Foundations and Trends® in Databases
Trends in Explanations:
Understanding and Debugging
Data-driven Systems

Suggested Citation: Boris Glavic, Alexandra Meliou and Sudeepa Roy (2021), “Trends
in Explanations: Understanding and Debugging Data-driven Systems”, Foundations and
Trends® in Databases: Vol. 11, No. 3, pp 226-318. DOI: 10.1561/1900000074.

Boris Glavic
[llinois Institute of Technology Chicago
bglavic@iit.edu

Alexandra Meliou
University of Massachusetts Amherst
ameli@cs.umass.edu

Sudeepa Roy
Duke University
sudeepa@cs.duke.edu

This article may be used only for the purpose of research, teaching, n‘w

and/or private study. Commercial use or systematic downloading (by
robots or other automatic processes) is prohibited without explicit

Publisher approval. Boston — Delft

the essence of knowledge

Contents

1 Introduction

1.1

Scope of this article

2 Explanation Needs: Who, Why, and What

2.1
2.2
2.3

“Who" needs explanations
“Why" we want to explain
“What"” we want to explain

3 Explanations and Methodologies: How

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Explanation objectives: measuring explanation quality . . .
General methodologies
Explaining query answers through data provenance
Explaining aggregate query outputs and outliers
Explaining queries
Explaining data differences and evolution
Explaining query performance
Explainable Al and Machine Learning
Other related topics

4 A Research Roadmap

Acknowledgements

References

228
231

232
234
235
253

258
259
261

. 262

266
275
279
283
284
289

292

298

299

Trends in Explanations:
Understanding and Debugging
Data-driven Systems

Boris Glavic!, Alexandra Meliou? and Sudeepa Roy>

U linois Institute of Technology, Chicago; bglavic@iit.edu
2 University of Massachusetts Amherst; ameli@cs.umass.edu
3 Duke University; sudeepa@cs.duke.edu

ABSTRACT

Humans reason about the world around them by seeking
to understand why and how something occurs. The same
principle extends to the technology that so many of human
activities increasingly rely on. Issues of trust, transparency,
and understandability are critical in promoting adoption and
proper use of systems. However, with increasing complexity
of the systems and technologies we use, it is hard or even
impossible to comprehend their function and behavior, and
justify surprising observations through manual investigation
alone. Explanation support can ease humans’ interactions
with technology: explanations can help users understand a
system’s function, justify system results, and increase their
trust in automated decisions.

Our goal in this article is to provide an overview of exist-
ing work in explanation support for data-driven processes,
through a lens that identifies commonalities across varied
problem settings and solutions. We suggest a classification
of explainability requirements across three dimensions: the
target of the explanation (“What”), the audience of the

Boris Glavic, Alexandra Meliou and Sudeepa Roy (2021), “Trends in Explanations:
Understanding and Debugging Data-driven Systems”, Foundations and Trends® in
Databases: Vol. 11, No. 3, pp 226-318. DOI: 10.1561/1900000074.

explanation (“Who”), and the purpose of the explanation
(“Why”). We identify dominant themes across these dimen-
sions and the high-level desiderata each implies, accompa-
nied by several examples to motivate various problem set-
tings. We discuss explainability solutions through the lens
of the “How” dimension: How something is explained (the
form of the explanation) and how explanations are derived
(methodology). We conclude with a roadmap of possible
research directions for the data management community
within the field of explainability in data systems.

227

1

Introduction

All the way from infancy to advanced scientific inquiry, humans pose and
seek answers to “why” questions; simply, explanations are the means
through which humans perceive and reason about the world. It is thus
not surprising that as technology increasingly permeates all aspects
of human activity, the need for explanations arises in algorithmic and
data-driven systems.

Data-driven technologies are at the core of many everyday interac-
tions, such as social network connections, news personalization, and
product recommendations, but also drive critical decision-making, such
as autonomous vehicle actions, diagnosis and treatment of diseases, and
even criminal sentencing. Explanation support can ease our interactions
with these systems: explanations help users justify and consequently
trust the function of these systems, they help developers diagnose
problems and improve the systems, and they increase stakeholders’ con-
fidence in system decisions. Several research domains have recognized
these emerging requirements, and work on supporting explanations in
computing systems has flourished.

In this article, we present a research roadmap for the data man-
agement community, examining existing efforts in explanation support,

228

problem setting

tuples
queries
performance

method

audience
“Wholi

purpose

provenance / causality
summary-based
example-based
debugging
understanding
trust / transparency

developer
analyst

“hOW” i
public i

Figure 1.1: High-level classification of the explanation research space. We examine
different problem settings pertaining to explanations on three axes: target (“what”),
purpose (“why”), and audience (“who”). We review existing solutions (“how”) that
appeared in the literature, including different objectives they targeted.

and open questions and meaningful directions in the evolving map of
understandability requirements in computing and data-driven systems.
We examine this research space from three perspectives that specify the
particular requirements of an explanation problem setting: the expla-
nation’s target (“what to explain”), the explanation’s purpose (“why
do we seek to explain”), and the explanation’s audience (“who receives
the explanations”). We then proceed to discuss, at a high level, meth-
ods proposed in prior work for deriving explanations within particular
problem settings (“how to explain”). We briefly describe below these
four aspects (what, why, who, and how) of explanation research, with
an overview in Figure 1.1:

“What.” The first perspective under which we examine explanation
support is the explanation’s target: what it is we are trying to explain.
Prior work has focused on a variety of aspects, including surprising
results, outliers, queries, differences in results, repairs, and performance.
Our goal is to categorize existing work within these targets, note gaps
interesting to explore, and identify possible explanation-worthy tar-
gets.

230 Introduction

“Why.” The purpose of the explanation often determines important
desiderata for the derived explanations. For example, explanations
aimed at debugging problems need to be comprehensive and detailed,
while explanations aimed at illustrating functionality should be simpler
and high level. Explanations may also be used as a tool to promote
trust in a system’s operation, in which case, they may target aspects of
a system’s functionality, rather than particular data or results.

“Who.” The audience of an explanation is often tied to the ex-
planation’s purpose (i.e., the “why” and “who” are often linked). In
addition to diverse purposes, explanations can serve diverse audiences.
For example, explanation support may be an important tool for tech-
nical users of data systems, who typically aim to improve the systems
(e.g., developers), or gain deep understanding of data processing steps
(e.g., analysts). But explanations can also target a broader audience,
such as data enthusiasts or the general public, who generally expect
illustrative justifications for their observations.

“How.” The research community has followed a variety of methods
in deriving explanations, and the corresponding explanation products
can be of different types. A significant portion of explanation-related
work in the data management community is provenance-based, and
seeks explanations in the lineage of query results. In other veins, re-
searchers have sought query-based explanations, or explanations based
on summaries or examples. The explanation objectives adopted in prior
work can vary as well. Different explanation frameworks seek to optimize
different metrics, including measures of understandability, flexibility, or
generalizability. Our goal is to provide a categorization of the existing
methodologies, note possible new approaches and combinations, group
metrics used in the literature under high-level objectives, and suggest
additional useful ones for the community to consider.

1.1. Scope of this article 231

1.1 Scope of this article

The need for explanations is universal. Thus, it is not surprising that
explanations have been studied in many fields of Computer Science.
Our intention is not to cover the entire body of this work, as this
would be impossible to do in sufficient depth within this article. Rather,
we primarily focus on relevant work from the database community
and discuss work from other fields when this work is relevant to data
management or introduces techniques that we believe could prove useful
in a data management context in the future.

In particular, explainable Al (commonly known as XAI) is an im-
portant emerging field with research contributions from the database
community, and we will provide a brief review of this work for context.
However, this is a vast and active research area. Providing a detailed
overview of explanations in the context of Al is out of scope for this
article. Guidotti et al. (2019) provide a good overview of methods for
explaining the behavior of blackbox models, e.g., by locally approxi-
mating them through simpler, but more interpretable methods. At the
technical level, many of the approaches discussed in this article use
methods for summarizing information and presenting it in a form that
is fit for human consumption. As such, they use or are closely related to
unsupervised methods developed by the data mining community such as
association rule mining (Agrawal and Srikant, 1994) and clustering (Han
and Kamber, 2001). On the other hand, there is an extensive literature
in the computer systems community on monitoring, finding, and ex-
plaining big data systems’ performance and errors, such as root cause
analysis (e.g., Yoon et al. (2016), Ousterhout et al. (2015), and Roy
et al. (2015b)). While these methods are interesting in their own right,
we will only discuss them to the degree necessary for understanding
their use for generating explanations with a brief overview, and refer to
the relevant literature if the reader is interested in these topics.

2

Explanation Needs:
Who, Why, and What

The contributions of data management research to explanation support
are broad and varied, ranging from provenance-based methods for
tracing changes in data, to summarization algorithms, and debugging
systems. In this article, we use the general term explanation framework
to refer to all kinds of explanation support, regardless of the nature of
their solution or the problem setting. Given the diverse nature of existing
approaches, and the broad applicability of explanations, we posit that
a unified explanation framework that can handle all understandability
requirements in a data-driven system is unlikely. While enhancing
understandability is a common overall objective, explanation frameworks
adopt more targeted goals (e.g., with respect to explanation form or
size), driven by requirements of particular problem settings. In this
chapter, we explore aspects of problem settings that drive these goals,
and which, in turn, have impact on possible solutions.

We identify three general axes of problem specifications that impact
the goals of explanation frameworks: Who, Why, and What. “Who”
specifies the audience of an explanation: who is seeking an explanation.
“Why” specifies the purpose of an explanation: why is the explanation
needed (e.g., to debug a problem, or to illustrate a functionality). “What”

232

233

specifies the target of an explanation: what is it that we are trying to
explain (e.g., a surprising observation, or a system malfunction).

In this chapter, we introduce the Who-Why-What classification of
explanation problems. Notably, these axes can help identify general
desiderata for explanation settings, without being tied to particular
applications, domains, or datasets. For example, we note that explana-
tions targeted at technical users should be more detailed than those
targeted at a general audience. We structure this chapter from the per-
spective of the problem setting, anchored across the axes of Who, Why,
and What, and the requirements or desiderata that each entails. The
desiderata of a problem setting are generally decoupled from particular
solutions, though they can often make the problem more amenable
to certain methodologies for deriving explanations. We will keep the
discussion at a high-level of abstraction in this chapter using examples,
and will not discuss methodologies of explanation frameworks: (i) what
objects constitute an explanation (e.g., query input tuples); (ii) how are
these objects presented to the user (e.g., using predicates to compactly
describe part of the input data that is responsible for an erroneous
query result); (iii) what is the search space for objects take make up
an explanation (e.g., do we search for explanations in the provenance
or also in other related data); (iv) how to measure the contribution
of a candidate explanation for justifying the observed effect the users
wants us to explain (e.g., to what degree does a query result change if
the remove the input data encoded by a candidate explanation). These
aspects of the “How” of explanation frameworks will be discussed in
detail in the following chapter.

We note that the who-why-what categorization is not fully discrimi-
native. For example, a particular methodology can facilitate explanations
for multiple purposes (e.g., result interpretation and debugging). It is
also possible that the same problem setting can be addressed by more
than one methodological approach (e.g., a provenance-based and a
summarization-based solution). The primary goals of this categorization
are to provide guidelines on appropriate explanation objectives, and to
highlight relationships across different approaches.

234 Explanation Needs: Who, Why, and What

2.1 “Who” needs explanations

In this section, we discuss the audience of an explanation: who is the
seeker and recipient of an explanation. In most cases, since explanations
are typically tied to understandability expectations, the audience is a
human user. However, conceivably, explanations can be provided to
a system component in the automation of a task like error tracing
or debugging. Below, we list three general categories of explanation
audiences, which capture most problem settings in the existing literature,
though others are possible.

e Developers. Data-driven systems, like all systems, can exhibit
bugs and suboptimal behavior. As data is a big component of these
systems’ function, problems with their operation may become ap-
parent through the use and processing of data, and certain aspects
of the data may be the triggers of such incorrect or suboptimal
behaviors. The involvement of data as a core system component
further complicates debugging and optimizations. Explanation
systems that automatically derive causes of evident buggy behav-
ior can assist developers in the task of implementing corrections
and improvements. System developers have technical expertise
and access to system components, but they may not have good un-
derstanding of the data domain. Suitable explanations can involve
system components and operations that are deemed responsible
for observed behaviors, but also data elements and patterns that
can identify cases not well-handled in the code. Such explanations
will tend to be low-level, detailed, and comprehensive.

e Data analysts. The task of data analysis involves the extraction
and interpretation of interesting observations from data. Therefore,
explanations are an inherent expectation for a data analyst, who
often resorts to deriving them manually, typically through further
and deeper analysis. Analysts are typically experts in the data
domain and have breadth of knowledge in the use of analytics
tools, but they may lack technical expertise of the data handling
systems and the underlying analytics technologies. As a result, the
outcomes of data analysis can be hard to interpret, and mistakes in

2.2.

2.2

“Why” we want to explain 235

the use and requirements of the technologies can lead to erroneous
observations and incorrect insights. To support data analysis, data
systems need to provide tools dedicated to deriving explanations
in analytics tasks, with analysts as the target audience. Relevant
explanations should be data-focused, high-level, and illustrative
of the analytics technologies, thus targeting the expertise of the
target audience. Low-level, more fine-grained explanations that
rely on internal components and processes of the analytics pipeline
may not be appropriate, as the analysts have little knowledge of
and cannot intervene in these elements.

Data enthusiasts and the general public. The democratiza-
tion of computational resources and analytics tools, coupled with
the continuous increase in the access and availability of interesting
datasets has lead to the involvement of a more general, non-expert
group of users in the perusal and basic analysis of data. These
users may have task-specific requirements (e.g., computational
journalists), or merely general interest and curiosity. Such data en-
thustasts lack deep expertise in the data domain, and typically do
not have technical knowledge of the tools and underlying systems.
Explanations can help them reason about the observations they
make, better assess their validity, and judge their insightfulness.
Since these users are non-technical, explanations need to be high
level and illustrative of the systems’ function. As data-driven
systems permeate so many aspects of human activity, the gen-
eral public has invested interest in understanding these systems’
operation. Explanations can help enhance the public’s trust by
providing high-level justifications of data-driven decisions.

“Why” we want to explain

Explanations can serve a variety of functions, ranging from understand-
ability requirements to guiding debugging efforts. The purpose of the
explanation, often correlates with the explanation’s audience, and in

itself also drives desiderata with respect to the explanation format and

success metrics. Here, we review several common themes in explana-

236 Explanation Needs: Who, Why, and What

N (ewsFeeds) R (outing)
nid | story tag tag
1 ... for the 2023 AFC Asian Cup Xi’an ... Sports Biden
.. economic downturn affected sensitive ... Business DB_conf
3 .. with sequences shot in Xi’an ... Movies Sports
4 .. when President Biden meets former ally ... | Biden Technology
5 ... Xi’an slow down hiring ... Business
6 ... Oscars 2021: Academy’s ‘best’ choice ... Movies
7 .. launches cloud lab in Xi’an ... Technology Query answer:
8 ... struggles to corral votes for health bill ... Health P‘(Pjrsonahzed alerts)
9 ... SIGMOD conference this year in Xi’an ... DB_conf cztz.es
10 | ... Copenhagen host to VLDB 2021 ... DB_conf Pz_*fls
11 | ... SIGMOD in Xi’an promises to be ... DB_conf Xi’an
12 | ... contact sports can resume Monday ... Sports Athens

Figure 2.1: Example of a personalized alert-feed (P) as a result of a query filtering
all news (V) based on a carefully constructed routing table (R).

tion settings from the perspective of the purpose of the explanation:
“why” we want to explain. These themes include understanding results
(Section 2.2.1), debugging data and systems (Section 2.2.2), debug-
ging performance (Section 2.2.3), and enabling responsible data analysis
through fairness, trust, and reproducibility of the process (Section 2.2.4).
We discuss each theme through examples, often drawn and adapted
from the existing literature.

2.2.1 Understanding and interpreting results

Enhancing understandability is a core goal of explanation research.
Prior work has focused in particular on surprising observations in data
processing results. Explanations can provide justification and evidence to
establish the validity of an observation, or assist with the interpretation
of a finding. We discuss a few examples from published work that deal
with a variety of understandability and interpretation requirements.

Example 2.1 (Meliou et al., 2010). A major travel agency monitors a
large number of news feeds in order to identify trends, opportunities,
or alerts about various cities. Central to this activity is a carefully
personalized routing table and query, which filters what information to
forward to each specialized travel agent by carefully chosen keywords.
Figure 2.1 shows the routing table for one user R, as well as a sample
news feed. The query issuing alerts to this user is:

2.2. "Why" we want to explain 237

SELECT C.name

FROM NewsFeeds N, Routing R, City C

WHERE C.name substring N.story and N.tag = R.tag
GROUP BY C.name

HAVING count (*) > 20

The result is a list of cities that are drawn to the attention of this
particular agent, shown in Figure 2.1. As popular destinations, Paris
and Athens are predictable answers. But this agent is surprised to
see Xi’an in the results, and would like to understand what news or
keywords lead it to appear on her watch list, so that she can better
direct her promotion efforts.

In this example, the user seeks to understand the presence of partic-
ular data items in the result of a query. Better understanding of the
results would lead to more informed actions on the part of the agent.
The results do not need to be investigated because they are assumed to
be incorrect; rather, decision making may rely on underlying parameters
that drive this result and should be more closely investigated. Given
these expectations, it would be likely that explanations should involve
parameters of the query or the data that cause the relevant data items
to appear in the result.

The same understandability requirements extend to the absence of
expected results as the following example shows.

Example 2.2 (Lee et al., 2020). Figure 2.2 shows a sample of a real-world
dataset recording Airbnb (bed & breakfast) listings and their availabil-
ity. Each listing has an id, name, property type (Ptype), room type
(Rtype), neighborhood (Neighbor), and neighborhood group (NGroup).
Neighborhood groups are larger areas that include multiple neighbor-
hoods. Availability stores the ids of listings with available dates and
a price for each date. Bob, an analyst at Airbnb, investigates a customer
complaint about the lack of availability of shared rooms on 2016-11-09
in Queen Anne (NGroup = queen anne). He uses the query shown below
to determine which listings (names and room types) are available on
that date in Queen Anne.

SELECT Name, RType
FROM Listing L, Availability A

238 Explanation Needs: Who, Why, and What

Listing
P e Neighbor
8403 | central place shared | queen anne east
9211 plum apt entire ballard adams
2445| cozy homebase | house |private|queen anne west

8575 | near SpaceNeedle| apt |shared | queen anne lower
4947| seattle couch condo | shared | downtown | first hill
2332| modern view house | entire | queen anne west

Availability

Query Result

9211 | 2016-11-09 130
2445 | 2016-11-09 45 cozy homebase | private
2332 | 2016-11-09 350 modern view entire
4947 | 2016-11-10 40

Figure 2.2: Explaining missing answers: why are there no shared rooms available
for rent on Airbnb in the Queen Anne neighborhood on November 9th in 20167

WHERE NGroup = ’queen anne’
AND A.Date = ’2016-11-09”’
AND L.Id = A.Id

The query result confirms the customer’s complaint, since none of
the available listings are shared rooms. Bob now needs to investigate
what led to this missing result. An explanation framework for missing
answers can provide Bob with important information that helps him to
understand the shortage of shared rooms.

The two previous examples differ somewhat in the explanation target
(“What”), as the former seeks to explain the presence and the latter the
absence of particular results. However, the explanation purpose (“Why”)
is for both to provide a better understanding of the observed outcome
of a data operation (in this case a query). Both these examples focused
on queries without an aggregate output. In data analysis, however,
aggregate outputs (involving count, sum, average, max, etc.) appear
frequently, aiming to analyze trends over a period of time (e.g., to
compare total sales over years), or communicate summary statistics

2.2. "Why" we want to explain 239

350

N edu
300 - q3
250 | WcCOm =3

q, A

200

150 2 C!Z

100

50

No. of SIGMOD Publications

Years

Figure 2.3: Number of SIGMOD publications in a five years windows, broken down
into papers from industry (‘com’) and academia (‘edu’). While both increase until
2000-2007, afterward the number of papers from academia continue to increase while
that from industry decreases.

(e.g., to compare total sales in different locations). We discuss an example
on explanations for aggregated outputs next.

Example 2.3 (Roy and Suciu, 2014). Figure 2.3 shows the number of
publications in SIGMOD during a moving five years window (up to 2011)
co-authored by researchers from industry and academia. The graph
was generated by running a SQL query over the DBLP publication
dataset integrated with an affiliation table (affiliation information was
available only for a subset of authors, so the graph does not include all
papers). SIGMOD accepts more papers over the years, therefore the
increasing trend from academia may be justifiable. However, somewhat
surprisingly, the papers from industry have a peak in early 2000. With
the recent discourse in many conferences about their impact, relevance
in the era of big data and deep neural networks, and the path to move
forward, this might be an interesting observation that an analyst may
wish to investigate further. Explanation frameworks could assist in
interpreting these results, saving in efforts of manual investigation.

