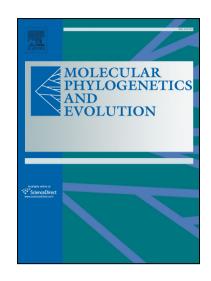
# Journal Pre-proofs

The biogeographic history of eelpouts and related fishes: linking phylogeny, environmental change, and patterns of dispersal in a globally distributed fish group

Scott Hotaling, Marek L. Borowiec, Luana S.F. Lins, Thomas Desvignes, Joanna L. Kelley


PII: \$1055-7903(21)00144-5

DOI: https://doi.org/10.1016/j.ympev.2021.107211

Reference: YMPEV 107211

To appear in: Molecular Phylogenetics and Evolution

Received Date: 11 January 2021 Revised Date: 12 May 2021 Accepted Date: 19 May 2021



Please cite this article as: Hotaling, S., Borowiec, M.L., Lins, L.S.F., Desvignes, T., Kelley, J.L., The biogeographic history of eelpouts and related fishes: linking phylogeny, environmental change, and patterns of dispersal in a globally distributed fish group, *Molecular Phylogenetics and Evolution* (2021), doi: https://doi.org/10.1016/j.ympev.2021.107211

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Inc.

The biogeographic history of eelpouts and related fishes: linking phylogeny, environmental change, and patterns of dispersal in a globally distributed fish group

Scott Hotaling<sup>1,\*</sup>, Marek L. Borowiec<sup>2,\*</sup>, Luana S.F. Lins<sup>1,3</sup>, Thomas Desvignes<sup>4</sup>, and Joanna L. Kelley<sup>1</sup>

#### **Affiliations:**

- <sup>1</sup> School of Biological Sciences, Washington State University, Pullman, WA, US
- <sup>2</sup> Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID USA
- <sup>3</sup> Australian National Insect Collection, CSIRO, Canberra, ACT, Australian
- <sup>4</sup> Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- \* Contributed equally

### Correspondence:

Joanna L. Kelley, School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA; Email: joanna.l.kelley@wsu.edu; Phole: (50)) 335-0037

**Declarations of Interest: None** 

### Abstract:

Modern genetic data sets prescut unp scedented opportunities to understand the evolutionary origins of diverse taxonomic groups when the timing of key events is known, it is also possible to investigate biogeographic history in the context of major phenomena (e.g., cooling of a major ocean). In this study, we in restigated the biogeographic history of the suborder Zoarcoidei, a globally distributed fish group that includes species inhabiting both poles that produce antifreeze proteins to survive chonic subfreezing temperatures. We first generated a multi-locus, time-calibrate (phylogeny for the group. We then used biogeographic modeling to reconstruct ancest all racges across the tree and to quantify the type and frequency of biogeographic events (e.g., four der, dispersal). With these results, we considered how the cooling of the Southern and Arctic Oceans, which reached their present-day subfreezing temperatures 10-15 million years ago (Mya) and 2-3 Mya, respectively, may have shaped the group's evolutionary history, with an emphasis on the most speciose and widely distributed family, eelpouts (family Zoarcidae). Our phylogenetic results clarified the Zoarcoidei taxonomy and showed that the group began to diversify in the Oligocene ~31-32 Mya, with the center of origin for all families in

north temperate waters. Within-area speciation was the most common biogeographic event in the group's history (80% of all events) followed by dispersal (20%). Finally, we only found evidence, albeit limited, for ocean cooling underpinning Zoarcoidei diversification for eelpouts living in the high Antarctic over the last 10 million years.

**Keywords:** phylogenetics, biogeographic modeling, biogeographic stochastic mapping, Southern Ocean, Antarctica, polar fish

### 1. Introduction:

Clarifying spatial origins of diversification and the evolution of geographic ra understanding patterns of global biodiversity. By considering contemporary stributions in a phylogenetic context, it is possible to assess how key events (e.g. dispersal, extinction, speciation) shaped range evolution and diversification (Dupin et a. 2017). With the ever-G expanding availability of genetic data in public repositories (e. nBank), declining costs for generating new data, and emerging statistical tools [65] thogeographic stochastic mapping to explore complex biogeographic (BSM), Matzke (2014)], there has never been a better histories across large phylogenies. Cosm , lita, clades, where a single group is distributed throughout all or most of the world, present interesting biogeographical scenarios because no taxonomic group begins with a global distribution and thus many dispersal and vicariance events must occur during its evolution and geographic expansion (Nauheimer et al., 2012). Moreover, long-term biogeograph shows do not occur in an environmentally static landscape. While a group is evolving diver fying, and shifting its range over millennia, the habitats it occupies are also changing in both size and suitability. Large-scale environmental shifts can drive species' radiations and when the timing of influential events (e.g., the separation of two land masses or cooking of a major ocean) are known, it is possible to test hypotheses linking biogeograp ter is to processes on a calibrated timeline (Dupin et al., 2017).

A cosmic toltan group of particular biogeographical interest are eelpouts (family Zoarcidae), the most tocalose family in the suborder Zoarcoidei, comprising ~75% of the suborder's ~400 species (Fricke et al., 2018), and the only Zoarcoidei family with species that inhabit marine environments surrounding both poles (Møller et al., 2005). Eelpouts are also one of the most rapidly speciating fish clades, with their propensity for deep-waters and high-latitudes implicated as potential drivers of their high speciation rate (Rabosky et al., 2018). At polar latitudes, marine environments are chronically cold, and often subfreezing, yet they retain high levels of biological

productivity and species richness (DeVries and Steffensen, 2005). Considerable focus has been devoted to understanding how and when organisms diversified in the Southern and Arctic Oceans (e.g., González-Wevar et al., 2010; Hopkins and Marincovich Jr, 1984), particularly as it relates to when both oceans reached their contemporary subfreezing temperatures [Southern Ocean: 10-15 million years ago (Mya), Arctic Ocean: 2-3 Mya; DeVries and Steffensen (2005)]. Generally speaking, most Zoarcoidei species are found in the Northern Hemisphere, specifically the northwestern Pacific Ocean, which has been proposed as a speciation center for the group (Anderson, 1994; Shmidt, 1950).

A key innovation among the Zoarcoidei is the evolution of antifreeze protein. evolved repeatedly across the Tree of Life, including in multiple fish life ages beyond the Zoarcoidei (e.g., antifreeze glycoproteins; Chen et al., 1997; Zhua q et a., 2019) and have been hypothesized to underlie adaptive radiations in some groups (e.s., notothenioids, Matschiner et al., 2011). Adaptive radiations occur when high negation rates, common ancestry, and a phenotype-environment correlation dies a rapid lecrease in species diversity 00). For instance, the Antarctic and often stem from ecological opportunity (Schluten notothenioid adaptive radiation into freezi and not ctic waters has been linked, in part, to the evolution of AFPs (Matschiner et al., 211: 1 ear et al., 2012). A structurally distinct type of AFP (Type III) is only found within members of the suborder Zoarcoidei and has been observed in five families—Anarhichadidae, Cryp acanthodidae, Pholidae, Stichaeidae, Zoarcidae (Davies et al., 2002; Davies et al., 1988) Tyr III FPs arose approximately 18 Mya, in the Northern Hemisphere, suggesting that Artic vaters were ice-laden earlier than current estimates suggest (Hobbs et al., 2020). In s, the ontemporary distributions of Zoarcoidei species raises questions about how pooling of the Arctic and Southern Oceans may have influenced the group's evolution.

Here we used hulti-locus sequence data to construct a time-calibrated, comprehensive phylogery of the suborder Zoarcoidei with an emphasis on eelpouts (family Zoarcidae). Next, we used his phylogeny to clarify issues of taxonomic uncertainty in the group and better understand its biogeographic history. Previous phylogenetic efforts have noted issues with the Zoarcoidei taxonomy, primarily stemming from a lack of monophyly in the Stichaeidae family, which led to the description of two new families, Eulophiidae and Neozarcidae (Kwun and Kim, 2013). We confirm and build upon these prior efforts to continue improving Zoarcoidei taxonomy. To better understand biogeographic history for the group, we reconstructed ancestral

ranges for every node of our phylogeny and considered what, if any, evidence exists for cooling of polar seas to have driven patterns of speciation. We performed biogeographic stochastic mapping on our phylogeny to quantify the types of biogeographic events (e.g., founder-event speciation, dispersal) that have underpinned the group's diversification. To our specific question of whether ocean cooling has been a major driver of speciation within Zoarcoidei, and for eelpouts in particular since they are the only globally distributed family in the suborder, we expected to observe three lines of evidence: (1) higher support for biogeograph's models that incorporate the timing of polar ocean cooling, (2) bursts of speciation following the cooling of each polar ocean at roughly 10 (Southern) and 2 (Arctic) Mya, and (3) more also real events into polar regions than out of them as cold-adapted Zoarcoidei took advantage of sew ecological opportunities.

