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ABSTRACT

Humans reason about the world around them by seeking

to understand why and how something occurs. The same

principle extends to the technology that so many of human

activities increasingly rely on. Issues of trust, transparency,

and understandability are critical in promoting adoption and

proper use of systems. However, with increasing complexity

of the systems and technologies we use, it is hard or even

impossible to comprehend their function and behavior, and

justify surprising observations through manual investigation

alone. Explanation support can ease humans’ interactions

with technology: explanations can help users understand a

system’s function, justify system results, and increase their

trust in automated decisions.

Our goal in this article is to provide an overview of exist-

ing work in explanation support for data-driven processes,

through a lens that identifies commonalities across varied

problem settings and solutions. We suggest a classification

of explainability requirements across three dimensions: the

target of the explanation (“What”), the audience of the
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explanation (“Who”), and the purpose of the explanation

(“Why”). We identify dominant themes across these dimen-

sions and the high-level desiderata each implies, accompa-

nied by several examples to motivate various problem set-

tings. We discuss explainability solutions through the lens

of the “How” dimension: How something is explained (the

form of the explanation) and how explanations are derived

(methodology). We conclude with a roadmap of possible

research directions for the data management community

within the field of explainability in data systems.



1

Introduction

All the way from infancy to advanced scientific inquiry, humans pose and

seek answers to “why” questions; simply, explanations are the means

through which humans perceive and reason about the world. It is thus

not surprising that as technology increasingly permeates all aspects

of human activity, the need for explanations arises in algorithmic and

data-driven systems.

Data-driven technologies are at the core of many everyday interac-

tions, such as social network connections, news personalization, and

product recommendations, but also drive critical decision-making, such

as autonomous vehicle actions, diagnosis and treatment of diseases, and

even criminal sentencing. Explanation support can ease our interactions

with these systems: explanations help users justify and consequently

trust the function of these systems, they help developers diagnose

problems and improve the systems, and they increase stakeholders’ con-

fidence in system decisions. Several research domains have recognized

these emerging requirements, and work on supporting explanations in

computing systems has flourished.

In this article, we present a research roadmap for the data man-

agement community, examining existing efforts in explanation support,
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230 Introduction

“Why.” The purpose of the explanation often determines important

desiderata for the derived explanations. For example, explanations

aimed at debugging problems need to be comprehensive and detailed,

while explanations aimed at illustrating functionality should be simpler

and high level. Explanations may also be used as a tool to promote

trust in a system’s operation, in which case, they may target aspects of

a system’s functionality, rather than particular data or results.

“Who.” The audience of an explanation is often tied to the ex-

planation’s purpose (i.e., the “why” and “who” are often linked). In

addition to diverse purposes, explanations can serve diverse audiences.

For example, explanation support may be an important tool for tech-

nical users of data systems, who typically aim to improve the systems

(e.g., developers), or gain deep understanding of data processing steps

(e.g., analysts). But explanations can also target a broader audience,

such as data enthusiasts or the general public, who generally expect

illustrative justifications for their observations.

“How.” The research community has followed a variety of methods

in deriving explanations, and the corresponding explanation products

can be of different types. A significant portion of explanation-related

work in the data management community is provenance-based, and

seeks explanations in the lineage of query results. In other veins, re-

searchers have sought query-based explanations, or explanations based

on summaries or examples. The explanation objectives adopted in prior

work can vary as well. Different explanation frameworks seek to optimize

different metrics, including measures of understandability, flexibility, or

generalizability. Our goal is to provide a categorization of the existing

methodologies, note possible new approaches and combinations, group

metrics used in the literature under high-level objectives, and suggest

additional useful ones for the community to consider.
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1.1 Scope of this article

The need for explanations is universal. Thus, it is not surprising that

explanations have been studied in many fields of Computer Science.

Our intention is not to cover the entire body of this work, as this

would be impossible to do in sufficient depth within this article. Rather,

we primarily focus on relevant work from the database community

and discuss work from other fields when this work is relevant to data

management or introduces techniques that we believe could prove useful

in a data management context in the future.

In particular, explainable AI (commonly known as XAI) is an im-

portant emerging field with research contributions from the database

community, and we will provide a brief review of this work for context.

However, this is a vast and active research area. Providing a detailed

overview of explanations in the context of AI is out of scope for this

article. Guidotti et al. (2019) provide a good overview of methods for

explaining the behavior of blackbox models, e.g., by locally approxi-

mating them through simpler, but more interpretable methods. At the

technical level, many of the approaches discussed in this article use

methods for summarizing information and presenting it in a form that

is fit for human consumption. As such, they use or are closely related to

unsupervised methods developed by the data mining community such as

association rule mining (Agrawal and Srikant, 1994) and clustering (Han

and Kamber, 2001). On the other hand, there is an extensive literature

in the computer systems community on monitoring, finding, and ex-

plaining big data systems’ performance and errors, such as root cause

analysis (e.g., Yoon et al. (2016), Ousterhout et al. (2015), and Roy

et al. (2015b)). While these methods are interesting in their own right,

we will only discuss them to the degree necessary for understanding

their use for generating explanations with a brief overview, and refer to

the relevant literature if the reader is interested in these topics.
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Explanation Needs:

Who, Why, and What

The contributions of data management research to explanation support

are broad and varied, ranging from provenance-based methods for

tracing changes in data, to summarization algorithms, and debugging

systems. In this article, we use the general term explanation framework

to refer to all kinds of explanation support, regardless of the nature of

their solution or the problem setting. Given the diverse nature of existing

approaches, and the broad applicability of explanations, we posit that

a unified explanation framework that can handle all understandability

requirements in a data-driven system is unlikely. While enhancing

understandability is a common overall objective, explanation frameworks

adopt more targeted goals (e.g., with respect to explanation form or

size), driven by requirements of particular problem settings. In this

chapter, we explore aspects of problem settings that drive these goals,

and which, in turn, have impact on possible solutions.

We identify three general axes of problem specifications that impact

the goals of explanation frameworks: Who, Why, and What. “Who”

specifies the audience of an explanation: who is seeking an explanation.

“Why” specifies the purpose of an explanation: why is the explanation

needed (e.g., to debug a problem, or to illustrate a functionality). “What”

232
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specifies the target of an explanation: what is it that we are trying to

explain (e.g., a surprising observation, or a system malfunction).

In this chapter, we introduce the Who-Why-What classification of

explanation problems. Notably, these axes can help identify general

desiderata for explanation settings, without being tied to particular

applications, domains, or datasets. For example, we note that explana-

tions targeted at technical users should be more detailed than those

targeted at a general audience. We structure this chapter from the per-

spective of the problem setting, anchored across the axes of Who, Why,

and What, and the requirements or desiderata that each entails. The

desiderata of a problem setting are generally decoupled from particular

solutions, though they can often make the problem more amenable

to certain methodologies for deriving explanations. We will keep the

discussion at a high-level of abstraction in this chapter using examples,

and will not discuss methodologies of explanation frameworks: (i) what

objects constitute an explanation (e.g., query input tuples); (ii) how are

these objects presented to the user (e.g., using predicates to compactly

describe part of the input data that is responsible for an erroneous

query result); (iii) what is the search space for objects take make up

an explanation (e.g., do we search for explanations in the provenance

or also in other related data); (iv) how to measure the contribution

of a candidate explanation for justifying the observed effect the users

wants us to explain (e.g., to what degree does a query result change if

the remove the input data encoded by a candidate explanation). These

aspects of the “How” of explanation frameworks will be discussed in

detail in the following chapter.

We note that the who-why-what categorization is not fully discrimi-

native. For example, a particular methodology can facilitate explanations

for multiple purposes (e.g., result interpretation and debugging). It is

also possible that the same problem setting can be addressed by more

than one methodological approach (e.g., a provenance-based and a

summarization-based solution). The primary goals of this categorization

are to provide guidelines on appropriate explanation objectives, and to

highlight relationships across different approaches.
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2.1 “Who” needs explanations

In this section, we discuss the audience of an explanation: who is the

seeker and recipient of an explanation. In most cases, since explanations

are typically tied to understandability expectations, the audience is a

human user. However, conceivably, explanations can be provided to

a system component in the automation of a task like error tracing

or debugging. Below, we list three general categories of explanation

audiences, which capture most problem settings in the existing literature,

though others are possible.

• Developers. Data-driven systems, like all systems, can exhibit

bugs and suboptimal behavior. As data is a big component of these

systems’ function, problems with their operation may become ap-

parent through the use and processing of data, and certain aspects

of the data may be the triggers of such incorrect or suboptimal

behaviors. The involvement of data as a core system component

further complicates debugging and optimizations. Explanation

systems that automatically derive causes of evident buggy behav-

ior can assist developers in the task of implementing corrections

and improvements. System developers have technical expertise

and access to system components, but they may not have good un-

derstanding of the data domain. Suitable explanations can involve

system components and operations that are deemed responsible

for observed behaviors, but also data elements and patterns that

can identify cases not well-handled in the code. Such explanations

will tend to be low-level, detailed, and comprehensive.