The explanation target (“What”) differs again in this example, but
the purpose remains close to the previous two: understand and interpret
an observation in the query output. Here, the observation is a trend in
the result of an aggregate query, and the reason it provokes the need
for interpretation is its difference from another observed trend.

240 Explanation Needs: Who, Why, and What

In a similar vein, the following example also identifies an explanation-

worthy target in differences, but this time this is a difference in results
of distinct queries over separate datasets. When two datasets represent
the same elements in the physical world, it is expected that analyzing
or querying either should produce the same result. When that is not
the case, the differences need to be understood and interpreted before
an analyst is able to derive conclusions. The understandability and
interpretation goals are again the same, despite the different setting,
and explanations may need to highlight aspects of the data or elements
of the query that contribute to the observed deviations.
Example 2.4 (Wang and Meliou, 2019). Two publicly-available academic
datasets, the UMass-Amherst dataset on undergraduate programs!,
and the National Center for Education Statistics (NCES) dataset?,
are both from reputable sources and contain high-quality information.
Nevertheless, querying both datasets for the number of undergraduate
degree programs at UMass Amherst yields vastly different answers.

UMass-Amherst data NCES data

Schema: Major(Major, Degree, School) School(ID, Univ__name, City, Url)
Stats(ID, Program, bach__degr)

Query: (1 : SELECT COUNT(Major) Q2 :SELECT SUM(bach_degr)
FROM Major; FROM School, Stats
WHERE Name = ‘UMass-Amherst’
AND School.ID=Stats.ID;

Answer: 113 90

Existing explanation solutions can only be applied with respect to
one of these datasets at a time, by asking questions such as “Why is
the result of @1 (respectively, Q2) high (respectively, low)?” But these
would not provide meaningful explanations in this case, as each tuple
contributes the same to the aggregate of ()1, and prioritizing tuples
with low bach_degr in the provenance of ()2 would be arbitrary, not
grounded on the actual differences with Q1.

We will discuss approaches from the literature that explain such
questions on query results in Chapter 3.

'https://www.umass.edu/gateway /academics/undergraduate
*https://nces.ed.gov: An open dataset presented. We simplified its schema
for this example.

2.2. “Why" we want to explain 241

Student S

name major Result of Q1

Mary CS t1 [name [major | |
John ECON to [John | ECON | ri |
Jes%e ,CS ta Result of Q2
Registration R name major

name course dept grade

Mary | 216 CS 100 | ia g/fﬂ EggN :z
Mary 230 CS 75 ts Jesse cs ry
Mary 208D ECON 95 te

John 316 CS 90 tr

John 208D ECON 88 tg

Jesse 216 CS 95 tg

Jesse 316 CS 90 t10

Jesse 330 CS 85 t11

Figure 2.4: Toy database instance for Example 2.5, and results of Q1 and Q2.

2.2.2 Debugging data and systems

The results of an analysis or a data transformation often expose errors in
the data, the operations, the system that executed the transformation, or
the environment the task was executed in. Similar to using explanations
to establish the validity of and justify surprising results, explanations
can also serve as a tool to aid debugging efforts or other improvements
in a system’s function or an analytical process. In contrast to the
examples in the previous section, where explanations were used to
enhance understanding and interpretation of results, the distinction
here is the explicit assumption that particular data items, values, queries,
or other system components are incorrect, or otherwise indicate errors
and problems in other parts of the system. We provide a set of examples
from existing literature that demonstrate such issues in relational and
non-relational systems.

Example 2.5 (Miao et al., 2019a). Consider two relations storing infor-
mation about students Student(name,major) and course registrations
Registration(name, course, dept, grade). A toy test instance is given
in Figure 2.4. Suppose an instructor in a database course asked the stu-
dents in that course to write a SQL query: ‘find students who registered
for exactly one CS course’. Below we show the correct query @1, and
an incorrect query @2 that a student submitted, which actually finds
students who registered for one or more CS courses.

242 Explanation Needs: Who, Why, and What

Qu:

SELECT s.name,s.major
FROM Student s, Registration r
WHERE s.name = r.name AND r.dept = ’CS’
EXCEPT
SELECT s.name,s.major
FROM Student , Registration rl, Registration r2
WHERE s.name rl.name
AND s.name = r2.name
AND rl.course <> r2.course
AND r1.dept = ’CS’
AND r2.dept = ’CS”’

N n -

Qa:

SELECT s.name,s.major
FROM Student s, Registration r
WHERE s.name = r.name AND r.dept = ’CS’

Figure 2.4 shows the results of (J; and ()2. Here the goal of the
instructor or the teaching assistants is to help the student understand the
mistake in their query using a meaningful and easy-to-follow explanation.

In this example, there is explicit knowledge that a query is erroneous.
The error is known, and the point is not to detect the error, but rather
to explain it. An explanation in this setting should illustrate to the user
(in this case the student) why the query they submitted is erroneous.
This problem can be approached from different angles —we will discuss
one in the “How” chapter—but the key purpose of the explanation is
to help the user to understand the error.

The following example shares this theme (i.e., the explanation pro-
vides a high level illustration of the error), but here we are tracing the
error to errors in a data pipeline that produced the erroneous data.

Example 2.6 (Wang et al., 2015a). Large-scale information extraction
pipelines process unstructured or semi-structured data, such as the web
tables of Figure 2.5, to extract structured information typically in the
form of knowledge triples (bottom of Figure 2.5). These pipelines are
often imperfect, and can introduce errors in the extracted data. In this
example, the extractors are assigning a default date value whenever

2.2. "Why" we want to explain 243

Musicians — Table 1 Composers — Table 2

Name Date of Birth Date of Death Name Date of Birth Date of Death

P. Fontaine ¢.1380 ¢.1450 G. Legrant 1.1405 N/A

J. Vide unknown 1433 H. Lantins ~ fl.c.1420 unknown

Extracted triples Triple properties
source subject predicate object

ID knowledge triple URL tableID type instance type instance type instance
t {P. Fontaine, Profession, Musician} wiki thl #1 People P. Fontaine Bio Profession Profession Musician
ta {P. Fontaine, DoB, ¢.1380} wiki thl #1 People P. Fontaine Bio DoB Date c.1380
t3 {P. Fontaine, DoD,c.1450} wiki thl #1 People P. Fontaine Bio DoD Date c.1450
ty {J. Vide, Profession, Musician} wiki thl #1 People J. Vide Bio Profession Profession Musician
ts {J. Vide, DoB, 01/01/1900} wiki tbl #1 People J. Vide Bio DoB Date 01/01/1900
te {J. Vide, DoD, 1433} wiki thl #1 People J. Vide Bio DoD Date 1433
tr {G. Legrant, Profession, Composer} | wiki thl #2 People G. Legrant Bio Profession Profession Composer
tg {G. Legrant, DoB, f.1405} wiki thl #2 People G. Legrant Bio DoB Date .1405
tg {G. Legrant, DoD, 01/01/1900} wiki tbl #2 People G. Legrant Bio DoD Date 01/01/1900
tio {H. Lantins, Profession, Composer} | wiki tbl #2 People H. Lantins Bio Profession Profession Composer
t11 {H. Lantins, DoB, fl.c.1420} wiki thl #2 People H. Lantins Bio DoB Date fl.c.1420
ti2 {H. Lantins, DoD, 01/01/1900} wiki tbl #2 People H. Lantins Bio DoD Date 01/01/1900

Figure 2.5: An information extraction pipeline processes the web tables (top) and
derives 12 knowledge triples (bottom). Each triple has four property dimensions with
different granularity levels. The extractors assign a default value to dates that are
unknown (“01/01/1900”), leading to three incorrect triples (¢s, to, and ¢12).

date information is missing. Manual investigation of these problems
is impractical, as the errors can be large scale; e.g., in the case of
Knowledge Vault (Dong et al., 2014) errors can span billions of triples.
Automated explanation frameworks are necessary to diagnose systemic
problems in large scale pipelines, which can be extremely complex and
may include obscure and black box components.

The errors in this example are identified in the output of the ex-
traction pipeline, as noted in Figure 2.5. The purpose of explaining
the errors in this case is to better understand how they occurred in
the first place. The errors in this example are systemic, inherent to the
process that generates the result triples and thus will keep occurring
unless a repair is applied to the part of the pipeline that causes the
problem. Simply, purging the errors from the output will not solve the
issue, as the pipeline will keep generating flawed data. Therefore, an
explanation in this setting should offer clarity about the origin of the
problem, potentially serving as a debugging mechanism.

The following example continues the debugging theme: errors are
noted in the output of several processing steps, and an explanation can
offer clarity to how they were introduced. A distinction here is that the

244 Explanation Needs: Who, Why, and What

Tazes: Do Query log: Q Tazes: Dy
D income owed pay q1: UPDATE Taxes SET owed=income*0.3 D income owed pay
WHERE income>=85700

t1 $9500 $950 $8550 q2: INSERT INTO Taxes t1 $9500 $950 $8550

to $90000 $22500 $67500 VALUES (85800, 21450, 64350) ta $90000 $27000 $63000

t3 $86000 $21500 $64500 q3: UPDATE Taxes SET pay=income-owed t3 $86000 $25800 $60200

ty $86500 $21625 $64875 ta $86500 825950 $60550
ts $85800 $21450 $64350

Figure 2.6: A recent change in tax rate brackets calls for a tax rate of 30% for those
with income above $87500. The accounting department issues query g1 to implement
the new policy, but the predicate of the WHERE clause condition transposed two
digits of the income value. As a result, the owed amount of t3 and ¢4 were calculated
incorrectly. This mistake is obscured by g2, which inserted a tuple with correct
income and owed amount, and was later further propagated to additional fields by
query g3, which calculates the pay check amount based on the corresponding income
and (incorrect) owed values.

problem setting is relational. In contrast to the previous example that
involved complex steps in the pipeline and, for all practical purposes,
black box components, the relational domain allows for more flexibility in
examining and reasoning about the inner workings of the data processing
steps. As such, the methodologies and solutions (“How”) will frequently
differ, even though the explanation’s purpose is the same.

Example 2.7 (Wang et al., 2017). An accounting firm implements an
adjustment to tax brackets on their customer dataset (Figure 2.6). The
adjustment sets the tax rate to 30% for income levels above $87,500,
and is implemented by query ¢;. A digit transposition mistake in the
query, results in an incorrect owed amount for tuples t3 and t4. Query
q2, which inserts a tuple with slightly higher income than ¢3 and ¢4 and
the correct information, obscures this mistake. This mistake is further
propagated by query g¢s, which calculates the paycheck amount based
on the corresponding income and amount owed.

Some of the mistakes in the database may be individually reported
to the firm by the customers. But, fixing these errors on an individ-
ual reporting basis further obscures the problem, and leaves several
erroneous values unaddressed. Instead, the accounting firm should first
understand how the errors were introduced, and such an explanation
would help determine and implement an appropriate repair strategy.

In our final example in this section, errors are again noted in the
output of data processing, but in this case they do not occur consistently,

2.2.

UPDATE account SET bal
WHERE cust =

“Why” we want to explain 245

Alice’s Withdrawal Transaction
= bal - :amount

= :name AND typ = :type;

INSERT INTO overdraft (

SELECT cust, al.bal + a2.bal

FROM account al, account a2
WHERE al.cust = :name AND al.cust = a2.cust
= a2.typ AND al.bal + a2.bal < 0);

AND al.typ
Execution Order of Transactions 77 and 15

up(%&‘ce insert commit
upc}ate ms%ert 'con}mlt Ty '
. T
I
Time

Bind Parameters for Transactions 7 and 715

‘name :amount :type
Ty Bob 70 Checking
T Bob 40 Savings
account
overdraft

(a) Database before

Bob Checking 50

execution of Ty and T Bob Savings 30
account
(b) Database after ex- cust typ bal overdraft
. Bob Checking | -20
ecution of Tl Bob Savings 30
account
overdraft

(c) Database after exe-
i Bob Checking | -20
cution of TQ Bob Savings -10

Figure 2.7: Erroneous transaction execution. Explanations for how transactions
interacted in the history are needed to understand the cause of the error (interleaving
of transaction execution under non-serializable transaction isolation levels).

246 Explanation Needs: Who, Why, and What

as they are linked to concurrency issues. While the purpose of explana-
tions remain the same—understanding the origin of the problem and
assisting in debugging—the particular problem setting would require a
different approach compared the the previous examples.

Example 2.8. Alice is a developer at a bank that runs a database
(e.g., Oracle) using the snapshot isolation (SI) concurrency control
protocol (Berenson et al., 1995) which does not guarantee serializ-
able schedules. She is tasked with writing a transaction for withdraw-
ing money from a customer’s checking or savings account (a table
account (cust,typ,bal)). If after the withdrawal the total balance of
the checking and savings account for the customer are below 0, then an
overdraft record should be inserted into a table overdraft (cust,bal).
Alice implements the transaction shown in Figure 2.7 that runs an
update followed by an insert using a query that detects overdrafts. After
some tests that are uneventful, Alice’s solution is deployed. However,
it turns out that Alice’s transaction does not always report overdrafts
correctly. Assume that transactions 77 and 75 as shown in Figure 2.7
have been executed concurrently with 75 committing last. Fig. 2.7 shows
the database state before and after execution of 77 and T5.

As shown in Figure 2.7 (c), these transactions cause an overdraft
for Bob that is evident in the database state after T5’s commit (since
—20 + (—10) < 0). However, neither 77 nor T have reported this
overdraft. The cause of this problem is that SI does not guarantee
serializability. In fact, it can lead to a concurrency anomaly called
write-skew (Berenson et al., 1995). Under SI, a transaction 7' runs
over a private snapshot of the database that contains changes made by
transactions that committed before T' started. Thus, 77 and 715 do not
see each other’s changes. Both transactions compute the total balance
using an outdated balance for the other account. For instance, T, sees
the previous balance of $50 for Bob’s checking account and the condition
of the overdraft check evaluates to 50 + (—10) = 40 £ 0.

Such errors are hard to debug, because they only occur if the execu-
tion of transactions is interleaved in a certain way. Alice’s application
may run for days without causing any issues. An explanation frame-
work that can identify the root cause for the absence of the expected

2.2. “Why" we want to explain 247

Team City Country Year League Place Team City Country Year League Place
F.C Barcelona Barcelona Spain 2019 La Liga F.C Barcelona Barcelona Spain 2019 La Liga
Atletico Madrid ~ Madrid Spain 2019 La Liga Atletico Madrid ~ Madrid Spain 2019 La Liga

Real Madrid Madrid Spain 2019 La Liga
F.C Barcelona Barcelona Catalonia 2018 La Liga
Atletico Madrid = Capital ~Espana 2018 La Liga
Real Madrid Madrid Spain 2018 La Liga

Real Madrid Madrid Spain 2019 La Liga
F.C Barcelona Barcelona — Spain 2018 La Liga
Atletico Madrid =~ Madrid Spain 2018 La Liga
Real Madrid Madrid Spain 2018 La Liga

W R NN
O R

Figure 2.8: Dirty table (left) and resulting clean table (right), after the application
of a black box repair system.

result based on a transactional history can aid Alice in debugging her
implementation.

The use of explanations in debugging data and systems can extend
to different data transformation processes. Data routinely undergoes
various stages of processing, such as extraction, cleaning, integration,
and sampling, before a dataset is ready for use. These processes may
be separate from the main data analysis task, but due to the changes
they incur to the data, analysts often need to investigate the validity of
these changes. We present an example from prior literature that focuses
on constraint-based data repair, but the motivation for explanations
generalizes to other processes and settings.

Example 2.9 (Deutch et al. (2020)). Figure 2.8 offers an example of
a data repair system that takes dirty data as input, and produces a
transformed, clean table as a result. In this repair transformation, the
system decides which constraints to apply and determines which repairs
are preferable. Systems like this cannot guarantee the correctness of
the repair, so their decisions often need to be investigated, justified,
and, sometimes, overruled. Explanation frameworks can help support
analytics in this preprocessing stage, helping enhance the trust in the
data used.

2.2.3 Performance analysis

Data analysis frequently involves the use of complex pipelines, often
deployed in parallel fashion over on-demand computing resources. Ana-
lysts can often struggle with the complexities of the setup, and may face
challenges with various performance aspects of these systems. Explana-
tions can elucidate the reasons for unexpected performance behaviors,

248 Explanation Needs: Who, Why, and What

potentially indicating ways to improve the analytics pipelines and their
deployment. This can still be seen as a debugging setting, where the
purpose of the explanation is to improve an issue in the system; here
the issue is poor performance instead of erroneous results. However,
we see this category as distinct, in that understanding the reasons for
performance deviations may impact decisions related to the analysis
setup, calibrating tradeoffs between cost and resources, etc., rather than
repairing an inherent bug in the process.

We present two examples where system performance is perceived
to deviate compared to another “normal” execution. In both cases, the
purpose of the explanation is to identify the causes for the degradation.
Typically, explanations for system performance need to involve configu-
ration, interference, shared resources, and other general systems’ issues.
Depending on the audience of the explanation, e.g., and administrator
who can modify the system, or an analyst who may be actively mon-
itoring the progress of an analysis, the explanation requirements and
goals may ultimately differ.

Example 2.10 (Kalmegh et al., 2019). Consider the dataflow-DAG of
a data analytical TPCDS Query-3 shown in Figure 2.9. Suppose an
admin notices a slowdown for Query-3 in an execution, compared to a
previous execution, and wants to analyze the reasons of its slowdown.
As a first step of troubleshooting, she wants to identify whether Query-3
was a victim of concurrency-caused contention or not (i.e., whether the
reasons were systemic or due to configuration). If she finds that the
slowdown may be caused by concurrent execution with other queries
in the shared cluster, she may have to find which of the concurrent
queries are more responsible for the slowdown of Query-3 so that she
can configure the scheduler accordingly.

Example 2.11 (Zhang et al., 2017). Figure 2.10 shows the data queuing
size of a monitored Hadoop job, against the time elapsed since the
beginning of the job. On the left, the job progress is normal: the
intermediate results output by the mappers start to queue at the
beginning and reach a peak after a short period of time. This is because
a number of mappers have completed in this period while the reducers

2.2. "Why" we want to explain 249

SELECT i.i brand id, sum(ss_ext sales price) sum_agg
FROM date dim dt, store sales ss, item i

WHERE dt.d date sk = ss.ss_sold date sk

AND ss.ss_item sk = i.i item sk AND i.i manufact id = 128
GROUP BY i.i brand id;

s2 S0 |Scan: store_sales

2 delay-path1 Scan: item

-—
|y

&‘ritical—path

SS—X\M

S4

Scan: date_dim

1 [s3 S4 | Joins

S5 | Group By

delay-path2

Figure 2.9: Execution DAG of TPCDS Query-3 showing the computation that
each stage performs. Stages SO, S1 and S2 are [O-intensive as they scan input data;
S3, S4 are both network and IO-intensive owing to a shuffle operation required for
a Join; S5 is more CPU bound due to the aggregate operation. A dataflow DAG
may consist of many chains of stages running in parallel. A query can slowdown due
to delay in one or more of its component stages. Some delays propagate to the end
while others get mitigated by faster later stages. Here two such paths, delay-path!
and delay-path2, get mitigated later, but the critical-path, the sequence of stages
with maximum overall runtime, contributes to the final slowdown.

have not been scheduled to consume the map output. Afterwards, the
queued data size decreases and then stabilizes for a long period of time,
meaning that the mappers and reducers are producing and consuming
data at constant rates, until the queued data reduces to zero at the end
of the job. During a different execution of the same job, a Hadoop user
observes the plot on the right: there is a long initial period where the
data queuing size increases gradually but continually, and this phase
causes the job completion time to be delayed by more than 500 seconds.
The user needs this performance difference explained, to potentially take
steps to improve the job’s execution time. In this case, the performance
degradation is due to high memory usage of other programs in the
Hadoop cluster. However, this fact is not obvious from the visualization
of the user’s monitoring query, Q1. It requires analyzing additional data
beyond what is used to compute Q1 (which used data relevant only to
the user’s Hadoop job, but not all the jobs in the system).

250 Explanation Needs: Who, Why, and What

400 400

—~ —~

s s

E Worldcup U — E Worldcup U —

3 3

4:3 200 S 200

< <

kS kS

o0 o0

£ £

= 3

Q Q

= =3

O 0 O 0
0. . 500 . 1000 1500 2000 [. 500 . 1000 1500 2000
Time since the job started (seconds) Time since the job started (seconds)

Figure 2.10: Hadoop cluster monitoring: Data queuing size of a normal Hadoop
job (left), and data queuing size of an abnormal Hadoop job (right).

