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Abstract

Diversity is an important principle in data selection and summarization, facility location, and

recommendation systems. Our work focuses on maximizing diversity in data selection, while offering

fairness guarantees. In particular, we offer the first study that augments the Max-Min diversification

objective with fairness constraints. More specifically, given a universe U of n elements that can be

partitioned into m disjoint groups, we aim to retrieve a k-sized subset that maximizes the pairwise

minimum distance within the set (diversity) and contains a pre-specified ki number of elements

from each group i (fairness). We show that this problem is NP-complete even in metric spaces,

and we propose three novel algorithms, linear in n, that provide strong theoretical approximation

guarantees for different values of m and k. Finally, we extend our algorithms and analysis to the

case where groups can be overlapping.
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1 Introduction

Data is generated and collected from all aspects of human activity, in domains like commerce,

medicine, and transportation, as well as scientific measurements, simulations, and environ-

mental monitoring. However, while datasets grow large and are readily available, they are

often down-sampled for various uses. This is often due to practical implications, e.g., analytics

workflows may be designed, tested, and debugged over subsets of the data for efficiency

reasons. Other times, machine learning applications use subsets of the data for training and

testing, while applications that target human consumption, e.g., data exploration, can only

display small parts of the data at a time, since human users can visually process limited

information.

While data subset selection is very common, deriving good subsets is a non-trivial task.

In this paper, we focus on two principles in data selection: diversity and fairness. Diversity

and fairness are related but distinct concepts. Specifically, diversity seeks to maximize

the dissimilarity of the items in a set. Intuitively, a diverse set of items selected from a

dataset D represents more and different aspects of the information present in D. Prior work

has suggested several diversity objectives [16, 30, 32, 43], typically defined in terms of an

element-wise distance function over numerical attributes (e.g., geographic location, age).

On the other hand, fairness aims to achieve some specified level of representation across

different categories or groups, and is typically defined over categorical attributes (e.g., race,

gender). While one could consider combining fairness and diversity into a single objective,
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(a) Example 1.
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(b) Example 2.

Figure 3 (a) An example where no optimal solution for the clustering problem is optimal for the

diversity problem and vice versa. Suppose we have to pick one white point and one black point. The

unique optimal solution for clustering is {2, 5} whereas the unique optimal solution for Max-Min

diversity is {1, 6}. (b) An optimal solution for the clustering problem may be arbitrarily bad for the

diversity problem. Suppose we have to pick one white and one black point. Set {2, 3} is an optimal

solution for clustering but yields an arbitrarily bad approximation ratio for the diversity problem as

points 2 and 3 can be arbitrarily close together.

Fair Max-Sum diversification. Abbassi et al. [1] study the fair Max-Sum diversification

problem (assuming disjoint groups) under matroid constraints, where the retrieved subset

needs to be an independent set of a matroid of size k (we discuss the correspondence between

group fairness constraints and partition matroids in Appendix B). They propose a local search

algorithm with a
(

1
2 − ϵ

)

-approximation guarantee. Borodin et al. [8, 9] study a bi-criteria

optimization problem formulated as the sum of a submodular function and the Max-Sum

diversification objective under matroid constraints. They show that the local search approach

preserves the
(

1
2 − ϵ

)

-approximation guarantee. In an effort to make the state-of-the-art local

search algorithms more efficient, Ceccarello et al. [11] propose algorithmic approaches for

constructing core-sets with strong approximation guarantees, resulting in efficient algorithms

with comparable quality to the best known local search algorithms [1, 8, 9]. A core-set is a

small subset of the original data set that contains an α-approximate solution for the Max-Sum

diversification problem. Cevallos et al. [15] extend the local search approach to distances of

negative type and design algorithms with O
(

1− 1
k

)

-approximation and O(nk2 log k) running

time.

Fair k-center clustering. In the k-center clustering problem the objective is to select

k centers such that the maximum distance of any point from its closest cluster center

is minimized. Intuitively, cluster centers tend to be distributed in a way that optimizes

data coverage. Thus, k-center clustering can serve as another mechanism to perform

diverse data selection, albeit the optimization objective is different from Max-Min. Max-

Min diversification and k-center clustering are closely related. In fact, the approximation

algorithms by Gonzalez [29] for the clustering problem and by Ravi et al. [43] and Tamir [46]

for Max-Min diversification, are all based on the same farthest-first traversal heuristic, and

they all provide a 1
2 -approximation guarantee. Nonetheless, the analysis of the two algorithms

is substantially different and it is not always the case that an algorithm for one problem is

applicable to the other.

In recent work, Kleindessner et al. [35] introduced the fair variant of the problem, where

the centers are partitioned into m different groups and the constraint of selecting ki elements

per group is enforced in the output of the process. It is easy to find examples where no

optimal solution for the fair k-center problem is optimal for the Max-Min objective and

vice versa (see example in Figure 3a). Furthermore, we note that an optimal solution for

fair k-center clustering can be arbitrarily bad for the Max-Min objective (e.g., Figure 3b).

Consequently, the two problems need to be studied independently. The fair k-center clustering

problem can also be expressed by a partition matroid, for which Chen et al. [17] provide

a 3-approximation algorithm with a quadratic runtime. Kleindessner et al. [35] provide a

linear-time algorithm with a
(

3 · 2m−1 − 1
)

-approximation, while more recent work improved
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this bound to 3(1 + ϵ) [20], and 3-approximation [33]. In our Appendix, by adapting the

ideas for fair Max-Min diversification, we design a linear-time algorithm for fair k-center

clustering that also achieves a constant 3-factor approximation.

Outline of contributions: Fair Max-Min diversification. To the best of our knowledge, this

paper is the first to introduce fairness constraints to Max-Min diversification. We initially

focus on the case of disjoint groups, but extend our algorithms to tackle the overlapping case

as well. Our work makes the following contributions.

After some background and preliminaries, we introduce and formally define the problem

of fair Max-Min diversification focusing on non-overlapping groups, and further discuss

its complexity and approximability (Section 2). To the best of our knowledge, no prior

work has studied the Max-Min diversification objective under fairness constraints. In our

Appendix, we also describe how our algorithmic frameworks support any constraints that

can be expressed in terms of partition matroids (Appendix B).

We propose a swap-based greedy approximation algorithm, with linear runtime, for the

case of m = 2, which offers a constant 1
4 -factor approximation guarantee (Section 3.1).

We propose a general max-flow-based polynomial algorithm, with runtime linear in

the size of the data, that offers a 1
3m−1 -factor approximation (Section 3.2). We also

demonstrate that for constant m and small values for k = o(log n), we can achieve a

constant 1
5 -approximation, also in linear time. While this bound is obviously stronger

than our bound for the general case, the 1
5 -approximation algorithm becomes impractical

as k increases (Section 3.3).

We generalize the fair diversification problem to the case of overlapping groups (an

element can belong to multiple demographic groups). We propose polynomial-time

algorithms with 1
4 -factor approximation for the case of m = 2 and 1

3( m
⌊m/2⌋)−1

-factor

approximation for any m (Section 4).

2 Fair Max-Min Diversification: Background and Problem Definition

In this section, we review necessary background and preliminaries on the Max-Min diversific-

ation objective and relevant approximations. Then, we formally define the fair Max-Min

diversification problem, which generalizes Max-Min diversification. We further characterize

the hardness of the problem, and the hardness of its approximation.

2.1 Max-Min Diversification

Problem definition. Prior work has identified a range of diversity objectives to perform

diverse data selection. In this work we primarily focus on the Max-Min objective, which

corresponds to the minimum distance of any two items in a set S. More formally, we assume

a universe of elements U of size n, a positive integer k ≤ ♣U♣ and a pseudometric distance

function d : U ×U → R
+
0 that satisfies the following properties for every u, v ∈ U : d(u, u) = 0,

d(u, v) = d(v, u) (symmetry), and d(u, v) ≤ d(u, w) + d(w, v) (triangle inequality). Then,

d(u, v) captures the dissimilarity of the elements u, v ∈ U , and the Max-Min diversity score

of a set S is div(S) = minu,v∈S,u ̸=v d(u, v). Max-Min diversification seeks to identify a set

S ⊆ U and ♣S♣ = k, such that the minimum pairwise distance, div(S), of elements in S is

maximized.