• Data analysts. The task of data analysis involves the extraction

and interpretation of interesting observations from data. Therefore,

explanations are an inherent expectation for a data analyst, who

often resorts to deriving them manually, typically through further

and deeper analysis. Analysts are typically experts in the data

domain and have breadth of knowledge in the use of analytics

tools, but they may lack technical expertise of the data handling

systems and the underlying analytics technologies. As a result, the

outcomes of data analysis can be hard to interpret, and mistakes in
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the use and requirements of the technologies can lead to erroneous

observations and incorrect insights. To support data analysis, data

systems need to provide tools dedicated to deriving explanations

in analytics tasks, with analysts as the target audience. Relevant

explanations should be data-focused, high-level, and illustrative

of the analytics technologies, thus targeting the expertise of the

target audience. Low-level, more fine-grained explanations that

rely on internal components and processes of the analytics pipeline

may not be appropriate, as the analysts have little knowledge of

and cannot intervene in these elements.

• Data enthusiasts and the general public. The democratiza-

tion of computational resources and analytics tools, coupled with

the continuous increase in the access and availability of interesting

datasets has lead to the involvement of a more general, non-expert

group of users in the perusal and basic analysis of data. These

users may have task-specific requirements (e.g., computational

journalists), or merely general interest and curiosity. Such data en-

thusiasts lack deep expertise in the data domain, and typically do

not have technical knowledge of the tools and underlying systems.

Explanations can help them reason about the observations they

make, better assess their validity, and judge their insightfulness.

Since these users are non-technical, explanations need to be high

level and illustrative of the systems’ function. As data-driven

systems permeate so many aspects of human activity, the gen-

eral public has invested interest in understanding these systems’

operation. Explanations can help enhance the public’s trust by

providing high-level justifications of data-driven decisions.

2.2 “Why” we want to explain

Explanations can serve a variety of functions, ranging from understand-

ability requirements to guiding debugging efforts. The purpose of the

explanation, often correlates with the explanation’s audience, and in

itself also drives desiderata with respect to the explanation format and

success metrics. Here, we review several common themes in explana-
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N(ewsFeeds)
nid story tag

1 ... for the 2023 AFC Asian Cup Xi’an ... ❙♣♦rts

2 ... economic downturn affected sensitive ... ❇✉s✐♥❡ss

3 ... with sequences shot in Xi’an ... ▼♦✈✐❡s

4 ... when President Biden meets former ally ... ❇✐❞❡♥

5 ... Xi’an slow down hiring ... ❇✉s✐♥❡ss

6 ... Oscars 2021: Academy’s ‘best’ choice ... ▼♦✈✐❡s

7 ... launches cloud lab in Xi’an ... ❚❡❝❤♥♦❧♦❣②

8 ... struggles to corral votes for health bill ... ❍❡❛❧t❤

9 ... SIGMOD conference this year in Xi’an ... ❉❇❴❝♦♥❢

10 ... Copenhagen host to VLDB 2021 ... ❉❇❴❝♦♥❢

11 ... SIGMOD in Xi’an promises to be ... ❉❇❴❝♦♥❢

12 ... contact sports can resume Monday ... ❙♣♦rts

R(outing)
tag

❇✐❞❡♥

❉❇❴❝♦♥❢

❙♣♦rts

❚❡❝❤♥♦❧♦❣②

Query answer:

P(ersonalized alerts)
cities

Paris
Xi’an
Athens

Figure 2.1: Example of a personalized alert-feed (P ) as a result of a query filtering
all news (N) based on a carefully constructed routing table (R).

tion settings from the perspective of the purpose of the explanation:

“why” we want to explain. These themes include understanding results

(Section 2.2.1), debugging data and systems (Section 2.2.2), debug-

ging performance (Section 2.2.3), and enabling responsible data analysis

through fairness, trust, and reproducibility of the process (Section 2.2.4).

We discuss each theme through examples, often drawn and adapted

from the existing literature.

2.2.1 Understanding and interpreting results

Enhancing understandability is a core goal of explanation research.

Prior work has focused in particular on surprising observations in data

processing results. Explanations can provide justification and evidence to

establish the validity of an observation, or assist with the interpretation

of a finding. We discuss a few examples from published work that deal

with a variety of understandability and interpretation requirements.

Example 2.1 (Meliou et al., 2010). A major travel agency monitors a

large number of news feeds in order to identify trends, opportunities,

or alerts about various cities. Central to this activity is a carefully

personalized routing table and query, which filters what information to

forward to each specialized travel agent by carefully chosen keywords.

Figure 2.1 shows the routing table for one user R, as well as a sample

news feed. The query issuing alerts to this user is:
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SELECT C.name

FROM NewsFeeds N, Routing R, City C

WHERE C.name substring N.story and N.tag = R.tag

GROUP BY C.name

HAVING count (*) > 20

The result is a list of cities that are drawn to the attention of this

particular agent, shown in Figure 2.1. As popular destinations, Paris

and Athens are predictable answers. But this agent is surprised to

see Xi’an in the results, and would like to understand what news or

keywords lead it to appear on her watch list, so that she can better

direct her promotion efforts.

In this example, the user seeks to understand the presence of partic-

ular data items in the result of a query. Better understanding of the

results would lead to more informed actions on the part of the agent.

The results do not need to be investigated because they are assumed to

be incorrect; rather, decision making may rely on underlying parameters

that drive this result and should be more closely investigated. Given

these expectations, it would be likely that explanations should involve

parameters of the query or the data that cause the relevant data items

to appear in the result.

The same understandability requirements extend to the absence of

expected results as the following example shows.

Example 2.2 (Lee et al., 2020). Figure 2.2 shows a sample of a real-world

dataset recording Airbnb (bed & breakfast) listings and their availabil-

ity. Each listing has an id, name, property type (Ptype), room type

(Rtype), neighborhood (Neighbor), and neighborhood group (NGroup).

Neighborhood groups are larger areas that include multiple neighbor-

hoods. Availability stores the ids of listings with available dates and

a price for each date. Bob, an analyst at Airbnb, investigates a customer

complaint about the lack of availability of shared rooms on 2016-11-09

in Queen Anne (NGroup = queen anne). He uses the query shown below

to determine which listings (names and room types) are available on

that date in Queen Anne.

SELECT Name , RType

FROM Listing L, Availability A
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Listing

Id Name Ptype Rtype NGroup Neighbor

8403 central place apt shared queen anne east

9211 plum apt entire ballard adams

2445 cozy homebase house private queen anne west

8575 near SpaceNeedle apt shared queen anne lower

4947 seattle couch condo shared downtown first hill

2332 modern view house entire queen anne west

Availability

Id Date Price

9211 2016-11-09 130

2445 2016-11-09 45

2332 2016-11-09 350

4947 2016-11-10 40

Query Result

Name Rtype

cozy homebase private

modern view entire

Figure 2.2: Explaining missing answers: why are there no shared rooms available
for rent on Airbnb in the Queen Anne neighborhood on November 9th in 2016?

WHERE NGroup = Šqueen␣anneŠ

AND A.Date = Š2016 -11 -09Š

AND L.Id = A.Id

The query result confirms the customer’s complaint, since none of

the available listings are shared rooms. Bob now needs to investigate

what led to this missing result. An explanation framework for missing

answers can provide Bob with important information that helps him to

understand the shortage of shared rooms.

The two previous examples differ somewhat in the explanation target

(“What”), as the former seeks to explain the presence and the latter the

absence of particular results. However, the explanation purpose (“Why”)

is for both to provide a better understanding of the observed outcome

of a data operation (in this case a query). Both these examples focused

on queries without an aggregate output. In data analysis, however,

aggregate outputs (involving count, sum, average, max, etc.) appear

frequently, aiming to analyze trends over a period of time (e.g., to

compare total sales over years), or communicate summary statistics
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Figure 2.3: Number of SIGMOD publications in a five years windows, broken down
into papers from industry (‘com’) and academia (‘edu’). While both increase until
2000-2007, afterward the number of papers from academia continue to increase while
that from industry decreases.

(e.g., to compare total sales in different locations). We discuss an example

on explanations for aggregated outputs next.

Example 2.3 (Roy and Suciu, 2014). Figure 2.3 shows the number of

publications in SIGMOD during a moving five years window (up to 2011)

co-authored by researchers from industry and academia. The graph

was generated by running a SQL query over the DBLP publication

dataset integrated with an affiliation table (affiliation information was

available only for a subset of authors, so the graph does not include all

papers). SIGMOD accepts more papers over the years, therefore the

increasing trend from academia may be justifiable. However, somewhat

surprisingly, the papers from industry have a peak in early 2000. With

the recent discourse in many conferences about their impact, relevance

in the era of big data and deep neural networks, and the path to move

forward, this might be an interesting observation that an analyst may

wish to investigate further. Explanation frameworks could assist in

interpreting these results, saving in efforts of manual investigation.

The explanation target (“What”) differs again in this example, but

the purpose remains close to the previous two: understand and interpret

an observation in the query output. Here, the observation is a trend in

the result of an aggregate query, and the reason it provokes the need

for interpretation is its difference from another observed trend.
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In a similar vein, the following example also identifies an explanation-

worthy target in differences, but this time this is a difference in results

of distinct queries over separate datasets. When two datasets represent

the same elements in the physical world, it is expected that analyzing

or querying either should produce the same result. When that is not

the case, the differences need to be understood and interpreted before

an analyst is able to derive conclusions. The understandability and

interpretation goals are again the same, despite the different setting,

and explanations may need to highlight aspects of the data or elements

of the query that contribute to the observed deviations.

Example 2.4 (Wang and Meliou, 2019). Two publicly-available academic

datasets, the UMass-Amherst dataset on undergraduate programs1,

and the National Center for Education Statistics (NCES) dataset2,

are both from reputable sources and contain high-quality information.