2.2.4 Responsible data analysis

Data analysis aims to extract interesting and useful insights from data.
Mishandling, misinterpretation, and poor understanding of tools, can
be detrimental in analytics, leading to flawed results. Explanation
frameworks can support analytics through establishing the validity of
findings, or highlighting misconceptions and misuse. We discuss several
ways in which explanations can assist responsible analytics.

Fairness and bias

Data-driven systems often include learned components, trained over
datasets that may themselves be imperfect and even biased. As a result,
systems are likely to amplify these imperfections and biases. When
systems exhibit bias and discriminatory behavior, explanations can
serve as a tool to trace the reasons for the biased behavior, and point
to ways to repair it. The goal of altering broader aspects of a system’s
behavior, such as result bias, is distinct from debugging, which has more
precise targets. In general debugging, we typically observe concrete
errors within data or system components. In this case, however, the
issue is not confined to particular data or queries; rather it is manifested
over broader operations. We present an example where initial biases
in the data can lead a learned system to demonstrate discriminatory
behavior. The purpose of the explanation is to map the problematic
behavior to the underlying causes, so they can be addressed, if needed.

2.2. "Why" we want to explain 251

id name gender age race zip code phone credit score
t; Shanice Wilson F 31 AA 60617 555-391-7654 low
to Demetrius Smith M 52 AA 60617 524-764-0032 low
t3 Andre Holland M 60 AA 60649 321-716-0187 low
t4 Connor Wilson M 51 W 01060 908-375-1073 high
ts Emily Strike F 47 W 01009 high
t¢ Hannah Plath F 28 W 918-938-8172 low
t; Jacob Alston M 36 W 60636 high
ts Garrett Johnson M 31 W 27780 510-276-9182 high
tg Logan Drake M 32 W 01002 high
t10o Brett Smith M 28 W 413-726-1082 high

Figure 2.11: A sample dataset with 10 entities. A logistic regression classifier
trained over this dataset discriminates against African Americans (race = ‘AA’)
and women (gender = ‘F’).

Example 2.12. A classifier trained over the data in Figure 2.11 is bound
to demonstrate bias, as the data itself is highly imbalanced. Specifically,
the trained classifier, is likely to associate African Americans (race
= ‘AA’) and women (gender = ‘F’) with low credit scores. Even if
sensitive attributes, such as gender and race, are witheld during the
training process, other, seemingly innocuous attributes can serve as
a proxy, resulting in the same effect (e.g., zip code is correlated with
race). System developers can use explanations to understand the reasons
of the resulting bias, which can help them seek and train on a more
balanced dataset.

Algorithmic fairness and the study of discrimination in computing
systems has been a very active area of research in recent years, and
has produced a large body of work across several disciplines. While
a majority of the existing work is rooted in the machine learning
community, data management research has shown growing interest in
these topics. Our goal is not to cover this area in depth, but, rather,
to highlight the connections to explainability, as explanations can help
guide fairness repairs as illustrated in the above example.

252 Explanation Needs: Who, Why, and What

Auditing

Many organizations are subject to strict auditing requirements enforced
by law. To comply with the law, these organizations are required to
keep a record of their data handling processes. Such records can also be
used for identifying security breaches and for forensic analysis in the
event of a security breach.

Example 2.13. Consider a health care provider that maintains an audit
log (Snodgrass et al., 2004) to keep track of accesses to their database
and uses temporal database technology to be able to access past versions
of their data. If a user account is compromised and this security breach
has been detected, then the records kept in the audit log enable the
health care provider to investigate the breach, e.g., to determine what
data has been modified by the compromised account. However, the large
number of transactions run every day and the large amounts of data the
provider maintains make it hard for an analyst to understand the impact
of the breach, since this may require browsing through thousands of
SQL statements executed by the compromised account and millions of
tuple versions accessed and created by these statements. Thus, there is
a need for techniques to extract high-level explanations from these low
level details.

Reproducibility

Reproducibility of computational scientific experiments is one of the
grand challenges of our time. Computational experiments may fail
to be reproducible for a variety of reasons, such as dependencies on
libraries, environment settings, lack of documentation for how to run
the experiments, and non-determinism in the experimental code.

Example 2.14. Alice, a biologist, published a paper about the new
gene analysis algorithm she has developed. The algorithm takes as
input multiple genomes, prepares the data using a range of publicly
available tools, then combines the prepared data and runs a statistical
analysis over the results. Another scientist, Bob, wants to reproduce
the results of Alice’s algorithm as published in her paper. Even if Alice
is diligent in documenting her process, there are many possible pitfalls

2.3. “What” we want to explain 253

Bob may face during his attempt to reproduce Alice’s results, such as
incompatibilities between his and Alice’s execution environments (e.g.,
different library versions), missing datasets, or non-determinism of steps
in Alice’s workflow.

2.3 “What” we want to explain

In this section, we discuss the target of the explanation: What we are
trying to explain. The explanation target corresponds to the precise
element that an explanation seeks to justify, e.g., a particular value, or
a query, and it is distinct from the explanation’s purpose. For example,
Examples 2.5 and 2.6 both describe settings where the purpose of the
explanation is debugging and understanding of errors; however, in the
former, the explanation target is a query, whereas in the latter, the
explanation target is erroneous data. The explanation target (“What”)
is also distinct from the explanation itself; the latter is tied to the
solution approach, which we discuss in the following chapter (“How”),
and can potentially vary, even for the same explanation problem setting.
Here, we discuss explanation targets that have appeared in the literature,
frequently referring to prior examples and occasionally introducing new
ones.

2.3.1 Data

The most common explanation target in the data management literature
is, perhaps not surprisingly, data. As data is a central component of
data-driven systems, surprising observations and unexpected behaviors
are often indicated within the data itself. Examples 2.1, 2.6, and 2.7
all identify data as the explanation target, where values or extraneous
information indicates particular data as surprising or problematic. The
solutions methods and derived explanations may ultimately differ in
each case, but the common factor is what we seek to explain, which is
specific data items or values. Existing literature that focuses on data
as the explanation target, typically considers output data in particular,
which we discuss next. However, any data, even outside the behavior of
a system, can serve as the target, and existing explanation frameworks

254 Explanation Needs: Who, Why, and What

have been used in this manner. For example, Data X-Ray (Wang et al.,
2015a) has been used to derive explanations for traffic incidents over an
accident report dataset (Wang et al., 2015b).

2.3.2 Data processing output

When we consider explanations in the context of data-driven systems,
an explanation-worthy observation is typically tied to the system’s
operation and function. Therefore, much of the existing literature on
explanations targets the output of data processing operations, such
as queries (Example 2.3), updates (Example 2.7), or more complex,
and potentially non-relational, data processing pipelines (Example 2.6).
Within the processing output, explanations may target different aspects
of the data:

e Data items or values. Example 2.1 shows an instance of expla-
nations targeting the presence of particular data items or values
in the result of a query: certain tuples or their values may be
unexpected and, thus, and merit investigation. The absence of
expected results, such as in Example 2.2, can also be the target of
explanations. In the literature, this category is frequently referred
to as missing answers or why-not explanations.

e Qutliers. Sometimes, what makes a data value surprising is its
relationship to other values. Results that deviate substantially
from the mean of the output distribution may be indicative of a
problem or a phenomenon that needs to be better understood. For
example, the Scorpion (Wu and Madden, 2013) and the CAPE sys-
tems (Miao et al., 2019c¢) target outliers in the result of aggregate
queries.

e Trends. Output explanations may not always target particular
data items, but groups of items that indicate a surprising trend.
In Example 2.3, the target of the explanation is the decreasing
trend of industry publications at SIGMOD, which is surprising
given the increasing trend of papers from academia.

2.3. “What” we want to explain 255

2.3.3 Performance

Aside from unexpected data results, interesting issues and surprising
observations may sometimes be evidenced through other aspects of a
system’s behavior. Common observable aspects of performance, such
as overall runtime or use of resources, can indicate a problem with the
system or interactions that were not previously understood and merit
explanation. Examples 2.10 and 2.11 demonstrate two such cases in
relational and non-relational cases. Understanding the reasons for unex-
pected performance can facilitate the improvement of the corresponding
systems. Performance considerations can also include the overall quality
of a system’s function. For example, if a system produces generally
poor results based on some metrics (e.g., in Example 2.12 the learned
system is bound to produce discriminatory results), explanations can
target these aspects of performance, with the goals of understanding
the behavior and potentially changing it.

2.3.4 Queries

Any component of a system can be an explanation target. This hasn’t
been explored much in general data processing pipelines, as individual
components can be complex. However, in the context of relational data,
prior work has identified queries as explanation targets. Example 2.5
identifies the erroneous student query as the explanation target. Note
that we shouldn’t confound the explanation target (what we are explain-
ing) with the derived explanation (how we explain it). In this example,
“what” focuses on the query; the “how” is not another query—the correct
query is already known—rather it is a dataset that succinctly highlights
the problems in the submitted query (Miao et al., 2019a). We discuss
explanation approaches (“how”) in the next chapter.

2.3.5 Differences

When we think of what merits explanation, we typically think of some-
thing surprising that deviates from some norm or expectation. A lot of
the work on explanation research tends to overlook the reason itself for
seeking an explanation, merely focusing on deriving an explanation as-

256 Explanation Needs: Who, Why, and What

suming that something is labeled by some oracle as explanation-worthy.
But the precise indication of the deviation—what makes something
surprising, and, thus, explanation-worthy—can provide important clues
on what the proper explanation should be. Some work relies on rough
indicators of the deviation, e.g., a value is surprisingly low or high (Roy
and Suciu, 2014). But these indicators are often vague and don’t spec-
ify the nature and extent of the deviation precisely. When possible,
more accurate specification of the deviation can lead to more targeted
explanations.

The difference between an expected and an unexpected value or
behavior, or particular change in data or behavior can provide such a
specification. Example 2.4 explicitly highlights such differences in query
results as the explanation target: given two trusted datasets that are
supposed to represent the same data, albeit under a different schema,
one should expect queries that seek the same information to return the
same results. When they do not, explanation frameworks can assist in
interpreting these differences. In some of our other examples, differences
are an implicit focus of explanations: Example 2.9 focuses on the modifi-
cations inflicted by a repair algorithm on a dataset, while Example 2.11
specifies a performance abnormality against another execution that pro-
gresses normally. In both these cases, the change is what captures the
deviation that is deemed interesting, making it the explanation’s target.

2.3.6 Machine learning models and predictions

In recent years, machine learning has become prevalent in a wide range
of application domains. Systems using learned models are used to
make or influence critical decisions with practical human and societal
impact, ranging from product recommendations, to medical diagnosis
and treatment, and even criminal sentencing. As such systems incur
a profound impact on people’s daily lives, there is a pressing need to
understand, justify, and enhance trust in automated decision making by
ML models. Explanations have targeted both the decisions, as well as the
models themselves, e.g., why does a model have certain characteristics,
and explainability is an active field in the machine learning community.
We discuss an example that highlights this problem setting.

2.3. “What” we want to explain 257

#3.0f 6 . - = |
Example #3 of 6 True Class: . Atheism @
Algorithm 1 Algorithm 2
Words that Al considers important: Predicted: ‘Words that A2 considers important: Predicted:
GOoD| . Atheism Posting| . Atheism
mean| Prediction correct: Host| Prediction correct:
anyon] J Re| ‘/
this] by
Koresh] in|
through| Nntp|
Document Document
From: pauld@verdix.com (Paul Durbin) From: pauld@verdix.com (Paul Durbin)
Subject: Re: DAVID CORESH 18! GOD! Subject: Re: DAVID CORESH IS! GOD!
Nntp-Posting-Host: sarge hq.verdix.com Nntp-Posting-Host: sarge.hq.verdix.com
Organization: Verdix Corp Organization: Verdix Corp
Lines: 8 Lines: 8

Figure 2.12: Example from Ribeiro et al., 2016, explaining individual predictions
of competing classifiers that try to determine if a document is about “Christianity”
or “Atheism”. The bar chart represents the importance given to the most relevant
words, also highlighted in the text. Color indicates which class the word contributes
to (green for “Christianity”, magenta for “Atheism”).

Example 2.15 (Ribeiro et al., 2016). Figure 2.12 shows explanations
for the predictions of two classifiers over the same data. The right side
indicates the words that most contribute to the prediction of a support
vector machine with an RBF kernel, trained on unigrams to differentiate
“Christianity” from “Atheism.” Although this classifier achieves 94%
held-out accuracy, and one would be tempted to trust it based on
this, the explanation for this instance shows that predictions are made
for quite arbitrary reasons (words “Posting”, “Host”, and “Re” have
no connection to either Christianity or Atheism). After getting such
insights from explanations, it is clear that this dataset has serious issues
(which are not evident just by studying the raw data or predictions),
and that this classifier, or held-out evaluation, cannot be trusted.

We will briefly review some relevant approaches to explainability for
ML models and explainable Al (referred to as XAI) in the next chapter,
but as mentioned earlier, a detailed discussion on XAl is beyond the
scope of this article.

3

Explanations and Methodologies:
How

In the previous chapter, we discussed the dimensions of “Who”, “Why”,
and “What” that specify the explanation needs of a particular problem
setting. A problem setting is not explicitly tied to particular approaches
to explanations and solutions, and there is often more than one way to
tackle the same problem. However, it is possible that particular problem
settings are more amenable to certain approaches. Our intent has been
to decouple the dimensions relevant to the problem specification from
the particular methodologies and frameworks proposed in the literature.
We discuss the latter in this chapter. Specifically, we examine how the
existing literature has tackled some of these problems settings, and
identify several high-level desiderata, methodologies, and commonalities
across techniques.

We characterize the solution space of explanation settings as the
“How” dimension. We first examine some general principles of expla-
nation optimality, i.e., how to measure the quality of an explanation,
and how to compare two explanations to determine which is prefer-
able. We present several high-level objectives that have been proposed
in the literature, and suggest some additional ones to consider (Sec-
tion 3.1). Then, we identify common explanation types (what a derived

258

3.1. Explanation objectives: measuring explanation quality 259

explanation looks like), and high-level aspects of methodology (e.g.,
intervention-based, summary-based, etc.) in Section 3.2. Finally, we
discuss particular approaches from the existing literature for a selection
of problem settings (Sections 3.3 to 3.9).

3.1 Explanation objectives: measuring explanation quality

As a tool primarily meant for human consumption, explanations remain
highly-subjective notions. Their effectiveness is not always quantita-
tively measurable, and, ideally, explanation quality should be evaluated
through targeted qualitative analysis and user studies collaborating
with domain experts and cognitive scientists. The varied desiderata
implied by the different problem settings further complicate this issue.
As we discussed, explanations meant for debugging purposes likely need
to be more specific and more detailed than those meant for illustrative
purposes. Similarly, explanations targeting a general audience would
look different that those targeting domain or technical experts.

The existing literature has taken varied approaches to defining
explanations, specifying their desirable properties, and proposing metrics
for evaluating them. However, ultimately, there is no universally accepted
set of objectives that explanations should satisfy. Our goal here is to
distill some high-level desiderata for explanations that are frequently
associated with explanation quality.

e Succinctness. The core purpose of explanations is to aid our
understanding of an observation. However, understandability is a
subjective and not directly measurable notion. The explanation
literature has frequently used succinctness as a substitute for un-
derstandability. Intuitively, explanations should be small enough
to be easily understood. Large explanations, while accurate, are
unlikely to aid the goal of understandability. For example, consider
the case where the goal is to explain a trend in aggregate results
(Example 2.3). Providing the why provenance that consists of all
relevant input tuples (Cheney et al., 2009) as an explanation is un-
likely to be effective, because aggregation results typically depend
on a large number of input tuples. Thus, the set of relevant input

260

Explanations and Methodologies: How

tuples, or even some algebraic form like provenance semirings for
aggregates (Amsterdamer et al., 2011), would likely be impractical
for human consumption. Therefore, succinctness is intuitively a
good proxy for understandability, and explanation frameworks
commonly use it as an explicit objective.

Interpretability. An important dimension of explainability is the
target audience (“Who”). Explanations need to be in a form that
is easily interpretable by their intended audience. For example,
explanations in the form of raw data may often be unsuitable
for non-experts, whereas higher-level meta-data that summarizes
aspects of the relevant data is likely to be easier to interpret.
Intuitively, interpretability as a goal drives design choices in the
explanation form, rather than specifying an explicit optimization
objective.

Actionability. A driving motivation for producing explanations
within a data system is the particular purpose (“Why”), which
may include goals like debugging, debiasing, or performance en-
hancements. Explanations need to point to actionable suggestions
for satisfying the purpose they were designed for. Therefore, they
need to consider which components of the data or system can be
subject to intervention, and the practicality of such interventions.

Measurability and Comparability. The search space for pos-
sible explanations is typically very large. The goal of optimization
objectives is to efficiently search through this space and narrow
down the selection of relevant explanations as much as possible.
Metrics for explanation quality should enable pruning parts of the
search space when ranking explanations.

Computability. Related to the above point, explanations are
typically intended for interactive data analysis, and therefore,
should be efficiently computable even if the search space is large.

3.2. General methodologies 261

3.2 General methodologies

Existing literature has employed a variety of approaches in the design
of explanation frameworks. Before discussing particular solutions, we
first present the high-level principles of common methodologies in this
research space.

e Provenance-based methods rely on maintained provenance in-
formation to derive explanations. Such provenance-based explana-
tions trace the target output to particular inputs or to components
in the pipeline that participated in the derivation of this output.
Provenance-based explanation frameworks require maintenance
of potentially large provenance data, or relatively simple compu-
tations where provenance information can be generated on the fly
or reverse-engineered.

¢ Intervention-based methods rely on implementing changes to
the data (e.g., removal of tuples) or the system (e.g., forcing a
program state), and observing the effect that such interventions
have on the system output or behavior. When the effect (e.g.,
output or behavior) that provoked the need for explanation is
reversed by the intervention, this indicates a connection between
the explanation target an the inflicted change. Interventional
methodologies are often used when reasoning about causality,
as causality often cannot be inferred from observational data
alone. However, interventions can be computationally intensive, as
systems need to be rerun, and computations need to be repeated,
often over a large number of interventions. A common approach
for addressing this combinatorial problem is to use properties
of the system under study to exploit commonalities between
computations for sets of interventions or to prune interventions
that are guaranteed to be of lower quality than previously explored
explanations.

o Statistical or observation-based methods reason over pre-
viously gathered data, rather than deciding on and executing
interventions. They are more practical in cases where there is

262

Explanations and Methodologies: How

already enough data to use for such analysis, but they are often
limited with respect to distinguishing correlation from causation.

Summarization-based methods reduce the size of explanations
through summarization. Summarization techniques that have
been applied involve feature extraction, taxonomies, mappings,
or general meta-data that encompass larger sets of lower-level
explanations. For example, if a framework derives sets of tuples
as explanations, but the sets are large, summarization methods
may increase succinctness by clustering the inputs, and replacing
the cluster by a higher-level description, e.g., by identifying com-
monalities among the elements of a cluster (e.g., all customers
are from the US). As such, summarization-based approaches can
unearth trends in data or computations.

Example- or Counterexample-based methods rely on the
human inclination to perceive things through examples. These
frameworks typically derive illustrative explanations, where an
effect is explained through an example or counterexample. For
example, a particular output can be explained by demonstrating
a particular part of the data flow that derives it; or, a mistake in
a query can be elucidated by a small data sample that highlights
the deviation from the expected result.

Model-based methodologies reduce the problem of generating
explanations into instances of another type of problem which can
be solved using existing tools. Common targets of such transforma-
tions are learning problems, satisfiability problems, or optimization
problems.

Note that explanation frameworks may combine several of these

methodologies. For example, summarization techniques are often used

to extract higher-level explanations from provenance information (e.g.,
Cate et al., 2015; Lee et al., 2020). Now that we have described these
general methodologies, we will highlight particular approaches in the
literature, organizing them with respect to different problems settings.

3.3. Explaining query answers through data provenance 263

3.3 Explaining query answers through data provenance

Perhaps the most prevalent approach to explaining, debugging, and trac-
ing query answers is through tracking provenance or lineage. Provenance
has been studied in the database research community for decades, and
has been used broadly in various contexts and granularities including
in scientific workflows and storage systems (e.g., Muniswamy-Reddy
et al., 2006; Davidson et al., 2007). Most relevant to this article is the
concept of fine-grained data provenance that records the origin of the
query answers in terms of the input data (e.g., Cui and Widom, 2001;
Buneman et al., 2001; Green et al., 2007; Cheney et al., 2009). Prove-
nance can be recorded at different granularity levels, e.g., simply by
showing the set of input tuples that contributed to a query answer (why-
provenance), or by showing the process that generated the query answer
using a Boolean formula (how-provenance), which records conjunctive
uses of input tuples through joins (A) and alternative uses of tuples
through projection or union (V). Consider a toy example of a database
D with two relations: R(A, B) and S(B, C), with tuples r1 = R(a1,b),
ro = R(ag,b), and s = S(b,¢), and the query Q=n¢c(R < 5), which
joins R and S on B and projects the result to C. There is a single out-
put in Q(D), i.e., ¢, with lineage that can be expressed as the Boolean
formula (r1 V 7r2) A s. This expression indicates that the output ¢ will
be generated if and only if tuple s is present, and, at least one of r1, 9
is present. This Boolean lineage formula can serve as an explanation,
providing a succinct and precise representation of the generation of the
output c.