ICDT 2021
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Algorithm 1 GMM Algorithm.

Input: U : Universe of available elements

k ∈ Z
+
0

I: An initial set of elements

Output: S ⊆ U of size k

1: procedure GMM(U , I, k)

2: S ← ∅.

3: if I = ∅ then

4: S ← an arbitrarily chosen point in U

5: while |S| < k do

6: x← argmax
u∈U

min
s∈S∪I

d(u, s)

7: S ← S ∪ {x}

return S

Algorithms and approximations. This problem formulation was initially studied in the

operation research literature by Ravi et al. [43] and in the context of facility location on

graphs by Tamir [46]. They both show that the problem is NP-complete even in metric

spaces and give a greedy algorithm, GMM, that guarantees a 1
2 -approximation for Max-Min

diversification. Ravi et al. [43] also show that this problem cannot be approximated within a

factor better than 1
2 unless P=NP through a reduction from the clique problem.

The GMM approximation algorithm uses the simple and intuitive farthest-first traversal

heuristic: Given a set of items S, add the element from U whose minimum distance from

any element in S is the largest. Algorithm 1 shows the pseudocode for GMM, which starts

with an initial set of elements I and greedily augments it with k elements from U . Note that

the GMM algorithm, as presented by Ravi et al. [43] and Tamir [46] assumes that I = ∅; in

this paper, we use the slight variant presented in Algorithm 1, which assumes that I can be

non-empty. We use GMM as a building block for the algorithms we present in this paper.

A naive implementation of the algorithm requires O((♣I♣ + k)2n) time but more efficient

implementation requires O((♣I♣+ k)n) time; see, e.g., [35, 47] for details.

2.2 Fair Max-Min Diversification

Problem definition and analysis. We assume a universe of elements U of size n, comprising

of m non-overlapping classes: U =
⋃m

i=1 Ui; we further assume a pseudometric distance

function d : U × U → R
+
0 ; finally, we assume non-negative integers ⟨k1, . . . , km⟩, which we

call fairness constraints. Our goal is to identify a set S ⊆ U , such that for all i, ♣S ∩ Ui♣ = ki,

and the minimum distance of any two items in S is maximized. More formally:

Fair Max-Min : maximize
S⊆U

min
u,v∈S
u ̸=v

d(u, v)

subject to ♣S ∩ Ui♣ = ki, ∀i ∈ [m]

Intuitively, Fair Max-Min aims to derive the set with the maximum diversity score

div(S), while satisfying the fairness constraints.2 Next, we state formally the hardness of Fair

Max-Min and bound its approximability. These results follow easily from the corresponding

prior results on unconstrained Max-Min diversification, as that problem reduces to Fair

Max-Min for m = 1. We give the proof of Corollary 1 in Appendix A.

2 A formulation of the fairness constraints with inequalities (≥ ki) would be essentially equivalent: since
the diversity score can only decrease as the number of selected points increases, the optimal solution
would always select the minimum number of points allowed by the constraints.
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▶ Corollary 1 (Hardness and Approximability Bound). Determining if there exists a solution to

Fair Max-Min with diversity score ≥ δ is NP-complete. Further, there exists no polynomial-

time α-approximation algorithm for Fair Max-Min with α > 1
2 , unless P=NP.

Our contributions to this problem. To the best our knowledge, this is the first paper to

augment the Max-Min diversification problem with fairness constraints. For this problem,

typically m is a small constant and k ≪ n. Therefore, when considering algorithmic

complexity, we want to avoid high-order dependence on the size of the data, n. In Section 3,

we provide linear-time algorithms, with respect to n, with strong approximation guarantees

for this problem in the case of non-overlapping groups. In Section 4, we extend our results to

design polynomial-time algorithms with strong approximation guarantees for the generalized

setting of overlapping groups.

3 Approximating Diversity

In Section 2.2, we showed that the fair formulation for the Max-Min diversification problem

is NP-hard, and cannot be approximated within a factor better than 1
2 . In this section, we

propose three approximation algorithms for this problem, with a best overall bound of 1
4 for

the case of m = 2. For ease of exposition, in the rest of the paper we frequently refer to each

of the m groups as different colors.

Our algorithms use GMM (Algorithm 1) as a building block, but adapting GMM for fair

Max-Min diversification is not straightforward. We give an example of a simple and intuitive

algorithm based on GMM that can lead to an arbitrarily bad result, even in the case of

m = 2 colors. In the first phase of the algorithm, we use GMM to greedily select elements of

any color until the constraints for one of them are satisfied. In the second phase, we allow

GMM to greedily select the remaining elements only from the under-satisfied color. Suppose

that our data consist of one white and three black elements positioned in a line as follows:

1 2 3 4

Further, consider that the fairness constraints require the selection of one white and

two black elements, and that GMM first selects a black element. Regardless of which black

element is selected first, the simple algorithm we described will always be forced to select

elements 1 and 2 – the possible selection scenarios are: ¶1, 4, 2♢, ¶3, 1, 2♢, and ¶4, 1, 2♢ –

which can be arbitrarily close to one another. This example demonstrates how the choices

made for one color, can lead to arbitrarily bad choices for the other color(s), and the problem

gets harder as m increases.

Our algorithms employ GMM in ways that guarantee the preservation of good choices

for all colors. We start with a swap-based algorithm that offers a 1
4 approximation when

m = 2. Then we present a flow-based algorithm with a 1
3m−1 approximation when m ≥ 3.

Both algorithms run in O(kn) time. Finally, we present a 1
5 -approximation for m ≥ 3 that

also runs in O(kn), on the assumption m is constant and k = o(log n). However, the running

time of this third algorithm has an additional factor that depends exponentially on k, which

makes the algorithm practical only for small k values, e.g., for n = 104, k ≈ 10.

3.1 Fair-and-Diverse Selection: m = 2

In the binary setting, the input is a set of points U = U1 ∪ U2 and two non-negative integers

⟨k1, k2⟩ with ki ≤ ♣Ui♣ for all i ∈ ¶1, 2♢. We want to select a set S with ki elements from

each Ui partition such that the div(S) is maximized.

ICDT 2021
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Algorithm 2 Fair-Swap: Fair Diversification for m = 2.

Input: U1,U2: Set of points of color 1 and 2

k1, k2 ∈ Z
+
0

Output: ki points in Ui for i ∈ {1, 2}

1: procedure Fair-Swap

▷Color-Blind Phase:

2: S ← GMM(U , ∅, k1 + k2)

3: Si = S ∩ Ui for i ∈ {1, 2}

▷Balancing Phase:

4: Set U = argmini(|Si| − ki) ▷Under-satisfied set

5: O = 3− U ▷Over-satisfied set

6: Compute the sets:

E ← GMM(UU ,SU , kU − |SU |)

R ← {argminx∈SO
d(x, e) : e ∈ E}

return (SU ∪ E) ∪ (SO \R)

Algorithm and intuition. Fair-Swap (Algorithm 2) has two phases; the color-blind and

the balancing phase. In the color-blind phase, we call GMM by initializing I to the empty

set so as to retrieve a set S = S1 ∪ S2 of size k (line 2). If ♣S1♣ = k1 and ♣S2♣ = k2 then these

two sets are returned. Alternatively, if one set is smaller than required, then the other set is

larger than required, and we need to rebalance these sets. Let SU be the set that is too small

and let SO be the set that is too large. The algorithm next finds kU − ♣SU ♣ extra points

E ⊆ UU to add to SU by again using the GMM algorithm, this time initialized with the set

SU . For each point in E we then remove the closest point in SO (line 6). In this way we add

kU − ♣SU ♣ points to SU and remove kU − ♣SU ♣ points from SO. After this rebalancing the size

of SU is ♣SU ♣+ (kU − ♣SU ♣) = kU and the size of SO is ♣SO♣ − (kU − ♣SU ♣) = k − kU = kO as

required. Note that sets E and R will be empty if the sets are already balanced after the

color blind phase and thus the set S will not be altered by the balancing phase.