Nevertheless, querying both datasets for the number of undergraduate

degree programs at UMass Amherst yields vastly different answers.

UMass-Amherst data NCES data

Schema: Major(Major, Degree, School) School(ID, Univ_name, City, Url)
Stats(ID, Program, bach_degr)

Query: Q1 : SELECT COUNT(Major) Q2 :SELECT SUM(bach_degr)
FROM Major; FROM School, Stats

WHERE Name = ‘UMass-Amherst’
AND School.ID=Stats.ID;

Answer: 113 90

Existing explanation solutions can only be applied with respect to

one of these datasets at a time, by asking questions such as “Why is

the result of Q1 (respectively, Q2) high (respectively, low)?” But these

would not provide meaningful explanations in this case, as each tuple

contributes the same to the aggregate of Q1, and prioritizing tuples

with low bach_degr in the provenance of Q2 would be arbitrary, not

grounded on the actual differences with Q1.

We will discuss approaches from the literature that explain such

questions on query results in Chapter 3.

1https://www.umass.edu/gateway/academics/undergraduate
2https://nces.ed.gov: An open dataset presented. We simplified its schema

for this example.
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Student S

name major

Mary CS t1

John ECON t2

Jesse CS t3

Registration R

name course dept grade

Mary 216 CS 100 t4

Mary 230 CS 75 t5

Mary 208D ECON 95 t6

John 316 CS 90 t7

John 208D ECON 88 t8

Jesse 216 CS 95 t9

Jesse 316 CS 90 t10

Jesse 330 CS 85 t11

Result of Q1

name major

John ECON r1

Result of Q2

name major

Mary CS r2

John ECON r3

Jesse CS r4

Figure 2.4: Toy database instance for Example 2.5, and results of Q1 and Q2.

2.2.2 Debugging data and systems

The results of an analysis or a data transformation often expose errors in

the data, the operations, the system that executed the transformation, or

the environment the task was executed in. Similar to using explanations

to establish the validity of and justify surprising results, explanations

can also serve as a tool to aid debugging efforts or other improvements

in a system’s function or an analytical process. In contrast to the

examples in the previous section, where explanations were used to

enhance understanding and interpretation of results, the distinction

here is the explicit assumption that particular data items, values, queries,

or other system components are incorrect, or otherwise indicate errors

and problems in other parts of the system. We provide a set of examples

from existing literature that demonstrate such issues in relational and

non-relational systems.

Example 2.5 (Miao et al., 2019a). Consider two relations storing infor-

mation about students Student(name, major) and course registrations

Registration(name, course, dept, grade). A toy test instance is given

in Figure 2.4. Suppose an instructor in a database course asked the stu-

dents in that course to write a SQL query: ‘find students who registered

for exactly one CS course’. Below we show the correct query Q1, and

an incorrect query Q2 that a student submitted, which actually finds

students who registered for one or more CS courses.
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Q1:

SELECT s.name ,s.major

FROM Student s, Registration r

WHERE s.name = r.name AND r.dept = ŠCSŠ

EXCEPT

SELECT s.name ,s.major

FROM Student s, Registration r1 , Registration r2

WHERE s.name = r1.name

AND s.name = r2.name

AND r1.course <> r2.course

AND r1.dept = ŠCSŠ

AND r2.dept = ŠCSŠ

Q2:

SELECT s.name ,s.major

FROM Student s, Registration r

WHERE s.name = r.name AND r.dept = ŠCSŠ

Figure 2.4 shows the results of Q1 and Q2. Here the goal of the

instructor or the teaching assistants is to help the student understand the

mistake in their query using a meaningful and easy-to-follow explanation.

In this example, there is explicit knowledge that a query is erroneous.

The error is known, and the point is not to detect the error, but rather

to explain it. An explanation in this setting should illustrate to the user

(in this case the student) why the query they submitted is erroneous.

This problem can be approached from different angles —we will discuss

one in the “How” chapter—but the key purpose of the explanation is

to help the user to understand the error.

The following example shares this theme (i.e., the explanation pro-

vides a high level illustration of the error), but here we are tracing the

error to errors in a data pipeline that produced the erroneous data.

Example 2.6 (Wang et al., 2015a). Large-scale information extraction

pipelines process unstructured or semi-structured data, such as the web

tables of Figure 2.5, to extract structured information typically in the

form of knowledge triples (bottom of Figure 2.5). These pipelines are

often imperfect, and can introduce errors in the extracted data. In this

example, the extractors are assigning a default date value whenever
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Musicians – Table 1

Name Date of Birth Date of Death

P. Fontaine c.1380 c.1450

J. Vide unknown 1433

Composers – Table 2

Name Date of Birth Date of Death

G. Legrant fl.1405 N/A

H. Lantins fl.c.1420 unknown

Extracted triples
︷ ︸︸ ︷

Triple properties
︷ ︸︸ ︷

source subject predicate object

ID knowledge triple URL tableID type instance type instance type instance

t1 {P. Fontaine, Profession, Musician} wiki tbl #1 People P. Fontaine Bio Profession Profession Musician

t2 {P. Fontaine, DoB, c.1380} wiki tbl #1 People P. Fontaine Bio DoB Date c.1380

t3 {P. Fontaine, DoD,c.1450} wiki tbl #1 People P. Fontaine Bio DoD Date c.1450

t4 {J. Vide, Profession, Musician} wiki tbl #1 People J. Vide Bio Profession Profession Musician

t5 {J. Vide, DoB, 01/01/1900} wiki tbl #1 People J. Vide Bio DoB Date 01/01/1900

t6 {J. Vide, DoD, 1433} wiki tbl #1 People J. Vide Bio DoD Date 1433

t7 {G. Legrant, Profession, Composer} wiki tbl #2 People G. Legrant Bio Profession Profession Composer

t8 {G. Legrant, DoB, fl.1405} wiki tbl #2 People G. Legrant Bio DoB Date fl.1405

t9 {G. Legrant, DoD, 01/01/1900} wiki tbl #2 People G. Legrant Bio DoD Date 01/01/1900

t10 {H. Lantins, Profession, Composer} wiki tbl #2 People H. Lantins Bio Profession Profession Composer

t11 {H. Lantins, DoB, fl.c.1420} wiki tbl #2 People H. Lantins Bio DoB Date fl.c.1420

t12 {H. Lantins, DoD, 01/01/1900} wiki tbl #2 People H. Lantins Bio DoD Date 01/01/1900

Figure 2.5: An information extraction pipeline processes the web tables (top) and
derives 12 knowledge triples (bottom). Each triple has four property dimensions with
different granularity levels. The extractors assign a default value to dates that are
unknown (“01/01/1900”), leading to three incorrect triples (t5, t9, and t12).

date information is missing. Manual investigation of these problems

is impractical, as the errors can be large scale; e.g., in the case of

Knowledge Vault (Dong et al., 2014) errors can span billions of triples.

Automated explanation frameworks are necessary to diagnose systemic

problems in large scale pipelines, which can be extremely complex and

may include obscure and black box components.

The errors in this example are identified in the output of the ex-

traction pipeline, as noted in Figure 2.5. The purpose of explaining

the errors in this case is to better understand how they occurred in

the first place. The errors in this example are systemic, inherent to the

process that generates the result triples and thus will keep occurring

unless a repair is applied to the part of the pipeline that causes the

problem. Simply, purging the errors from the output will not solve the

issue, as the pipeline will keep generating flawed data. Therefore, an

explanation in this setting should offer clarity about the origin of the

problem, potentially serving as a debugging mechanism.

The following example continues the debugging theme: errors are

noted in the output of several processing steps, and an explanation can

offer clarity to how they were introduced. A distinction here is that the
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Taxes: D0

ID income owed pay

t1 $9500 $950 $8550
t2 $90000 $22500 $67500
t3 $86000 $21500 $64500
t4 $86500 $21625 $64875

Query log: Q

q1: UPDATE Taxes SET owed=income*0.3
WHERE income>=85700

q2: INSERT INTO Taxes
VALUES (85800, 21450, 64350)

q3: UPDATE Taxes SET pay=income-owed

Taxes: D4

ID income owed pay

t1 $9500 $950 $8550
t2 $90000 $27000 $63000
t3 $86000 $25800 $60200
t4 $86500 $25950 $60550
t5 $85800 $21450 $64350

Figure 2.6: A recent change in tax rate brackets calls for a tax rate of 30% for those
with income above $87500. The accounting department issues query q1 to implement
the new policy, but the predicate of the WHERE clause condition transposed two
digits of the income value. As a result, the owed amount of t3 and t4 were calculated
incorrectly. This mistake is obscured by q2, which inserted a tuple with correct
income and owed amount, and was later further propagated to additional fields by
query q3, which calculates the pay check amount based on the corresponding income
and (incorrect) owed values.

problem setting is relational. In contrast to the previous example that

involved complex steps in the pipeline and, for all practical purposes,

black box components, the relational domain allows for more flexibility in

examining and reasoning about the inner workings of the data processing

steps. As such, the methodologies and solutions (“How”) will frequently

differ, even though the explanation’s purpose is the same.

Example 2.7 (Wang et al., 2017). An accounting firm implements an

adjustment to tax brackets on their customer dataset (Figure 2.6). The

adjustment sets the tax rate to 30% for income levels above $87,500,

and is implemented by query q1. A digit transposition mistake in the

query, results in an incorrect owed amount for tuples t3 and t4. Query

q2, which inserts a tuple with slightly higher income than t3 and t4 and

the correct information, obscures this mistake. This mistake is further

propagated by query q3, which calculates the paycheck amount based

on the corresponding income and amount owed.