Provenance semirings (Green et al., 2007) also provide a general
framework for expressing provenance information. Such expressions
explain in detail how a query result is derived from the input data and
which input tuples contributed to which results. Building upon such
concepts, the notion of provenance has also been extended to aggregate
queries (Amsterdamer et al., 2011; Glavic et al., 2013). Other examples
of provenance models that record such information include provenance
traces (Cheney et al., 2014) and provenance models for recursive Datalog
queries that track rule derivations (Kohler et al., 2012; Deutch et al.,
2014; Lee et al., 2018).

264 Explanations and Methodologies: How

There is a vast and rich literature on provenance in database research
(e.g., see the article by Glavic (2021), Cheney et al. (2009), or the tutorial
by Tannen (2010)). Further, as discussed in Section 3.1, why- or how-
provenance may not satisfsy our desiderata for good explanations in
many of our targeted applications. In this article, we mainly focus on
other methods, some of which still use provenance, though in different
forms.

3.3.1 Refining provenance information

So far, we discussed provenance as a prevalent tool for supporting
explanations for query answers, such as the setting of Example 2.1.
Such explanations may simply include all input tuples that contributed
to the output (why-provenance) or a more fine-grained description of the
precise derivation using a Boolean expression (how-provenance). In the
toy example we presented earlier in the section, the Boolean expression
of the provenance was small enough to provide a succinct and accurate
explanation of the answer. However, in practice, provenance expressions
can grow large and become hardly interpretable by a human user, thus,
diminishing their value as explanations. Prior work has explored ways
to refine provenance information by prioritizing input tuples based on
a metric of their contribution towards a particular output. We discuss
two types of metrics here.

Responsibility

In our toy example, the Boolean provenance expression (r1 V r2) A s
contains only three tuples. But the way these tuples contribute to
the output is different. Tuple s is necessary for producing the output,
whereas only one of 1 and ry is needed. Thus, intuitively, the contribu-
tion of s to the particular query answer should be ranked higher than
the contributions of each of r; and 2. Meliou et al. (2010) proposed
the notion of responsibility as a measure for tuple contributions to a
query answer. This metric was adapted from prior work in the causality
literature (Pearl, 2000; Chockler and Halpern, 2004; Halpern and Pearl,
2001) and is based on the notion of intervention and counterfactual
causality. In simple terms, an input tuple t € D is a counterfactual

3.3. Explaining query answers through data provenance 265

cause of an answer a € Q(D) if removing ¢ from the input also removes
a from Q(D); hence, in our toy example, s is a counterfactual cause
for output c¢. Extending counterfactuals, an input tuple ¢ € D is an
actual cause of an answer a € Q(D) with contingency I', where I is a
set of input tuples, if removing I' from D makes ¢ counterfactual. Hence,
in our toy example, r; is an actual cause with contingency I' = {ro}.
Finally, the responsibility of a tuple ¢ is defined as p = m Thus,
in our toy example, p; = 1 and p,, = 0.5. Meliou et al. (2011) extended
the notion of responsibility to multiple outputs and views. Freire et al.
(2015) later revisited the notion of responsibility and analyzed it for
cases where functional dependencies are present in the data.

Shapley values

Livshits et al. (2020) proposed an alternative method for measuring
tuple contributions, adapting the notion of Shapley Values from the
Game Theory literature (Shapley, 1953). The concept comes from a
cooperative game that is played by a set A of players, and there is a
wealth function v that assigns wealth v(S) to each coalition S C A of
players. For example, in a publication/citation database, the players
can be researchers, and v(S) can be the total number of citations to
papers by an author in §. The Shapley value aims to distribute the
wealth v(A) among the players a € A by quantifying the contribution
of each player to the overall wealth (in this example, contribution of an
author for citations).

Formally, in a cooperative game with players A, there is a function
v (called the characteristic function or the wealth function) v : 24 — R
with v(()) = 0. For any subset S C A of players, v(S) represents the
value of the outcome produced when the players of S cooperate. As
mentioned above, the Shapley value measure the contribution of a player
a to the outcome as the expectation of the difference between the value
v(S) and v(S — {a}) over all coalitions S not including a, i.e.,

SI1- (14 18] = 1!
> T (v U - o)

Shapley(A,v,a) =
SCA—{a}

266 Explanations and Methodologies: How

Note that computation of Shapley values requires computing the
expected new contribution of a player with respect to a random permu-
tation of the other players. since the number of possible permutations is
exponential, the computation of the Shapley value is hard in the general
case. Livshits et al. (2020) gives complexity results for both conjunctive
and aggregate queries, and proposes approximation algorithms for the
hard cases; in a later work, (Reshef et al., 2020) studied the complexity
of computation of Shapley values to queries with negation.

Responsibility and Shapley values both relate to intervention-based
methods, as they try to quantify the contribution of a single input
tuple to the query answer in addition to other tuples present in the
database. The Shapley value considers more fine-grained incremental
contributions to the output than responsibility (by considering all possi-
ble permutations of all possible subsets before adding the input tuple),
and therefore is computationally more expensive (Livshits et al., 2020).

3.4 Explaining aggregate query outputs and outliers

Queries in data analysis are likely to have aggregates (sum, count, min,
max, etc.), often plotted as scatter plots, line graphs, or bar charts for
ease of analysis. We provide a simple scenario: there is an aggregate SQL
query (possibly with a group-by operator, a database D, and the user
is trying to understand the result tuples in the query answer denoted
by Q(D). We use agg(t) to denote the aggregate value of an answer
tuple t € Q(D), and gb(t) to denote the non-aggregate attributes (if
any) for ¢; for simplicity, we assume a single aggregate value in @) unless
specified otherwise.

Example 3.1.

Consider a simplified schema for the publication data of Ex-
ample 2.3, with three tables: Author(aid, name, inst, domain),
Pub(pid, title, year, venue, area), and Authored(aid, pid).
Uniq@keys are underlined. Suppose domain can have values ‘edu’
(academia in the United States) or ‘com’ (industry), which can be found
for researchers from the domain of their webpages whenever available;
inst denotes the institution where the researcher works. The output

3.4. Explaining aggregate query outputs and outliers 267

bars can be obtained by a SQL query Q;gmoq joining these three tables,
selecting for venue = ¢SIGMOD’ and ranges of years with a 5-year mov-
ing window, and for each window outputting the number of distinct pids
as each paper can have multiple authors. Here, the group by attributes
gb(t) contain (year-range, domain) and agg(t) denotes the distinct
publication count as shown in the bars in Figure 2.3. For example,
for the tuple corresponding to the bar ¢; shown in Figure 2.3, gb(q1)
is (2000-04, ‘com’) and agg(q) is the height of the bar ¢; denoting
publication counts in SIGMOD from industry in years 2000-2004.

When the user studies the output of Q(D), she might find some
interesting, unexpected, or counter-intuitive values, sometimes in com-
parison with the other values. Such questions might include (but not
limited to):

1. (Outliers) Why is the value of agg(t) high/low for a t € Q(D)?
In other words, why is ¢t an outlier in Q(D)? (e.g., why is agg(qy)
high in Figure 2.37).

2. (Comparisons) Why is the value of agg(t1) higher/lower than
agg(ta), for t1,ta € Q(D)? (e.g., why is agg(q1) higher than
agg(qz) in Figure 2.37).

3. (Complex comparisons) Why is agg(¢;) higher (lower) than
agg(ta), but agg(ts) is lower (higher) than agg(t1), for t1, 2, t3,t4 €

Q(D)? (e.g., why is agg(q1) higher than agg(qe) while agg(qs) is
lower than agg(g4) in Figure 2.37).

4. (Trends) Why do I see a trend (e.g., increasing/decreasing) in
the agg values for tuples t1,t2--- ,t,7 (e.g., why do the light blue
bars for SIGMOD publications from academia have an increasing
trend in Figure 2.37)

Such questions are likely to come from users who are data ana-
lysts, researchers, decision makers of relevant application domains, or
sometimes data enthusiasts and the general public (“Who”). Some
of these researchers might have a technical background in computer
science, statistical analysis, or data science, while some users might

268 Explanations and Methodologies: How

be more familiar with the domain instead. Therefore, the goal is to
provide meaningful explanations for this range of users as outlined in
Section 3.1. Next, we discuss a few approaches to explanations from the
literature for such aggregate query answers.

3.4.1 Intervention-based approaches

We start with an overview of intervention-based methods to explaining
aggregate query answers and outliers, proposed in Wu and Madden,
2013, Roy and Suciu, 2014, and Roy et al., 2015a. Here, we discuss
some high-level ideas from these approaches and refer to the papers for
technical details.

Motivation from causality. The basic idea of intervention-based
approaches is to (1) assume a compact representation of the tuples
identified in the explanation question along with the direction of the
deviation (high or low) as perceived by the user, and then (2) make
changes to the database D that would push the representation to the
opposite direction. For example, if the user asks ‘why is agg(t) high’,
a good intervention will change the data instance D to a new data
instance D’ (typically, as close as possible to D) such that agg(t) will
be much lower in Q(D’). The concept of interventions stems from the
literature on causal analysis (e.g., Pearl, 2000, see Chapter 4 for more
details on causal analysis):

o (causality by intervention) A variable Y is a cause for another
variable Z if changing Y changes Z, i.e., AY = AZ. In other
words, an intervention on Y causes a change in Z.

Motivated by the causal notion of interventions, we can derive a
similar concept of explanations for database query answers:

o (explanations by intervention) A set of input tuples AD C D
is an explanation for (one or more designated query answers in)
Q(D) if “intervening on’ that subset also changes Q(D) to some
extent, i.e., AD = AQ(D), where AD denotes the subset of input
tuples changed by the intervention. Interventions causing higher
changes in the output are intuitively stronger explanations.

3.4. Explaining aggregate query outputs and outliers 269

Interventions can include the deletion of tuples, the addition of
tuples, or the modification of tuples. Deletion is often a preferred choice
for intervention (Wu and Madden, 2013; Roy and Suciu, 2014; Roy
et al., 2015a), since adding or modifying tuples raises concerns regarding
the validity of such updates in a dataset in practice. In this section, we
will focus on deletions as the intervention.

Allowing an explanation to be defined as an arbitrary subset of
the input tuples has disadvantages with respect to common explain-
ability objectives (Section 3.1): (1) an arbitrary subset of tuples can
be large, thus, failing the expectation for succinctness; (2) tuples in
an arbitrary set may not share common properties, thus leading to
poor interpretability; (3) the search space over all possible subsets of
a dataset is exponential in the size of the input data, leading to poor
computability. As a result, it is common to opt for explanations in more
restricted, compact forms.

Predicates as explanations. A natural way to think collectively
about groups of tuples is through predicates. Predicates provide a
natural way to summarize commonalities among input tuples, and
they can be combined through conjunctions to create more restricted
groups. Thus, producing predicates as explanations has been a popular
approach in the literature (Wu and Madden, 2013; Roy and Suciu,
2014; Gebaly et al., 2014; Roy et al., 2015a; Lee et al., 2020). Predicate-
based explanations are succinct and easily understandable, effectively
summarizing the properties of the tuples relevant to the explanation.

Since explanations are modeled as predicates, interventions can
operate directly on the predicates: Given an explanation predicate ¢,
the intervention on ¢, denoted by Ay, corresponds to the subset of
tuples in D defined by the predicate ¢. This type of deterministic and
unique interventions on predicates leads to a significant reduction in
the search space, which is only exponential with respect to schema
complexity, but polynomial with respect to the most common concern
of data complezity (Vardi, 1982). However, more complex (Meliou et al.,
2011; Meliou and Suciu, 2012) as well as stochastic interventions are
possible, though little work has been done in this direction (we discuss
further in Chapter 4).

270 Explanations and Methodologies: How

Ranking explanations. We now recast the explanation questions
listed after Example 3.1 using a simple formalism: we denote the answer
tuples that are the explanation target with S C Q(D), and we use
f(S, D, Q) to represent the target relationship (e.g., comparison, trend,
etc.); then the explanation seeks to answer why f(S, D, @) is high or
low:

o (Outliers) S = {t} and f(S,D,Q) = agg(t).

o (Comparisons) S = {ti,t2}, and f(S,D,Q) can be 222837
(agg(t1) — agg(ta)), etc.
o (Complex comparisons) S = {t1,to,13,t4}, and f(S, D, Q) can

a t a, t a t a ¢
be éi&;?féé&jg, (2eelt) _ sgg(ta)y opc

agg(t2) agg(ts)
(Trends) S = {t1,ta--- ,ts}, and f(S, D, Q) can be the slope of
the best fitted line by linear regression.

If the question involves why f is ‘high’, a good explanation predicate
¢ will decrease the value of f after intervention. Therefore, a possible
choice of ranking function is ordering the explanation predicates ¢ in
increasing order of changes: py = |f(S, D, Q) — f(S, (D —Ay), Q)| (Roy
and Suciu, 2014; Roy et al., 2015a). However, without other safeguards,
the highest-ranked explanation may be the one that removes all tuples,
which is not meaningful or useful. One way to avoid this is to penalize
the scoring function based on the number of deleted tuples, e.g., Wu
and Madden, 2013 uses py = lf(S’D’Q)_{A(Si(D_A¢)’Q|. Similarly, if the
question involves why f is ‘low’, a good gxplana‘cion predicate ¢ will
increase the value of f after intervention; however, we should note that
a monotone f cannot increase in value after tuple deletion (alternative

approaches are discussed in Section 3.4.2).

Other ranking considerations may account for producing diverse
explanations (i.e., avoid having the top-ranked explanations be too
similar), which may be helpful for interactive exploration. Generally,
having a good balance of diversity, coverage, and utility, as done in
general top-k query answers (Joglekar et al., 2016; Wen et al., 2018),
can also be considered while ranking explanations.

3.4. Explaining aggregate query outputs and outliers 271

Overview of algorithms. With a well-defined objective function
ps, the goal is to devise algorithms that can find top-k explanation
predicates ¢ as efficiently as possible. The Scorpion system (Wu and
Madden, 2013) considers a database with a single table (the materialized
universal table with the join output for multiple tables), and finds top
explanations in two ways: (1) with a top-down decision tree partitioner,
or (2) with a bottom-up partitioner that starts with single-attribute
predicates and then intersects them to construct multi-attribute predi-
cates. Scorpion also uses several optimizations like sampling and parallel
partitioning.

On the other hand, the key idea in Roy and Suciu (2014) is to
treat tables in a multi-relational database separately and take into
account mutual dependencies for the existence of tuples. A simple kind
of dependency is referential integrity constraint with cascade delete
semantics (if a tuple with the primary key is deleted, all tuples with a
foreign key referring to this primary key are deleted). However, other
types of user-defined constraints might also exist, e.g., if an author is
removed, then eventually all of their publications should be removed
from the database, which requires an extension to foreign keys. Roy and
Suciu (2014) give a recursive program that can compute interventions for
a given explanation predicate ¢ in the presence of mutual dependencies
among tuples, which gives the exact intervention A4 and scoring function
pe, but is not efficient. They also give an efficient optimization heuristic
based on the SQL data cube operator (Gray et al., 1997) for evaluating
pe for all possible explanation predicates ¢. For Examples 2.3 and 3.1,
this returned interesting explanations like leading industrial labs (and
their senior database researchers) that were highly active in database
research in early 2000 but later had a shutdown or possibly shift in
research focus, explaining the decline in industry papers in SIGMOD,
as well as relatively new but highly productive academic institutions as
they contributed more to the increasing trend in the academia papers
compared to more established academic research groups. Subsequently,
Roy et al. (2015a) proposed the notion of explanation-ready databases
that pre-compute and store interventions of possible explanations as
they are independent of queries and user questions, then evaluate
all explanations simultaneously using concepts from incremental view

272 Explanations and Methodologies: How

maintenance (Ceri and Widom, 1991; Ahmad et al., 2012) to find the
top ones when a user question arrives.

3.4.2 Counterbalance-based approaches

Insertions or updates are difficult to implement as modes of intervention,
while preserving the semantics or properties of the data. Therefore,
intervention-base methods usually rely on deletion of input tuples; this
restricts the explanations to the provenance (contributing input tuples)
of the answer tuples in the user’s questions. This, in turn, leads to two
limitations of the intervention-based approaches:

1. (Context is ignored) Explanations are limited in scope as
interventions are restricted to tuples that directly contribute to
the output tuples identified in the user question. Other parts
of the input are ignored in the space of possible explanations,
possibly losing useful contextual information from the rest of the
data, which can be the bulk of the available data.

2. (Cannot explain ‘why low’) Intervention-based approaches
intend to reverse as much as possible the trend perceived as
deviating by the user (e.g., if the user asks why a value is high,
good explanations would lower that value as much as possible
through hypothetical tuple deletion). However, if the function
f on query results that we want to change is monotone, then
the output cannot be made higher by tuple deletion. This makes
intervention-based approaches unsuitable for explaining some ‘why
low’ questions.

Miao et al. (2019¢) proposed an alternative to intervention-based
explanations, called explanations by counterbalance. Suppose one notices
a drop in crime rate in one area of a city in a particular year compared
to the other adjacent years. To explain this drop, one can find higher
crime rate in this area in the year before, which might have made
the authorities redirect resources to this area to reduce the crime rate.
Similarly, a lower than usual number of publications in a venue by a
researcher can be explained by higher than usual number of publications
in other venues in the same year by the same researcher.

3.4. Explaining aggregate query outputs and outliers 273

To obtain such explanations, Miao et al. (2019c) mine common
patterns based on the group-by attributes and aggregate values with a
large enough support and confidence from the data (e.g., the number of
annual publications by many researchers is about constant, although the
constant may vary from researcher to researcher). Then, with respect
to these patterns, a low (respectively, high) outlier can be explained by
a high (respectively, low) outlier, that together ‘counterbalance’ each
other. The effectiveness of the explanations for the purpose of ranking
is decided by (1) the distance of the explanations from the user question
(e.g., publications in years further away have less weight), and (2) the
surprisingness in the aggregate value (e.g., if the researcher publishes
about 2-3 papers in venue X typically in a year, publishing 10 papers
in that venue a year is more surprising than publishing 4 papers). We
refer to Miao et al. (2019¢) for technical details and concrete examples.

3.4.3 Summarization-based approaches

While the notion of provenance (Section 3.3) has often powered expla-
nations of aggregate query answers (Amsterdamer et al., 2011; Glavic
et al., 2013), fine-grained provenance is often too large for human con-
sumption. Examples of use cases where fine-grained provenance is too
detailed are queries with aggregation which derive a small number of
outputs from a large number of input rows, and why-not provenance (Lee
et al., 2020) that may consist of a very large number of derivations even
for simple queries. Summarization methods aim to refine explanations
in ways that improve their succinctness, and, by consequence, their
understandability.

Summarization by patterns or predicates

Selection patterns or predicates (discussed in Section 3.4.1) can serve as
a summarization mechanism. For example, given a relation augmented
with a binary outcome attribute, ezplanation tables (Gebaly et al., 2014;
Gebaly et al., 2018) aim to find ets of patterns (predicates) that affect
the outcome attribute the most. Gebaly et al. (2014) presented an
athlete’s exercise log as an example for this approach. Each row in the
log records the day of the week and time of the exercise, the meal eaten

274 Explanations and Methodologies: How

before the exercise, and a binary outcome attribute indicating whether
the exercise target goal was met. An explanation table consists of a
set of patterns. Each pattern is a tuple of values and wildcards (similar
to other work on predicate-based explanations, the wildcard symbol “*”
represents all possible values of an attribute) along with the number
of tuples it matches (count) and a fraction indicating how many of
these tuples have a positive outcome (the outcome attribute is one).
For instance, an explanation table for the exercise log may contain an
entry (Sat,*,*) with a count of 20 and a fraction of 0.2. This pattern
states that the exercise goal was only met 20% of the time out of the 20
Saturdays recorded in the log, independent of the time and what the
athlete has eaten.

Lee et al. (2020) offer another example of pattern-based explanations:
they generate approximate summaries for why-not provenance to solve
both the scalability as well as usability challenges stemming from
the large size of why-not provenance. This approach highlighted the
need of approximate techniques for application domains like why-not
provenance where even enumerating all fine-grained provenance as input
to summarization is not feasible.