### 2. Materials and Methods:

### 2.1. Data collection and geographic zone definition

es recombination activating 1 (rag1), We obtained sequence data for up to three nuclear quality ree mitochondrial genes [cytochrome rhodopsin (rho), ring finger protein 213 (rnf213)] an oxidase I (mt-co1), cytochrome B (mt-cyb) RNA (mt-rnr2)] from 223 specimens in the suborder Zoarcoidei and an outgroup, legir Jps maclovinus (suborder Notothenioidei). Our data set included a combination of existing data in GenBank and newly generated data (Table S1). For phylogenetic biogeograph, modeling and ancestral range reconstruction (see 2.3 Biogeographic modeling and ance trail lange estimation), it was important that we binned species' contemporary distributions into geographic categories. To do this, we first defined the geographic distribution each species in our data set using FishBase (http://fishbase.org; Froese and Pauly, 2019), an online database with species-level distribution information that stems from publishe Literature and observations reported on the Ocean Biogeographic VSit m DBIS, https://obis.org/; Grassle, 2000) and the Global Biodiversity Information nation Factity (GBIF, https://www.gbif.org/; Lane and Edwards, 2007). We then binned contemp, rary distributions for each species into five geographic zones based on their latitudinal range multiple zones allowed for a given taxon: (1) Arctic (north of the Arctic Circle, >66.5°N), (2) North Temperate (between the Arctic Circle and the Tropic of Cancer; 23.5°N -66.5°N), (3) Tropical (between the Tropic of Cancer in the northern hemisphere and the Tropic of Capricorn in the southern hemisphere; 23.5°N - 23.5°S), (4) South Temperate (between the Tropic of Capricorn and the Antarctic Circle; 23.5°S - 66.5°S), and (5) Antarctic (south of the Antarctic Circle, >66.5°S).

We chose to use large geographic zones for two reasons. First, Zoarcoidei species are poorly studied and thus, a conservative approach to estimating their distributions was needed. Since many taxa are only known from their type localities, larger zones accounted for uncertainty in their true geographic distributions. Second, deep sea fishes can have considerable dispersal potential, with ranges spanning nearly 5,000 km for some species (equivalent to ~45° of latitude; Baco et al., 2016). Large geographic zones can help account for uncertaint as the possibility of ecologically important deep-sea dispersal. However, it is important to not our use of strict geographic limits to zones following established latitudinal lives Antarctic Circles) may have influenced our biogeographic results, particular Temperate and Antarctic zones. While the Arctic Circle aligns well with the Imits of cold conditions in the Arctic Ocean, the Antarctic Circle does not align articleary well with the limits of cold conditions in the Southern Ocean, which is often defir ed in relation to the Antarctic Circumpolar Current (ACC). The ACC flows in a clockwise direction around Antarctica, is marked by an onset of subfreezing temperatures at the Arkarctic Convergence, and varies between 47°S and 60°S latitude depending longitude and season (DeVries and Steffensen, 2005). The ACC and the onset of polar contrion has been implicated as a key barrier to dispersal for marine fauna in the Southern Hamisphere (e.g., Desvignes et al., 2020; Griffiths et al., 2009; La Mesa et al., 2017). Thus, den ing the latitudinal limit for the Antarctic zone at the ACC instead of the Antarctic Circle pay have yielded different results in our biogeographic analyses. However, given sparally rial on of the ACC, uncertainty surrounding the geographic distributions of deep-sea mar feet, and the presence of Antarctic Bottom Water which flows from Antarctic depths in thwan throughout the world (e.g., Rhein et al., 1998), we chose to maintain equal latitud hal ranges for the Arctic and Antarctic Zones as described above.

We collected be sequence data for four specimens using polymerase chain reaction (PCR) and large ed Sanger sequencing. For each specimen, DNA was extracted from frozen tissue (either housele, liver, or a fin clip) using a MagAttract HMW DNA Kit (Qiagen), following the manufacturer's protocol for 25 mg tissue samples. We amplified our six markers using primers listed in Table S2 with the same PCR conditions: initial denaturation for 4 min at 94°C, 35 cycles of 30 s at 94°C, 30 s at 55°C and 45 s at 72°C, and a final elongation for 7 min at 72 °C.

We also extracted sequences for *Lycodichthys dearborni* (*rag1*, *rho*, *rnf213*, *mt-co1*, and *mt-cyb*) and *Lycodes polaris* (*rag1*, *rho*, *rnf213*, *mt-cyb*, and *mt-rnr2*) from short-read genome

assemblies. Genomes were assembled from high-coverage (>50x), short-read sequence data (either 100-bp or 150-bp paired-end Illumina sequence data) with SPAdes v3.11.1 and default settings (Bankevich et al., 2012). To extract sequences, we used BLAST+ v2.5.0 (Altschul et al., 1990) to align our primers against each assembly. We elected to align primers rather than homologous sequences to ensure that sequence variability did not affect our ability to recover our target sequences. Matches with an e-value less than 0.5 that were also the longest match between the query and target were identified as our best hits. We extracted the sequence between primers (the target) with bedtools (Quinlan and Hall, 2010). To confirm the identity of sequences, we used BLASTn to compare the extracted sequences against the NCBN latabase to verify they were orthologous to sequences from closely related species. Extracted sequenced were also visually checked for evidence of pseudogenization by assetsing many premature stop codons or frameshifts were present. GenBank accession numbers for an genetic data used in this study, including newly generated sequences, are provided in Table S1.

### 2.2. Phylogenetic reconstruction and divergence timing

d int-cyb were translated to amino acid Nucleotide sequences for rag1, rho, rnf213, mt-ca1 ith default settings (Edgar, 2004). Nucleotide sequences and aligned using MUSCLE va alignments were then generated using the artino and alignments with PAL2NAL v14-0 (Suyama et al., 2006). Nucleotide sequents for mt-rnr2 were aligned using MUSCLE v3.8.31 with default settings (Edgar, 2004). Ifter concatenation, we used the aligned nucleotide data set to estimate phylogeny using maximum kelihood and to infer divergence times in a Bayesian framework. To infer the maximum likelihood tree we used IQ-TREE v1.6.10 (Nguyen et al., 2015). We provided partitions assed on codon positions in each of the five coding genes and let individual rate while sharing branch lengths across partitions (Chernomor each partition have a et al., 2016). We let Q-REE find the best substitution models and partitioning scheme (Kalyaanan orth et al., 2017). To improve the thoroughness of the tree search algorithm we the perturbation parameter to 0.3 from a default of 0.5 and increased unsuccessful th iterations to 500 from a default of 100. We assessed confidence across the tree with 5,000 cates of ultrafast bootstrap approximation (Hoang et al., 2018).

We estimated divergence timing under a fossilized birth-death process (Heath et al., 2014) as implemented in MrBayes v3.2.7a (Ronquist et al., 2012). We used the fossil *Proeleginops grandeastmanorum* (family Eleginopsidae, age 38-45 Mya) constrained as sister to the outgroup species *Eleginops maclovinus* (Bieńkowska-Wasiluk et al., 2013). Because of uncertainty of

their placement, two fossil species—*Agnevicthys gretchinae* and *Palaeopholis laevis* (family Pholidae, age 11.5-12.3 Mya; Nazarkin, 2002)—were allowed to be placed as either the stem (outside of the clade formed by extant species) or crown (within the clade of extant species) for the group during exploration of the tree space. We included several fossils identified as Stichaeidae but because preliminary analysis demonstrated polyphyly of this family, we allowed these fossils to be placed anywhere within the in-group excluding Bathymasteridae: *Nivchia makushoki*, *Stichaeus brachigrammus*, and *Stichaeopsis sakhalinensis* (age 11.5-17.3 Mya; Nazarkin, 1998), undescribed fossils NSM PV 22683 (age 13-16 Mya) and PIN 2.81/1056 (11.6-13.5 Mya; Nazarkin and Yabumoto, 2015), and *Stichaeus matsubarai*, age 5.3-33 Mya; Yabumoto and Uyeno, 1994). We used fossils assigned to the contemporar, species *Lycodes pacificus* (family Zoarcidae) to date its age at 0.78-2.59 Mya (Fitch, 11.67).

