt to identify how much power overhead
is incurred due to hopping multiple frequencies to estimate
the location of the client. We assume that the client needs to
be localized twice everyday. We assume the typical battery
energy of a AA battery of 2900 mAh and a typical LoRa client
consumes 100 mAs of energy for every packet (based on bat-
tery life model used in [13]). This means that a typical LoRa
client can send approximately 104400 packets in its whole
lifetime. We then study how OwLL’s localization accuracy
changes as we transmit more and more packets.

Results: As shown in Fig. 10c, we see that after transmit-
ting around 80 packets per localization query, we are able to
achieve the 75th percentile localization error for the chosen
points enabling us a 1.8 year battery life assuming the client
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is getting localized twice a day. Further to achieve the 50th
percentile localization error, we need to transmit 40 more
packets per localization query leading to 1 year battery life.
Note that here we have assumed that the client transmits
only to get localized. Any other transmissions by the client
to communicate sensor data will reduce the battery life fur-
ther. However, we would also like to note that it is quite
atypical to localize a quasi-static client at the frequency we
have considered and the behavior will likely be more energy-
efficient in real world (~ localizing once a month) removing
localization as the energy bottleneck.

8.4 Time Difference of Arrival Accuracy

In this result, we identify the estimation error in the time-
difference-of-arrival across the client and reference at the
two base stations.

Method: We evaluate our system across 50 locations on our
campus scale testbed - 20 line-of-sight (LOS) and 30 non-
line-of-sight (NLOS) points. Note that some of the NLOS
points may be in line-of-sight of one or two base stations (we
differentiate between the accuracy of these points from those
completely non-line-of-sight in Sec. 8.5). We implement our
TDOA estimation algorithm as defined in Algm. 1 using three
available TV whitespace + ISM bands from 580 MHz to 920
MHz. (the available bands change over time but the edge
bands were vacant across all experiments).

Results: Fig. 11a depicts a 3.6m median error for OwLL in
estimating the TDOA of LOS clients across 4 base stations.
This median error becomes 14.8m for the NLOS locations.
We surmise that across some of these NLOS pairs, the path
corresponding to the LOS TDOA is severely attenuated thus
denying our algorithm the ability to extract it from the phase
of the signals. Note that we still significantly outperform the
baseline system of localizing using RSSI, which provides a
poor median accuracy of 90m across all scenarios. Note that
this is not surprising as it is quite close to observations in
prior work [27].

8.5 Localization Error
Next, we evaluate the localization error using OwLL.

Method: We implement OwLL across the same 50 loca-
tions as the previous experiment and attempt to localize the
clients based on their estimated TDOA distances as shown
in Algm. 3.

Overall Results: Our results in Fig. 11b demonstrate a me-
dian accuracy of 3.9 m for the LOS locations. This accuracy
drops to 15.7m for localizing the NLOS points. This reduction
in accuracy directly corresponds to the reduced accuracy of
estimating the TDOA across base stations for the client lo-
cation. We note that despite the increased error, our system

significantly outperforms the state-of-the-art baseline un-
der identical settings. We also note the longer tail for NLOS
settings due to certain locations that experience significant
occlusions compared to others. We believe new techniques
are required to inherently understand the multipath around
a client and reinforce the severely attenuated LOS TDOA
paths to improve the accuracy. Note that while recent work
has shown promise using deep learning for addressing this
problem in the WiFi context [6], the same for LoRa remains
a direction for future work. The accuracy of the RSSI-based
baseline is 53.6 m across all points.

Impact of Multipath: It is important to note in the above

evaluation that some of the NLOS points were partially in
line-of-sight (PLOS) of some of the base stations. Thus, it is
critical to differentiate the accuracy in such scenarios from
locations which are completely NLOS of the base stations.
Fig.11c shows the localization errors across the three scenar-
ios using OWLL. As we can clearly see the mean errors for
PLOS and NLOS scenarios are 15.5 m and 24.9 m respectively.
However, the median errors for both scenarios are 14.8 m
and 16.1 m. This means much of the error in purely NLOS
scenarios is dominated by a few locations with poor localiza-
tion accuracy (highlighting the importance of both metrics).
The mean localization error for LOS scenarios is 4.4 m.

9 CONCLUSION AND FUTURE WORK

This paper presents OwLL, a LoRa localization system that
achieves few meters accurate localization of commodity LoRa
clients. We design a distributed base station network made
of individually low-cost components that together spans a
wide-bandwidth and offers high aperture. We show how this
network can aggregate signal measurements made across
multiple different narrowband channels of a LoRa client
to triangulate it at fine accuracy. We further optimize our
system to demonstrate accurate localization with minimal
energy overhead from the clients. We deploy OwWLL on a
testbed spanning 66,000 sq.m. centered in a major U.S. city
and show a 9 m median error in location estimation. While
the evaluation in this paper is restricted to 2-D, we believe 3-
D is possible with careful placement of the base stations and
leave this for future work. We further believe that handling
moving objects and addressing significant attenuation of the
direct path for devices deep inside buildings or underground
remain important problems for future work.
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