Abuzaid et al. (2021) propose to integrate pattern-based summa-
rization of the differences between two datasets into relational query
processing in the form of a new logical operator called DIFF and demon-
strated that several existing pattern-based explanations approaches
can be expressed using the DIFF operator. Furthermore, the authors
discussed several logical and physical optimizations for the DIFF opera-
tor. Earlier, Sarawagi and Sathe (Sarawagi, 2000; Sarawagi and Sathe,
2000; Sathe and Sarawagi, 2001) proposed operators (RELAX, DIFF,
SURPRISE) for interactive exploration of OLAP data cubes that con-
tinuously adapt to the knowledge of the user on the data and guide her
to the most informative parts of the cube from the viewpoint of the
user.

Summarization with taxonomies

Another class of summarization approaches that has been used in this
context is summarization based on taxonomies (Glavic et al., 2015),

3.4. Explaining aggregate query outputs and outliers 275

or more generally ontologies to summarize data for the purpose of
explanations. Cate et al. (2015) used ontologies which are mapped
to concepts in a database in the spirit of ontology-based database
access (Calvanese et al., 2007) to generalize a missing answer to a set of
missing answers explained through a higher-level concept in the ontology.
As an example, a user may wonder why there are no train connections
from New York to Paris. The approach would explain this through the
generalization of this missing answer: there are no train connections from
any city in the US (the concept UScity subsumes New York) to any city
in Europe (the concept EuropeanCity subsumes Paris). Interestingly,
this work showed that in lieu of an user-provided taxonomy, a taxonomy
can be build over queries (such as the selection patterns mentioned
above) based on query subsumption: if a query @) is contained in
a query (J2 then the ontological concept corresponding to the set of
values described by)1 is a specialization of the ontological concept
corresponding to the values described by @)o. In this example, the query
Tcounty=Us (US cities) subsumes the query ogqre—ny (NYstateCities).

Other approaches that use taxonomies are Data X-Ray (Wang et al.,
2015a), which creates summaries to describe errors in data based on
hierarchical meta-data, and Glavic et al. (2015), which applies ideas from
Cate et al. (2015) to explain the provenance of answers and non-answers.

Summarization with natural language

Another summarization mechanism is to factorize provenance informa-
tion. Deutch et al. (2017) leveraged the structure of the user’s explana-
tion query in natural language to factorize the provenance by replacing
subexpressions with counts. For example, for a query returning authors
that from a particular university who have published at least one paper,
an explanation for the provenance of a result tuple may replace the set
of papers published by an author in the provenance with the number of
such papers.

276 Explanations and Methodologies: How

3.5 Explaining queries

In many cases, explanations focus on understanding how a query, rather
than the input data, affected a result. For example, when constructing a
complex query, a user may want to understand which parts of the query
are responsible for producing (or, failing to produce) an unexpected
(or, expected) result. That is, explaining an answer or missing answer
through properties of a query can aide users in debugging the query.
Following terminology used for distinguishing between these two types
of explanations for missing answers, we refer to such explanations
as query-based as opposed to instance-based like the intervention and
summarization-based approaches described in Section 3.4.

We can classify query-based explanation problems based on what
should be explained and what properties of queries are explored for
the explanation. A common class of query-based explanation problems
explains a particular result, i.e., why the query returned the particu-
lar answer. Examples of this class of problems include debugging an
erroneous query result by identifying which parts of the query caused
the erroneous output to be returned (Glavic et al., 2010; Alexe et al.,
2006; Fehrenbach and Cheney, 2019), ezplaining a missing answer by
pointing out parts of the query that should be changed to make the
missing answer appear in the result (Chapman and Jagadish, 2009;
Tran and Chan, 2010; Bidoit et al., 2014), and program slicing that
identifies which parts of an input program are sufficient for producing
an output or intermediate result of interest (Cheney, 2007; Xu et al.,
2005; Tip, 1994; Weiser, 1981). Note that, in this problem setting, we
assume that the query (or program) can be broken into parts, and these
individual parts are considered to be potential causes for the observed
outcome (existing or missing answers). For example, we may define the
parts of a query expressed in relational algebra to be the operators of
the query. Closely related to this type of explanations are approaches
that explain why a query result is empty (this is often called the empty
answer problem) or why a query returns too many results (Mottin et al.,
2013). While identifying the parts of a query that are responsible for
producing a result (or failing to produce a result), this may not be
sufficient information to repair the query and resolve the error. An

3.5. Explaining queries 277

alternative type of explanation may directly derive a repaired version of
the query. Finally, counterexample-based mechanisms can also be used
in query-based explanations (Chu et al., 2017b; Miao et al., 2019a). We
proceed to discuss some of these approaches at a high-level, and refer
the reader to the corresponding papers for more details.

3.56.1 Query-based explanations for missing answers

The problem of query-based explanations for missing answers was first
studied by Chapman and Jagadish (2009). Their approach assumes that
the input data is sufficient for producing the missing answer, and, thus, a
query repair exists that can derive it. Given a query @, database D and
tuple ¢ with the same schema as) such that t ¢ Q(D), the approach
identifies a set of operators that are “frontier picky”. Intuitively, these are
the operators that are responsible for removing intermediate data items,
which were derived from input data items that could have contributed
to the missing answers. In particular, the approach identifies the input
tuples u that have attribute values compatible with the missing answer
t (i.e., u and t agree on their common attributes). An operator is called
frontier picky if there are successors of compatible tuples (tuples that
have at least one compatible tuple in their provenance) in the input
of the operator, but no successors of such tuples exist in the output
from the operator. In other words, all tuples that could have produced
the missing answer were removed by such an operator. The rationale is
that only such tuples can be in the provenance of the missing answer
if the picky operators are fixed so that they no longer filter out the
missing answer. Bidoit et al. (2015) introduced why-not polynomials
that represent query-based explanations as polynomials which encode
all alternative (addition) of sets of conditions (multiplication) that
caused a compatible input to be filtered out. The main advantage of
this approach is that it enumerates all possible explanations and utilizes
factorization to construct the set of explanations from explanations for
simpler subqueries. Diestelkdmper et al. (2021) presents an approach
for nested data models and queries that scales to large data sizes and is
based on a sound formalization rooted in query repairs. This approach
is also the first to detect errors based on misuse of attributes (e.g., the

278 Explanations and Methodologies: How

missing answer is caused by projecting on work address instead of home
address).

Repairing queries

Several approaches moved beyond identifying the parts of the query
responsible for a missing answer, to deriving repairs, i.e., modify the
query, such that the modified version contains the (previously missing)
answer in its result. Query refinement techniques such as Mishra and
Koudas (2009) and Vélez et al. (1997) generate such repairs. Tran and
Chan (2010) presented an early approach for this problem that tries
to balance the similarity between the modified query and the original
query as well as the side effects of the modification on the query’s
result. The approach enumerates possible changes, e.g., to selection
conditions of queries, as potential repairs. Bidoit et al. (2016) refine
queries using a syntax-independent representation of queries. Closely
related to query refinement are techniques for query reverse engineering
(QRE) (Kalashnikov et al., 2018; Tran et al., 2014) where the task is to
given a query answer R and input database D to find a query such that
Q(D) = R. The main difference to query refinement is that instead of
refining an existing query, in QRE, no query is provided as reference.

3.56.2 Explaining wrong queries by counterexamples

In this section, we focus on the setting motivated by Example 2.5, where
a user knows that a query is erroneous, and an explanation needs to
elucidate the problems in the user’s query. Typically, in a classroom
setting, such errors in a wrong query ()9 are detected (manually or by an
autograder) based on a reference test database D and a correct query
Q1 such that Q1(D) # Q2(D). However, as the reference database
D is meant to capture many ways in which a query can go wrong,
it is too large to shed light on the student’s mistake. In addition, in
a classroom setting, it is often undesirable to reveal the entire test
database D. The RATest tool (Miao et al., 2019a; Miao et al., 2019b)
derives an explanation for the wrong query Q)2 by aiming to find a
smallest database sub-instance D’ C D such that Q1(D’) # Q2(D").
In Example 2.5, to convince the student that their query is wrong,

3.6. Explaining data differences and evolution 279

the instructor can provide the full contents of the S and R tables
as a counterexample comprising 11 tuples. However, a smaller and
better counterexample can simply contain three tuples (e.g., t; from
S and t4,t5 from R in Figure 2.4) to illustrate the non-equivalence of
@1, Q2. This problem is NP-hard in the general case (when the input
queries are non-monotone) with respect to data complexity (Vardi,
1982). Moreover, the problem of minimizing counterexamples becomes
much more challenging for queries with aggregates and group-by (e.g.,
with a “HAVING count(*) >= 10000” condition in the query). Miao
et al. (2019a) give efficient solutions by tracking provenance semirings
for non-aggregates and aggregates (Green et al., 2007; Amsterdamer
et al., 2011), parameterization for queries with group-by and having
conditions, and using SMT-solvers and other optimizations. They also
discuss the effectiveness of this approach by deploying this tool in an
undergraduate database course. The primary focus of Miao et al. (2019a)
is simple relational algebra and SQL queries with at most one step of
group-by and aggregates at the end. Miao et al. (2020) demonstrates
a tool for complex SQL queries including set operators and nested
subqueries where even the tracing problem becomes non-trivial.

Two related topics studied in the literature are deciding query
equivalence and test data generation. In general, query equivalence is
undecidable (Abiteboul et al., 1995). A practical system, Cosette (Chu
et al., 2017b; Chu et al., 2017a), aims to decide SQL equivalence without
any test instances; it encodes SQL queries to constraints using symbolic
execution, and uses a constraint solver to find counterexamples (with
symbolic tuples and expressions) that differentiate two input queries.
Another approach called XData (Chandra et al., 2015) aims to capture
as many erroneous queries as possible but does not consider a particular
wrong query. Other methods for generating test data instances and
helping users understand the behavior of their dataflow programs are
discussed in Veanes et al. (2010) and Olston et al. (2009).

3.6 Explaining data differences and evolution

Explanations typically target something surprising that deviates from
some norm or expectation. Certain problem settings may allow for

280 Explanations and Methodologies: How

the specification of these deviations in a precise manner, usually by
contrasting a normal and an abnormal pattern of data or behavior. For
example, a value or pattern may appear deviant in comparison with
another observed value or pattern. This can arise in many settings:
different datasets or analyses may derive different results, time series
data may show a significant pattern change, or data evolution over
time may result in significant value changes that merit explanation.
While the element we seek to explain may still be a tuple or a set of
tuples, the fact that the source of the discrepancy is the difference or
comparison with another tuple or pattern can help guide explanations
more precisely.

3.6.1 Data differences

The explanation literature has often focused on some crude measures
for labeling an element, e.g., a tuple, as explanation-worthy, such as
indicating that its value is surprisingly low or high. This typically alludes
to a tuple being an outlier, deviating from a general trend within a
dataset; it does not usually refer to a direct comparison with a particular
different value. But if this comparison is made more explicit and precise,
it can steer explanations to target the particular discrepancy more
explicitly.

A situation where this direct contrast of values or results is possible
and effective is when the same analysis or query is performed over
different datasets. Data management research on explanations has
focused on the assumption that data resides in a single dataset, under
one common schema. But the reality of today’s data diverges from that
ideal. More often than not, datasets evolve separately, under different
schemas, and even datasets from trustworthy sources frequently end up
diverging, both in format and content, causing headaches to downstream
applications and users. While datasets may be related and overlapping,
their separate production and evolution can lead to disagreements, even
when datasets come from trustworthy sources. A case study of this
problem is summarized in Example 2.4. In this example, a query over
the data from the National Center for Education Statistics, a curated
and trustworthy source, suggests a number of majors provided by the

3.6. Explaining data differences and evolution 281

University of Massachusetts Amherst that vastly disagrees with the
UMass database.

When different datasets provide different answers to semantically
similar questions, understanding the reasons for the discrepancies is
challenging and cannot be handled by single-dataset solutions. The key
insight within this setting is that the underlying assumption of similarity
between two datasets can supply a lot of additional information on
where the significant differences lie. There are two key considerations in
modeling this setting: (1) how to encode this similarity, and (2) what a
proper explanation looks like in this setting. These two considerations
are naturally linked, as the model for encoding similarity can serve as
the medium to highlight the differences.

A model-based approach

Explain3D (Wang and Meliou, 2019) models the similarity across
datasets using traditional schema mapping techniques. Specifically, tra-
ditional mapping techniques can provide an initial probabilistic mapping
M between the tuples of two datasets, D; and Dy. When two queries
@1 and @9 over D and Ds, respectively, are expected to produce the
same result, but they do not, we can use their expected agreement to
refine the initial mapping M. Specifically, the goal is to identify the
most likely deterministic mapping M™ given the queries’ provenance
and the initial mapping M. Intuitively, a particular mapping pinpoints
specific discrepancies; given the expectation of agreement between two
results and the principle of Occam’s razor, a mapping that indicates
the fewest discrepancies is preferred.

Ultimately, the derived mapping can serve as explanation, or it can
be further processed to derive more high-level explanations. But the
main point here is that the encoding of the expected agreement (the
tuple mapping in Explain3D) carries the information to highlight the
observed disagreement. This intuition appears fundamental and we ex-
pect generalizes to many explanation settings: if the expected agreement
or pattern can be encoded in sufficient detail, this encoding can serve
as a pattern for modeling and deriving appropriate explanations.

282 Explanations and Methodologies: How

Summarizing differences

The DIFF operator (Abuzaid et al., 2021) used in Macrobase (Abuzaid
et al., 2018) that we already discussed in Section 3.4.3 summarizes the
differences between two datasets using patterns. While technically, this
approach does not require the two datasets to be compared have the
same schema, it is still not suited very well for generating explanations
that explain the difference between the two schema of the input instead
of just the data. DataDiff (Yilmaz et al., 2018) computes a summary of
the difference between two datasets that includes transformations such
as deleting all rows matching a predicate (pattern) and or adding or
removing attributes.

3.6.2 Changing patterns in time series

A natural setting where change takes a central role is in time series and
streaming data. Such datasets typically represent evolving phenomena—
environmental monitoring, resource use, supply chains—and monitoring
applications seek to find, and potentially explain, interesting patterns.
What makes a pattern interesting, is a deviation from an expected norm,
e.g., a sudden spike in resource use, or high temperature measurements
during the winter. Instead of isolating the deviation and describing it
crudely (e.g., why is the resource use / temperature high), we gain more
information by specifying it more precisely, through direct comparison
with some reference data. For example, an interval of a stream can
be labeled as anomalous with respect to another reference interval.
Providing an explicit comparison point can target the explanations
more precisely as the causes of deviation between the anomaly and the
reference.

A solution to this setting again needs to consider the encoding of
the differences to specify an explanation format. EXStream (Zhang
et al., 2017) models stream intervals in a feature space; for example,
in a resource monitoring application, relevant features can include the
mean free memory during a time interval, the swap space, etc. Then,
the explanation is also feature-based: a conjunction of features that best
represents the differences between two intervals. In EXStream, the opti-
mal explanation is defined through a submodular optimization problem

3.7. Explaining query performance 283

relying on an entropy-based distance function, but other definitions of
optimality are possible.

3.7 Explaining query performance

A different type of explanations that has appeared in the data man-
agement literature targets query performance, as illustrated by the
examples in Section 2.2.3. There is a large body of work in the litera-
ture using very different techniques for cluster monitoring, performance
debugging, root cause diagnosis, configuration recommendation, etc.;
we mention a few tools here and refer the reader to the corresponding
papers and the references therein for a detailed study.

The tool iQCAR (inter-Query Contention Analyzer), proposed in
Kalmegh et al. (2019) (see Example 2.10) attributes blame for the slow-
down of a query to concurrent queries using blocked times (Ousterhout
et al., 2015), time a task is blocked for resources like CPU, network,
memory, or IO used concurrently by other contentious queries, and helps
an admin understand why a query is slow in an execution which might
take hours of effort to do manually. Another explanation tool for de-
bugging performance in cluster computing is PerfXplain (Khoussainova
et al., 2012) that uses a decision-tree approach to provide explanations
for slowdown of MapReduce jobs comparing multiple executions. Here
the users can specify the expected and observed performance of pairs of
MapReduce jobs as well as a despite clause which captures how similar
the jobs are, and the system outputs top explanations based on metrics
like relevance, precision, and generality. EXStream (Zhang et al., 2017)
similarly contrasts performance metrics across executions, in the setting
of event stream monitoring. The methodology in this framework is based
on solving a submodular optimization problem to identify combinations
of high-level features, such as mean free memory during a time interval,
the swap space, etc., that best explain the divergence in performance.
There are several root-cause diagnosis tools (Dias et al., 2005; Borisov
et al., 2009; Yoon et al., 2016; Ousterhout et al., 2015; Roy et al., 2015Db),
as well as tools for cluster monitoring, such as Ganglia (Ganglia Moni-
toring System 2019), Spark UL (Spark Monitoring and Instrumentation
2019), and Ambari (Apache Ambari 2019), that provide query metrics.

284 Explanations and Methodologies: How

Finally, configuration monitoring tools, such as Starfish (Herodotou et
al., 2011), Dr. Elephant (Dr. Elephant 2019), and OtterTune (Van Aken
et al., 2017), analyze performance and suggest changes in configuration.

3.8 Explainable Al and Machine Learning

Machine learning techniques are increasingly being used to make de-
cisions that have significant real-world impact, such as determining
mortgage rates and even to recommend criminal sentences. Therefore,
providing human-understandable explanations of such automated de-
cisions and processes is now a critical need to ensure transparency,
troubleshooting, and fairness. Explainable AI (XAI) is a new, active
field that aims to address explainability challenges in these systems (e.g.,
Lundberg and Lee, 2017; Ribeiro et al., 2018; Rudin, 2019; Barredo
Arrieta et al., 2020). This is a vast and fast moving research area, and
it is beyond the scope of this article to provide an exhaustive overview.
Instead, we will focus the discussion on a selected set of techniques
rooted in data management or approaches that we deem interesting to
data management researchers.

One of the most prevalent machine learning tasks is classification.
Complex models such as deep neural networks have been demonstrated
to excel in classification tasks. A commonly cited disadvantage of using
such complex models is that these models are quite opaque and, thus, it
is hard to understand why a test data point is assigned to a particular
class. A frequently studied XAl problem is: a classifier f was used to
classify a test data point x* and the user wants to understand the
classification outcome f(x*); the same question can arise when an ML
model is used for estimation instead of classification.

3.8.1 Explaining Model Predictions through Feature Attribution

One possible type of explanations for an unexpected prediction outcome
is to identify which features of the test data point x* are responsi-
ble for the prediction. This class of techniques is often referred to as
feature attribution methods, because they attribute responsibility for
a prediction outcome to features of the data point x* (possibly also

3.8. Explainable Al and Machine Learning 285

considering related data points). Methods in this category use a variety
of techniques to determine the responsibility of a feature. Note that
the two approaches we discuss here (Shapley values and causality) were
already discussed in Section 3.3.1, but for a different purpose: refining
provenance by computing the degree of responsibility each data item in
the provenance has for an observed query result.

One common approach is to model the prediction as a co-operative
game where the players are the input features and the goal is to deter-
mine a fair attribution of the payoff of the game (the prediction outcome)
to the players. Shapley values can be used to determine the contribution
of each feature (Shapley, 1953; Lundberg et al., 2018; Merrick and Taly,
2019; Frye et al., 2020; Aas et al., 2019). Shapley values have attractive
theoretical properties. However, there are several possible ways of how
the co-operative game modeling the prediction task can be designed that
can significantly affect the generated explanations (Merrick and Taly,
2019). Consider a prediction task with M input features X = {X;}
and an input point x*. The Shapley value for a feature X; with respect
to x*, denoted as ¢; attributes to X; part of the difference between
f(x*) and the expected prediction of the model over all data points:
¢o = E[f(x)] such that:

M
F) =0+ > ¢,
j=1
The Shapely value ¢; for feature X; is computed by calculating
the mean over all subsets S of X — {X} of the difference between the
expected prediction of the classifier for all points that agree with x* on
S and all points that agree with x* on S U {X;}:

o= ¥ MBI 0y - o)

SCx—{X;}
v(S) = E[f(x)|xs = x"s]

Shapley values have also been applied to measure global importance
of features across all data points (Owen and Prieur, 2017). Computing
Shapley values is exponential in the number of features and, thus,

286 Explanations and Methodologies: How

intractable for more than a few features. Several approximate versions
have been proposed, e.g., most of the approaches cited above rely on
some approximation scheme. Note that the use of Shapely values is not
just restricted to explaining the impact a feature has on the outcome of
a prediction; In fact, it can be applied to explain the impact an input
feature has on the result of any type of blackbox function. For instance,
Shapley values have been used to explain data repairs with respect to
a set of denial constraints for a large class of data repair algorithms
(Deutch et al., 2020).