For each fossil, we sampled age from a uniform distribution spanning as possible age range. Because gene-partitioning for divergence dating may result in the alistically narrow confidence intervals (Angelis et al., 2018), we used an unpartitional GIR model with gamma rate pe dent gamma-rate relaxed clock distribution broken into six discrete categories, the model, and extant sample proportion of Q. We et the root age prior to be an exponential distribution offset at 38 Mya (the young est likely age of P. grandeastmanorum) with a mean of 70 Mya. We performed these analyses unter two scenarios: one assuming taxon sampling was random and one assuming taxon sampling was done to maximize taxonomic diversity (Zhang et al., 2016). The choice of samping, shane assumption can impact dating analyses if significant mismatch between assumed an artual taxon sampling exists. For example, when only a few species are sampled to spress at genera or families in a clade containing thousands of species unequally distributed cross these taxa, the sampling scheme is maximizing taxonomic and phylogenetic diversity and is different from a random sample of species from that clade. This can lead to silized birth-death process dating (Zhang et al., 2016). For each MrBayes sis e randour replicates, each with four chains, for 400 million generations, sampling Q00 generations and discarding the first 20% of samples as burn-in. We assessed the of these analyses by confirming that effective sample size for each parameter was greater than 100, potential scale reduction factor values were close to 1.0, proposal acceptance rates were between 20-70%, average standard deviations of split frequencies were below 0.01, and that time-series of parameter values converged across replicates. We did not observe differences between random and diversified sampling. Thus, we used diversified sampling results for downstream analyses. To visualize our results, we generated a lineages through time plot for the full species tree with the *ltt* function of Phytools (Revell, 2012) and plotting in ape (Paradis and Schliep, 2019).

## 2.3. Biogeographic modeling and ancestral range estimation

For biogeographical modeling, we used "BioGeography with Bayesian (and likelihood) Evolutionary Analysis in R Scripts" v1.1.2 (BioGeoBEARS; Matzke, 2014). To identify the bestfit model, we compared likelihoods of six models for ancestral range estimation dispersal-extinction cladogenesis (DEC; Ree, 2005; Ree and Smith, 2008), disp analysis (DIVALIKE; Ronquist, 1997), and Bayesian inference of ancestral a ving or founder-(BAYAREALIKE; Landis et al., 2013), as well as a variant of each modelally event speciation ("+j" parameter designation). In addition to j, the models included two other free parameters: d (rate of range expansion) and e (rate of range contaction). Because our dated Bayesian consensus tree contained several polytomies, we remark the Geoble BEARS model selection separately on ten randomly chosen posterior trees to account a contract certainty. For all trees, we removed fossil taxa and taxonomic replicates to ensure that each species was represented only ne to a described species (e.g., to once. We also removed tips that were not reliable a of an ation given and thus no geographic context. genus only) and/or had no sampling local

After binning species into the geographic anes described above—Arctic, North Temperate, Tropical, South Temperate, Antarct —we ran two types of BioGeoBEARS analyses. (1) "Unconstrained", meaning that dis prese probabilities were not constrained across space and time and taxa were allowed con nu us or discontinuous ranges (e.g., Arctic and Tropical but not North Temperate). A more parameter-rich and biologically realistic "time-stratified" probabilities modified for three pre-defined time periods—0-3 Mya, 3-20 analysis with dispers Mya, and 20 Mya and older (i.e., the time before, during, and after cooling of the Arctic and an Divries and Steffensen, 2005)—to incorporate predicted geographic and Southern **2** distal ces among range categories. Dispersal was penalized by distance only for the time pen d before the Southern or Arctic Oceans began cooling (>20 Mya), a dispersal penalty was add for the Antarctic zone after the Southern Ocean began cooling and reached its present state (3-20 Mya), and a dispersal penalty was added for the Arctic zone after the Arctic Ocean began cooling to its present-day temperature (0-3 Mya). For both sets of analyses, a maximum occupancy of three geographic zones was allowed and for the time-stratified analyses, only adjacent ranges were allowed (e.g., Tropical+North Temperate+Arctic). We limited analyses to only three geographic zones because no species included in our study had a contemporary distribution that spanned more than three zones. The dispersal matrices used in these analyses are provided in Table S3.

## 2.4. Biogeographic stochastic mapping

In order to quantify the number of each type of biogeographic events in Zoarcoidei evolution we used biogeographic stochastic mapping (Dupin et al., 2017). Six types of biogeographic events were allowed in the models tested: speciation within-area (both species occupy the american post-speciation), speciation within-area subset (one species inhabits a subset of the range post-speciation), vicariance, founder event, range expansion, and range contraction (see complete descriptions in Dupin et al., 2017). We differentiated among models using the Akake information criterion corrected for small sample sizes (AICc; Cavanau In, 19 7). According to AICc, "BAYAREALIKE+J" was favored across all ten randomly set cted posterior trees for both unconstrained and time-stratified analyses (see 3. Results). We therefore used BAYAREALIKE+J under the time-stratified regime for biogeograph c stochastic mapping with 100 stochastic replicate maps performed on each of the ten randomly chosen posterior trees. To obtain consensus results we averaged event so in a firm each of the 10 posterior trees for the best-fit model (BAYAREALIKE+J).

### 3. Results:

### 3.1. Data collection

We acquired sequence data for 2. Specimens representing at least 196 described species or subspecies from 10 families within 7 parcoidei. This translates to ~51% of described species diversity (*n* = 383) in the suborder (FishBase; Froese and Pauly, 2019). For five families, we sampled 100% of de cribeodiversity: Anarhichadidae, Eulophiidae, Neozoarcidae, Ptilichthyidae, and 2 providae. For the most speciose family in the suborder—eelpouts (Zoarcidae) we as pled 113 of 290 described species (39%; Figure 1). Across all specimens and parkers, or data set was 44.9% complete with only seven samples (3.1%) represented by a single parker. Sampled taxa spanned 274 contemporary geographic zones with 42 species in the Arctic (15.1%), 180 species in the North Temperate zone (64.5%), 15 species in the Tropical zone (5.4%), 26 species in the South Temperate zone (9.3%), and 11 species in the Antarctic (3.9%; Table S1). Only eelpouts (Zoarcidae) had distributions in the South Temperate and Antarctic zones (Figure 1, Table S1).

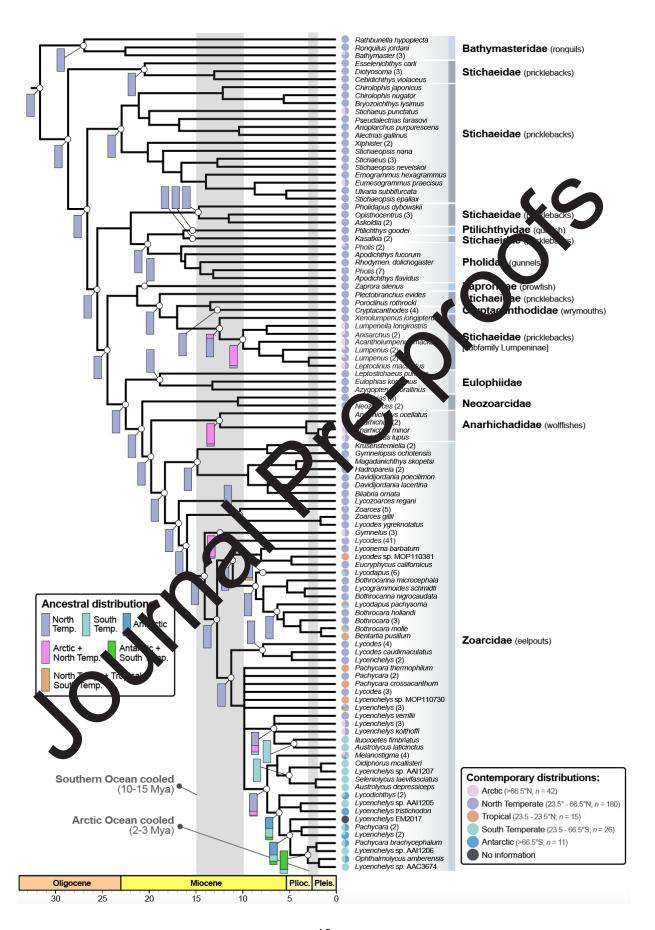
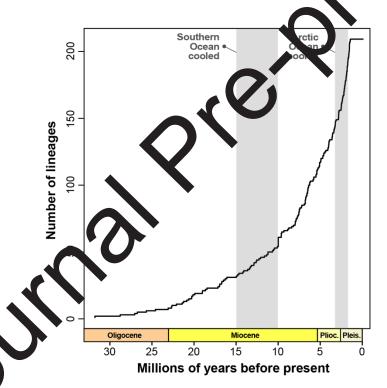




Figure 1. A time-calibrated tree of the suborder Zoarcoidei. For visualization, when multiple species within the same genus formed a monophyletic group, we compressed the group. The number of taxa that were compressed are given in parentheses after the tip label. To the left of nodes, colored areas within vertical rectangles indicate the amount of support for that ancestral distribution group (Note: Up to three geographic zones could be combined for the ancestral range reconstruction). More area indicates more support for that ancestral distribution over others (if applicable). To the right of tips, small pie charts represent present-day distributions across our five latitudinally defined geographic zones (Arctic, North Temperate, Tropical, South Temperate, Antarctic). When multiple tips are compressed into one pie chart and/or a taxon's range spans multiple regions, the proportion for each region is reflected in the pie chart. Like historical distributions, contemporary distributions were also allowed to span more than on geographic zone. In the contemporary distributions key, n represents the number of specimens in geographic zone (Note: Because one specimen's distribution can span multiple zones, to more than the total number of samples included in the study). Thus, the number of piers components does not necessarily equal the number of taxa in a given group. The tra ted with Eleginops maclovinus which was removed for visualization. The numeric scale at tl e botti m of the figure indicates millions of years before present with corresponding geological epochs indicate timing of the cooling of the Southern and Arctic Oceans, respectively lete trees (with outgroups) including dating estimates, probabilities for each node, and thefu um likelihood tree are included in the Supplementary Materials as Figures S1, S2, and S3, spe



**Figure 1** A inveage through time plot for the suborder Zoarcoidei with the timing of Southern and Arctic Ocean cooling noted.