Some of the mistakes in the database may be individually reported

to the firm by the customers. But, fixing these errors on an individ-

ual reporting basis further obscures the problem, and leaves several

erroneous values unaddressed. Instead, the accounting firm should first

understand how the errors were introduced, and such an explanation

would help determine and implement an appropriate repair strategy.

In our final example in this section, errors are again noted in the

output of data processing, but in this case they do not occur consistently,
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Alice’s Withdrawal Transaction
UPDATE account SET bal = bal - :amount

WHERE cust = :name AND typ = :type;

INSERT INTO overdraft (

SELECT cust , a1.bal + a2.bal

FROM account a1 , account a2

WHERE a1.cust = :name AND a1.cust = a2.cust

AND a1.typ != a2.typ AND a1.bal + a2.bal < 0);

Execution Order of Transactions T1 and T2

Time

T1

update insert commit T2

update insert commit

Bind Parameters for Transactions T1 and T2

Transaction :name :amount :type

T1 Bob 70 Checking

T2 Bob 40 Savings

(a) Database before

execution of T1 and T2

account

cust typ bal

Bob Checking 50
Bob Savings 30

overdraft

cust bal

(b) Database after ex-

ecution of T1

account

cust typ bal

Bob Checking -20
Bob Savings 30

overdraft

cust bal

(c) Database after exe-

cution of T2

account

cust typ bal

Bob Checking -20
Bob Savings -10

overdraft

cust bal

Figure 2.7: Erroneous transaction execution. Explanations for how transactions
interacted in the history are needed to understand the cause of the error (interleaving
of transaction execution under non-serializable transaction isolation levels).
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as they are linked to concurrency issues. While the purpose of explana-

tions remain the same—understanding the origin of the problem and

assisting in debugging—the particular problem setting would require a

different approach compared the the previous examples.

Example 2.8. Alice is a developer at a bank that runs a database

(e.g., Oracle) using the snapshot isolation (SI) concurrency control

protocol (Berenson et al., 1995) which does not guarantee serializ-

able schedules. She is tasked with writing a transaction for withdraw-

ing money from a customer’s checking or savings account (a table

account(cust,typ,bal)). If after the withdrawal the total balance of

the checking and savings account for the customer are below 0, then an

overdraft record should be inserted into a table overdraft(cust,bal).

Alice implements the transaction shown in Figure 2.7 that runs an

update followed by an insert using a query that detects overdrafts. After

some tests that are uneventful, Alice’s solution is deployed. However,

it turns out that Alice’s transaction does not always report overdrafts

correctly. Assume that transactions T1 and T2 as shown in Figure 2.7

have been executed concurrently with T2 committing last. Fig. 2.7 shows

the database state before and after execution of T1 and T2.

As shown in Figure 2.7 (c), these transactions cause an overdraft

for Bob that is evident in the database state after T2’s commit (since

−20 + (−10) < 0). However, neither T1 nor T2 have reported this

overdraft. The cause of this problem is that SI does not guarantee

serializability. In fact, it can lead to a concurrency anomaly called

write-skew (Berenson et al., 1995). Under SI, a transaction T runs

over a private snapshot of the database that contains changes made by

transactions that committed before T started. Thus, T1 and T2 do not

see each other’s changes. Both transactions compute the total balance

using an outdated balance for the other account. For instance, T2 sees

the previous balance of $50 for Bob’s checking account and the condition

of the overdraft check evaluates to 50 + (−10) = 40 ̸< 0.

Such errors are hard to debug, because they only occur if the execu-

tion of transactions is interleaved in a certain way. Alice’s application

may run for days without causing any issues. An explanation frame-

work that can identify the root cause for the absence of the expected
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Team City Country Year League Place

F.C Barcelona Barcelona Spain 2019 La Liga 1

Atletico Madrid Madrid Spain 2019 La Liga 2

Real Madrid Madrid Spain 2019 La Liga 2

F.C Barcelona Barcelona Catalonia 2018 La Liga 1

Atletico Madrid Capital España 2018 La Liga 2

Real Madrid Madrid Spain 2018 La Liga 3

Team City Country Year League Place

F.C Barcelona Barcelona Spain 2019 La Liga 1

Atletico Madrid Madrid Spain 2019 La Liga 2

Real Madrid Madrid Spain 2019 La Liga 3

F.C Barcelona Barcelona Spain 2018 La Liga 1

Atletico Madrid Madrid Spain 2018 La Liga 2

Real Madrid Madrid Spain 2018 La Liga 3

Figure 2.8: Dirty table (left) and resulting clean table (right), after the application
of a black box repair system.

result based on a transactional history can aid Alice in debugging her

implementation.

The use of explanations in debugging data and systems can extend

to different data transformation processes. Data routinely undergoes

various stages of processing, such as extraction, cleaning, integration,

and sampling, before a dataset is ready for use. These processes may

be separate from the main data analysis task, but due to the changes

they incur to the data, analysts often need to investigate the validity of

these changes. We present an example from prior literature that focuses

on constraint-based data repair, but the motivation for explanations

generalizes to other processes and settings.

Example 2.9 (Deutch et al. (2020)). Figure 2.8 offers an example of

a data repair system that takes dirty data as input, and produces a

transformed, clean table as a result. In this repair transformation, the

system decides which constraints to apply and determines which repairs

are preferable. Systems like this cannot guarantee the correctness of

the repair, so their decisions often need to be investigated, justified,

and, sometimes, overruled. Explanation frameworks can help support

analytics in this preprocessing stage, helping enhance the trust in the

data used.

2.2.3 Performance analysis

Data analysis frequently involves the use of complex pipelines, often

deployed in parallel fashion over on-demand computing resources. Ana-

lysts can often struggle with the complexities of the setup, and may face

challenges with various performance aspects of these systems. Explana-

tions can elucidate the reasons for unexpected performance behaviors,
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potentially indicating ways to improve the analytics pipelines and their

deployment. This can still be seen as a debugging setting, where the

purpose of the explanation is to improve an issue in the system; here

the issue is poor performance instead of erroneous results. However,

we see this category as distinct, in that understanding the reasons for

performance deviations may impact decisions related to the analysis

setup, calibrating tradeoffs between cost and resources, etc., rather than

repairing an inherent bug in the process.

We present two examples where system performance is perceived

to deviate compared to another “normal” execution. In both cases, the

purpose of the explanation is to identify the causes for the degradation.

Typically, explanations for system performance need to involve configu-

ration, interference, shared resources, and other general systems’ issues.

Depending on the audience of the explanation, e.g., and administrator

who can modify the system, or an analyst who may be actively mon-

itoring the progress of an analysis, the explanation requirements and

goals may ultimately differ.

Example 2.10 (Kalmegh et al., 2019). Consider the dataflow-DAG of

a data analytical TPCDS Query-3 shown in Figure 2.9. Suppose an

admin notices a slowdown for Query-3 in an execution, compared to a

previous execution, and wants to analyze the reasons of its slowdown.

As a first step of troubleshooting, she wants to identify whether Query-3

was a victim of concurrency-caused contention or not (i.e., whether the

reasons were systemic or due to configuration). If she finds that the

slowdown may be caused by concurrent execution with other queries

in the shared cluster, she may have to find which of the concurrent

queries are more responsible for the slowdown of Query-3 so that she

can configure the scheduler accordingly.

Example 2.11 (Zhang et al., 2017). Figure 2.10 shows the data queuing

size of a monitored Hadoop job, against the time elapsed since the

beginning of the job. On the left, the job progress is normal: the

intermediate results output by the mappers start to queue at the

beginning and reach a peak after a short period of time. This is because

a number of mappers have completed in this period while the reducers
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Figure 2.10: Hadoop cluster monitoring: Data queuing size of a normal Hadoop
job (left), and data queuing size of an abnormal Hadoop job (right).

2.2.4 Responsible data analysis

Data analysis aims to extract interesting and useful insights from data.

Mishandling, misinterpretation, and poor understanding of tools, can

be detrimental in analytics, leading to flawed results. Explanation

frameworks can support analytics through establishing the validity of

findings, or highlighting misconceptions and misuse. We discuss several

ways in which explanations can assist responsible analytics.

Fairness and bias

Data-driven systems often include learned components, trained over

datasets that may themselves be imperfect and even biased. As a result,

systems are likely to amplify these imperfections and biases. When

systems exhibit bias and discriminatory behavior, explanations can

serve as a tool to trace the reasons for the biased behavior, and point

to ways to repair it. The goal of altering broader aspects of a system’s

behavior, such as result bias, is distinct from debugging, which has more

precise targets. In general debugging, we typically observe concrete

errors within data or system components. In this case, however, the

issue is not confined to particular data or queries; rather it is manifested

over broader operations. We present an example where initial biases

in the data can lead a learned system to demonstrate discriminatory

behavior. The purpose of the explanation is to map the problematic

behavior to the underlying causes, so they can be addressed, if needed.
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id name gender age race zip code phone credit score

t1 Shanice Wilson F 31 AA 60617 555-391-7654 low

t2 Demetrius Smith M 52 AA 60617 524-764-0032 low

t3 Andre Holland M 60 AA 60649 321-716-0187 low

t4 Connor Wilson M 51 W 01060 908-375-1073 high

t5 Emily Strike F 47 W 01009 high

t6 Hannah Plath F 28 W 918-938-8172 low

t7 Jacob Alston M 36 W 60636 high

t8 Garrett Johnson M 31 W 27780 510-276-9182 high

t9 Logan Drake M 32 W 01002 high

t10 Brett Smith M 28 W 413-726-1082 high

Figure 2.11: A sample dataset with 10 entities. A logistic regression classifier
trained over this dataset discriminates against African Americans (race = ‘AA’)
and women (gender = ‘F’).