An alternative class of algorithms produces contrastive and causal
explanations that identify interventions, i.e., perturbations of the test
data point or of subset of the test data, that change the prediction for
a data point of interest. Contrastive and causal XAl methods explain
ML model predictions in terms of minimal interventions on input
features that change the prediction (Bertossi et al., 2020; Datta et al.,
2016; Verma et al., 2020; Wachter et al., 2017; Laugel et al., 2018;
Karimi et al., 2020; Ustun et al., 2019; Mahajan et al., 2019; Mothilal
et al., 2020; Ying et al., 2019; Galhotra et al., 2021). For instance,
Bertossi et al. (2020) introduce an explanation score for features based on
counterfactual causality and responsibility. Consider a binary classifier
f and a data point x* for which f(x*) = 1. An intervention that changes
x = x*[X; = v], i.e., changing the value of feature X; to v in data point
x* is called a counterfactual cause for the prediction outcome f(x*) if
f(x) = 0. That is, counterfactual causes change the prediction outcome.
Based on this notion, Bertossi et al. (2020) introduce the COUNTER-
score for each feature X; of x* that is defined as the difference between
the prediction at x* and the expectation of the prediction of f(x) over
points x = x*[X; = v] for some v. This is the expectation of the change
in prediction over all interventions on Xj:

COUNTER(x", X;) = f(x") = E[f (%) | xx—{x,} = X x—{x:}]

As discussed in Section 3.4.1, approaches based on intervention
and causality have been successfully applied for explaining outcomes of
aggregate queries and to refine provenance information by associating
data with a degree of responsibility instead of using a binary decision

3.8. Explainable Al and Machine Learning 287

(in the provenance or not). In summary, both Shapley values and
counterfactual causality are principled techniques for explaining the
result of a blackbox function by assigning responsibility or blame to
input features.

Yet another line of work (Sagadeeva and Boehm, 2021; Chung et al.,
2019) utilizes pattern-based summaries as described in Section 3.4.3
to compactly describe a subset of the test data on which the classifier
performs poorly.

3.8.2 Explaining Black-box Predictions Using Interpretable Models

An alternative to explaining a prediction based on input features, is to
compute a surrogate interpretable model g (e.g., a decision tree or linear
classifier) that approximates the blackbox model f (e.g., a deep neural
network) in the vicinity of the data point x*. The intuition is that by
using a simpler, but more interpretable model, the opaque behavior of
f with respect to x* and points similar to x* can be explained to a
user.

LIME (Ribeiro et al., 2016) is one of these approaches that explains
a blackbox classifier f’s prediction for a data point by locally approxi-
mating it though an interpretable model. In this work, the search for
such an interpretable model is cast as an optimization problem: find
the model g from a set of possible models G that minimizes the sum
of the error of the prediction for the points in the local neighborhood
(determined by a distance function ;) of the data point x* of interest
and the complexity of the model Q(g) (e.g, depth of a decision tree):

argmin £(f, g, m5) + ©(g)
geG

To improve the efficiency of this process Ribeiro et al. (2016) com-
putes the loss over a random sample of the training data that is biased
towards points that are close to x* with respect to m;. Other represen-
tative instances of the idea of explaining outcomes through surrogate
models are Ribeiro et al. (2018) Lundberg and Lee (2017). To the best
of our knowledge, the idea of explaining a complex function through a
simpler function that locally approximates the complex function has

288 Explanations and Methodologies: How

not been applied for explaining query results. It would be interesting
to investigate whether this idea translates to explanations for query
answers.

An alternative to finding interpretable models is to directly train
models that are more interpretable (Rudin, 2019). For instance, Letham
et al. (2015) and LIBRE (Mita et al., 2020) learn classifiers that are
built from simple conditional rules.

3.8.3 Explanations based on Training Data

The two techniques discussed so far have in common that they explain
the model’s behavior, but do not provide any insight into why the model
is exhibiting this behavior. To answer this question, we need to dig
deeper and analyze how the training data affects the model trained over
this data and, thus, indirectly affects the outcome of prediction made
by the model. Methods following this paradigm, explain a prediction
for a data point or other property of the model (e.g., the prediction
performance of the classifier or whether it is biased against a protected
group) by attributing responsibility for the prediction to training data
points.

The general techniques discussed in Section 3.8.1 are also applicable
to generating explanations based on training data. For instance, an
intervention based on training data may be modeled as deleting a subset
Dipter of the training data D. The effect this intervention has on the
prediction outcome then can be determined by retraining the classifier
over D — Djpter. Let us use fiprer to denote this classifier. The effect
Dinter has on the prediction of data point x* is then the difference
between fipter(x*) and f(x*).

One line of work has applied Shapley values for this purpose. Data
Shapley (Ghorbani and Zou, 2019) assigns value to (sets of) training
data points based on the their contribution to the performance of
a classifier over a test dataset. Distributional Shapley (Kwon et al.,
2021; Ghorbani et al., 2020) extends Data Shapley to take into account
that the training data is only a sample from an unknown underlying
distribution.

3.9. Other related topics 289

Recall that computing measures like Shapley values for feature
attribution is already computationally infeasible because of their combi-
natorial nature. When computing such measures based on interventions
to the training data, this additionally requires retraining the classi-
fier over subsets of the training data. To address this issue, several
techniques have been developed to approximate the effect of removing
or updating a training data point. A popular technique is based on
influence functions which have a long history in statistics (Cook and
Weisberg, 1982). Koh and Liang (2017) propose the use of influence func-
tions for explaining how training data affects the predictions made by a
model. While the quality of the approximation produced by influence
functions is typically good for predicting the influence of single data
points, the error increases for larger subsets of the training data. Basu
et al. (2019) propose using second order approximations instead. This
reduces the approximation error for sets. Influence functions have also
been explored in the context of explanations for queries. For instance,
Wu et al. (2020) use influence functions to find training data points
that are responsible for an error in a query result where the query has
access to a model trained over that data. Making further connections
between database techniques/explanations in databases and XAI will
be an interesting direction to explore.

3.9 Other related topics

Beyond the work on explaining query answers and outliers, query for-
mulation, data differences and transformation, and query performances,
several other approaches exist to get useful insights from data and pro-
cesses. Explaining interactions with a data-driven system is inherently
related to visualizations, as most of the explanation systems are likely
to be interactive with suitable user interfaces. There is a line of work on
summarizing relational data or query answers often with interactive ex-
ploration in mind, which focuses on diversity, relevance, and/or coverage,
to give the maximum interesting information to users while inspecting a
much shorter summary (Vieira et al., 2011; Qin et al., 2012; Drosou and
Pitoura, 2012; Joglekar et al., 2017; Wen et al., 2018; Kim et al., 2020).
On the other hand, systems like ZenVisage (Siddiqui et al., 2016) or

290 Explanations and Methodologies: How

DeepEye (Luo et al., 2018) help users explore large datasets by automat-
ically generating and recommending interesting visualizations. A related
topic is explaining recommendations that tries to address ‘why’ questions
to users or system designers regarding why certain items are recom-
mended by the algorithm or the models used in recommendation systems
(e.g, see the article by Zhang and Chen, 2020 and references therein).

In addition to general explanations, application-specific explanations
have also been studied in the literature. Das et al. (2011) and Thiru-
muruganathan et al. (2012) studied the problem of Meaningful Ratings
Interpretation (MRI) based on the idea of data cube to help a user
easily interpret ratings of items on Yelp or IMDDb; e.g., instead of simply
giving the average rating of a movie, MRI attempts to give explanations
like “male reviewers under 30 from NYC love this movie”. Barman
et al. (2007) and Agarwal et al. (2007) studied explaining changes in
hierarchical summaries in data warehouses identifying optimally par-
simonious explanations. Fabbri and LeFevre (2011) and Bender et al.
(2014) studied explanation-based auditing of access logs. Ré and Suciu
(2008) and Kanagal et al. (2011) studied the problem of computing the
top-k influential variables (the input variables that can significantly
modify the output probabilities) and top-k explanations (to answer
questions like “why a tuple is in the output” and “why the probability
of an output tuple is greater than another one”) for conjunctive queries
on probabilistic databases; Abiteboul et al. (2014) studied a similar
problem for recursive datalog queries.

The need for explanations also arises in error detection, data repair,
and data integration, where the users needs to understand the result
produced by a semi-automated or automated data curation algorithms
or pipeline. Chalamalla et al. (2014) generate explanations for violations
to a set of integrity constraints defined over a query result as patterns
that describe subsets of the input data which are responsible for the
violation. The QFix system (Wang et al., 2017) explains errors in a
dataset generate through a sequence of updates by identifying which
updates are responsible for the error. Most data cleaning and integration
techniques use heuristics to select one solution for repair or integration
task, because typically there is insufficient information available for
uncovering the unknown ground truth solution. For instance, when

3.9. Other related topics 291

imputing missing values (Stekhoven and Biithlmann, 2012), the correct
value to be substituted for a missing value is unknown. One possibility
to help a user to understand how to choices made by the cleaning
algorithm affect their result is to treat the alternative choices available
to the algorithm as a probabilistic or incomplete database and using
uncertain query processing to propagate this information through queries
(Beskales et al., 2009; Yang et al., 2015). This idea was first popularized
in consistent query answering (Bertossi, 2011). The Vizier system (Feng
et al., 2021; Brachmann et al., 2019) visualizes such uncertainty in its
provenance and explains which analysis results are trustworthy and
why.

4

A Research Roadmap

Explanations in data systems is a relatively young field that is enjoying
continued interest and a steady presence in data management venues.
Our goal has been to identify and summarize general principles in the
specification of explanation problems (“Who”, “Why”, and “What”),
and high-level objectives in designing explanations and methodologies
for deriving them (“How”). To conclude this article, we identify gaps
in the existing work, and potential ripe ground for next directions to
pursue, some being more open-ended compared to the others.

Causal explanations

Many of the examples we discussed in the previous chapters implicitly
assume that the ideal explanation would be one or more causes of the
observation; e.g., in Example 2.3, we would ideally like to find the cause
that led to the slowdown of publications from industry in SIGMOD in
recent years. Causality and the related concept of intervention have
been used in various contexts in database research for explanations,
borrowing concepts from the study of causal analysis in Al (Pearl,
2000), e.g., in Meliou et al., 2010, Roy and Suciu, 2014, and Fariha
et al., 2020. However, the study of true cause as explanations, e.g., ‘how

292

293

much smoking can be attributed to the cause of lung cancer’ or ‘how
much a new vaccine can be attributed to a slowdown of the spread
of a contagious disease’, has not been explored much in the database
community (recently, Salimi et al. (2020) proposed a framework for
causal analysis in relational databases).

As is commonly noted, ‘correlation is not causation’; thus, answering
such causal questions, which goes beyond inferring correlation or predic-
tions, is critical for making principled and informed decisions in clinical
research, epidemiology, economics, and social sciences. The notion of
causal inference has been studied not only in AI (by Pearl’s Graphical
Causal Model (Pearl, 2000)), but also for several decades in Statistical
Science (e.g., by Rubin-Neyman’s potential Outcome Model (Rosen-
baum and Rubin, 1983; Rubin, 2005)). In general, randomized controlled
trials (such as clinical trials for medical research), where the partici-
pating units are randomly divided into treatment and control groups,
and the average difference of outcome in these two groups is computed
as the ‘average treatment effect’, is considered the gold standard for
causal analysis. However, due to cost or ethics concerns, one often needs
to do observational causal studies using observed data under various
(untestable) assumptions as studied in the above models. This connects
observational causal studies with explanations for data and queries
in database research, since many explanations settings start with an
observed/collected dataset.

However, there are several challenges that need to be addressed
to adapt standard causal analysis techniques to explanation questions
related to data processing. A significant difference is that typical causal
studies consider a single and flat table with information regarding units
(treatment, outcome, other attributes or confounding covariates that
should be conditioned on, etc.), while in relational databases and data
lakes there can be several tables / datasets (e.g., Author-Pub-Authored
tables in Example 3.1). Further, a critical assumption is that there is ‘no
interference’ among units stored in this table (treatment assigned to one
unit cannot affect the outcome of another unit); in contrast, in relational
databases and data processing in general, multiple tables are related
to each other with common attributes, foreign keys, many-to-many
join patterns, and intricate integrity constraints. In addition, there can

204 A Research Roadmap

be derived data or ‘views’ generated by complex queries or analysis
pipelines in the causal question, and the ‘treatment’ and ‘outcome’
attribute can appear in different tables.

A further complication is that datasets in typical statistical studies
are much smaller than the ‘big data’ commonly encountered in data
analytics, making sound yet scalable causal analysis a practical challenge
(it has been observed that SQL queries can make standard causal analysis
approaches much more scalable (Wang et al., 2021)). Finally, there might
not be an obvious translation of many explanation questions in database
research to the causal analysis framework in terms of ‘treatment’ and
‘outcome’. Strengthening the connections between causal analysis and
explanations for data-driven systems, borrowing concepts from Statistics,
Al and ML, is a relatively new but important research direction.

Confidence in explanations

The various approaches discussed in Chapter 3 propose ways to navigate
the search space to derive explanations that optimize some desired
properties (summarized in Section 3.1). In Section 3.4 in particular, we
discussed scoring functions that rank possible explanations in the search
space. Most of these methods aim to return best possible explanations
based on the available data. However, existing approaches do not delve
deep into the question of whether the input dataset even has enough
information to provide meaningful explanations (e.g., in the example of
Section 3.4.2, fewer than usual publications by an author in a venue in
a year may be explained by a sabbatical, involvement with a startup,
or more engagement in administrative duties, but this information is
unavailable in the DBLP publication database), or how likely it is for the
returned explanations to be ‘true’ explanations for the questions posed
by the user. With this in mind, it is important to consider whether
we can provide a confidence measure for the returned explanations.
The lack of a training dataset or gold standard for explanations adds
to the challenges of this problem. Collaboration with domain experts,
integration with other datasets, and integration and cross-reference with
‘common knowledge’ known to humans (e.g., using knowledge bases,
such as YAGO (Suchanek et al., 2007) or NELL (Mitchell, 2012), or by
web crawling) can be beneficial for this purpose.

295

Explaining data evolution

Data is often dynamic and subject to change. In fact, constants are
not generally interesting in data analysis; what analysis tends to focus
on is understanding how and why something in the data changes. As
we discussed in Section 3.6, to explain a change more precisely, it is
best to specify the change succinctly (e.g., in reference to other data).
Existing frameworks however, do not explicitly account for the cases
where diverging datasets may have a common original source, or simply
a dataset may be a later, evolved copy of another. Leveraging evolution
aspects of the data such as schema restructuring, and broad data updates
can lead to better targeted explanations.

Syntactic vs semantic explanations

Existing work on explaining data differences has come up with dif-
ferent explanation models, but these models often focus on syntactic
differences, i.e., low-level, fine-grained differences between two refer-
ence elements. For example, to explain the differences between two
diverging query results, Explain3D (Wang and Meliou, 2019) attempts
to find minimal modifications to an initial data mapping from one
dataset to the other. The resulting mapping is an explanation, but
it is too low-level, specifying divergence tuple-by-tuple. The ultimate
explanation to be served to the user should often be something more
high-level; e.g., the number of majors derived from two educational
datasets differs because one dataset does not include associate degrees.
These high-level explanations are semantic and provide a more holistic
view of the difference. While such semantic explanations can often be
derived from syntactic explanations through summarization techniques,
a key observation is that explanation desiderata are optimized over the
low-level syntactic explanations, rather than the final semantic expla-
nation. This gap potentially indicates an opportunity for improving
explanation products, by targeting the optimization solutions directly
on them. While our example focused on the explanation of differences,
this observation generalizes to all explanation settings.

206 A Research Roadmap

Flexible explanations

In our classification, we discussed explanation desiderata as driven by
the dimensions of “Who”, “Why”, and “What” of the problem speci-
fication. For example, we noted that explanations for the purposes of
debugging need to be more low-level and detailed than those meant to
enhance understandability for a non-technical audience. However, some
settings need to accommodate a variety of users and purposes, requir-
ing explanation frameworks to flexibly adapt to differing needs. Such
adaptive frameworks could support navigating explanations at different
“zoom” levels, and potentially switch among different explanation types
for the same problem.

Explainable explanations

Explanations are an interpretive tool, helping data users better un-
derstand and explore their data. As an element meant primarily for
human consumption, explanations bring forth interactivity challenges
that have not been deeply explored. Most existing works focus on the
basic action of seeking explanations, but more complex interactions
may be necessary for users to achieve their analysis goals. Users may
wish to refine, explore, and analyze explanation results, essentially
imposing explainability requirements on the explanations themselves.
Just as one places more trust on observations that can be explained,
explainable explanations are likely to enhance the confidence that one
places on the explanations themselves, which, in turn, will lead to
more trust on the data or observations. For example, if a framework
returns a feature-based explanation such as [(zipcode = 01003) AND
(age<22)] for the question “why was there a spike in COVID cases
in Hampshire county in MA, during February 202177, this can give
rise to new questions on the explanation itself. For example, a user
may wish to understand “why is this the best explanation?” or “why is
the explanation [(zipcode = 01003)] not sufficient?” To answer such
questions, the framework would need to produce evidence to illustrate
how the explanation was derived, and why other options are subopti-
mal. Ultimately, explanation support may need to extend to variable
lengths of recursive investigation, which in turn would likely augment

297

or alter the explanation objectives and potentially point to particular
methodologies as more amenable to explainability.

Other directions

Aside from these broader research directions, there are many possi-
bilities for improvements over existing approaches, both in terms of
functionality and efficiency. For example, intervention-based approaches
(Section 3.4.1) have primarily focused on tuple deletions as the mode of
explanation, and deterministic and well-defined interventions. Modeling
meaningful additions or updates, while preserving the semantics of the
data, will require creative solutions. Another possibility is studying
stochastic interventions to model interdependencies among tuples when
changes are made to the database; e.g., in the context of Example 3.1 if
an author is removed, a possible intervention model is that with some
probability each paper written by this author should be removed from
the database, and this probability might be a function of properties
(like contributions or seniority) of all authors of that paper. As another
example, showing a small counterexample or illustrating how a “wrong”
query can be repaired (Section 3.5) offers useful intuition to students
or new programmers, but focusing on a particular counterexample or
repair method may also be misleading as they can miss the high-level
properties of the desired queries or draw attention to only one type of
errors. Based on the context (“What” and “Why”) and the intended
users (“Who”), it is important to study the best possible representation
of explanations as an integrated research agenda for all explanation
questions.

Finally, the big question of ‘what is an explanation’ is closely related
to philosophy (e.g., Aristotle’s ‘Four Causes’, or Hempel’s ‘Deductive-
nomological model’) and has been studied for centuries. Exploring such
notions of explanations, establishing close collaborations with domain
experts, cognitive scientists, experts in human-computer interaction,
and education specialists, exploring interesting practical applications
and designing meaningful user studies, should be consistent pillars
in our research efforts to establish the efficacy of different notions of
explanations for data-driven systems.

Acknowledgements

This work was partially supported by the National Science Foundation
under grants 11S-1453543, 11S-1552538, OAC-1640864, 11S-1703431,
CCF-1763423, 11S-1943971, 115-1956123, and I1S-2008107, and by the
National Institutes of Health under grant RO1IEB025021.

298

References

Aas, K., M. Jullum, and A. Lgland. (2019). “Explaining Individual
Predictions When Features Are Dependent: More Accurate Ap-
proximations To Shapley Values”. CoRR. abs/1903.10464. arXiv:
1903.10464. URL: http://arxiv.org/abs/1903.10464.

Abiteboul, S., D. Deutch, and V. Vianu. (2014). “Deduction with Con-
tradictions in Datalog”. In: Proc. 17th International Conference
on Database Theory (ICDT), Athens, Greece, March 24-28, 2014.
Ed. by N. Schweikardt, V. Christophides, and V. Leroy. OpenPro-
ceedings.org. 143-154. por: 10.5441/002/icdt.2014.17.

Abiteboul, S., R. Hull, and V. Vianu. (1995). Foundations of Databases:
The Logical Level. 1st. USA: Addison-Wesley Longman Publishing
Co., Inc.

Abuzaid, F., P. Bailis, J. Ding, E. Gan, S. Madden, D. Narayanan,
K. Rong, and S. Suri. (2018). “Macrobase: Prioritizing Attention
in Fast Data”. ACM Trans. Database Syst. 43(4): 15:1-15:45. DOTL:
10.1145/3276463.

Abuzaid, F., P. Kraft, S. Suri, E. Gan, E. Xu, A. Shenoy, A. Anantha-
narayan, J. Sheu, E. Meijer, X. Wu, J. F. Naughton, P. Bailis, and
M. Zaharia. (2021). “DIFF: a Relational Interface for Large-Scale
Data Explanation”. VLDB J. 30(1): 45-70. por: 10.1007/s00778-
020-00633-6.