### 3.2. Phylogenetic reconstruction

Our phylogeny indicates that the Zoarcoidei lineage diverged from the last common ancestor of notothenioids and Zoarcoidei during the Lower Cretaceous period, ~104 Mya [95% highest posterior density (HPD): 72-152 Mya] and began to radiate in the Oligocene, ~31-32 Mya (Figures 1, S1). Major families were recovered as monophyletic except for the Stichaeidae

which were recovered as polyphyletic, in line with previous studies (e.g., Clardy, 2014; Radchenko, 2016). Our results lend support to the current taxonomy of Eulophiidae and Neozoarcidae which were described by Kwun and Kim (2013) and expanded by Radchenko (2015). We also found support for the genus *Kasatkia* (currently in the Stichaeidae family) as sister to *Ptilichthys goodei*, the only described species in the family Ptilichthyidae (Figure 1). From a timing perspective, the eelpouts (Zoarcidae), the only family with a global distribution, emerged in the early Miocene (~18 Mya, 95% HPD: 12.8-26.2 Mya) and have stead y diversified until the present, with only one potential burst of speciation: the larges polytor y in our tree, suggesting rapid speciation, occurred ~10 Mya when the Southern oce n had largely cooled to present-day temperatures (Figures 1-2).

**Table 1.** A summary of biogeographic model selection for the time-strath of analyses averaged across 10 randomly selected posterior trees to account for polytomies in the corners is tree. Complete model selection results, including those for the "unconstrained" analyses which losely align with those presented here, are included in Table S4. The models tested follow hose butlined in (Matzke, 2013) and include dispersal-extinction cladogenesis (DEC; Ree, 2005; Ree and south, 2008), dispersal-vicariance analysis (DIVALIKE; Ronquist, 1997), and Bayesian inference of ancests areas (BAYAREALIKE; Landis et al., 2013) as well as a variant of each allowing for four der event speciation (+j).

| Model        | Parameters | ean 10 | ∆AICc | Model choice |
|--------------|------------|--------|-------|--------------|
| DEC          | 2          | 6. 2.2 | 99.2  | 3            |
| DEC+j        | 3          | 645.   | 75.2  | 2            |
| DIVALIKE     | 2          | 721.5  | 151.4 | 6            |
| DIVALIKE+j   | 3          | 684.8  | 114.8 | 5            |
| BAYAREALIKE  |            | 676.8  | 106.8 | 4            |
| BAYAREALIKE+ | <i>j</i> 3 | 570.1  |       | 1            |

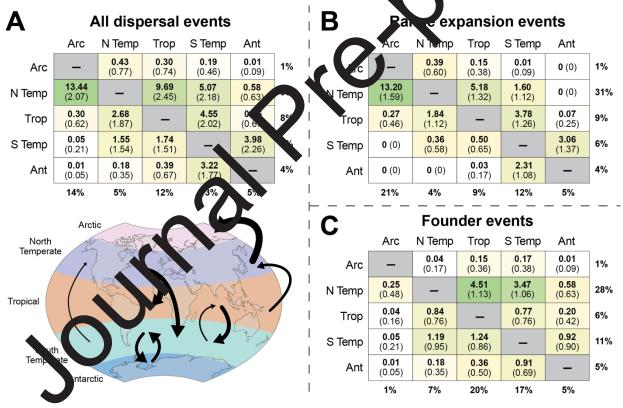
### 3.3. Biogeographic modeling and a cestral range estimation

d unconstrained analyses, our model selection results strongly For both time-stratified IKE model with the second-best model (DEC+j) 75 AICc units higher in favored the BAYARE both cases (Table 7) In the with similar biogeographic studies on cosmopolitan species (e.g., e inclusion of a founder-event speciation parameter (+j) substantially Dupin et a tt acr ss all models tested (Tables 1, S4). Our time-stratified analyses were also a better fit the data with a 31 AICc unit difference between the best-fit model (BAYAREALIKE +j) ratified versus unconstrained analyses (Table S4). Given this, we focus hereafter on the time-stratified results. Ancestral range reconstruction under the best-fit model (BAYAREALIKE +j) supported a North Temperate origin for the entire suborder, as well as every family within the group with the exception of wolffishes (family Anarhichadidae) with the bulk of support (>80%) in favor of a combined Arctic+North Temperate ancestral range for that group (Figure 1). Two other clades, one including Stichaeidae lineages with four Lumpenus species

and the other containing three *Gymnelus* eelpout species, also exhibited strong support for an Arctic+North Temperate origin. The only non-Northern Hemisphere ancestral range we found support for was within eelpouts, specifically a number of lineages in the subfamily Lycodinae. For example, for a clade containing several *Lycenchelys* and four *Lycodichthys* species, including *Lycodicthys dearborni*, an Antarctic resident known from 72°-78°S, we found ~50% support for an Antarctic ancestral range followed by ~40% support for South Temperate, and 10% support for a combination of Antarctic+South Temperate (Figure 1).

**Table 2.** Summary of biogeographic stochastic mapping results for the suborder Zourcol et and the best-fit model (BAYAREALIKE+*j*). The six types of biogeographic events allowed in the model are described fully in Dupin et al. (2017). Speciation within-area and speciation within-area subject. If the former, ranges before and after divergence are the same whereas in the atter, the of the new lineages only occupies a subset of its former range. Included values are also ged to ith standard deviations (SD) for the means across 10 randomly selected posterior trans to account for polytomies in the consensus tree.

| Mode                   | Туре                          | N ean (SD)  | Percent |
|------------------------|-------------------------------|-------------|---------|
| Within-area speciation | Speciation within-area        | 94.1 (1.4)  | 80      |
|                        | Speciation within-area subset |             | 0       |
| Dispersal              | Founder event                 | 15.9 (1.4)  | 6.5     |
|                        | Range expansion               | 32.7 (2.4)  | 13.5    |
|                        | Range contractions            | 0 ` ´       | 0       |
| Vicariance             | Vicariance                    | 0           | 0       |
| Total                  |                               | 241.7 (2.4) | 100     |


# 3.4. Biogeographic stochastic manning

Across the Zoarcoidei, most birg ogliophic events were within-area speciation (80%) followed by two types of dispersals: range expansions (13.5%) and founder events (6.5%; Table 2). The fact that we observed a ligh number of within-area speciation events is unsurprising given that we divided the Earth into here large geographic zones. Similarly, a lack of vicariance events likely reflects the continuous nature of the marine environment with few strong dispersal barriers.

For dis, ers. 1. Vents (i.e., range expansions and founder events), 30% of all events were out of the North Temperate zone with the bulk going into the adjacent Arctic (mean = 13.44 events) or Tropical (9.69) zones (Figure 3A). In general, far fewer dispersal events occurred in the Southern Hemisphere, likely reflecting how much more common Zoarcoidei species are in the Northern Hemisphere, and the North Temperate zone in particular (Figure 1). Range expansion events largely mirrored total dispersal events, with the bulk occurring from North Temperate into the Arctic zone (13.20; Figure 3B). Founder events, however, followed a slightly different pattern

with most events occurring from the North Temperate into the Tropical (4.51) and South Temperate (3.47) zones, respectively (Figure 3C). Again, this pattern likely reflects the concentration of Zoarcoidei species in the North Temperate zone (Figure 1).

Focusing on the Arctic and Antarctic zones which cooled to their present-day subfreezing temperatures over the last ~2 and ~20 million years, respectively, we only observed asymmetric dispersal rates for the Arctic zone. Indeed, just 1% of all dispersal events origin ted from the Arctic whereas it received 14% of all dispersals. In contrast, dispersal events into and out of the Antarctic zone were largely equivalent with 4% of all dispersal events originating from it while receiving 5% (Figure 3). Collectively, most of the asymmetry we observed was driven by range expansions into and out of the Arctic; the Arctic received 21% of all range expansions while generating just 1% from within.