Example 2.12. A classifier trained over the data in Figure 2.11 is bound

to demonstrate bias, as the data itself is highly imbalanced. Specifically,

the trained classifier, is likely to associate African Americans (race

= ‘AA’) and women (gender = ‘F’) with low credit scores. Even if

sensitive attributes, such as gender and race, are witheld during the

training process, other, seemingly innocuous attributes can serve as

a proxy, resulting in the same effect (e.g., zip code is correlated with

race). System developers can use explanations to understand the reasons

of the resulting bias, which can help them seek and train on a more

balanced dataset.

Algorithmic fairness and the study of discrimination in computing

systems has been a very active area of research in recent years, and

has produced a large body of work across several disciplines. While

a majority of the existing work is rooted in the machine learning

community, data management research has shown growing interest in

these topics. Our goal is not to cover this area in depth, but, rather,

to highlight the connections to explainability, as explanations can help

guide fairness repairs as illustrated in the above example.
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Auditing

Many organizations are subject to strict auditing requirements enforced

by law. To comply with the law, these organizations are required to

keep a record of their data handling processes. Such records can also be

used for identifying security breaches and for forensic analysis in the

event of a security breach.

Example 2.13. Consider a health care provider that maintains an audit

log (Snodgrass et al., 2004) to keep track of accesses to their database

and uses temporal database technology to be able to access past versions

of their data. If a user account is compromised and this security breach

has been detected, then the records kept in the audit log enable the

health care provider to investigate the breach, e.g., to determine what

data has been modified by the compromised account. However, the large

number of transactions run every day and the large amounts of data the

provider maintains make it hard for an analyst to understand the impact

of the breach, since this may require browsing through thousands of

SQL statements executed by the compromised account and millions of

tuple versions accessed and created by these statements. Thus, there is

a need for techniques to extract high-level explanations from these low

level details.

Reproducibility

Reproducibility of computational scientific experiments is one of the

grand challenges of our time. Computational experiments may fail

to be reproducible for a variety of reasons, such as dependencies on

libraries, environment settings, lack of documentation for how to run

the experiments, and non-determinism in the experimental code.

Example 2.14. Alice, a biologist, published a paper about the new

gene analysis algorithm she has developed. The algorithm takes as

input multiple genomes, prepares the data using a range of publicly

available tools, then combines the prepared data and runs a statistical

analysis over the results. Another scientist, Bob, wants to reproduce

the results of Alice’s algorithm as published in her paper. Even if Alice

is diligent in documenting her process, there are many possible pitfalls
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Bob may face during his attempt to reproduce Alice’s results, such as

incompatibilities between his and Alice’s execution environments (e.g.,

different library versions), missing datasets, or non-determinism of steps

in Alice’s workflow.

2.3 “What” we want to explain

In this section, we discuss the target of the explanation: What we are

trying to explain. The explanation target corresponds to the precise

element that an explanation seeks to justify, e.g., a particular value, or

a query, and it is distinct from the explanation’s purpose. For example,

Examples 2.5 and 2.6 both describe settings where the purpose of the

explanation is debugging and understanding of errors; however, in the

former, the explanation target is a query, whereas in the latter, the

explanation target is erroneous data. The explanation target (“What”)

is also distinct from the explanation itself; the latter is tied to the

solution approach, which we discuss in the following chapter (“How”),

and can potentially vary, even for the same explanation problem setting.

Here, we discuss explanation targets that have appeared in the literature,

frequently referring to prior examples and occasionally introducing new

ones.

2.3.1 Data

The most common explanation target in the data management literature

is, perhaps not surprisingly, data. As data is a central component of

data-driven systems, surprising observations and unexpected behaviors

are often indicated within the data itself. Examples 2.1, 2.6, and 2.7

all identify data as the explanation target, where values or extraneous

information indicates particular data as surprising or problematic. The

solutions methods and derived explanations may ultimately differ in

each case, but the common factor is what we seek to explain, which is

specific data items or values. Existing literature that focuses on data

as the explanation target, typically considers output data in particular,

which we discuss next. However, any data, even outside the behavior of

a system, can serve as the target, and existing explanation frameworks
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have been used in this manner. For example, Data X-Ray (Wang et al.,

2015a) has been used to derive explanations for traffic incidents over an

accident report dataset (Wang et al., 2015b).

2.3.2 Data processing output

When we consider explanations in the context of data-driven systems,

an explanation-worthy observation is typically tied to the system’s

operation and function. Therefore, much of the existing literature on

explanations targets the output of data processing operations, such

as queries (Example 2.3), updates (Example 2.7), or more complex,

and potentially non-relational, data processing pipelines (Example 2.6).

Within the processing output, explanations may target different aspects

of the data:

• Data items or values. Example 2.1 shows an instance of expla-

nations targeting the presence of particular data items or values

in the result of a query: certain tuples or their values may be

unexpected and, thus, and merit investigation. The absence of

expected results, such as in Example 2.2, can also be the target of

explanations. In the literature, this category is frequently referred

to as missing answers or why-not explanations.

• Outliers. Sometimes, what makes a data value surprising is its

relationship to other values. Results that deviate substantially

from the mean of the output distribution may be indicative of a

problem or a phenomenon that needs to be better understood. For

example, the Scorpion (Wu and Madden, 2013) and the CAPE sys-

tems (Miao et al., 2019c) target outliers in the result of aggregate

queries.

• Trends. Output explanations may not always target particular

data items, but groups of items that indicate a surprising trend.

In Example 2.3, the target of the explanation is the decreasing

trend of industry publications at SIGMOD, which is surprising

given the increasing trend of papers from academia.
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2.3.3 Performance

Aside from unexpected data results, interesting issues and surprising

observations may sometimes be evidenced through other aspects of a

system’s behavior. Common observable aspects of performance, such

as overall runtime or use of resources, can indicate a problem with the

system or interactions that were not previously understood and merit

explanation. Examples 2.10 and 2.11 demonstrate two such cases in

relational and non-relational cases. Understanding the reasons for unex-

pected performance can facilitate the improvement of the corresponding

systems. Performance considerations can also include the overall quality

of a system’s function. For example, if a system produces generally

poor results based on some metrics (e.g., in Example 2.12 the learned

system is bound to produce discriminatory results), explanations can

target these aspects of performance, with the goals of understanding

the behavior and potentially changing it.

2.3.4 Queries

Any component of a system can be an explanation target. This hasn’t

been explored much in general data processing pipelines, as individual

components can be complex. However, in the context of relational data,

prior work has identified queries as explanation targets. Example 2.5

identifies the erroneous student query as the explanation target. Note

that we shouldn’t confound the explanation target (what we are explain-

ing) with the derived explanation (how we explain it). In this example,

“what” focuses on the query; the “how” is not another query—the correct

query is already known—rather it is a dataset that succinctly highlights

the problems in the submitted query (Miao et al., 2019a). We discuss

explanation approaches (“how”) in the next chapter.

2.3.5 Differences

When we think of what merits explanation, we typically think of some-

thing surprising that deviates from some norm or expectation. A lot of

the work on explanation research tends to overlook the reason itself for

seeking an explanation, merely focusing on deriving an explanation as-
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suming that something is labeled by some oracle as explanation-worthy.

But the precise indication of the deviation—what makes something

surprising, and, thus, explanation-worthy—can provide important clues

on what the proper explanation should be. Some work relies on rough

indicators of the deviation, e.g., a value is surprisingly low or high (Roy

and Suciu, 2014). But these indicators are often vague and don’t spec-

ify the nature and extent of the deviation precisely. When possible,

more accurate specification of the deviation can lead to more targeted

explanations.

The difference between an expected and an unexpected value or

behavior, or particular change in data or behavior can provide such a

specification. Example 2.4 explicitly highlights such differences in query

results as the explanation target: given two trusted datasets that are

supposed to represent the same data, albeit under a different schema,

one should expect queries that seek the same information to return the

same results. When they do not, explanation frameworks can assist in

interpreting these differences. In some of our other examples, differences

are an implicit focus of explanations: Example 2.9 focuses on the modifi-

cations inflicted by a repair algorithm on a dataset, while Example 2.11

specifies a performance abnormality against another execution that pro-

gresses normally. In both these cases, the change is what captures the

deviation that is deemed interesting, making it the explanation’s target.

2.3.6 Machine learning models and predictions

In recent years, machine learning has become prevalent in a wide range

of application domains. Systems using learned models are used to

make or influence critical decisions with practical human and societal

impact, ranging from product recommendations, to medical diagnosis

and treatment, and even criminal sentencing. As such systems incur

a profound impact on people’s daily lives, there is a pressing need to

understand, justify, and enhance trust in automated decision making by

ML models. Explanations have targeted both the decisions, as well as the

models themselves, e.g., why does a model have certain characteristics,

and explainability is an active field in the machine learning community.