299

300 References

Agarwal, D., D. Barman, D. Gunopulos, N. E. Young, F. Korn, and
D. Srivastava. (2007). “Efficient and effective explanation of change
in hierarchical summaries”. In: KDD. San Jose, California, USA:
ACM. 6-15. por: 10.1145/1281192.1281197.

Agrawal, R. and R. Srikant. (1994). “Fast Algorithms for Mining As-
sociation Rules in Large Databases”. In: Proceedings of the 20th
International Conference on Very Large Data Bases. VLDB ’94. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc. 487-499.

Ahmad, Y., O. Kennedy, C. Koch, and M. Nikolic. (2012). “DBToaster:
Higher-order Delta Processing for Dynamic, Frequently Fresh Views”.
Proc. VLDB FEndow. 5(10): 968-979. por1: 10.14778 / 2336664 .
2336670.

Alexe, B., L. Chiticariu, and W. Tan. (2006). “SPIDER: a schema
mapPIng DEbuggeR”. In: Proceedings of the 32nd international
conference on Very large data bases. VLDB Endowment. 1179-1182.

Amsterdamer, Y., D. Deutch, and V. Tannen. (2011). “Provenance for
Aggregate Queries”. In: PODS ’11. Athens, Greece: Association for
Computing Machinery. 153-164. URL: https://doi.org/10.1145/
1989284.1989302.

“Apache Ambari”. (2019). http://ambari.apache.org.

Barman, D., F. Korn, D. Srivastava, D. Gunopulos, N. E. Young, and D.
Agarwal. (2007). “Parsimonious Explanations of Change in Hierar-
chical Data”. In: ICDE. 1273-1275. pot: 10.1109/ICDE.2007.368991.

Barredo Arrieta, A., N. Diaz-Rodriguez, J. Del Ser, A. Bennetot, S.
Tabik, A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Ben-
jamins, R. Chatila, and F. Herrera. (2020). “Explainable Artificial
Intelligence (XAI): Concepts, taxonomies, opportunities and chal-
lenges toward responsible AI”. Information Fusion. 58: 82-115. DOI:
https://doi.org/10.1016/j.inffus.2019.12.012.

Basu, S., X. You, and S. Feizi. (2019). “Second-Order Group Influence
Functions for Black-Box Predictions”. CoRR. abs/1911.00418. arXiv:
1911.00418. URL: http://arxiv.org/abs/1911.00418.

References 301

Bender, G., L. Kot, and J. Gehrke. (2014). “Explainable Security for
Relational Databases”. In: Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’14.
Snowbird, Utah, USA: Association for Computing Machinery. 1411—
1422. por: 10.1145/2588555.2593663.

Berenson, H., P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
(1995). “A critique of ANSI SQL isolation levels”. SIGMOD Record.
24(2): 1-10. pOI: 10.1145/223784.223785.

Bertossi, L. (2011). “Database Repairing and Consistent Query Answer-
ing”.

Bertossi, L. E., J. Li, M. Schleich, D. Suciu, and Z. Vagena. (2020).
“Causality-based Explanation of Classification Outcomes”. In: Pro-
ceedings of the Fourth Workshop on Data Management for End-To-
End Machine Learning, In conjunction with the 2020 ACM SIG-
MOD/PODS Conference, DEEM@SIGMOD 2020, Portland, OR,
USA, June 14, 2020. Ed. by S. Schelter, S. Whang, and J. Stoy-
anovich. New York, NY, USA: ACM. 6:1-6:10. por: 10.1145/3399579.
3399865.

Beskales, G., M. Soliman, I. Ilyas, and S. Ben-David. (2009). “Modeling
and querying possible repairs in duplicate detection”. Proceedings
of the VLDB Endowment. 2(1): 598-609. po1: 10.14778/1687627.
1687695.

Bidoit, N., M. Herschel, and A. Tzompanaki. (2015). “Efficient Com-
putation of Polynomial Explanations of Why-Not Questions”. In:
Proceedings of the 24th ACM International Conference on Infor-
mation and Knowledge Management, CIKM 2015, Melbourne, VIC,
Australia, October 19 - 23, 2015. Ed. by J. Bailey, A. Moffat, C. C.
Aggarwal, M. de Rijke, R. Kumar, V. Murdock, T. K. Sellis, and
J. X. Yu. ACM. 713-722. por: 10.1145/2806416.2806426.

Bidoit, N., M. Herschel, K. Tzompanaki, et al. (2014). “Query-Based
Why-Not Provenance with NedExplain”. In: Ezxtending Database
Technology (EDBT). poI: 10.5441/002/edbt.2014.14.

Bidoit, N., M. Herschel, and K. Tzompanaki. (2016). “Refining SQL
Queries based on Why-Not Polynomials”. In: 8th USENIX Workshop
on the Theory and Practice of Provenance (TaPP 16). Washington,
D.C.: USENIX Association.

302 References

Borisov, N., S. Babu, S. Uttamchandani, R. Routray, and A.
Singh. (2009). “Why Did My Query Slow Down?” arXiv preprint
arXiv:0907.3183.

Brachmann, M., C. Bautista, S. Castelo, S. Feng, J. Freire, B. Glavic, O.
Kennedy, H. Miieller, R. Rampin, W. Spoth, and Y. Yang. (2019).
“Data Debugging and Exploration with Vizier”. In: Proceedings of the
2019 International Conference on Management of Data. SIGMOD
’19. Amsterdam, Netherlands: Association for Computing Machinery.
1877-1880. pOI: 10.1145/3299869.3320246.

Buneman, P., S. Khanna, and W. C. Tan. (2001). “Why and Where:
A Characterization of Data Provenance”. In: Database Theory -
ICDT 2001, 8th International Conference, London, UK, January
4-6, 2001, Proceedings. Ed. by J. V. den Bussche and V. Vianu.
Vol. 1973. Lecture Notes in Computer Science. Springer. 316-330.
DOIL: 10.1007/3-540-44503-X\ _20.

Calvanese, D., G. D. Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R.
Rosati. (2007). “Ontology-based Database Access”. In: Proceedings
of the Fifteenth Italian Symposium on Advanced Database Systems,
SEBD 2007, 17-20 June 2007, Torre Canne, Fasano, BR, Italy.
Ed. by M. Ceci, D. Malerba, and L. Tanca. 324-331.

Cate, B. ten, C. Civili, E. Sherkhonov, and W.-C. Tan. (2015). “High-
level why-not explanations using ontologies”. In: Proceedings of
the 34th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems. ACM. New York, NY, USA: Association for
Computing Machinery. 31-43. DOI: 10.1145/2745754.2745765.

Ceri, S. and J. Widom. (1991). “Deriving Production Rules for Incre-
mental View Maintenance”. In: Proceedings of the 17th International
Conference on Very Large Data Bases. VLDB ’91. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc. 577-589.

Chalamalla, A., I. F. Ilyas, M. Ouzzani, and P. Papotti. (2014). “Descrip-
tive and Prescriptive Data Cleaning”. In: Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data.
SIGMOD ’1j. Snowbird, Utah, USA: Association for Computing
Machinery. 445-456. DOI: 10.1145/2588555.2610520.

References 303

Chandra, B., B. Chawda, B. Kar, K. V. M. Reddy, S. Shah, and S.
Sudarshan. (2015). “Data generation for testing and grading SQL
queries”. VLDB J. 24(6): 731-755.

Chapman, A. and H. V. Jagadish. (2009). “Why Not?” In: SIGMOD
’09: Proceedings of the 35th SIGMOD International Conference on
Management of Data. 523-534.

Cheney, J. (2007). “Program Slicing and Data Provenance”. IEEE Data
Engineering Bulletin. 30(4): 22-28.

Cheney, J., A. Ahmed, and U. A. Acar. (2014). “Database Queries
that Explain their Work”. In: Proceedings of the 16th International
Symposium on Principles and Practice of Declarative Programming,
Kent, Canterbury, United Kingdom, September 8-10, 2014. 271-282.

Cheney, J., L. Chiticariu, and W.-C. Tan. (2009). “Provenance in
Databases: Why, How, and Where”. Foundations and Trends® in
Databases. 1(4): 379-474.

Chockler, H. and J. Y. Halpern. (2004). “Responsibility and Blame: A
Structural-Model Approach”. J. Artif. Int. Res. 22(1): 93-115.
Chu, S., D. Li, C. Wang, A. Cheung, and D. Suciu. (2017a). “Demon-
stration of the Cosette Automated SQL Prover”. In: Proceedings of
the 2017 ACM International Conference on Management of Data,
SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017.
Ed. by S. Salihoglu, W. Zhou, R. Chirkova, J. Yang, and D. Suciu.

ACM. 1591-1594.

Chu, S., C. Wang, K. Weitz, and A. Cheung. (2017b). “Cosette: An
Automated Prover for SQL”. In: CIDR 2017, 8§th Biennial Confer-
ence on Innovative Data Systems Research, Chaminade, CA, USA,
January 8-11, 2017, Online Proceedings. www.cidrdb.org.

Chung, Y., T. Kraska, N. Polyzotis, K. H. Tae, and S. E. Whang. (2019).
“Slice finder: Automated data slicing for model validation”. In: 2019
IEEE 35th International Conference on Data Engineering (ICDE).
IEEE. 1550-1553.

Cook, R. D. and S. Weisberg. (1982). Residuals and influence in regres-
sion. New York: Chapman and Hall.

Cui, Y. and J. Widom. (2001). “Lineage Tracing for General Data
Warehouse Transformations”. In: Proceedings of 27th International
Conference on Very Large Data Bases. 471-480.

304 References

Das, M., S. Amer-Yahia, G. Das, and C. Yu. (2011). “MRI: Meaningful
Interpretations of Collaborative Ratings”. PVLDB. 4(11): 1063—
1074.

Datta, A., S. Sen, and Y. Zick. (2016). “Algorithmic Transparency
via Quantitative Input Influence: Theory and Experiments with
Learning Systems”. In: IEEE Symposium on Security and Privacy,
SP 2016, San Jose, CA, USA, May 22-26, 2016. IEEE Computer
Society. 598-617. po1: 10.1109/SP.2016.42.

Davidson, S. B., S. C. Boulakia, A. Eyal, B. Ludéscher, T. M. McPhillips,
S. Bowers, M. K. Anand, and J. Freire. (2007). “Provenance in
Scientific Workflow Systems”. IEEE Data Eng. Bull. 30(4): 44-50.

Deutch, D., N. Frost, and A. Gilad. (2017). “Provenance for Natural
Language Queries”. Proceedings of the VLDB Endowment. 10(5).

Deutch, D., N. Frost, A. Gilad, and O. Sheffer. (2020). “T-REx: Table
Repair Explanations”. In: Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’20.
Portland, OR, USA: Association for Computing Machinery. 2765
2768. DOI: 10.1145/3318464.3384700.

Deutch, D., T. Milo, S. Roy, and V. Tannen. (2014). “Circuits for
Datalog Provenance”. In: Proc. 17th International Conference on
Database Theory (ICDT). 201-212.

Dias, K., M. Ramacher, U. Shaft, V. Venkataramani, and G. Wood.
(2005). “Automatic Performance Diagnosis and Tuning in Oracle.”
In: CIDR. 84-94.

Diestelkdmper, R., S. Lee, M. Herschel, and B. Glavic. (2021). “To
not miss the forest for the trees - A holistic approach for explain-
ing missing answers over nested data”. In: Proceedings of the 46th
International Conference on Management of Data. 405-417.

Dong, X., E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. (2014). “Knowledge Vault:
A Web-Scale Approach to Probabilistic Knowledge Fusion”. In:
Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. KDD ’14. New York, New
York, USA: Association for Computing Machinery. 601-610. DOTI:
10.1145/2623330.2623623.

“Dr. Elephant”. (2019). http://www.teradata.com.

References 305

Drosou, M. and E. Pitoura. (2012). “DisC Diversity: Result Diversifi-
cation Based on Dissimilarity and Coverage”. Proc. VLDB Endow.
6(1): 13-24.

Fabbri, D. and K. LeFevre. (2011). “Explanation-based auditing”. Proc.
VLDB Endow. 5(1): 1-12. URL: http://dl.acm.org/citation.cfm?id=
2047485.2047486.

Fariha, A., S. Nath, and A. Meliou. (2020). “Causality-Guided Adaptive
Interventional Debugging”. In: Proceedings of the 2020 International
Conference on Management of Data, SIGMOD Conference 2020,
online conference [Portland, OR, USA], June 14-19, 2020. Ed. by
D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and H. Q.
Ngo. ACM. 431-446.

Fehrenbach, S. and J. Cheney. (2019). In: Proceedings of the 17th ACM
SIGPLAN International Symposium on Database Programming Lan-
guages, DBPL 2019, Phoeniz, AZ, USA, June 23, 2019. 74-84.

Feng, S., A. Huber, B. Glavic, and O. Kennedy. (2021). “Efficient
Uncertainty Tracking for Complex Queries with Attribute-level
Bounds”. In: Proceedings of the 46th International Conference on
Management of Data. 528-540.

Freire, C., W. Gatterbauer, N. Immerman, and A. Meliou. (2015). “A
Characterization of the Complexity of Resilience and Responsibility
for Self-join-free Conjunctive Queries”. PVLDB. 9(3): 180-191. por:
10.14778/2850583.2850592.

Frye, C., C. Rowat, and I. Feige. (2020). “Asymmetric Shapley val-
ues: incorporating causal knowledge into model-agnostic explain-
ability”. In: Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Sys-
tems 2020, NeurlPS 2020, December 6-12, 2020, virtual. Ed. by
H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin.
URL: https: / / proceedings . neurips . cc / paper / 2020 / hash /
0d770c496aa3dab6d2¢3f2bd19e7b9d6b- Abstract.html.

Galhotra, S., R. Pradhan, and B. Salimi. (2021). “Explaining Black-Box
Algorithms Using Probabilistic Contrastive Counterfactuals”. CoRR.
abs/2103.11972. arXiv: 2103.11972. URL: https://arxiv.org/abs/
2103.11972.

“Ganglia Monitoring System”. (2019). http://ganglia.info.

306 References

Gebaly, K. E., P. Agrawal, L. Golab, F. Korn, and D. Srivastava. (2014).
“Interpretable and Informative Explanations of Outcomes”. Proc.
VLDB Endow. 8(1): 61-72.

Gebaly, K. E., G. Feng, L. Golab, F. Korn, and D. Srivastava. (2018).
“Explanation Tables”. IEEE Data Eng. Bull. 41(3): 43-51.

Ghorbani, A., M. P. Kim, and J. Zou. (2020). “A Distributional Frame-
work For Data Valuation”. In: Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18 July 2020,
Virtual Fvent. Vol. 119. Proceedings of Machine Learning Research.
PMLR. 3535-3544. URL: http://proceedings.mlr.press/v119/
ghorbani20a.html.

Ghorbani, A. and J. Y. Zou. (2019). “Data Shapley: Equitable Valu-
ation of Data for Machine Learning”. In: Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15
June 2019, Long Beach, California, USA. Ed. by K. Chaudhuri
and R. Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. PMLR. 2242-2251. URL: http://proceedings.mlr.press/
v97/ghorbanil9c.html.

Glavic, B. (2021). “Data Provenance: Origins, Applications, Algorithms,
and Models”. Foundations and Trends® in Databases: to appear.
Glavic, B., G. Alonso, R. J. Miller, and L. M. Haas. (2010). “TRAMP:
Understanding the Behavior of Schema Mappings through Prove-
nance”. Proceedings of the Very Large Data Bases Endowment. 3(1):

1314-1325.

Glavic, B., S. Kohler, S. Riddle, and B. Ludéscher. (2015). “Towards
Constraint-based Explanations for Answers and Non-Answers”. In:
Proceedings of the Tth USENIX Workshop on the Theory and Practice
of Provenance.

Glavic, B., R. J. Miller, and G. Alonso. (2013). “Using SQL for Efficient
Generation and Querying of Provenance Information”. In search of
elegance in the theory and practice of computation: a Festschrift in
honour of Peter Buneman: 291-320.

Gray, J., S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M.
Venkatrao, F. Pellow, and H. Pirahesh. (1997). “Data Cube: A
Relational Aggregation Operator Generalizing Group-By, Cross-
Tab, and Sub-Totals”. Data Min. Knowl. Discov. 1(1): 29-53.

References 307

Green, T. J., G. Karvounarakis, and V. Tannen. (2007). “Provenance
semirings”. In: PODS. 31-40.

Guidotti, R., A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi. (2019). “A Survey of Methods for Explaining Black
Box Models”. ACM Comput. Surv. 51(5): 93:1-93:42. por: 10.1145/
3236009.

Halpern, J. Y. and J. Pearl. (2001). “Causes and Explanations: A
Structural-Model Approach: Part i: Causes”. In: Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intelligence.
UAI'01. Seattle, Washington: Morgan Kaufmann Publishers Inc.
194-202.

Han, J. and M. Kamber. (2001). Data Mining: Concepts and Techniques.
Morgan Kaufmann.

Herodotou, H., H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S.
Babu. (2011). “Starfish: a self-tuning system for big data analytics.”
In: Cidr. Vol. 11. No. 2011. 261-272.

Joglekar, M., H. Garcia-Molina, and A. Parameswaran. (2017). “Inter-
active data exploration with smart drill-down”. IEEFE Transactions
on Knowledge and Data Engineering. 31(1): 46-60.

Joglekar, M., H. Garcia-Molina, and A. G. Parameswaran. (2016).
“Interactive data exploration with smart drill-down”. In: 32nd IEEFE
International Conference on Data Engineering, ICDE 2016, Helsinki,
Finland, May 16-20, 2016. IEEE Computer Society. 906-917. DOI:
10.1109/ICDE.2016.7498300.

Kalashnikov, D. V., L. V. Lakshmanan, and D. Srivastava. (2018).
“FastQRE: Fast Query Reverse Engineering”. In: Proceedings of
the 2018 International Conference on Management of Data. ACM.
337-350.

Kalmegh, P., S. Babu, and S. Roy. (2019). “iQCAR: inter-Query Con-
tention Analyzer for Data Analytics Frameworks”. In: Proceedings
of the 2019 International Conference on Management of Data, SIG-
MOD Conference 2019, Amsterdam, The Netherlands, June 30 -
July 5, 2019. 918-935.

308 References

Kanagal, B., J. Li, and A. Deshpande. (2011). “Sensitivity analysis and
explanations for robust query evaluation in probabilistic databases”.
In: SIGMOD. Athens, Greece: ACM. 841-852. DOI: 10.1145/1989323.
1989411.

Karimi, A., G. Barthe, B. Balle, and I. Valera. (2020). “Model-Agnostic
Counterfactual Explanations for Consequential Decisions”. In: The
23rd International Conference on Artificial Intelligence and Statis-
tics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily,
Italy]. Ed. by S. Chiappa and R. Calandra. Vol. 108. Proceed-
ings of Machine Learning Research. PMLR. 895-905. URL: http:
//proceedings.mlr.press/v108/karimi20a.html.

Khoussainova, N., M. Balazinska, and D. Suciu. (2012). “Perfxplain:
debugging mapreduce job performance”. PVLDB. 5(7): 598-609.
Kim, A., L. V. Lakshmanan, and D. Srivastava. (2020). “Summarizing
Hierarchical Multidimensional Data”. In: 2020 IEEE 36th Interna-

tional Conference on Data Engineering (ICDE). IEEE. 877-888.

Koh, P. W. and P. Liang. (2017). “Understanding Black-box Predictions
via Influence Functions”. In: Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017. Ed. by D. Precup and Y. W. Teh. Vol. 70.
Proceedings of Machine Learning Research. PMLR. 1885-1894. URL:
http://proceedings.mlr.press/v70/koh17a.html.

Kohler, S., B. Ludéscher, and Y. Smaragdakis. (2012). “Declarative
datalog debugging for mere mortals”. Datalog in Academia and
Industry: 111-122.

Kwon, Y., M. A. Rivas, and J. Zou. (2021). “Efficient Computation and
Analysis of Distributional Shapley Values”. In: The 24th Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS
2021, April 13-15, 2021, Virtual Fvent. Ed. by A. Banerjee and
K. Fukumizu. Vol. 130. Proceedings of Machine Learning Research.
PMLR. 793-801. URL: http://proceedings.mlr.press/v130,/kwon21a.
html.

References 309

Laugel, T., M. Lesot, C. Marsala, X. Renard, and M. Detyniecki. (2018).
“Comparison-Based Inverse Classification for Interpretability in Ma-
chine Learning”. In: Information Processing and Management of
Uncertainty in Knowledge-Based Systems. Theory and Foundations
- 17th International Conference, IPMU 2018, Cadiz, Spain, June
11-15, 2018, Proceedings, Part I. Ed. by J. Medina, M. Ojeda-Aciego,
J. L. V. Galdeano, D. A. Pelta, I. P. Cabrera, B. Bouchon-Meunier,
and R. R. Yager. Vol. 853. Communications in Computer and Infor-
mation Science. Springer. 100-111. po1: 10.1007/978-3-319-91473-
2_9.