**Figure 3.** Summary of dispersal events in the history of the Zoarcoidei as estimated with biogeographic stochastic mapping (BSM). Counts of dispersal events (bold) and standard deviations (in parentheses) were averaged across 50 replicate BSMs for each of 10 phylogenies that were randomly sampled from the posterior distribution. (A) Total dispersal events are given in the table and are depicted on a global map with colors representing defined geographic zones. Arrows indicate the frequency and direction of dispersal events. Only events with total mean counts of 1 or more are shown. For visualization, arrow thickness corresponds to the log<sub>10</sub> of the event count multiplied by 2. Arrows only correspond to individual geographic zones and do not correspond to specific oceans or regions. Their placements within zones

are purely for visualization. The counts of all dispersal events in (A) are divided into the two non-zero types of events observed in this study in (B) and (C). In (B) and (C), summarizing percentages were calculated for each group separately so cannot be compared between them. Total event counts, however, can be directly compared and sum to the values in (A). Within tables, color indicates event frequency with darker green shading indicating higher frequencies. Given the counts and associated standard deviations, lower frequency counts (e.g., less than 1) are not necessarily different from zero. For each table, rows represent ancestral states where the lineage dispersed from and columns represent descendant states where the lineage dispersed to. The percentage of total events that a row or column comprises in a given table are shown in bold font to the right and below its margins. Geographic zone abbreviations include Arctic (Arc), North Temperate (N Temp), Tropical (Trop), South Temperate (S Temp), and Antasctic (Ant).

### 4. Discussion:

Our phylogenetic and biogeographic analyses confirmed that the suborder a evolved in northern temperate waters (23.5°N - 66.5°N). This general patter families with one exception—eelpouts (family Zoarcidae)—which exhibits a lobal distribution matnees that reflected the (Figure 1). Our best-fit biogeographic model included time-stratified elevated dispersal challenges of polar habitats as they cooleg to their contemporary subfreezing temperatures. Support for these time-stratified analyses over s without time-stratification suggests that cooling of both areas is important to use rstanding dispersal among the Zoarcoidei. We also observed a clear skew in dispe directionality during the group's evolutionary history with both range expa d founder events much more likely to originate from the North Temperate zone than a vwh e else. Finally, we confirmed standing issues with the Zoarcoidei phylogeny, namely a lack a monophyly for Stichaeidae, and we make recommendations to improve these sues bělow.

# 4.1. Phylogenetic reconstruction and biogeography

Our analyses support the origin of the suborder Zoarcoidei ~31-32 Mya during the Oligocene, beginning with the separation of ronquils (family Bathymasteridae) from the rest of the group. This timing differs from two previous estimates but is closer to the ~37 Mya estimate from Betancur-Partial. (2013) than the ~18 Mya estimate of Radchenko (2016), despite using the same was as Radchenko (2016). In general, all divergences in our reconstruction were deeper actime than those of Radchenko (2016). Betancur-R et al. (2013) included many more taxa as desalibrations than Radchenko (2016) and our data set included roughly three times as many specimens.

From an ecological standpoint, the difference between the timing of eelpout (family Zoarcidae) emergence between our study (~18 Mya) versus the ~11-13 Mya reported by Radchenko (2016) is important as it places the group's initial divergence on either side of when the

Southern Ocean reached its present-day subfreezing temperature 10-15 Mya (Figure 1). However, we cannot draw definitive conclusions from this difference as our 95% confidence interval for Zoarcidae emergence (95% HPD: 12.8-26.2 Mya) includes the upper end of the range for South Ocean cooling. Still, eelpouts and other high-latitude fishes are some of the fastest speciating fish groups (Rabosky et al., 2018). Thus, it is possible that the cooling of the polar seas, paired with key innovations like the evolution of AFPs (Deng et al., 2010), provided the necessary ecological opportunity and physiological tools necessary for two Jursa speciation as the Southern and Arctic Oceans cooled. We found some, albeit line for this among southern lineages, with a polytomy at 10 Mya, soon after the Jour reached its contemporary subfreezing conditions (Figures 1-2). This finding since the Southern Ocean reached its contemporary subfreezing temperature—generally aligns with findings for the Antarctic notothenioids (Near et al., 2015; Ness et al., 2012). We saw less evidence for similar influence by Arctic Ocean cooling. A lack of in luence by Arctic Ocean cooling on the evolutionary history of the Zoarcoidei could sten from the comparatively less harsh summer conditions of the Arctic versus Southern Quean (e.g., water temperatures that are several degrees above zero, DeVries and Steff (2005) reducing the ecological space for diversification (e.g., warmer water red advantage of freezing tolerance), the more extreme physical isolation of the Southern O ean relative to the Arctic Ocean, the more recent nature of Arctic cooling, or a combination these, and perhaps other, factors.

In terms of topology, our phyloger, aligns with related efforts (Betancur-R et al., 2013; Kwun 2015; Fadchenko, 2016) and confirms standing taxonomic issues and Kim, 2013; Radchenk for the Zoarcoidei that Nive been noted previously (Kwun and Kim, 2013; Radchenko, 2016). We observed a lack monophyly within the pricklebacks (family Stichaeidae). In some instances, taxa that re considered Stichaeidae are sister to other families (e.g., the Stichaeidae d tilichthyidae, posterior probability ≥ 0.95; Figures 1, S2), highlighting the genus Kas e continued re-evaluation of higher-level taxonomic assignments within the suborder. Kwun and Kim (2013) addressed two of these issues by establishing two new families e and Neozoarcidae—and reclassifying species previously considered to be Stichaeidae and Zoarcidae within them. Radchenko (2016) expanded on these descriptions, finding support for additional species to be grouped within both families. Our results support these taxonomic changes as well. Still, because Stichaeidae appear to have acted—at least in part—as a taxonomic "catch all" for the suborder, issues remain. For instance, Poroclinus rothrocki is currently assigned to Stichaeidae but we recovered it as sister to

Cryptacanthodidae. Similarly, we recovered *Plectobranchus evides* (currently Stichaeidae) as sister to both *P. rothrocki* and *Zaprora silenus* (Zaproridae; Figure 1). Node probabilities for these three branches ranged from 0.61-0.85 (Figure S2) highlighting uncertainty around their placement. Thus, it is possible that they each represent monotypic families similar to the prowfish (Zaproridae) but without additional analyses, ideally incorporating additional molecular data with morphological characters, it will remain uncertain. Finally, given the relatively distant relationship between the subfamily Lumpeninae and the rest of Stichaeidae (Figure 1) observed in this study and Radchenko (2015), albeit with limited evidence for monophyly to rein (posterior probability = 0.61; Figure S2), elevating Lumpeninae to its own family, Lumpeninae, way be warranted.

## 4.2. Ancestral range estimations

Over 70 years ago, Shmidt (1950) hypothesized that major fa nille in the suborder Zoarcoidei evolved in the northern Sea of Okhotsk (~60°N) during the Micsey (23-5.5 Mya). In addition to our phylogenetic results supporting this timeline of major family energence, our ancestral range reconstructions also supported it by showing that Z coidei species largely diversified in midlatitude regions of the Northern Hemisph eneral, the estimated ancestral range of a clade or taxon reflected its present-day istributions. This is particularly interesting in the context of eelpouts and their cosmopolitan distribution, including both poles, the only family in the suborder to exhibit such a pattern and one of only 10 families across all fishes, Møller et al., 2005). In addition to polar distriction, as elepouts are also the only Zoarcoidei family to commonly inhabit the deep sea > 1000 m) and occur near hydrothermal vents (Møller et al., 2005). Wide variation in refer of depths has been proposed as one factor that enhances re in Narine organisms (Brown et al., 1996). This may be particularly true geographical range for deep-water species like eelpouts given that the deep sea, while extreme in terms of pressure, derkness, is more environmentally stable than shallower habitats and has to dispersal (Gaither et al., 2016). Thus, the global distribution of eelpouts imen other families in the suborder (as well as their exceptionally high speciation rate, et al., 2018) may be due to deep sea habitat connectivity paired with a propensity for adapting to extremes, whether subfreezing waters (Deng et al., 2010) or hydrothermal vents (Machida and Hashimoto, 2002).

### 4.3. Directionality of dispersal events

Strong asymmetry in dispersal among geographic zones was observed for the Zoarcoidei. This asymmetry was most notable for the North Temperate zone, the center of origin for the group according to ancestral range reconstructions and the most speciose zone considered in this study. Dispersals out of the North Temperate zone accounted for 30% of all events while dispersals into it only accounted for 5% (Figure 3A). Similar patterns of asymmetric dispersal have been observed for other species, particularly from the North Pacific into the Arctic, for mollusks (Marincovich and Gladenkov, 1999) and other deep-water fishes (e.g. snatisbes, family Liparidae; Orr et al., 2019).