Running-time analysis. The running time of Fair-Swap (Algorithm 2) is O(kn). In the

color-blind phase of the algorithm we run GMM on U with I = ∅ and this takes O(kn) time.

Then in the balancing phase, computing the extra points E via the GMM algorithm takes

O(kn) time and computing R takes O(k2) time since there are fewer than k points in E and

at most k points in SO.

Approximation-factor analysis. Let S∗ be the set of k points in U that maximize the

diversity when there are no fairness constraints. Let ℓ∗ = div(S∗). Let F∗ = F∗
1 ∪ F

∗
2 be

the set of k points in U that maximize the diversity subject to the constraint that for each

i ∈ ¶1, 2♢, ki points are chosen of color i. Let ℓ∗
fair = div(F∗) and note that ℓ∗ ≥ ℓ∗

fair.

We first argue that div(S) ≥ ℓ∗/2 ≥ ℓ∗
fair/2. This follows because, by the triangle

inequality, there is at most one point in S∗ that is distance < ℓ∗/2 from each point in S;

otherwise two points in S∗ would be < ℓ∗ apart and this contradicts the fact div(S∗) = ℓ∗.

Hence, while the GMM algorithm has picked < k elements, there exists at least one element

in S∗ that can be selected that is distance ≥ ℓ∗/2 from all the points already selected. Since

the algorithm picks the next point farthest away from the points already chosen, the next

point is at least ℓ∗/2 from the existing points.

Next we argue that div(SU ∪ E) ≥ ℓ∗
fair/2. To show this, first observe that, div(SU ) ≥

div(S) ≥ ℓ∗
fair/2. Next consider the points added to E by GMM. By the triangle inequality

there is at most one point in F∗
U that is distance < ℓ∗

fair/2 from each point in SU ∪E. Hence,
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while GMM has picked < kU − ♣SU ♣ elements, there exists at least one element that can be

selected that is distance ≥ ℓ∗
fair/2 from the points already selected. Since the algorithm picks

the next point farthest away from the points already chosen, the next point is at least ℓ∗
fair/2

from the existing points. Thus, we can guarantee that d(x, y) ≥ ℓ∗
fair/2 for all pairs of points

x, y ∈ SU ∪ E ∪ SO except potentially when x ∈ E and y ∈ SO.

To handle this case, for each x ∈ E we remove the closest point in SO. Note that by an

application of the triangle inequality and the fact that div(SO) ≥ ℓ∗
fair/2, for each x ∈ E

there can be at most one point y ∈ SO such that d(x, y) < ℓ∗
fair/4. Hence, after the removal

of the closest points the distance between all pairs is ≥ ℓ∗
fair/4 as required. We summarize

the analysis of this section as follows:

▶ Theorem 2. Fair-Swap (Algorithm 2) is a 1/4-approximation algorithm for the fair

diversification problem when m = 2 that runs in time O(kn).

Connections to prior art. The idea of balancing has also been successfully applied to

matroid optimization settings subject to fairness constraints [19], and to the red-blue matching

problem [39]. However, our objective function cannot be expressed by a matroid (or an

intersection of matroids), and thus the approaches of prior work are not applicable to our

setting. Further, the algorithms and analysis are distinct for these problems; Fair-Swap

builds upon GMM while the algorithms designed in [19] employ the Edmonds algorithm for

finding a maximum independent set.

3.2 Fair-and-Diverse Selection: m ≥ 3

Basic algorithm. We start by presenting a basic algorithm that takes as input a guess γ for

the optimum fair diversity. If this guess is greater than the optimum fair diversity then the

algorithm may abort, but if the algorithm does not abort, it will return a fair diversity at

least γ/(3m− 1).

Algorithm and intuition. The approach of Fair-Flow (Algorithm 3) is to construct disjoint

sets of points C1, C2, . . . such that, if γ is at most the optimal fair diversity, it is possible to

find sets S1, . . . ,Sm of sizes k1, . . . , km such that each Ci contains at most one point from

S1 ∪ . . . ∪ Sm. If we can construct C1, C2, . . . such that for any x ∈ Ci and y ∈ Cj , then

d(x, y) ≥ d2 for some value d2 then we have div(S1 ∪ . . . ∪ Sm) ≥ d2. Furthermore, because

the sets C1, C2, . . . are disjoint it is possible to find sets S1, . . . ,Sm with the required property

via a reduction to network flow (noting that the optimal flow in a network with integer

capacities is always integral). See the algorithm for the precise reduction and see Figure 4

for an example.

The way we construct each C1, C2, . . . is to first run GMM on each color class i and use

this to identify at most k points Zi of color i such that div(Zi) ≥ d1 for some value d1 to be

determined. We then partition
⋃

i Zi into the disjoint groups C1, C2, . . . where the partition

satisfies the property that any two points x, y ∈
⋃

i Zi such that d(x, y) < d2 are in the same

group. Note that x, z will end up in the same group if there exists y such that d(x, y) < d2

and d(y, z) < d2; more generally two points can end up in the same group because of a chain

of points where each adjacent pair of points are close. However, in the analysis, we will show

that these chains cannot be too long and, for appropriately chosen d1 and d2, any two points

in Cj are distance < d1 from each other. In the analysis, this will enable us to argue that if

γ is at most the optimal fair diversity, it is possible to find the required sets S1, . . . ,Sm.

ICDT 2021
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Algorithm 3 Fair-Flow: Fair Diversification for m ≥ 3.

Input: U1, . . . ,Um: Universe of available elements
k1, . . . , km ∈ Z

+
0

γ ∈ R: A guess of the optimum fair diversity
Output: ki points in Ui for i ∈ [m]

1: procedure Fair-Flow

2: for i ∈ [m] do

3: Yi ← GMM(Ui, ∅,
∑

i
ki)

4: Zi ← maximal prefix of Yi such that all points
in Zi are ≥ d1 = mγ

3m−1 apart.
5: Construct undirected graph GZ with nodes

Z =
⋃

i
Zi and edges (z1, z2), if d(z1, z2) < d2 = γ

3m−1 .
6: C1, C2, . . . Ct ← Connected components of GZ .

▷Construct flow graph
7: Construct directed graph G = (V, E) where

V = {a, u1, . . . , um, v1, . . . , vt, b}

E = {(a, ui) with capacity ki : i ∈ [m]}

∪ {(vj , b) with capacity 1 : j ∈ [t]}

∪ {(ui, vj) with capacity 1 : |Zi ∩ Cj | ≥ 1}

8: Compute max a-b flow.
9: if flow size < k =

∑

i
ki then return ∅ ▷Abort

10: else ▷max flow is k
11: ∀(ui, vj) with flow add a node in Cj with color i to S.

return S

Analysis of basic algorithm. We need a preliminary lemma that argues that all the points

in the same connected component are close together.

▶ Lemma 3. For all connected components Cj, ∀x, y ∈ Cj : d(x, y) < (m − 1)d2 and Cj

does not contain any two points of the same color.

Proof. Consider two points x, y ∈ Cj and let the length of a shortest unweighted path Px,y

between x and y in the graph be ℓ. If ℓ ≤ m − 1 then d(x, y) < (m − 1)d2 as required. If

ℓ ≥ m then there exists two points on this path (including end points) that have the same

color and this will lead to a contradiction. Consider the subpath Px′,y′ ⊂ Px,y where x′ and

y′ have the same color i and all internal nodes have distinct colors. Then the length of Px′,y′

is strictly less than md2 = mγ/(3m − 1) = d1. But this contradicts d(x′, y′) ≥ d1 for all

points in Zi. ◀

The next theorem establishes that when the algorithm does not abort, the solution

returned has diversity at least γ/(3m− 1) and that it never aborts if the guess γ is at most

the optimum diversity.