We discuss an example that highlights this problem setting.
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Figure 2.12: Example from Ribeiro et al., 2016, explaining individual predictions
of competing classifiers that try to determine if a document is about “Christianity”
or “Atheism”. The bar chart represents the importance given to the most relevant
words, also highlighted in the text. Color indicates which class the word contributes
to (green for “Christianity”, magenta for “Atheism”).

Example 2.15 (Ribeiro et al., 2016). Figure 2.12 shows explanations

for the predictions of two classifiers over the same data. The right side

indicates the words that most contribute to the prediction of a support

vector machine with an RBF kernel, trained on unigrams to differentiate

“Christianity” from “Atheism.” Although this classifier achieves 94%

held-out accuracy, and one would be tempted to trust it based on

this, the explanation for this instance shows that predictions are made

for quite arbitrary reasons (words “Posting”, “Host”, and “Re” have

no connection to either Christianity or Atheism). After getting such

insights from explanations, it is clear that this dataset has serious issues

(which are not evident just by studying the raw data or predictions),

and that this classifier, or held-out evaluation, cannot be trusted.

We will briefly review some relevant approaches to explainability for

ML models and explainable AI (referred to as XAI) in the next chapter,

but as mentioned earlier, a detailed discussion on XAI is beyond the

scope of this article.
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Explanations and Methodologies:

How

In the previous chapter, we discussed the dimensions of “Who”, “Why”,

and “What” that specify the explanation needs of a particular problem

setting. A problem setting is not explicitly tied to particular approaches

to explanations and solutions, and there is often more than one way to

tackle the same problem. However, it is possible that particular problem

settings are more amenable to certain approaches. Our intent has been

to decouple the dimensions relevant to the problem specification from

the particular methodologies and frameworks proposed in the literature.

We discuss the latter in this chapter. Specifically, we examine how the

existing literature has tackled some of these problems settings, and

identify several high-level desiderata, methodologies, and commonalities

across techniques.

We characterize the solution space of explanation settings as the

“How” dimension. We first examine some general principles of expla-

nation optimality, i.e., how to measure the quality of an explanation,

and how to compare two explanations to determine which is prefer-

able. We present several high-level objectives that have been proposed

in the literature, and suggest some additional ones to consider (Sec-

tion 3.1). Then, we identify common explanation types (what a derived

258
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explanation looks like), and high-level aspects of methodology (e.g.,

intervention-based, summary-based, etc.) in Section 3.2. Finally, we

discuss particular approaches from the existing literature for a selection

of problem settings (Sections 3.3 to 3.9).

3.1 Explanation objectives: measuring explanation quality

As a tool primarily meant for human consumption, explanations remain

highly-subjective notions. Their effectiveness is not always quantita-

tively measurable, and, ideally, explanation quality should be evaluated

through targeted qualitative analysis and user studies collaborating

with domain experts and cognitive scientists. The varied desiderata

implied by the different problem settings further complicate this issue.

As we discussed, explanations meant for debugging purposes likely need

to be more specific and more detailed than those meant for illustrative

purposes. Similarly, explanations targeting a general audience would

look different that those targeting domain or technical experts.

The existing literature has taken varied approaches to defining

explanations, specifying their desirable properties, and proposing metrics

for evaluating them. However, ultimately, there is no universally accepted

set of objectives that explanations should satisfy. Our goal here is to

distill some high-level desiderata for explanations that are frequently

associated with explanation quality.

• Succinctness. The core purpose of explanations is to aid our

understanding of an observation. However, understandability is a

subjective and not directly measurable notion. The explanation

literature has frequently used succinctness as a substitute for un-

derstandability. Intuitively, explanations should be small enough

to be easily understood. Large explanations, while accurate, are

unlikely to aid the goal of understandability. For example, consider

the case where the goal is to explain a trend in aggregate results

(Example 2.3). Providing the why provenance that consists of all

relevant input tuples (Cheney et al., 2009) as an explanation is un-

likely to be effective, because aggregation results typically depend

on a large number of input tuples. Thus, the set of relevant input
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tuples, or even some algebraic form like provenance semirings for

aggregates (Amsterdamer et al., 2011), would likely be impractical

for human consumption. Therefore, succinctness is intuitively a

good proxy for understandability, and explanation frameworks

commonly use it as an explicit objective.

• Interpretability. An important dimension of explainability is the

target audience (“Who”). Explanations need to be in a form that

is easily interpretable by their intended audience. For example,

explanations in the form of raw data may often be unsuitable

for non-experts, whereas higher-level meta-data that summarizes

aspects of the relevant data is likely to be easier to interpret.

Intuitively, interpretability as a goal drives design choices in the

explanation form, rather than specifying an explicit optimization

objective.

• Actionability. A driving motivation for producing explanations

within a data system is the particular purpose (“Why”), which

may include goals like debugging, debiasing, or performance en-

hancements. Explanations need to point to actionable suggestions

for satisfying the purpose they were designed for. Therefore, they

need to consider which components of the data or system can be

subject to intervention, and the practicality of such interventions.

• Measurability and Comparability. The search space for pos-

sible explanations is typically very large. The goal of optimization

objectives is to efficiently search through this space and narrow

down the selection of relevant explanations as much as possible.

Metrics for explanation quality should enable pruning parts of the

search space when ranking explanations.

• Computability. Related to the above point, explanations are

typically intended for interactive data analysis, and therefore,

should be efficiently computable even if the search space is large.
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3.2 General methodologies

Existing literature has employed a variety of approaches in the design

of explanation frameworks. Before discussing particular solutions, we

first present the high-level principles of common methodologies in this

research space.

• Provenance-based methods rely on maintained provenance in-

formation to derive explanations. Such provenance-based explana-

tions trace the target output to particular inputs or to components

in the pipeline that participated in the derivation of this output.

Provenance-based explanation frameworks require maintenance

of potentially large provenance data, or relatively simple compu-

tations where provenance information can be generated on the fly

or reverse-engineered.

• Intervention-based methods rely on implementing changes to

the data (e.g., removal of tuples) or the system (e.g., forcing a

program state), and observing the effect that such interventions

have on the system output or behavior. When the effect (e.g.,

output or behavior) that provoked the need for explanation is

reversed by the intervention, this indicates a connection between

the explanation target an the inflicted change. Interventional

methodologies are often used when reasoning about causality,

as causality often cannot be inferred from observational data

alone. However, interventions can be computationally intensive, as

systems need to be rerun, and computations need to be repeated,

often over a large number of interventions. A common approach

for addressing this combinatorial problem is to use properties

of the system under study to exploit commonalities between

computations for sets of interventions or to prune interventions

that are guaranteed to be of lower quality than previously explored

explanations.

• Statistical or observation-based methods reason over pre-

viously gathered data, rather than deciding on and executing

interventions. They are more practical in cases where there is
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already enough data to use for such analysis, but they are often

limited with respect to distinguishing correlation from causation.

• Summarization-based methods reduce the size of explanations

through summarization. Summarization techniques that have

been applied involve feature extraction, taxonomies, mappings,

or general meta-data that encompass larger sets of lower-level

explanations. For example, if a framework derives sets of tuples

as explanations, but the sets are large, summarization methods

may increase succinctness by clustering the inputs, and replacing

the cluster by a higher-level description, e.g., by identifying com-

monalities among the elements of a cluster (e.g., all customers

are from the US). As such, summarization-based approaches can

unearth trends in data or computations.

• Example- or Counterexample-based methods rely on the

human inclination to perceive things through examples. These

frameworks typically derive illustrative explanations, where an

effect is explained through an example or counterexample. For

example, a particular output can be explained by demonstrating

a particular part of the data flow that derives it; or, a mistake in

a query can be elucidated by a small data sample that highlights

the deviation from the expected result.

• Model-based methodologies reduce the problem of generating

explanations into instances of another type of problem which can

be solved using existing tools. Common targets of such transforma-

tions are learning problems, satisfiability problems, or optimization

problems.

Note that explanation frameworks may combine several of these

methodologies. For example, summarization techniques are often used

to extract higher-level explanations from provenance information (e.g.,

Cate et al., 2015; Lee et al., 2020). Now that we have described these

general methodologies, we will highlight particular approaches in the

literature, organizing them with respect to different problems settings.
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3.3 Explaining query answers through data provenance

Perhaps the most prevalent approach to explaining, debugging, and trac-

ing query answers is through tracking provenance or lineage. Provenance

has been studied in the database research community for decades, and

has been used broadly in various contexts and granularities including

in scientific workflows and storage systems (e.g., Muniswamy-Reddy

et al., 2006; Davidson et al., 2007). Most relevant to this article is the

concept of fine-grained data provenance that records the origin of the

query answers in terms of the input data (e.g., Cui and Widom, 2001;

Buneman et al., 2001; Green et al., 2007; Cheney et al., 2009). Prove-

nance can be recorded at different granularity levels, e.g., simply by

showing the set of input tuples that contributed to a query answer (why-

provenance), or by showing the process that generated the query answer

using a Boolean formula (how-provenance), which records conjunctive

uses of input tuples through joins (∧) and alternative uses of tuples

through projection or union (∨). Consider a toy example of a database

D with two relations: R(A, B) and S(B, C), with tuples r1 = R(a1, b),

r2 = R(a2, b), and s = S(b, c), and the query Q=πC(R ▷◁ S), which

joins R and S on B and projects the result to C. There is a single out-

put in Q(D), i.e., c, with lineage that can be expressed as the Boolean

formula (r1 ∨ r2) ∧ s. This expression indicates that the output c will

be generated if and only if tuple s is present, and, at least one of r1, r2

is present. This Boolean lineage formula can serve as an explanation,

providing a succinct and precise representation of the generation of the

output c.