We also observed differences in dispersal rates for the Arctic and Antarctic Given the relative absence of a barrier to dispersal into the Arctic, except for a temperature drop (Barker et al., 2007), we expected more bidirectional dispersal for the Arctic ane. car results, however, did not align with this expectation; while dispersal into the Art ac was indeed common (14% of all events), dispersal out of the Arctic was extremely rare (~1) Figure 3A). This starkly contrasts with the lower and largely equivalent rates declinersal into and out of the Antarctic eer water distributions of eelpouts and/or zone (4% vs. 5% respectively, Figure 3A). Given th their tolerance for subfreezing temperature, this result may be linked to differences in ecological opportunity or other factors etwe h the regions. It might also simply reflect lineage age and species richness. The Arctic zone is adjacent to the North Temperate zone, the most likely center of origin for the group and where much of its species richness remains), and by cooling much more recently, any priexto dispersal that it presents is much younger than the Antarctic zone. Thus, a combination of geographic proximity to the Zoarcoidei center of origin paired with more recent perma changes may best explain the dispersal differences we observed between p ar regions.

However, a caltered we explanation for the differences in dispersal into and out of the Arctic versus Altarctic zones that we observed may be methodological. When faced with assessing biogeographic patterns for many poorly studied, commonly deep-water taxa, we needed to set boundaries between geographic zones that would ideally yield zones of similar size that could be more easily compared. In the Northern Hemisphere, we used the Arctic Circle to denote the boundary between polar and non-polar waters. This is reasonable as no major environmental barriers exist in the Arctic marine environment and latitude is generally a good predictor of sea temperatures (DeVries and Steffensen, 2005). However, while all waters south of the Antarctic Circle are no doubt polar, as evidenced by their perennial subfreezing temperatures, similarly

harsh conditions extend to lower latitudes within our South Temperate zone depending on season, depth, and longitude. The aforementioned ACC and the associated Antarctic Convergence is the most obvious breakpoint between these polar conditions and less harsh temperate waters. Thus, had we set a more ACC-focused latitude as the barrier between the South Temperate and Antarctic zones (e.g., 60°S), we would have classified more species as Antarctic only. In that scenario, it is possible that our biogeographic modeling would have recovered an asymmetry in rates of dispersal into and out of the Antarctic zone

### 4.4. Potential caveats and future directions

The total numbers of biogeographic events reported in this study represent sampled ~50% of the described species in the suborder. While more exonomic sampling would provide greater resolution of the true value of these figures, it is unkely to alter their relative proportions of each since, to our knowledge, no major bias in our an ling scheme exists in terms of both taxonomic representation and geographic scope (as Je from the South Temperate and Antarctic zone delineations described above). Hencey, this day applies to the currently described taxonomic diversity. A more general, and in pollant, caveat lies in the lack of knowledge surrounding Zoarcoidei species Sott eelpouts and the broader suborder are relatively deep-water taxa, often living 1 dep as of hundreds to thousands of meters, with little biomedical or economic benefit. As such, Ley are understudied, and this lack of natural history knowledge may bias our results in two ways. First, many Zoarcoidei species have been described from the Sea of Oktots of the southeastern coast of Russia (~55°N) and broadly from the Northern Hemisphere (and erson, 1994). It is possible that a bias in both sampling effort and species descritions wards the Northern Hemisphere, and specifically the North Temperate zone use in our study, influenced our results. However, our use of broad geographic zones likely tempered this effect as it allowed for broader distributions and therefore pecies' ranges. Second, most Zoarcoidei species have been described more uncert holog alone (Anderson, 1994) and little to no molecular insight exists for the group bylogenies that target single representatives for each clade. Given the propensity for cryptical ersity even in well-studied groups (e.g., mouse lemurs, Hotaling et al., 2016) and the potential for morphologically distinct animals to be the same species (e.g., steelhead and rainbow trout, Kendall et al., 2015), future efforts to assess species boundaries with molecular data across the suborder will improve resolution of their biogeographic history.

### 5. Conclusion:

In this study, we used a densely sampled, time-calibrated phylogeny of the suborder Zoarcoidei, with an emphasis on the globally distributed eelpouts, to understand evolutionary relationships and biogeographic history for the group. From a taxonomic standpoint, we highlighted existing issues with the Zoarcoidei taxonomy, most notably the widespread lack of monophyly for pricklebacks (family Stichaeidae). We found support for two families recently established to correct part of this issue—Eulophiidae and Neozoarcidae—and proposed additional solutions. For instance, *P. rothrocki* is currently assigned to Stichaeidae but we recovered to as sister to Cryptacanthodidae.

For biogeography, if polar ocean cooling has been a major driver of speciation Zoarcoidei, we expected to observe three lines of evidence: (1) higher support for biogeographic models that incorporate the timing of the Arctic and Southern Ocean count, (2) bursts of speciation following the cooling of each polar ocean at rough (10, So, thern) and 2 (Arctic) Mya, and (3) more dispersal events into polar regions than out of them. We found clear support for the first line of evidence with greater biogeographic model support for our time-stratified analyses that included polar ocean cooling. We fauld imjed support for our other two predictions. We only observed one potential but of speciation following polar ocean cooling for eelpouts in the Southern Hemisphere. Ve all o observed far more dispersal events into versus out of the Arctic zone but largely equivalent rates of dispersal for the Antarctic zone as defined in our study. This dispersal equivalency may be linked to how we defined geographic zones in the Southern Hemisphere, specifically or how our limits aligned with the ACC and the associated Antarctic Convergence Still, our results indicate that other factors beyond polar key to the biogeographic history of Zoarcoidei. ocean cooling have been

While our analyses at large geographic scales yielded key insights for the suborder and major clades, more targeted analyses of individual families paired with finer-scale distribution information and molecular data, will allow for testing of more specific biogeographic hypotheses. Similarly, future efforts to use the same biogeographic methods across multiple taxonomic groups merhaps comparing eelpouts to other deep, cold-water fauna (e.g., snailfishes) or varying how geographic zones are defined, could shed new light on how generalizable the role of major environmental changes like ocean cooling have been for fish diversification.

### 6. Acknowledgements:

We acknowledge funding from the Antarctic Bursary, a Washington State University New Faculty Seed Grant, and NSF awards (OPP-1543383 and OPP-1947040 supporting T.D. and OPP-1906015 to J.L.K). We thank Keegan Paras and Charlotte Walker for their help with analyses. We also acknowledge the Computational Resources Core of the University of Idaho Institute for Bioinformatics and Evolutionary Studies (IBEST).

#### 7. Data statement:

The data (including sequence alignments), code, and additional results for this sudjure publicly available on Zenodo (https://doi.org/10.5281/zenodo.4306092).

#### 8. References:

- Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1980. Lasic local alignment search tool. Journal of Molecular Biology 215, 403-416. https://doi.org/10.1016/S0022-2836(05)80360-2
- Anderson, M.E., 1994. Systematics and osteology of the 2 barcidae (Teleostei: Perciformes). Ichthyological Bulletin of the J.L.B. with institute of Ichthyology 60, 1-120.
- Angelis, K., Álvarez-Carretero, S., Dos Reis, M., Yang, Z., 2018. An evaluation of different partitioning strategies for Bayesian estimation of species divergence times. Systematic Biology 67, 61-77. <a href="https://dx.org/10.1093/sysbio/syx061">https://dx.org/10.1093/sysbio/syx061</a>
- Baco, A.R., Etter, R.J., Ribeiro, P. Von der Heyden, S., Beerli, P., Kinlan, B.P., 2016. A synthesis of genetic con ect vity in deep-sea fauna and implications for marine reserve design. Molecula ecology 25, 3276-3298.
- Bankevich, A., Nurk, S., Ant.pov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.L., Pham, S., Prjibelski, A.D., 2012. SPAdes: a new genome assembly algorithm polits applications to single-cell sequencing. Journal of Computational Bology 9, 455-477. <a href="https://doi.org/10.1089/cmb.2012.0021">https://doi.org/10.1089/cmb.2012.0021</a>
- Barker, F., Filippelli, G.M., Florindo, F., Martin, E.E., Scher, H.D., 2007. Onset and role of the tarctic Circumpolar Current. Deep Sea Research Part II: Topical Studies in Oceanography 54, 2388-2398. <a href="https://doi.org/10.1016/j.dsr2.2007.07.028">https://doi.org/10.1016/j.dsr2.2007.07.028</a>
- Betancur-R, R., Broughton, R.E., Wiley, E.O., Carpenter, K., López, J.A., Li, C., Holcroft, N.I., Arcila, D., Sanciangco, M., Cureton Ii, J.C., 2013. The tree of life and a new classification of bony fishes. PLoS currents 5. <a href="https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288">https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288</a>