▶ Theorem 4. Let ℓ∗
fair be the optimum diversity. If γ ≤ ℓ∗

fair then the algorithm returns

a set of points of the required colors that are each ≥ γ/(3m − 1) apart. If γ > ℓ∗
fair then

the algorithm either aborts or returns a set of points of the required colors that are each

≥ d2 = γ/(3m− 1) apart.

Proof. Note that if the algorithm does not abort then all points are ≥ γ/(3m − 1) apart

since any two points in different connected components are ≥ γ/(3m− 1) apart.

Hence, it remains to argue that if γ ≤ ℓ∗
fair then the algorithm does not abort. To argue

this, we will construct a flow of size k in the network instance. And to do this it suffices

to identify ki connected components including a point from Zi for each i, such that the

resulting set of k1 + k2 + . . . + km connected components are all distinct. To do this, we start

by defining a node ui to be critical if ♣Zi♣ < k and non-critical otherwise. Let Oi ⊂ Ui be the

set of ki points in the optimum solution. For x ∈ Ui, let f(x) be the closest point Zi to x. If
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Algorithm 4 Fair-GMM: Fair Diversification for small k.

Input: U1, . . . ,Um: Universe of available elements

k1, . . . , km ∈ Z
+
0

Output: ki points in Ui for i ∈ [m]

1: procedure Fair-GMM

2: for i ∈ [m] do Yi ← GMM(Ui, ∅,
∑

i
ki)

3: By exhaustive search, find the sets Si ⊆ Yi for i ∈ [m] such that |Si| = ki and div(S1∪. . .∪Sm)

is maximized.

If we used the binary search over a continuous range approach, the running time would by

O(kn+k2m2(log ϵ−1 +log log dmax/dmin)) and the approximation ratio would be 1
(3m−1)(1+ϵ) .

3.3 Fair-and-Diverse Selection: Small k, m

In this section, we present a simple algorithm that has the advantage of achieving a better

approximation ratio than the algorithm in the previous section. The downside of the algorithm

is that the running time is exponential in k, specifically, O(kn + k2(em)k). However, when

m = O(1) and k = o(log n) the dominating term in the running time is O(kn), as in the case

of the algorithms from the previous sections.

Algorithm and intuition. The basic approach of Fair-GMM (Algorithm 4) is to first select

k points (or less if there are fewer than k points of a particular color) of each color via the

GMM algorithm. The resulting subset
⋃

i Yi has at most km points and this is significantly

smaller than the original set of points assuming k and m are much smaller than n. Hence, it

is feasible to solve the problem via exhaustive search on the subset of points. In the analysis,

we will be able to show that the optimal fair diversity amongst the subset of points is at

least 1/5 of the optimal fair diversity amongst
⋃

i Ui.

Analysis. To prove the approximate factor we need to show that the optimal solution

amongst the subset of points selected in step one has diversity that is not significantly smaller

than the optimal diversity of the original set of points. To show this the basic idea is that for

each i, the set Yi will contain at least one point near every color i point in the optimal solution

or will contain k points such that even if we remove any set of k−ki points to make space for

points of other colors, the remaining set of ki points of color i still has sufficiently high diversity.

▶ Theorem 6. Algorithm 4 returns a 1
5 -approximation and the running time is O(kn +

k2(em)k). Note that this is O(kn) when k = o(log n) and m = O(1).

Proof. For the running time, note that Step 1 can be implemented in O(kn) time. For Step

2, note that there are at most km points in Y1, Y2, . . . Ym so a brute force algorithm needs to

consider at most
(

km
k

)

≤ (em)k sets of points and computing the min distance for each takes

O(k2) time. Note that this is o(n) assuming k = o(log n) and m is constant.

For the approximation ratio, it suffices to argue that if ℓ∗
fair is the optimum value then

there exists a set of points amongst Y1 ∪ . . . ∪ Ym with the required colors that are ℓ∗
fair/5

apart. Let Zi be the maximal prefix of Yi such that all points at points are ≥ 2ℓ∗
fair/5 apart.

For each x ∈ Ui, let f(x) be the closest point in Zi. Call i critical if ♣Zi♣ < k. Note that if i

is critical, then d(x, f(x)) < 2ℓ∗
fair/5. Let Oi be the optimal set of color i points and consider

the subsets S1,S2, . . .Sm of points in Z1, Z2, . . . Zm defined as follows:

For all i that are critical, let Si = f(Oi) and let D = ∪i:criticalSi. Note that div(D) >

ℓ∗
fair − 4ℓ∗

fair/5 = ℓ∗
fair/5.
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1 2 3 4

Figure 5 An example with m = 2 overlapping classes, with |U1| = 3 and |U2| = 4, where

(a) the fairness constraints can be satisfied with fewer than k elements and (b) a class has to be

overrepresented to satisfy the fairness constraints for all classes. Suppose we have to pick two white

and one black element (k = 3). A feasible solution consists of two bi-colored elements, thus fewer

than k, in which the black class is represented by two and not just one element.

For each j that is not critical: Remove all points in Zj that are distance < ℓ∗
fair/5 from a

point in D. Note that at most one point in Zj is < ℓ∗
fair/5 from each point in D because

points in Zj are ≥ 2ℓ∗
fair/5 apart. Hence, at most ♣D♣ points are removed from Zj .

Process the non-critical j in arbitrary order: Pick kj points Sj arbitrarily from Zj .

Remove all points from Z that are distance < ℓ∗
fair/5 from a point in Sj . This removes

at most kj points from each Zi. Note that when we process j there are at least k −

(
∑

i:Si defined so far ki) ≥ k − (k − kj) = kj points in Zj .

Note div(
⋃

i Si) ≥ ℓ∗
fair/5 and this implies the claimed approximation factor. ◀

4 Generalizing to Overlapping Groups

In this section, we show how we can extend our algorithmic framework to allow the elements

in the universe U to belong to multiple classes, e.g., an individual may belong to multiple

demographic groups such as multiple races, or combinations of race, gender, and other

sensitive demographics. First, we formally define the problem and show how our Fair-Swap

and Fair-Flow algorithms can be adapted to support this generalized setting.

We assume a universe of elements U comprising of m possibly overlapping classes

U1,U2, . . . ,Um, a pseudometric distance function d : U × U → R
+
0 and a set of fairness

constraints ⟨k1, . . . , km⟩ where each ki is a non-negative integer with ki ≤ ♣Ui♣. Our goal is

to identify a set S ⊆ U to satisfy the fairness constraints such that the minimum distance of

any two items in S is maximized.

It will be convenient to introduce some additional notation. For any L ⊂ [m], define

XL =
(

⋂

i∈L Ui

)

∩
(

⋃

j ̸∈L Uj

)

. That is, XL consists of all elements exactly in the classes of

L and no others. Note that if we select an element in XL it contributes to helping satisfy ♣L♣

of the fairness constraints. Hence, it may be possible to satisfy all the constraints by picking

fewer than k1 + . . . + km elements. Further, a feasible solution may require more than ki

elements for class i (example in Figure 5). Formally, we define the problem as follows:

Fair
+

Max-Min : maximize
S⊆U

min
u,v∈S
u ̸=v

d(u, v)

subject to ♣S ∩ Ui♣ ≥ ki, ∀i ∈ [m]

4.1 Fair-and-Diverse Selection (Overlaps): m = 2

In the binary setting, the input is a set of points U that comprises of m = 2 overlapping

classes; U1 = X¶1♢ ∪X¶1,2♢ and U2 = X¶2♢ ∪X¶1,2♢. We design a swap-based algorithm, with

1/4-approximation guarantee, which uses the idea of binary searching over a discrete set of

guesses for the optimum fair diversity, denoted as ℓ∗
fair.