Lee, S., B. Ludéscher, and B. Glavic. (2018). “PUG: a framework and
practical implementation for why and why-not provenance”. The
VLDB Journal. 28(1): 47-71. por: 10.1007/s00778-018-0518-5.

Lee, S., B. Ludéscher, and B. Glavic. (2020). “Approximate Summaries
for Why and Why-not Provenance”. PVLDB. 13(6): 912-924.

Letham, B., C. Rudin, T. H. McCormick, and D. Madigan. (2015). “In-
terpretable Classifiers Using Rules and Bayesian Analysis: Building
a Better Stroke Prediction Model”. CoRR. abs/1511.01644. arXiv:
1511.01644. URL: http://arxiv.org/abs/1511.01644.

Livshits, E., L. E. Bertossi, B. Kimelfeld, and M. Sebag. (2020). “The
Shapley Value of Tuples in Query Answering”. In: 23rd International
Conference on Database Theory, ICDT 2020, March 30-April 2, 2020,
Copenhagen, Denmark. Ed. by C. Lutz and J. C. Jung. Vol. 155.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik. 20:1—
20:19.

Lundberg, S. M., G. G. Erion, and S. Lee. (2018). “Consistent
Individualized Feature Attribution for Tree Ensembles”. CoRR.
abs/1802.03888. arXiv: 1802.03888. URL: http://arxiv.org/abs/1802.

03888.

Lundberg, S. M. and S. Lee. (2017). “A Unified Approach to Interpreting
Model Predictions”. In: Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December /-9, 2017, Long Beach, CA, USA. Ed. by
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett. 4765-4774.

310 References

Luo, Y., X. Qin, N. Tang, and G. Li. (2018). “DeepEye: Towards
Automatic Data Visualization”. In: 2018 IEEE 3/th International
Conference on Data Engineering (ICDE). 101-112.

Mahajan, D., C. Tan, and A. Sharma. (2019). “Preserving Causal
Constraints in Counterfactual Explanations for Machine Learning
Classifiers”. CoRR. abs/1912.03277. arXiv: 1912.03277. URL: http:
//arxiv.org/abs/1912.03277.

Meliou, A., W. Gatterbauer, K. F. Moore, and D. Suciu. (2010). “Why
So? or Why No? Functional Causality for Explaining Query An-
swers”. In: Proceedings of the 4th International VLDB workshop on
Management of Uncertain Data (MUD) in conjunction with VLDB
(MUD). Singapore. 3-17.

Meliou, A., W. Gatterbauer, and D. Suciu. (2011). “Reverse Data
Management”. PVLDB. 4(11): 1490-1493.

Meliou, A. and D. Suciu. (2012). “Tiresias: The Database Oracle for
How-To Queries”. In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD) (SIGMOD).
Scottsdale, AZ. 337-348. DO1: 10.1145/2213836.2213875.

Merrick, L. and A. Taly. (2019). “The Explanation Game: Explaining
Machine Learning Models With Cooperative Game Theory”. CoRR.
abs/1909.08128. arXiv: 1909.08128. URL: http://arxiv.org/abs/1909.
08128.

Miao, Z., T. Chen, A. Bendeck, K. Day, S. Roy, and J. Yang. (2020).
“I-Rex: An Interactive Relational Query Explainer for SQL”. Proc.
VLDB Endow. 13(12): 2997-3000.

Miao, Z., S. Roy, and J. Yang. (2019a). “Explaining Wrong Queries
Using Small Examples”. In: Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019,
Amsterdam, The Netherlands, June 30 - July 5, 2019. 503-520.

Miao, Z., S. Roy, and J. Yang. (2019b). “RATest: Explaining Wrong
Relational Queries Using Small Examples”. In: Proceedings of the
2019 International Conference on Management of Data, SIGMOD
Conference 2019, Amsterdam, The Netherlands, June 30 - July 5,
2019. Ed. by P. A. Boncz, S. Manegold, A. Ailamaki, A. Deshpande,
and T. Kraska. ACM. 1961-1964.

References 311

Miao, Z., Q. Zeng, B. Glavic, and S. Roy. (2019¢). “Going Beyond
Provenance: Explaining Query Answers with Pattern-based Coun-
terbalances”. In: Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam,
The Netherlands, June 30 - July 5, 2019. Ed. by P. A. Boncez, S.
Manegold, A. Ailamaki, A. Deshpande, and T. Kraska. ACM. 485—
502.

Mishra, C. and N. Koudas. (2009). In: EDBT 2009, 12th International
Conference on FExtending Database Technology, Saint Petersburg,
Russia, March 24-26, 2009, Proceedings. 862—873.

Mita, G., P. Papotti, M. Filippone, and P. Michiardi. (2020). “LIBRE:
Learning Interpretable Boolean Rule Ensembles”. In: The 23rd
International Conference on Artificial Intelligence and Statistics,
AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily, Italy].
245-255. URL: http://proceedings.mlr.press/v108/mita20a.html.

Mitchell, T. M. (2012). “Never Ending Learning”. In: ECAI 2012 -
20th European Conference on Artificial Intelligence. Including Pres-
tigious Applications of Artificial Intelligence (PAIS-2012) System
Demonstrations Track, Montpellier, France, August 27-31 , 2012.
Ed. by L. D. Raedt, C. Bessiere, D. Dubois, P. Doherty, P. Fras-
coni, F. Heintz, and P. J. F. Lucas. Vol. 242. Frontiers in Artificial
Intelligence and Applications. 10S Press. 5.

Mothilal, R. K., A. Sharma, and C. Tan. (2020). “Explaining machine
learning classifiers through diverse counterfactual explanations”. In:
FAT* ’20: Conference on Fairness, Accountability, and Transparency,
Barcelona, Spain, January 27-30, 2020. Ed. by M. Hildebrandt, C.
Castillo, E. Celis, S. Ruggieri, L. Taylor, and G. Zanfir-Fortuna.
ACM. 607-617. por1: 10.1145/3351095.3372850.

Mottin, D., A. Marascu, S. B. Roy, G. Das, T. Palpanas, and Y.
Velegrakis. (2013). “A probabilistic optimization framework for
the empty-answer problem”. Proceedings of the VLDB Endowment.
6(14): 1762-1773.

312 References

Muniswamy-Reddy, K., D. A. Holland, U. Braun, and M. I. Seltzer.
(2006). “Provenance-Aware Storage Systems”. In: Proceedings of the
2006 USENIX Annual Technical Conference, Boston, MA, USA,
May 30 - June 3, 2006. Ed. by A. Adya and E. M. Nahum. USENIX.
43-56.

Olston, C., S. Chopra, and U. Srivastava. (2009). “Generating example
data for dataflow programs”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2009,
Providence, Rhode Island, USA, June 29 - July 2, 2009. Ed. by
U. Cetintemel, S. B. Zdonik, D. Kossmann, and N. Tatbul. ACM.
245-256.

Ousterhout, K., R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun.
(2015). “Making Sense of Performance in Data Analytics Frame-
works”. In: 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 15). 293-307.

Owen, A. B. and C. Prieur. (2017). “On Shapley Value for Measur-
ing Importance of Dependent Inputs”. SIAM/ASA J. Uncertain.
Quantification. 5(1): 986-1002. por: 10.1137/16M1097717.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference. USA:
Cambridge University Press.

Qin, L., J. X. Yu, and L. Chang. (2012). “Diversifying Top-K Results”.
Proc. VLDB Endow. 5(11): 1124-1135. por: 10.14778 /2350229.
2350233.

Ré, C. and D. Suciu. (2008). “Approximate lineage for probabilistic
databases”. Proc. VLDB Endow. 1(1): 797-808. URL: http://dl.acm.
org/citation.cfm?id=1453856.1453943.

Reshef, A., B. Kimelfeld, and E. Livshits. (2020). “The Impact of
Negation on the Complexity of the Shapley Value in Conjunctive
Queries”. In: Proceedings of the 39th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, PODS 2020,
Portland, OR, USA, June 14-19, 2020. Ed. by D. Suciu, Y. Tao,
and Z. Wei. ACM. 285-297. por: 10.1145/3375395.3387664.

References 313

Ribeiro, M. T., S. Singh, and C. Guestrin. (2016). “"Why Should
I Trust You?": Explaining the Predictions of Any Classifier”. In:
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA,
August 13-17, 2016. Ed. by B. Krishnapuram, M. Shah, A. J. Smola,
C. C. Aggarwal, D. Shen, and R. Rastogi. ACM. 1135-1144. DOI:
10.1145/2939672.2939778.

Ribeiro, M. T., S. Singh, and C. Guestrin. (2018). “Anchors: High-
Precision Model-Agnostic Explanations”. In: Proceedings of the
Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-
18), the 30th innovative Applications of Artificial Intelligence (IAAI-
18), and the 8th AAAI Symposium on FEducational Advances in
Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018. Ed. by S. A. Mcllraith and K. Q. Weinberger.
AAAI Press. 1527-1535.

Rosenbaum, P. R. and D. B. Rubin. (1983). “The central role of
the propensity score in observational studies for causal effects”.
Biometrika. 70(1): 41-55.

Roy, S., L. J. Orr, and D. Suciu. (2015a). “Explaining Query Answers
with Explanation-Ready Databases”. Proc. VLDB Endow. 9(4):
348-359. DOI: 10.14778/2856318.2856329.

Roy, S. and D. Suciu. (2014). “A Formal Approach to Finding Explana-
tions for Database Queries”. In: Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data. SIGMOD
’14. Snowbird, Utah, USA: Association for Computing Machinery.
1579-1590. por: 10.1145/2588555.2588578.

Roy, S., A. C. Koénig, I. Dvorkin, and M. Kumar. (2015b). “PerfAugur:
Robust diagnostics for performance anomalies in cloud services”. In:
31st IEEE International Conference on Data Engineering, ICDE
2015, Seoul, South Korea, April 18-17, 2015. Ed. by J. Gehrke, W.
Lehner, K. Shim, S. K. Cha, and G. M. Lohman. 1167-1178.

Rubin, D. B. (2005). “Causal Inference Using Potential Outcomes:
Design, Modeling, Decisions”. Journal of the American Statistical
Association. 100(Mar.): 322-331.

314 References

Rudin, C. (2019). “Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead”.
Nature Machine Intelligence. 1(5).

Sagadeeva, S. and M. Boehm. (2021). “SliceLine: Fast, Linear-Algebra-
based Slice Finding for MLL Model Debugging”. In: SIGMOD ’21:
International Conference on Management of Data, Virtual Fvent,
China, June 20-25, 2021. Ed. by G. Li, Z. Li, S. Idreos, and D.
Srivastava. ACM. 2290-2299. por1: 10.1145/3448016.3457323.

Salimi, B., H. Parikh, M. Kayali, L. Getoor, S. Roy, and D. Suciu.
(2020). “Causal Relational Learning”. In: Proceedings of the 2020
International Conference on Management of Data, SIGMOD Con-
ference 2020, online conference [Portland, OR, USA], June 14-19,
2020. Ed. by D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini,
and H. Q. Ngo. ACM. 241-256.

Sarawagi, S. (2000). “User-Adaptive Exploration of Multidimensional
Data”. In: VLDB 2000, Proceedings of 26th International Conference
on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt.
Ed. by A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N.
Kamel, G. Schlageter, and K. Whang. Morgan Kaufmann. 307-316.

Sarawagi, S. and G. Sathe. (2000). “i3: Intelligent, Interactive Inves-
tigaton of OLAP data cubes”. In: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, May
16-18, 2000, Dallas, Texas, USA. Ed. by W. Chen, J. F. Naughton,
and P. A. Bernstein. ACM. 589. por: 10.1145/342009.336564.

Sathe, G. and S. Sarawagi. (2001). “Intelligent Rollups in Multidimen-
sional OLAP Data”. In: VLDB 2001, Proceedings of 27th Interna-
tional Conference on Very Large Data Bases, September 11-14, 2001,
Roma, Italy. Ed. by P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi,
K. Ramamohanarao, and R. T. Snodgrass. Morgan Kaufmann. 531-
540. URL: http://www.vldb.org/conf/2001/P531.pdf.

Shapley, L. S. (1953). “A Value for n-Person Games”. Contributions to
the Theory of Games II: 307-317.

Siddiqui, T., A. Kim, J. Lee, K. Karahalios, and A. G. Parameswaran.
(2016). “Effortless Data Exploration with zenvisage: An Expressive
and Interactive Visual Analytics System”. Proc. VLDB Endow.
10(4): 457-468.

References 315

Snodgrass, R. T., S. S. Yao, and C. Collberg. (2004). “Tamper detection
in audit logs”. In: VLDB. 504-515.

“Spark Monitoring and Instrumentation”. (2019). http://spark.apache.
org/docs/latest /monitoring.html.

Stekhoven, D. J. and P. Bithlmann. (2012). “Missforest - Non-Parametric
Missing Value Imputation for Mixed-Type Data”. Bioinform. 28(1):
112-118. por: 10.1093/bioinformatics/btr597.

Suchanek, F. M., G. Kasneci, and G. Weikum. (2007). “Yago: a core of
semantic knowledge”. In: Proceedings of the 16th International Con-
ference on World Wide Web, WWW 2007, Banff, Alberta, Canada,
May 8-12, 2007. Ed. by C. L. Williamson, M. E. Zurko, P. F. Patel-
Schneider, and P. J. Shenoy. ACM. 697-706.

Tannen, V. (2010). “Provenance for database transformations”. In:
EDBT 2010, 13th International Conference on Ezxtending Database
Technology, Lausanne, Switzerland, March 22-26, 2010, Proceedings.
Vol. 426. ACM International Conference Proceeding Series. ACM. 1.

Thirumuruganathan, S., M. Das, S. Desai, S. Amer-Yahia, G. Das,
and C. Yu. (2012). “MapRat: meaningful explanation, interactive
exploration and geo-visualization of collaborative ratings”. Proc.
VLDB Endow. 5(12): 1986-1989. URL: http://dl.acm.org/citation.
cfm?id=2367502.2367554.

Tip, F. (1994). A Survey of Program Slicing Techniques. Centrum voor
Wiskunde en Informatica.

Tran, Q. T., C. Y. Chan, and S. Parthasarathy. (2014). “Query Reverse
Engineering”. VLDB J. 23(5): 721-746. por: 10.1007/s00778-013-
0349-3.

Tran, Q. T. and C.-Y. Chan. (2010). “How to ConQueR why-not
questions”. In: SIGMOD ’10: Proceedings of the 2010 international
conference on Management of data. Indianapolis, Indiana, USA:
ACM. 15-26.

Ustun, B., A. Spangher, and Y. Liu. (2019). “Actionable Recourse in
Linear Classification”. In: Proceedings of the Conference on Fairness,
Accountability, and Transparency, FAT* 2019, Atlanta, GA, USA,
January 29-31, 2019. 10-19. por: 10.1145/3287560.3287566.

316 References

Van Aken, D., A. Pavlo, G. J. Gordon, and B. Zhang. (2017). “Automatic
database management system tuning through large-scale machine
learning”. In: Proceedings of the 2017 ACM International Conference
on Management of Data. ACM. 1009-1024.

Vardi, M. Y. (1982). “The Complexity of Relational Query Languages
(Extended Abstract)”. In: Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing. STOC ’82. San Francisco,
California, USA: ACM. 137-146. por1: 10.1145/800070.802186.

Veanes, M., N. Tillmann, and J. de Halleux. (2010). “Qex: Symbolic SQL
Query Explorer”. In: Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar,
Senegal, April 25-May 1, 2010, Revised Selected Papers. Ed. by E. M.
Clarke and A. Voronkov. Vol. 6355. Lecture Notes in Computer
Science. Springer. 425-446.

Vélez, B., R. Weiss, M. A. Sheldon, and D. K. Gifford. (1997). In:
SIGIR °97: Proceedings of the 20th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, July 27-31, 1997, Philadelphia, PA, USA. 6-15.

Verma, S., J. P. Dickerson, and K. Hines. (2020). “Counterfactual Expla-
nations for Machine Learning: A Review”. CoRR. abs/2010.10596.
arXiv: 2010.10596. URL: https://arxiv.org/abs/2010.10596.

Vieira, M. R., H. L. Razente, M. C. N. Barioni, M. Hadjieleftheriou,
D. Srivastava, C. Traina, and V. J. Tsotras. (2011). “On query result
diversification”. In: 2011 IEEE 27th International Conference on
Data Engineering. 1163-1174.

Wachter, S., B. D. Mittelstadt, and C. Russell. (2017). “Counterfactual
Explanations Without Opening the Black Box: Automated Decisions
and the GDPR”. CoRR. abs/1711.00399. arXiv: 1711.00399. URL:
http://arxiv.org/abs/1711.00399.

Wang, T., M. Morucci, M. U. Awan, Y. Liu, S. Roy, C. Rudin, and A.
Volfovsky. (2021). “FLAME: A Fast Large-scale Almost Matching
Exactly Approach to Causal Inference”. Journal of Machine Learning
Research. 22(31): 1-41. URL: http://jmlr.org/papers/v22/19-
853.html.

References 317

Wang, X., X. L. Dong, and A. Meliou. (2015a). “Data X-Ray: A Diag-
nostic Tool for Data Errors”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD) (SIG-
MOD). 1231-1245. por: 10.1145/2723372.2750549.

Wang, X., M. Feng, Y. Wang, L. Dong, and A. Meliou. (2015b). “Error
Diagnosis and Data Profiling with Data X-Ray”. PVLDB. 8(12):
1984-1987. por: 10.14778/2824032.2824117.

Wang, X. and A. Meliou. (2019). “Explain3D: Explaining Disagreements
in Disjoint Datasets”. PVLDB. 12(7): 779-792.

Wang, X., A. Meliou, and E. Wu. (2017). “QFix: Diagnosing errors
through query histories”. In: Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD) (SIG-
MOD). 1369-1384. por: 10.1145/3035918.3035925.

Weiser, M. (1981). “Program slicing”. Proceedings of the 5th interna-
tional conference on Software engineering: 439—449.

Wen, Y., X. Zhu, S. Roy, and J. Yang. (2018). “Interactive Summa-
rization and Exploration of Top Aggregate Query Answers”. Proc.
VLDB Endow. 11(13): 2196-2208.

Wu, E. and S. Madden. (2013). “Scorpion: Explaining Away Outliers in
Aggregate Queries”. Proc. VLDB Endow. 6(8): 553-564.

Wu, W., L. Flokas, E. Wu, and J. Wang. (2020). “Complaint-driven
Training Data Debugging for Query 2.0”. In: Proceedings of the
2020 International Conference on Management of Data, SIGMOD
Conference 2020, online conference [Portland, OR, USAJ, June 1-
19, 2020. Ed. by D. Maier, R. Pottinger, A. Doan, W. Tan, A.
Alawini, and H. Q. Ngo. ACM. 1317-1334. por: 10.1145/3318464.
3389696.

Xu, B., J. Qian, X. Zhang, Z. Wu, and L. Chen. (2005). “A brief survey
of program slicing”. ACM SIGSOFT Software Engineering Notes.
30(2): 1-36.

Yang, Y., N. Meneghetti, R. Fehling, Z. H. Liu, and O. Kennedy. (2015).
“Lenses: an on-demand approach to ETL”. Proceedings of the VLDB
Endowment. 8(12): 1578-1589.

318 References

Yilmaz, G. S., T. Wattanawaroon, L. Xu, A. Nigam, A. J. Elmore, and
A. G. Parameswaran. (2018). “DataDiff: User-Interpretable Data
Transformation Summaries for Collaborative Data Analysis”. In:
Proceedings of the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15,
2018. Ed. by G. Das, C. M. Jermaine, and P. A. Bernstein. ACM.
1769-1772. por: 10.1145/3183713.3193564.

Ying, Z., D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. (2019).
“GNNExplainer: Generating Explanations for Graph Neural Net-
works”. In: Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouwver, BC, Canada.
9240-9251.

Yoon, D. Y., N. Niu, and B. Mozafari. (2016). “DBSherlock: A Perfor-
mance Diagnostic Tool for Transactional Databases”. In: Proceedings
of the 2016 International Conference on Management of Data. SIG-
MOD ’16. San Francisco, California, USA: ACM. 1599-1614. DOT:
10.1145/2882903.2915218.

Zhang, H., Y. Diao, and A. Meliou. (2017). “EXStream: Explaining
Anomalies in Event Stream Monitoring”. In: 20th International
Conference on Extending Database Technology (EDBT) (EDBT).
156-167. po1: 10.5441/002/edbt.2017.15.

Zhang, Y. and X. Chen. (2020). “Explainable Recommendation: A
Survey and New Perspectives”. Found. Trends Inf. Retr. 14(1): 1-
101.