- Bieńkowska-Wasiluk, M., Bonde, N., Møller, P.R., Gaździcki, A., 2013. Eocene relatives of cod icefishes (perciformes: Notothenioidei) from Seymour Island, Antarctica. Geological Quarterly 57, 567-582, doi: 510.7306/gq. 1112. https://doi.org/10.7306/gq.1112
- Brown, J.H., Stevens, G.C., Kaufman, D.M., 1996. The geographic range: size, shape, boundaries, and internal structure. Annual Review of Ecology and Systematics 27, 597-623. <a href="https://doi.org/10.1146/annurev.ecolsys.27.1.597">https://doi.org/10.1146/annurev.ecolsys.27.1.597</a>
- Cavanaugh, J.E., 1997. Unifying the derivations for the Akaike and corrected Alaike Information criteria. Statistics & Probability Letters 33, 201-208. <a href="https://doi.org/10.10">https://doi.org/10.10</a>, 150167
  7152(96)00128-9
- Chen, L., DeVries, A.L., Cheng, C.H., 1997. Evolution of antifreeze glycopro sin of the from a trypsinogen gene in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences 94, 3811-3816. <a href="https://doi.org/10.1073/pnas.94.83811">https://doi.org/10.1073/pnas.94.83811</a>
- Chernomor, O., Von Haeseler, A., Minh, B.Q., 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65, 997-1008. https://doi.org/10.1093/sysbio/syw037
- Clardy, T.R., 2014. Phylogenetic systematics of the pickli back family Stichaeidae (Cottiformes: Zoarcoidei) using morphological data. Dissertations, Theses, and Masters Projects. 1539616612. <a href="https://doi.org/10.15772">https://doi.org/10.15772</a> v5-fyer-5n47
- Davies, P.L., Baardsnes, J., Kuiper, M.J., Valker, V.K., 2002. Structure and function of antifreeze proteins. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 357, 9339. <a href="https://doi.org/10.1098/rstb.2002.1081">https://doi.org/10.1098/rstb.2002.1081</a>
- Davies, P.L., Hew, C.L., Flotche C.L., 1988. Fish antifreeze proteins: physiology and evolutionary biology. Canadian Journal of Zoology 66, 2611-2617. https://doi.org/10.11.9/z88-385
- Deng, C., Cheng, C.N., Ve, H., He, X., Chen, L., 2010. Evolution of an antifreeze protein by neof actional zation under escape from adaptive conflict. Proceedings of the National A adem of Sciences of the United States of America 107, 21593-21598.

  https://doi.org/10.1073/pnas.1007883107
- Desvices, T., Postlethwait, J.H., Konstantinidis, P., 2020. Biogeography of the Antarctic dragonfishes Acanthodraco dewitti and Psilodraco breviceps with re-description of Acanthodraco dewitti larvae (Notothenioidei: Bathydraconidae). Polar Biology 43, 565-572.
- DeVries, A.L., Steffensen, J.F., 2005. The Arctic and Antarctic polar marine environments. Fish physiology 22, 1-24. <a href="https://doi.org/10.1016/S1546-5098(04)22001-5">https://doi.org/10.1016/S1546-5098(04)22001-5</a>

- Dupin, J., Matzke, N.J., Särkinen, T., Knapp, S., Olmstead, R.G., Bohs, L., Smith, S.D., 2017.

  Bayesian estimation of the global biogeographical history of the Solanaceae. Journal of Biogeography 44, 887-899. <a href="https://doi.org/10.1111/jbi.12898">https://doi.org/10.1111/jbi.12898</a>
- Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792-1797. <a href="https://doi.org/10.1093/nar/gkh340">https://doi.org/10.1093/nar/gkh340</a>
- Fitch, J., 1967. The marine fish fauna, based primarily on otoliths, of a lower Pleistocene deposit at San Pedro, California (LACMIP 332, San Pedro Sand). Los Angeles Cour y Museum of Natural History.
- Fricke, R., Eschmeyer, W., Van der Laan, R., 2018. Catalog of fishes: genera, species references. California Academy of Sciences, San Francisco, CA, US.
- Froese, R., Pauly, D., 2019. FishBase in the Catalogue of Life.
- Gaither, M.R., Bowen, B.W., Rocha, L.A., Briggs, J.C., 2016. Fish a that rale the world: circumtropical distributions revisited. Fish and Fisheri & 1, 66, -679. https://doi.org/10.1111/faf.12136
- González-Wevar, C.A., Nakano, T., Cañete, J.I., Poulis E., 2010. Molecular phylogeny and historical biogeography of Nacella (Patellagi st. opi da: Nacellidae) in the Southern Ocean. Molecular phylogenetics at a svolution 56, 115-124. <a href="https://doi.org/10.1016/j.ympex.2010.22.001">https://doi.org/10.1016/j.ympex.2010.22.001</a>
- Grassle, J.F., 2000. The Ocean Biogeogra, hic Information System (OBIS): an on-line, worldwide atlas for accessing modeling and mapping marine biological data in a multidimensional geography context. Oceanography 13, 5-7.
- Griffiths, H.J., Barnes, D.K. Line, J., 2009. Towards a generalized biogeography of the Southern Ocean Lenths. Journal of Biogeography 36, 162-177.
- Heath, T.A., Huelsen, eck, 3.P., Stadler, T., 2014. The fossilized birth–death process for coherent call ration of divergence-time estimates. Proceedings of the National Academy of Science 211, E2957-E2966. <a href="https://doi.org/10.1073/pnas.1319091111">https://doi.org/10.1073/pnas.1319091111</a>
- Hoal q, E T., Clernomor, O., Von Haeseler, A., Minh, B.Q., Vinh, L.S., 2018. UFBoot2: proving the ultrafast bootstrap approximation. Molecular biology and evolution 35, 5-3-522. https://doi.org/10.1093/molbev/msx281
- Hobbs, R.S., Hall, J.R., Graham, L.A., Davies, P.L., Fletcher, G.L., 2020. Antifreeze protein dispersion in eelpouts and related fishes reveals migration and climate alteration within the last 20 Ma. PloS one 15, e0243273. https://doi.org/10.1371/journal.pone.0243273
- Hopkins, D., Marincovich Jr, L., 1984. Whale biogeography and the history of the Arctic Basin. Works of the Arctic Centre 8, 7-24.

- Hotaling, S., Foley, M.E., Lawrence, N.M., Bocanegra, J., Blanco, M.B., Rasoloarison, R., Kappeler, P.M., Barrett, M.A., Yoder, A.D., Weisrock, D.W., 2016. Species discovery and validation in a cryptic radiation of endangered primates: coalescent-based species delimitation in Madagascar's mouse lemurs. Molecular ecology 25, 2029-2045. <a href="https://doi.org/10.1111/mec.13604">https://doi.org/10.1111/mec.13604</a>
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., von Haeseler, A., Jermiin, L.S., 2017.

  ModelFinder: fast model selection for accurate phylogenetic estimates. Mature Methods 14, 587-589. https://doi.org/10.1038/nmeth.4285
- Kendall, N.W., McMillan, J.R., Sloat, M.R., Buehrens, T.W., Quinn, T.P., Pers, C.R., Kuzishchin, K.V., McClure, M.M., Zabel, R.W., 2015. Anadromy and esidency in steelhead and rainbow trout (Oncorhynchus mykiss): a review of the processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 72, 519-342.
- Kwun, H.J., Kim, J.-K., 2013. Molecular phylogeny and new classication of the genera Eulophias and Zoarchias (PISCES, Zoarcoidei). Molecular hylogenetics and Evolution 69, 787-795. https://doi.org/10.1016/j.ympev.2013.c6.025
- La Mesa, M., Riginella, E., Jones, C.D., 2017. Early life his tory traits and geographical distribution of Parachaenichthys classol. Antarctic Science 29, 410.
- Landis, M.J., Matzke, N.J., Moore, B.F. Hug senbeck, J.P., 2013. Bayesian analysis of biogeography when the number of reas is large. Systematic Biology 62, 789-804. https://doi.org/10.1093/sysb. /syt040
- Lane, M.A., Edwards, J.L., 2017. Le gobal biodiversity information facility (GBIF). Biodiversity databases: Techniques, politics, and applications, 1-4.
- López, J.A., Chen, W. S. Ortí, S., 2004. Esociform phylogeny. Copeia 2004, 449-464. https://doi.org/10.16.3/CG-03-087R1
- Machida, Y., Hashin eto, J., 2002. Pyrolycus manusanus, a new genus and species of deep-sea eelasut in mul hydrothermal vent field in the Manus Basin, Papua New Guinea (2 parcio le, Lycodinae). Ichthyological Research 49, 1-6.

  https://doi.org/10.1007/s102280200000
- Marin Ch, L., Gladenkov, A.Y., 1999. Evidence for an early opening of the Bering Strait.