Provenance semirings (Green et al., 2007) also provide a general

framework for expressing provenance information. Such expressions

explain in detail how a query result is derived from the input data and

which input tuples contributed to which results. Building upon such

concepts, the notion of provenance has also been extended to aggregate

queries (Amsterdamer et al., 2011; Glavic et al., 2013). Other examples

of provenance models that record such information include provenance

traces (Cheney et al., 2014) and provenance models for recursive Datalog

queries that track rule derivations (Köhler et al., 2012; Deutch et al.,

2014; Lee et al., 2018).
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There is a vast and rich literature on provenance in database research

(e.g., see the article by Glavic (2021), Cheney et al. (2009), or the tutorial

by Tannen (2010)). Further, as discussed in Section 3.1, why- or how-

provenance may not satisfsy our desiderata for good explanations in

many of our targeted applications. In this article, we mainly focus on

other methods, some of which still use provenance, though in different

forms.

3.3.1 Refining provenance information

So far, we discussed provenance as a prevalent tool for supporting

explanations for query answers, such as the setting of Example 2.1.

Such explanations may simply include all input tuples that contributed

to the output (why-provenance) or a more fine-grained description of the

precise derivation using a Boolean expression (how-provenance). In the

toy example we presented earlier in the section, the Boolean expression

of the provenance was small enough to provide a succinct and accurate

explanation of the answer. However, in practice, provenance expressions

can grow large and become hardly interpretable by a human user, thus,

diminishing their value as explanations. Prior work has explored ways

to refine provenance information by prioritizing input tuples based on

a metric of their contribution towards a particular output. We discuss

two types of metrics here.

Responsibility

In our toy example, the Boolean provenance expression (r1 ∨ r2) ∧ s

contains only three tuples. But the way these tuples contribute to

the output is different. Tuple s is necessary for producing the output,

whereas only one of r1 and r2 is needed. Thus, intuitively, the contribu-

tion of s to the particular query answer should be ranked higher than

the contributions of each of r1 and r2. Meliou et al. (2010) proposed

the notion of responsibility as a measure for tuple contributions to a

query answer. This metric was adapted from prior work in the causality

literature (Pearl, 2000; Chockler and Halpern, 2004; Halpern and Pearl,

2001) and is based on the notion of intervention and counterfactual

causality. In simple terms, an input tuple t ∈ D is a counterfactual
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cause of an answer a ∈ Q(D) if removing t from the input also removes

a from Q(D); hence, in our toy example, s is a counterfactual cause

for output c. Extending counterfactuals, an input tuple t ∈ D is an

actual cause of an answer a ∈ Q(D) with contingency Γ, where Γ is a

set of input tuples, if removing Γ from D makes t counterfactual. Hence,

in our toy example, r1 is an actual cause with contingency Γ = ¶r2♢.

Finally, the responsibility of a tuple t is defined as ρ = 1
1+minΓ ♣Γ♣ . Thus,

in our toy example, ρs = 1 and ρr1
= 0.5. Meliou et al. (2011) extended

the notion of responsibility to multiple outputs and views. Freire et al.

(2015) later revisited the notion of responsibility and analyzed it for

cases where functional dependencies are present in the data.

Shapley values

Livshits et al. (2020) proposed an alternative method for measuring

tuple contributions, adapting the notion of Shapley Values from the

Game Theory literature (Shapley, 1953). The concept comes from a

cooperative game that is played by a set A of players, and there is a

wealth function v that assigns wealth v(S) to each coalition S ⊆ A of

players. For example, in a publication/citation database, the players

can be researchers, and v(S) can be the total number of citations to

papers by an author in S. The Shapley value aims to distribute the

wealth v(A) among the players a ∈ A by quantifying the contribution

of each player to the overall wealth (in this example, contribution of an

author for citations).

Formally, in a cooperative game with players A, there is a function

v (called the characteristic function or the wealth function) v : 2A → R

with v(∅) = 0. For any subset S ⊆ A of players, v(S) represents the

value of the outcome produced when the players of S cooperate. As

mentioned above, the Shapley value measure the contribution of a player

a to the outcome as the expectation of the difference between the value

v(S) and v(S − ¶a♢) over all coalitions S not including a, i.e.,

Shapley(A, v, a) =
∑

S⊆A−¶a♢

♣S♣ ! · (♣A♣ − ♣S♣ − 1) !

♣A♣ !



v(S ∪ ¶a♢) − v(S)


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Note that computation of Shapley values requires computing the

expected new contribution of a player with respect to a random permu-

tation of the other players. since the number of possible permutations is

exponential, the computation of the Shapley value is hard in the general

case. Livshits et al. (2020) gives complexity results for both conjunctive

and aggregate queries, and proposes approximation algorithms for the

hard cases; in a later work, (Reshef et al., 2020) studied the complexity

of computation of Shapley values to queries with negation.

Responsibility and Shapley values both relate to intervention-based

methods, as they try to quantify the contribution of a single input

tuple to the query answer in addition to other tuples present in the

database. The Shapley value considers more fine-grained incremental

contributions to the output than responsibility (by considering all possi-

ble permutations of all possible subsets before adding the input tuple),

and therefore is computationally more expensive (Livshits et al., 2020).

3.4 Explaining aggregate query outputs and outliers

Queries in data analysis are likely to have aggregates (sum, count, min,

max, etc.), often plotted as scatter plots, line graphs, or bar charts for

ease of analysis. We provide a simple scenario: there is an aggregate SQL

query Q possibly with a group-by operator, a database D, and the user

is trying to understand the result tuples in the query answer denoted

by Q(D). We use agg(t) to denote the aggregate value of an answer

tuple t ∈ Q(D), and gb(t) to denote the non-aggregate attributes (if

any) for t; for simplicity, we assume a single aggregate value in Q unless

specified otherwise.

Example 3.1.

Consider a simplified schema for the publication data of Ex-

ample 2.3, with three tables: Author(aid, name, inst, domain),

Pub(pid, title, year, venue, area), and Authored(aid, pid).

Unique keys are underlined. Suppose domain can have values ‘edu’

(academia in the United States) or ‘com’ (industry), which can be found

for researchers from the domain of their webpages whenever available;

inst denotes the institution where the researcher works. The output
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bars can be obtained by a SQL query Qsigmod joining these three tables,

selecting for venue = ŚSIGMODŠ and ranges of years with a 5-year mov-

ing window, and for each window outputting the number of distinct pids

as each paper can have multiple authors. Here, the group by attributes

gb(t) contain (year-range, domain) and agg(t) denotes the distinct

publication count as shown in the bars in Figure 2.3. For example,

for the tuple corresponding to the bar q1 shown in Figure 2.3, gb(q1)

is (2000-04, ŚcomŠ) and agg(q1) is the height of the bar q1 denoting

publication counts in SIGMOD from industry in years 2000–2004.

When the user studies the output of Q(D), she might find some

interesting, unexpected, or counter-intuitive values, sometimes in com-

parison with the other values. Such questions might include (but not

limited to):

1. (Outliers) Why is the value of agg(t) high/low for a t ∈ Q(D)?

In other words, why is t an outlier in Q(D)? (e.g., why is agg(q4)

high in Figure 2.3?).

2. (Comparisons) Why is the value of agg(t1) higher/lower than

agg(t2), for t1, t2 ∈ Q(D)? (e.g., why is agg(q1) higher than

agg(q2) in Figure 2.3?).

3. (Complex comparisons) Why is agg(t1) higher (lower) than

agg(t2), but agg(t3) is lower (higher) than agg(t1), for t1, t2, t3, t4 ∈

Q(D)? (e.g., why is agg(q1) higher than agg(q2) while agg(q3) is

lower than agg(q4) in Figure 2.3?).

4. (Trends) Why do I see a trend (e.g., increasing/decreasing) in

the agg values for tuples t1, t2 · · · , tℓ? (e.g., why do the light blue

bars for SIGMOD publications from academia have an increasing

trend in Figure 2.3?)

Such questions are likely to come from users who are data ana-

lysts, researchers, decision makers of relevant application domains, or

sometimes data enthusiasts and the general public (“Who”). Some

of these researchers might have a technical background in computer

science, statistical analysis, or data science, while some users might
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be more familiar with the domain instead. Therefore, the goal is to

provide meaningful explanations for this range of users as outlined in

Section 3.1. Next, we discuss a few approaches to explanations from the

literature for such aggregate query answers.

3.4.1 Intervention-based approaches

We start with an overview of intervention-based methods to explaining

aggregate query answers and outliers, proposed in Wu and Madden,

2013, Roy and Suciu, 2014, and Roy et al., 2015a. Here, we discuss

some high-level ideas from these approaches and refer to the papers for

technical details.

Motivation from causality. The basic idea of intervention-based

approaches is to (1) assume a compact representation of the tuples

identified in the explanation question along with the direction of the

deviation (high or low) as perceived by the user, and then (2) make

changes to the database D that would push the representation to the

opposite direction. For example, if the user asks ‘why is agg(t) high’,

a good intervention will change the data instance D to a new data

instance D′ (typically, as close as possible to D) such that agg(t) will

be much lower in Q(D′). The concept of interventions stems from the

literature on causal analysis (e.g., Pearl, 2000, see Chapter 4 for more

details on causal analysis):

• (causality by intervention) A variable Y is a cause for another

variable Z if changing Y changes Z, i.e., ∆Y ⇒ ∆Z. In other

words, an intervention on Y causes a change in Z.