Algorithm and intuition. The Fair+-Swap algorithm (Algorithm 5) takes as input a guess

γ for the optimum fair diversity. We show that if γ ≤ ℓ∗
fair, we can always find enough points

to construct a fair set S = S¶1♢ ∪ S¶2♢ ∪ S¶1,2♢ with div(S) ≥ γ/4 (where SL = S ∩XL).
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The algorithm first finds as many points as possible in X¶1,2♢ and are at least γ
4 apart

from each other. Let S¶1,2♢ be the resulting set, with a total of t points. Note that to satisfy

the fairness constraints, we need to add ki− t points for each class i in ¶1, 2♢. The algorithm

proceeds to remove all points in U that are closer than γ
4 from any point in S¶1,2♢. It is

easy to see that all remaining points, S+, can only belong to one class, i.e., S+ ∩X¶1,2♢ = ∅

(because all points that did not make it to S¶1,2♢ have to be closer than γ
4 from some point in

S¶1,2♢). Since S+ does not have overlapping classes, we can execute Fair-Swap (Algorithm 2)

on it to select a set with ki − t points for each class i in ¶1, 2♢. In our analysis, we show that

S+ contains at least k1 − t and k2 − t points from X¶1♢ and X¶2♢ that are ≥ γ apart from

each other. Thus, the Fair+-Swap algorithm will produce a set of points that are at least

γ/4 apart from each other.

▶ Theorem 7. Fair+-Swap (Algorithm 5) is a polynomial-time algorithm with 1/4-

approximation guarantee for the fair diversification problem with m = 2 overlapping classes.

We provide the pseudocode for the Fair+-Swap algorithm (described above) and the

proof for Theorem 7 in Appendix A.

4.2 Fair-and-Diverse Selection (Overlaps): m ≥ 3

The algorithm in this section is an extension of Fair-Flow (Algorithm 3); the previous

algorithm did not apply in the case when classes could overlap whereas the new algorithm will.

Throughout this section, it will be convenient to use the following notation: M :=
(

m
⌊m/2⌋

)

.

The approximation factor for the algorithm designed in this section will be 3M−1 in contrast

to the 3m− 1 approximation for the non-overlapping case. Note that for m = 2, 3, 4, 5 we

have M = 2, 3, 6, 10, i.e., when the number of classes is small, M is still relatively small.

There are two main steps that need to be changed in the overlapping case: 1) defining a

subset Z of the elements that will be considered and 2) determining how many points to use

that appear in multiple classes. We discuss each in turn.

Defining Z. Recall that the first main part of Fair-Flow (Algorithm 3) was to select a

subset of points of each color such that all points in each subset was a certain distance apart.

When there are overlapping classes, we need to revisit how this is done. Motivated by the fact

that an element in XL′ contributes to at least as many fairness constraints as an element in

XL if L ⊂ L′, when we select a subset of points in Ui we want to prioritize points that are also

in other classes. For example, for m = 3 we have: (1) U1 = X¶1♢ ∪X¶1,2♢ ∪X¶1,3♢ ∪X¶1,2,3♢,

(2) U2 = X¶2♢ ∪X¶1,2♢ ∪X¶2,3♢ ∪X¶1,2,3♢, and (3) U3 = X¶3♢ ∪X¶1,3♢ ∪X¶2,3♢ ∪X¶1,2,3♢.

Consistent with “prioritizing points” in multiple classes, we construct subsets of U1,U2,U3

by first constructing a maximal subset Z¶1,2,3♢ ⊂ X¶1,2,3♢ such that the pairwise distance of

all points is at least d1. We then define a maximal subset Z¶1,3♢ ⊂ X¶1,3♢ such that every

point is at least d1 from each other point in Z¶1,3♢ and from points in Z¶1,2,3♢. We construct

Z¶1,2♢ and Z¶2,3♢ similarly. Finally Z¶1♢ is a maximal subset of X¶1♢ such that every point

is at least d1 from each other point in Z¶1♢ and from every point in Z¶1,2♢ ∪Z¶1,3♢ ∪Z¶1,2,3♢.

Lines 3–5 in Algorithm 6 (given in the Appendix) generalize this process to arbitrary m.

Note that we ensure the property that all points in ZL are at least d1 far from each

other and from any point in
⋃

L′:L⊂L′ ZL′ but the subset of elements picked from U1, i.e.,

Z¶1♢∪Z¶1,2♢∪Z¶1,3♢∪Z¶1,2,3♢ ⊂ U1, no longer satisfies the condition that they are all at least

d1 far from one another. In particular, there may exist points x ∈ ZL and y ∈ ZL′ such that
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d(x, y) < d1 if neither L or L′ is a subset of the other.3 A natural question, and an issue that

will arise in our analysis is how many sets can there be such that no set is a subset of another.

Fortunately, the following classic result in extremal combinatorics resolves this question.

▶ Lemma 8 (Sperner’s Lemma). A collection of sets is called an anti-chain if none of the

sets is a subset of another set. If all sets are subsets of [m] then the maximum size of such a

collection is M =
(

m
⌊m/2⌋

)

.

Next, recall that Fair-Flow (Algorithm 3) then constructs a graph GZ where the nodes

are the selected points and there are edges between points if their distance is < d2. The new

algorithm proceeds similarly but with new parameters: d1 ←
Mγ

3M−1 , and d2 ←
γ

3M−1 . With

this setting of the parameters and appealing to Lemma 8 we prove an upper bound on the

distance between any two points in the same connected components (proof in Appendix A):

▶ Lemma 9. For all connected components Cj, ∀x, y ∈ Cj : d(x, y) < (M − 1) d2, and Cj

does not contain any two points a, b such that a ∈ XL and b ∈ XL′ where L ⊂ L′.

Guessing how much to exploit points in multiple classes. So far we have (1) discussed how

to select the subset Z of input points and (2) partitioned Z such that we have some upper

bound on the distance between any two points in the same partition. In the non-overlapping

case, we could then argue it suffices to pick at most one point in each partition and adding

this point to the output set S would increment ♣S ∩ Ui♣ for exactly one value i ∈ [m]. In the

overlapping case, however, we may need to pick a point in a partition that is in multiple

classes and would increment ♣S ∩ Ui♣ for multiple values of i.

To get the reduction to network flow to generalize to the non-overlapping case we need to

guess values cL for every non-empty set L ⊂ [m] and require that we find at least cL points

in ∩i∈LUi such that the
∑

L⊆[m] cL points returned are distinct. The fact the points need to

be distinct allows the reduction to go through. Note that to satisfy the fairness requirements

we need that
∑

L:i∈L cL ≥ ki for each i.

▶ Example 10. Suppose we require k1 = 2 points from U1 and k2 = 2 points from U2. Then

the guess c¶1♢ = 2 and c¶2♢ = 2 would correspond to picking at least four distinct points,

at least two from U1 and at least two from U2. In contrast, the guess c¶1♢ = c¶2♢ = 1, and

c¶1,2♢ = 1 would correspond to picking at least three distinct points where at least one comes

from each of sets U1,U2,U1 ∩ U2 respectively.

There are at most k2m−1−m possible guesses4 to try for the values and at least one is

feasible since the optimal solution corresponds to some set of guesses. With a feasible set of

guesses, we then essentially treat all sets L ⊆ [m] as colors although when we need to pick

cL points of color L, it will suffice to pick points with color L′ if L is a subset of L′.

The next theorem establishes that when the algorithm does not abort, the solution

returned has diversity at least γ/(3M − 1) and that it never aborts if the guess γ is at most

the optimum diversity.

3 This is a generalization of the case when there was no-overlap. In that case there could exist x ∈ Zi

and y ∈ Zj such that d(x, y) < d1.
4 Recall that we typically consider m to be a small constant. A bound of k2m−1 is immediate because

there at most 2m − 1 quantities. A slightly tighter bound follows by noting that cL for all singleton sets
L is implied once the other values are chosen.
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▶ Theorem 11. Let ℓ∗
fair be the optimum diversity. If γ ≤ ℓ∗

fair then the algorithm returns

a set of points of the required colors that are each ≥ γ/(3M − 1) apart. If γ > ℓ∗
fair then

the algorithm either aborts or returns a set of points of the required colors that are each

≥ d2 = γ/(3M − 1) apart.