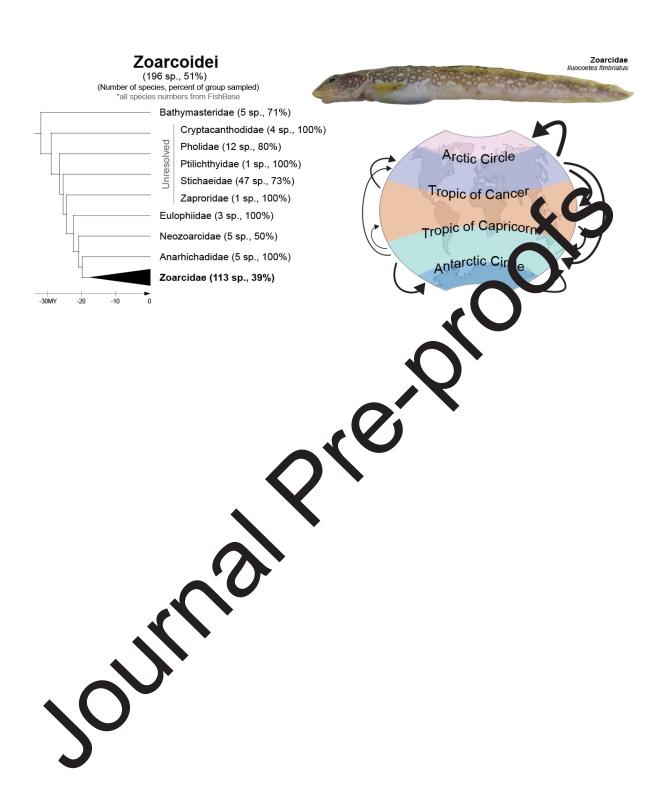
  Nature 397, 149-151. https://doi.org/10.1038/16446
- Matschiner, M., Hanel, R., Salzburger, W., 2011. On the origin and trigger of the notothenioid adaptive radiation. PloS one 6, e18911. https://doi.org/10.1371/journal.pone.0018911

- Matzke, N.J., 2013. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography 5. <a href="https://doi.org/10.21425/F5FBG19694">https://doi.org/10.21425/F5FBG19694</a>
- Matzke, N.J., 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology 63, 951-970. https://doi.org/10.1093/sysbio/syu056
- Møller, P.R., Nielsen, J.G., Anderson, M.E., 2005. Systematics of polar fishes. John hysiology 22, 25-78. https://doi.org/10.1016/S1546-5098(04)22002-7
- Nauheimer, L., Metzler, D., Renner, S.S., 2012. Global history of the ancient monocconfamily Araceae inferred with models accounting for past continental position, and previous ranges based on fossils. New Phytologist 195, 938-950. <a href="https://doi.org/10.1111/j.1469-8137.2012.04220.x">https://doi.org/10.1111/j.1469-8137.2012.04220.x</a>
- Nazarkin, M., 1998. New stichaeid fishes (Stichaeidae, Perciforms 1) hom Miocene of Sakhalin. Journal of Ichthyology 38, 279-291.
- Nazarkin, M., 2002. Gunnels (Perciformes, Pholidae) from the Michene of Sakhaline Island.

  Journal of Ichthyology 42, 279-288.
- Nazarkin, M., Yabumoto, Y., 2015. New facils a Neogene pricklebacks (Actinopterygii: Stichaeidae) from East Asia. Zapsyst matica Rossica 24, 128-137.
- Near, T.J., Dornburg, A., Harrington, R.C., Qliveira, C., Pietsch, T.W., Thacker, C.E., Satoh, T.P., Katayama, E., Wainwa, ht, P.C., Eastman, J.T., 2015. Identification of the notothenioid sister lineage. Juminates the biogeographic history of an Antarctic adaptive radiation. BMC Evalutionary Biology 15, 109. <a href="https://doi.org/10.1186/s12862-015-0362-9">https://doi.org/10.1186/s12862-015-0362-9</a>
- Near, T.J., Dornburg, A. Kuhn, K.L., Eastman, J.T., Pennington, J.N., Patarnello, T., Zane, L., Fernández, D.A., Jones, C.D., 2012. Ancient climate change, antifreeze, and the evolutionary liversification of Antarctic fishes. Proceedings of the National Academy of Sciences 109, 3434-3439. <a href="https://doi.org/10.1073/pnas.1115169109">https://doi.org/10.1073/pnas.1115169109</a>
- Ngu, en, I-T., I chmidt, H.A., Von Haeseler, A., Minh, B.Q., 2015. IQ-TREE: a fast and effective sochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology d evolution 32, 268-274. <a href="https://doi.org/10.1093/molbev/msu300">https://doi.org/10.1093/molbev/msu300</a>
- Orr, J.W., Spies, I., Stevenson, D.E., Longo, G.C., Kai, Y., Ghods, S., Hollowed, M., 2019. Molecular phylogenetics of snailfishes (Cottoidei: Liparidae) based on MtDNA and RADseq genomic analyses, with comments on selected morphological characters. Zootaxa 4642, 1-79. https://doi.org/10.1016/j.ympev.2004.06.015

- Paradis, E., Schliep, K., 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526-528. https://doi.org/10.1093/bioinformatics/bty633
- Quinlan, A.R., Hall, I.M., 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842. <a href="https://doi.org/10.1093/bioinformatics/btq033">https://doi.org/10.1093/bioinformatics/btq033</a>
- Rabosky, D.L., Chang, J., Title, P.O., Cowman, P.F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T.J., Coll, M., 2018. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392-395. https://doi.org/10.1038/s41586-0.3-0273
- Radchenko, O.A., 2015. The System of the Suborder Zoarcoidei (Pisces, Pricing me.) as Inferred from Molecular Genetic Data. Russian Journal of Genetics 5: 12 3-1290. https://doi.org/10.1134/S1022795415100130
- Radchenko, O.A., 2016. Timeline of the evolution of eelpouts from the superider Zoarcoidei (Perciformes) based on DNA variability. Journal of Ich myo. gy 56, 556-568. https://doi.org/10.1134/S0032945216040123
- Radchenko, O.A., Chereshnev, I.A., Petrovskaya, A.Y. 2639. Relationships and divergence of some taxa of the subfamily Lycodinae (Zoal ticlee, Pisces) based on molecular-genetic and morphological data. Journal of Libth, plogy 49, 585. https://doi.org/10.1134/S00329. 5209.80037
- Ree, R.H., 2005. Detecting the historical scinature of key innovations using stochastic models of character evolution and class genesis. Evolution 59, 257-265. https://doi.org/10.1111 /.00 14-3-20.2005.tb00986.x
- Ree, R.H., Smith, S.A., 2008. M xir lum likelihood inference of geographic range evolution by dispersal, local a tinctic, and cladogenesis. Systematic Biology 57, 4-14. https://doi.org/10.10.0/10635150701883881
- Revell, L.J., 2012. p. vto ls: an R package for phylogenetic comparative biology (and other thing.) In the ds in Ecology and Evolution 3, 217-223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
- Rhein, N. Stramma, L., Krahmann, G., 1998. The spreading of Antarctic bottom water in the pical Atlantic. Deep Sea Research Part I: Oceanographic Research Papers 45, 507-527.
- Ronquist, F., 1997. Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology 46, 195-203. https://doi.org/10.1093/sysbio/46.1.195

- Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61, 539-542. https://doi.org/10.1093/sysbio/sys029
- Schluter, D., 2000. The ecology of adaptive radiation. OUP Oxford.
- Shmidt, P., 1950. Ryby Okhotskogo Morya [Fishes of the Sea of Okhotsk]. Trudy Tikhookeanskogo Komiteta 6, 1-370.
- Suyama, M., Torrents, D., Bork, P., 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34, W609-W612. https://doi.org/10.1093/nar/gkl315
- Yabumoto, Y., Uyeno, T., 1994. Late Mesozoic and Cenozoic fish fau as of Japan. Island Arc 3, 255-269. https://doi.org/10.1111/j.1440-1738.1994.tb00111
- Zhang, C., Stadler, T., Klopfstein, S., Heath, T.A., Ronquist, J., 2016. Fotal-evidence dating under the fossilized birth–death process. Systematic Biology 65, 228-249. https://doi.org/10.1093/sysbio/syv080
- Zhuang, X., Yang, C., Murphy, K.R., Cheng, C.-H. (1, 201). Molecular mechanism and history of non-sense to sense evolution of a talleex glycoprotein gene in northern gadids.


  Proceedings of the National Academy of Sciences 116, 4400-4405.



# **Author statement:**

S.H., L.S.F.L., and J.L.K. conceived of the study. S.H., M.L.B., L.S.F.L., and J.L.K. performed data collection and analyses. T.D. provided samples. S.H., M.L.B., T.D., and J.L.K. wrote the manuscript with input from L.S.F.L. All authors read and approved the final version for submission.





# **Highlights**

- Genetic data and timing of key events can be combined to understand biogeography.
- A large phylogeny of Zoarcoidei clarifies evolutionary timing and relationships.
- The subfamily Lumpeninae should likely be elevated to a family, Lumpenidae.
- Zoarcoidei, including major families, diversified in North Temperate seas.
- Ocean cooling has not influenced Zoarcoidei diversification, except possibly in eelpouts.