We provide the proof of Theorem 11 in Appendix A. The rest of the algorithm and

analysis follows similarly as Algorithm 3, where we binary search for γ in either a continuous

or discrete space. The running time is increased by a factor of k2m−m−1 because of the need

to guess the values ¶cL♢L⊂[m]; thus Fair+-Flow is a polynomial-time algorithm with a
1

3( m
⌊m/2⌋)−1

-approximation guarantee.

5 Related Work

Diversity is an important principle in data selection and summarization, facility location,

recommendation systems and web search. The diversity models that have been proposed in

the literature can be organized into three main categories, (1) the distance-based models

where the goal is to minimize the similarity of the elements within a set, (2) the coverage-

based models where there exists a predetermined number of categories and the aim is to

maximize the coverage of these categories [4, 38] and (3) the novelty-based models that are

defined so as to minimize the redundancy of the elements shown to the user [10]. For further

information, we refer the reader to the related surveys [23, 24].

Max-Min and Max-Sum diversification are two of the most well studied distance-based

models [16, 28, 30, 43], and there exist efficient algorithms with strong approximation

guarantees for the unconstrained version of the problems in the offline setting (discussed

in Sections 1 and 2). The problem of diversity maximization has also been studied in the

streaming and distributed settings, where (composable) core-sets were shown to be a useful

theoretical tool [3, 12, 32], and more recently in the sliding window setting [7]. A separate

line of work focuses on designing efficient indexing schemes for result diversification [2, 22, 47];

this direction is orthogonal to our work, and it is not clear how to extend existing indexing

schemes for fair Max-Min diversification.

There is relatively little prior work on constrained diversification. The closest to our

work is fair Max-Sum diversification (discussed in Section 1) and fair k-center clustering

(discussed in Section 1 and Appendix C). To the best of our knowledge, our work is the first

to augment the traditional Max-Min objective with fairness constraints.

Prior work has also combined fairness with the determinant measure of diversity [13].

That work models fairness constraints the same way as we do, but their algorithmic framework

is entirely different. There, data is represented as vectors, and at each iteration the algorithm

identifies the item that is most orthogonal to the current vector, which gets updated with

the new item’s projection. The limitation of this method is that it can only work in high-

dimensional data (e.g., it would not work at all on one-dimensional data). Other work on

diverse set selection focused on satisfying fairness constraints while optimizing an additive

utility [45]. These methods do not apply to our setting as Max-Min is not additive. Prior

work has also examined the satisfaction of fairness constraints or preferences in specialized

settings, such as rankings [14, 48, 49]. Work in this domain focuses on specifying and

measuring fairness and augmenting ranking algorithms with fairness considerations. Related

work on diverse top-k results focuses on returning search results by a combined measure of

relevance and dissimilarity to results already produced [5, 42].
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Our fairness constraints are based on the definitions of group fairness and statistical

parity [25]. We do not pick a particular definition of fairness, and do not place particular

restrictions on the values and distribution of ⟨k1, . . . , km⟩. This model can express equal

and proportional representation, as well as any other distribution. There are other, non-

parity-based definitions of fairness that fall outside our framework. For example, individual

or causal fairness [27] examine differences in treatment of individuals from different groups

who are otherwise very similar, but these are not the focus of this work.

6 Summary and Future Directions

In this paper, we focused on the problem of diverse data selection under fairness constraints.

To the best of our knowledge, our work is the first to introduce fairness constraints to

Max-Min diversification. We studied both cases of disjoint and overlapping groups and

proposed novel polynomial algorithms with strong approximation guarantees. For the case

of disjoint groups, our algorithms have linear running time with respect to the size of the

data. Overall, our work augments in significant ways the existing literature of traditional

problems that have been studied under group fairness constraints. We discuss here some

possible directions that extend our work through the exploration of problem variants, or

intuitions towards improvement of the known algorithms and bounds.

Improved bounds. An interesting open question is whether an 1
2 approximation for Fair

Max-Min is possible, as is the case for Max-Min and fair Max-Sum diversification. In

Appendix B, we discuss the correspondence between fairness constraints and partition

matroids. It is possible that results relevant to matroids can be exploited to improve the

algorithms and bounds for the Fair Max-Min problem.

Extending the swap algorithm to the general case. Our Fair-Swap algorithm provides

a better bound compared to our Fair-Flow algorithm for the case of m = 2 ( 1
4 and 1

5

respectively). This indicates the possibility that the swap algorithm, if extended to the

general case, could perhaps result in a better bound than Fair-Flow.

Problem variants. Our algorithms aim to approximate the diversity score of the optimal

solution to Fair Max-Min, while guaranteeing the satisfaction of the fairness constraints. A

possible problem variant could explore the relaxation of the fairness constraints, and seek to

minimize their violation while guaranteeing a diversity score at least as good as the solution

to unconstrained Max-Min diversification. Another interesting future direction is to study

the fair variant of other diversity objectives proposed in the literature [16, 32], for which

there are currently no known results.
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Appendix

A Additional Algorithms and Proofs

In this section, we prove the hardness and approximation bound results for Fair Max-Min,

which are formally stated in Corollary 1. Further, we provide proofs for the theoretical results

described in Section 4. We also provide the pseudocode for the Fair+-Swap algorithm

(Algorithm 5), described in Section 4.1, and the pseudocode for the Fair+-Flow algorithm

(Algorithm 6), described in Section 4.2.

Proof of Corollary 1. First, we show that Fair Max-Min is an NP-complete problem. The

problem is clearly in NP: If we are given a solution S, we can verify that it satisfies the

fairness constraints and compute its diversity score in polynomial time. The unconstrained

version of Max-Min diversification is NP-complete [43, 46], and it is a special case of our

problem for m = 1. Since any instance of Max-Min diversification can be reduced to an

instance of Fair Max-Min with m = 1, then Fair Max-Min is also NP-complete.

Subsequently, we show that Fair Max-Min cannot be approximated with an approxima-

tion factor better than 1
2 . Suppose that there exists a polynomial algorithm that approximates

the diversity score of the optimal solution to Fair Max-Min by a factor of α > 1
2 . Then,

this algorithm could also solve the unconstrained Max-Min diversification problem with

approximation factor α. However, Ravi et al. [43] have shown that unconstrained Max-Min

diversification cannot be approximated within a factor better than 1
2 , through a reduction

from the clique problem. Therefore, it is not possible for such an algorithm to exist. ◀

Proof of Theorem 7. Let O = O¶1♢ ∪ O¶2♢ ∪ O¶1,2♢ be the optimal set that maximizes

diversity and satisfies the fairness constraints. Let ℓ∗
fair = div(O), which implies that

d(o1, o2) ≥ ℓ∗
fair for any pair of optimal elements o1, o2 ∈ O. We will show that for any guess

γ ≤ ℓ∗
fair, Algorithm 5 returns a set S = S¶1♢ ∪ S¶2♢ ∪ S¶1,2♢ with div(S) ≥ γ/4.

First, note that by the definition of S¶1,2♢ set, it holds that div(S¶1,2♢) ≥ γ/4. Next,

notice that the S− set in line 3 of Algorithm 5 consists of all the points in X¶1,2♢, and all

single-colored points < γ/4 apart from some point in S¶1,2♢. As a result, we know that:

(1) all the points remaining in S+ = U \ S− are greater or equal than γ/4 apart from all the

points in S¶1,2♢, and (2) S+ only contains single-colored points (if there were any bi-colored

elements ≥ γ/4 apart from the points in S¶1,2♢, they would have been added to S¶1,2♢).

We further express S+ = S+
¶1♢ ∪S

+
¶2♢ with S+

¶i♢ ⊆ X¶i♢ for i ∈ ¶1, 2♢ and t = ♣S¶1,2♢♣. We

argue that for any guess γ ≤ ℓ∗
fair, S

+ contains at least ki − t elements for i ∈ ¶1, 2♢ that

are ≥ γ apart. Thus, Fair-Swap will be able to find a set of points to satisfy the fairness

constraints that are at least γ/4 apart.

Define c−
¶1♢, c−

¶2♢, c−
¶1,2♢ to be the number of optimal points in O¶1♢, O¶2♢ and O¶1,2♢

present in S− and notice that c−
¶1♢ +c−

¶2♢ +c−
¶1,2♢ ≤ t. This holds because at most one optimal

point can be < γ/4 from a point in S¶1,2♢. Suppose that there exist a pair of optimal points

o1, o2 ∈ O, and a point x ∈ S¶1,2♢ such that d(o1, x) < γ/4 and d(o2, x) < γ/4. Then we

derive a contradiction by applying the triangle inequality as: d(o1, o2) ≤ d(o1, x) + d(x, o2) <

γ/2 < ℓ∗
fair/2. Consequently, it now follows that S+ contains at least k1−c−

¶1♢−c−
¶1,2♢ ≥ k1−t

optimal points of O¶1♢, and k2 − c−
¶2♢ − c−

¶1,2♢ ≥ k2 − t of O¶2♢, which by definition of O are

greater or equal than γ apart.

So Fair-Swap will be able to find a set S¶1♢ ⊆ S
+
¶1♢ and S¶2♢ ⊆ S

+
¶2♢ with the required

number of elements such that div(S¶1♢ ∪ S¶2♢) ≥ γ/4. Thus, we get that div(S) ≥ γ/4. If

we perform a binary search over all the pairwise distances of the points in U , we will find a

guess γ = ℓ∗
fair, which implies the claimed approximation factor for Fair+-Swap. ◀
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Algorithm 5 Fair
+

-Swap: Overlapping classes for m = 2.

Input: U1,U2: Universe of available elements

γ ∈ R: A guess on the optimum fair diversity

k1, k2 ∈ Z
+
0

Output: at least ki points in Ui for i ∈ {1, 2}

1: procedure Fair
+

-Swap

2: S{1,2} ← maximal subset of X{1,2} with all points ≥ γ/4 apart

3: S− ← all the points in U that < γ/4 apart from a point in S{1,2}

4: S+ ← U \ S− ▷S+ = S+
{1}
∪ S+

{2}
⊆ X{1} ∪X{2}

▷Select the missing points to satisfy the constraints:

5: Set t = |S{1,2}|

6: if |S+ ∩ Ui| ≥ ki − t for i ∈ {1, 2} then

7: S{1} ∪ S{2} ←Fair-Swap(S+, k1 − t, k2 − t)

8: S ← S{1} ∪ S{2} ∪ S{1,2}

9: else

10: S ← ∅ ▷Abort

return S

Proof of Lemma 9. Consider two points x, y ∈ Cj and let the length of a shortest unweighted

path Px,y between x and y in the graph be ℓ. If ℓ ≤ M − 1 then d(x, y) < (M − 1)d2 as

required. If ℓ ≥M then by Lemma 8, there must exist two points on this path (including

end points) in XL and XL′ such that L and L′ are comparable, i.e., L is a subset of L′

or vice versa and this will lead to a contradiction. Consider the subpath Px′,y′ ⊂ Px,y

such that x′ ∈ XL and y′ ∈ XL′ for some comparable L and L′. If the internal nodes are

x1, x2, . . . and these belong to sets XL1
, XL2

, . . . then by definition of x′ and y′, the collection

of sets ¶L1, L2, . . . , L′♢ is an anti-chain and hence the size of this collection is at most M by

Lemma 8. Hence, the length of the path between x′ and y′ is also at most M and therefore

d(x′, y′) < Md2 = d1. But this contradicts d(x′, y′) ≥ d1 because x′ ∈ XL and y′ ∈ XL′

where L and L′ are comparable. ◀

Proof of Theorem 11. Note that if the algorithm does not abort then all points are ≥

γ/(3M − 1) apart since any two points in different connected components are ≥ γ/(3M − 1)

apart. Hence, it remains to argue that if γ ≤ ℓ∗
fair then the algorithm does not abort.

To argue this, we will show it is possible to construct a flow of size
∑

cL. And to do this

it suffices to, for each L ⊂ [m], identify cL different connected components that each include

a point from ∩i∈LUi. Let O =
⋃

L⊂[m] OL be an optimal solution where OL = O ∩XL and

let cL = ♣OL♣. We will henceforth consider the iteration of the algorithm which guessed this

set of ¶cL♢L⊂[m] values.

For every point x ∈ O, let f(x) be the closest point in Z where for all i, x ∈ Ui ⇒ f(x) ∈ Ui.

Note that this requirement ensures that if x is replaced by f(x) then all the fairness

constraints are still satisfied. By construction of Z, d(x, f(x)) < d1. Hence, for any x, y ∈ O,

d(x, y) > ℓ∗
fair− 2d1 ≥ γ− 2γM/(3M − 1) = (M − 1)d2, and hence, by Lemma 9, this implies

that all points in f(O) are in different connected components. This implies that there exist

connected components with the necessary requirements. ◀

B Fairness as a Partition Matroid

While the focus of our work is on fairness constraints in particular, our results apply in

general to any type of constraints that can be expressed in terms of a partition matroid. We

provide a brief overview of the matroid definition and show that fairness constraints can be

expressed as a partition matroid.
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Algorithm 6 Fair
+

-Flow: Overlapping classes for m ≥ 3.

Input: U1, . . . ,Um: Universe of available elements

cL ∈ Z
+ for all L ⊂ [m]: A guess of the flow distribution

γ ∈ R: A guess of the optimum fair diversity

k1, . . . , km ∈ Z
+
0

Output: at least ki points in Ui for i ∈ [m]

1: procedure Fair
+

-Flow

2: Define d1 ←
Mγ

3M−1
and d2 ←

γ

3M−1

3: Z[m] ← maximal subset of X[m] with all points ≥ d1 apart

4: for t = m− 1, m− 2, . . . , 1 do

5: for all sets of L of size t do

6: ZL ← maximal subset of XL s.t. each point in ZL is ≥ d1 from every other point in

ZL ∪
⋃

L′∈[m]:|L′|≥t+1,L⊂L′

ZL′

7: GZ ← undirected graph with nodes Z =
⋃

L⊂[m]
ZL and edges (z1, z2) if d(z1, z2) < d2

8: C1, C2, . . . Ct ← Connected components of GZ

▷Construct flow graph

9: Construct directed graph G = (V, E) where

V = {a, v1, . . . , vt, b} ∪
⋃

L⊂[m]:|L|>0

{uL}

E = {(a, uL) with capacity cL : non-empty L ⊂ [m]}

∪ {(vj , b) with capacity 1 : j ∈ [t]}

∪ {(uL, vj) with capacity 1 : |ZL ∩ Cj | ≥ 1}

10: Compute max a-b flow.

11: if flow size <
∑

L⊂[m]
cL then return ∅ ▷Abort

12: else

13: ∀(uL, vj) with flow add a node in Cj ∈ (∩i∈LUi) to S
return S

▶ Definition 12. A matroid M is a pair (E , I) where E is a ground set and I is a collection

of subsets of E (called independent sets). All the independent sets in I satisfy the following

properties:

If A ∈ I, then for every subset B ⊆ A, B ∈ I. (Hereditary property)

If A,B ∈ I with ♣A♣ > ♣B♣, then ∃e ∈ A \ B such that B ∪ ¶e♢ ∈ I. (Exchange property)

A maximal independent set in I (also called a basis for a matroid) is a set for which there

is no element outside of the set that can be added so that the set still remains independent.

All maximal independent sets of a matroid have equal cardinality which is also called the

rank of the matroid, rank(M).

▶ Definition 13. A matroid M = (E , I) is a partition matroid if E can be decomposed into

m disjoint sets E1, E2, ..., Em and I is defined as I = ¶S ⊆ E : ♣S ∩ Ei♣ ≤ ki ∀ i ∈ [m]♢.

Note that a maximal independent set (or a basis) for a partition matroid is an independent

set that satisfies all the cardinality constraints with equality. For further information on

matroids, we refer the interested reader to [44]. Based on the definitions above, in Fair

Max-Min the ground set is the universe of elements U =
⋃m

i=1 Ui. Then Fair Max-Min can

be expressed as searching for the maximal independent set of the partition matroid defined

over U that maximizes the Max-Min diversity function.



Z. Moumoulidou, A. McGregor, and A. Meliou 13:23

C Results on fair k-center clustering

In this paper, our primary focus has been on fair diversification based on the Max-Min

objective. However, as we discussed in Section 1, fair k-center clustering is a closely-related

problem. In this section, we formally define k-center clustering, introduce its fair variant and

discuss the known approximation results. We then explore how algorithms and intuitions

from our work on fair Max-Min diversification can be adapted towards the fair k-center

clustering problem to achieve a constant factor 3-approximation.

The k-center and fair k-center clustering problems. The objective of k-center clustering

is to identify k cluster centers, such that the maximum distance of any point in the universe

of elements U from its closest cluster center is minimized. This maximum distance is referred

to as the clustering radius. More formally, given a distance metric d, k-center clustering

is expressed by the following minimization problem: minimize
S⊆U,♣S♣=k

maxu∈U d(u,S), where

d(u,S) = mins∈S d(u, s). Note that this objective does not preclude cluster centers from

being close to each other, and in fact an optimal solution to k-center clustering could be

arbitrarily bad for Max-Min diversification.

Algorithms and approximations. Just like Max-Min diversification, k-center clustering is

NP-complete. The greedy approximation algorithm proposed by Gonzalez [29] is essentially

equivalent to GMM (Algorithm 1) and provides a 2-approximation with linear running time.

Notably, there is recent work that augments the problem with fairness constraints [35]:

Given m non-overlapping classes in U = ∪m
i=1Ui and non-negative integers ⟨k1, . . . , km⟩,

the goal is to derive a set of cluster centers S, such that ♣S ∩ Ui♣ = ki. The fair k-center

clustering problem can also be expressed by a partition matroid, for which Chen et al. [17]

provide a 3-approximation with a quadratic runtime. Kleindessner et al. [35] provide a

linear-time 5-approximation algorithm for the case of two classes (m = 2), and a linear-time
(

3 · 2m−1 − 1
)

-approximation for the general case, a result recently improved to 3(1 + ϵ) by

Chiplunkar et al. [20] and to 3-approximation by Jones et al. [33]. In Section C.1, we adapt

the flow algorithm for fair Max-Min diversification, and provide a linear-time 3-approximation

for fair k-center clustering. (noting that the three results were derived independently.)

C.1 Fair k-center clustering

We show how we can adapt our Fair-Flow algorithm (Algorithm 3) and design a constant

factor 3-approximation for fair k-center clustering with linear running time.

Basic algorithm. We start by presenting a basic algorithm that takes as input a guess γ

for the optimum fair clustering radius. If this guess is less than the optimum fair clustering

radius r∗
fair then the algorithm may abort but otherwise it will return a fair clustering with

radius at most 3γ.

Algorithm and intuition. The basic idea behind Fair-Flow-Clust (Algorithm 7) is to

construct a set of points Y = ¶y1, . . . , yt♢ where all distances between these points are > 2γ

apart and all points not in this set are ≤ 2γ from some point in Y ; this can be done via

the GMM algorithm (lines 2 and 7). The fact that each pair is > 2γ apart implies that any

k-center clustering, fair or otherwise, with covering radius ≤ γ has the property that at least

one center must be within a distance γ from each yi and that no center is within distance γ

of two points yi, yj since, by appealing to the triangle inequality, this would violate the fact

that d(yi, yj) > 2γ.
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Algorithm 7 Fair-Flow-Clust: Fair k-Center Clustering.

Input: U1, . . . ,Um: Universe of available elements

k1, . . . , km ∈ Z
+

γ ∈ R: A guess of optimum fair clustering radius.

Output: ki points in Ui for each i ∈ [m]

1: procedure Fair-Flow-Clust

2: Y = {y1, . . . , yk+1} ← GMM(U , ∅, k + 1)

3: for j ∈ [k] do

4: Dj ← {argminx∈Ui
d(x, yj) : i ∈ [m]}

5: if d(yk+1, {y1, . . . , yk}) > 2γ then return ∅ ▷Abort

6: else

7: Y = {y1, . . . , yt} with minimum t ≤ k such that

d(yt+1, {y1, . . . , yt}) ≤ 2γ

8: for j ∈ [t] do

9: Cj ← {x ∈ Dj : d(x, yj) ≤ γ}

▷Construct flow graph

10: Construct directed graph G = (V, E) where

V = {a, u1, . . . , um, v1, . . . , vt, b}

E = {(a, ui) with capacity ki : i ∈ [m]}

∪ {(vj , b) with capacity 1 : j ∈ [t]}

∪ {(ui, vj) with capacity 1 : |Zi ∩ Cj | ≥ 1}

11: Compute max a-b flow.

12: if flow size < t then return ∅ ▷Abort

13: else ▷max flow is t

14: ∀(ui, vj) with flow add a node in Cj with color i to S
return S

The algorithm constructs a sets C1, . . . , Ct such that we will be able to argue that if we

can pick a fair set of cluster centers from C1∪ . . .∪Ct such that exactly one point is picked in

each Cj then we get a clustering with cluster radius 3γ. Furthermore, if γ ≥ r∗
fair, such a set

of centers can be proven to exist. We will then be able to find these centers via a reduction to

network flow. The network constructed is the same as in Algorithm 3 although the Cj sets in

that algorithm are constructed differently. The only difference is that because we need exactly

one point in each of C1, C2, . . . , Ct, we need to find a flow of size t rather than a flow of size

k. Note that if we are able to construct a flow of t ≤ k, we can arbitrarily add the cluster

centers missing from a class i ∈ [m] without affecting the clustering radius of the solution.

▶ Theorem 14. If γ ≥ r∗
fair then the above algorithm returns a fair clustering with radius

at most 3γ. If γ < r∗
fair then either the algorithm aborts or it returns a fair clustering with

radius at most 3γ.

Proof. Note that if the algorithm does not abort, the algorithm identifies exactly one point

in each of the disjoint sets C1, . . . , Ct such that at most ki points of color i are chosen for

each color i ∈ [m]. Since the algorithm did not abort at Step 3 we know that all points in U

are within distance 2γ of some point yi and hence at most distance 2γ + γ from the selected

point in Ci. Hence, we return a fair clustering with covering radius at most 3γ as required.

It remains to show that if γ ≥ r∗
fair then the algorithm does not abort. The algorithm does

not abort at line 5 since this would imply there exist k + 1 points that are > 2γ from each

other and this implies r∗
fair > γ. Define Ej = ¶x : d(x, yj) ≤ γ♢ and note that the optimum
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solution must pick a point in each Ej since otherwise yj is not covered within distance γ.

Hence, we know it is possible to pick at most kj points of color j such that exactly one point

cj is picked in each Ej . Note that Ej has a point of color i iff Cj has a point of color i.

Hence, it is also possible to pick at most ki points of color i (for each i ∈ [m]) such that

exactly one point cj is picked in each Cj . Hence, there exists a flow of size t where (ui, vj)

has flow 1 iff cj has color i and all edges into b are saturated. ◀

Final algorithm. We now proceed as in the case of Fair-Flow (Section 3.2): we can either

binary search for the good γ over the continuous range [dmin, dmax] or over the discrete

set of all distances between points in Y ∪D1 ∪D2 ∪ . . . ∪Dm. In the first case, we need

O(log log1+ϵ dmax/dmin) instantiations of the basic algorithm before we find a clustering with

approximation ratio 3(1 + ϵ). In the second case, we need to sort O(k2m2) distances and

then need O(log k) instantiations.

▶ Theorem 15. There is a 3-approximation for fair k-center clustering with running time

O(kn + m2k2 log k).

Proof. Note that Y and D1, D2, . . . , Dm can be computed in O(kn) time. The flow instance

has O(k) nodes and O(mk) edges. Hence, it can be solved in O(mk2) time [40, 41]. The

total running time is therefore O(kn + m2k2 log k + mk2 log k) as required. ◀
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