Motivated by the causal notion of interventions, we can derive a

similar concept of explanations for database query answers:

• (explanations by intervention) A set of input tuples ∆D ⊆ D

is an explanation for (one or more designated query answers in)

Q(D) if ‘intervening on’ that subset also changes Q(D) to some

extent, i.e., ∆D ⇒ ∆Q(D), where ∆D denotes the subset of input

tuples changed by the intervention. Interventions causing higher

changes in the output are intuitively stronger explanations.
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Interventions can include the deletion of tuples, the addition of

tuples, or the modification of tuples. Deletion is often a preferred choice

for intervention (Wu and Madden, 2013; Roy and Suciu, 2014; Roy

et al., 2015a), since adding or modifying tuples raises concerns regarding

the validity of such updates in a dataset in practice. In this section, we

will focus on deletions as the intervention.

Allowing an explanation to be defined as an arbitrary subset of

the input tuples has disadvantages with respect to common explain-

ability objectives (Section 3.1): (1) an arbitrary subset of tuples can

be large, thus, failing the expectation for succinctness; (2) tuples in

an arbitrary set may not share common properties, thus leading to

poor interpretability; (3) the search space over all possible subsets of

a dataset is exponential in the size of the input data, leading to poor

computability. As a result, it is common to opt for explanations in more

restricted, compact forms.

Predicates as explanations. A natural way to think collectively

about groups of tuples is through predicates. Predicates provide a

natural way to summarize commonalities among input tuples, and

they can be combined through conjunctions to create more restricted

groups. Thus, producing predicates as explanations has been a popular

approach in the literature (Wu and Madden, 2013; Roy and Suciu,

2014; Gebaly et al., 2014; Roy et al., 2015a; Lee et al., 2020). Predicate-

based explanations are succinct and easily understandable, effectively

summarizing the properties of the tuples relevant to the explanation.

Since explanations are modeled as predicates, interventions can

operate directly on the predicates: Given an explanation predicate ϕ,

the intervention on ϕ, denoted by ∆ϕ, corresponds to the subset of

tuples in D defined by the predicate ϕ. This type of deterministic and

unique interventions on predicates leads to a significant reduction in

the search space, which is only exponential with respect to schema

complexity, but polynomial with respect to the most common concern

of data complexity (Vardi, 1982). However, more complex (Meliou et al.,

2011; Meliou and Suciu, 2012) as well as stochastic interventions are

possible, though little work has been done in this direction (we discuss

further in Chapter 4).
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Ranking explanations. We now recast the explanation questions

listed after Example 3.1 using a simple formalism: we denote the answer

tuples that are the explanation target with S ⊆ Q(D), and we use

f(S, D, Q) to represent the target relationship (e.g., comparison, trend,

etc.); then the explanation seeks to answer why f(S, D, Q) is high or

low:

• (Outliers) S = ¶t♢ and f(S, D, Q) = agg(t).

• (Comparisons) S = ¶t1, t2♢, and f(S, D, Q) can be agg(t1)
agg(t2) ,

(agg(t1) − agg(t2)), etc.

• (Complex comparisons) S = ¶t1, t2, t3, t4♢, and f(S, D, Q) can

be agg(t1)/agg(t2)
agg(t3)/agg(t4) , (agg(t1)

agg(t2) − agg(t3)
agg(t4)), etc.

• (Trends) S = ¶t1, t2 · · · , tℓ♢, and f(S, D, Q) can be the slope of

the best fitted line by linear regression.

If the question involves why f is ‘high’, a good explanation predicate

ϕ will decrease the value of f after intervention. Therefore, a possible

choice of ranking function is ordering the explanation predicates ϕ in

increasing order of changes: ρϕ = ♣f(S, D, Q) − f(S, (D − ∆ϕ), Q)♣ (Roy

and Suciu, 2014; Roy et al., 2015a). However, without other safeguards,

the highest-ranked explanation may be the one that removes all tuples,

which is not meaningful or useful. One way to avoid this is to penalize

the scoring function based on the number of deleted tuples, e.g., Wu

and Madden, 2013 uses ρϕ =
♣f(S,D,Q)−f(S,(D−∆φ),Q♣

♣∆φ♣ . Similarly, if the

question involves why f is ‘low’, a good explanation predicate ϕ will

increase the value of f after intervention; however, we should note that

a monotone f cannot increase in value after tuple deletion (alternative

approaches are discussed in Section 3.4.2).

Other ranking considerations may account for producing diverse

explanations (i.e., avoid having the top-ranked explanations be too

similar), which may be helpful for interactive exploration. Generally,

having a good balance of diversity, coverage, and utility, as done in

general top-k query answers (Joglekar et al., 2016; Wen et al., 2018),

can also be considered while ranking explanations.
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Overview of algorithms. With a well-defined objective function

ρϕ, the goal is to devise algorithms that can find top-k explanation

predicates ϕ as efficiently as possible. The Scorpion system (Wu and

Madden, 2013) considers a database with a single table (the materialized

universal table with the join output for multiple tables), and finds top

explanations in two ways: (1) with a top-down decision tree partitioner,

or (2) with a bottom-up partitioner that starts with single-attribute

predicates and then intersects them to construct multi-attribute predi-

cates. Scorpion also uses several optimizations like sampling and parallel

partitioning.

On the other hand, the key idea in Roy and Suciu (2014) is to

treat tables in a multi-relational database separately and take into

account mutual dependencies for the existence of tuples. A simple kind

of dependency is referential integrity constraint with cascade delete

semantics (if a tuple with the primary key is deleted, all tuples with a

foreign key referring to this primary key are deleted). However, other

types of user-defined constraints might also exist, e.g., if an author is

removed, then eventually all of their publications should be removed

from the database, which requires an extension to foreign keys. Roy and

Suciu (2014) give a recursive program that can compute interventions for

a given explanation predicate ϕ in the presence of mutual dependencies

among tuples, which gives the exact intervention ∆ϕ and scoring function

ρϕ, but is not efficient. They also give an efficient optimization heuristic

based on the SQL data cube operator (Gray et al., 1997) for evaluating

ρϕ for all possible explanation predicates ϕ. For Examples 2.3 and 3.1,

this returned interesting explanations like leading industrial labs (and

their senior database researchers) that were highly active in database

research in early 2000 but later had a shutdown or possibly shift in

research focus, explaining the decline in industry papers in SIGMOD,

as well as relatively new but highly productive academic institutions as

they contributed more to the increasing trend in the academia papers

compared to more established academic research groups. Subsequently,

Roy et al. (2015a) proposed the notion of explanation-ready databases

that pre-compute and store interventions of possible explanations as

they are independent of queries and user questions, then evaluate

all explanations simultaneously using concepts from incremental view
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maintenance (Ceri and Widom, 1991; Ahmad et al., 2012) to find the

top ones when a user question arrives.

3.4.2 Counterbalance-based approaches

Insertions or updates are difficult to implement as modes of intervention,

while preserving the semantics or properties of the data. Therefore,

intervention-base methods usually rely on deletion of input tuples; this

restricts the explanations to the provenance (contributing input tuples)

of the answer tuples in the user’s questions. This, in turn, leads to two

limitations of the intervention-based approaches:

1. (Context is ignored) Explanations are limited in scope as

interventions are restricted to tuples that directly contribute to

the output tuples identified in the user question. Other parts

of the input are ignored in the space of possible explanations,

possibly losing useful contextual information from the rest of the

data, which can be the bulk of the available data.

2. (Cannot explain ‘why low’) Intervention-based approaches

intend to reverse as much as possible the trend perceived as

deviating by the user (e.g., if the user asks why a value is high,

good explanations would lower that value as much as possible

through hypothetical tuple deletion). However, if the function

f on query results that we want to change is monotone, then

the output cannot be made higher by tuple deletion. This makes

intervention-based approaches unsuitable for explaining some ‘why

low’ questions.

Miao et al. (2019c) proposed an alternative to intervention-based

explanations, called explanations by counterbalance. Suppose one notices

a drop in crime rate in one area of a city in a particular year compared

to the other adjacent years. To explain this drop, one can find higher

crime rate in this area in the year before, which might have made

the authorities redirect resources to this area to reduce the crime rate.

Similarly, a lower than usual number of publications in a venue by a

researcher can be explained by higher than usual number of publications

in other venues in the same year by the same researcher.
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To obtain such explanations, Miao et al. (2019c) mine common

patterns based on the group-by attributes and aggregate values with a

large enough support and confidence from the data (e.g., the number of

annual publications by many researchers is about constant, although the

constant may vary from researcher to researcher). Then, with respect

to these patterns, a low (respectively, high) outlier can be explained by

a high (respectively, low) outlier, that together ‘counterbalance’ each

other. The effectiveness of the explanations for the purpose of ranking

is decided by (1) the distance of the explanations from the user question

(e.g., publications in years further away have less weight), and (2) the

surprisingness in the aggregate value (e.g., if the researcher publishes

about 2-3 papers in venue X typically in a year, publishing 10 papers

in that venue a year is more surprising than publishing 4 papers). We

refer to Miao et al. (2019c) for technical details and concrete examples.

3.4.3 Summarization-based approaches

While the notion of provenance (Section 3.3) has often powered expla-

nations of aggregate query answers (Amsterdamer et al., 2011; Glavic

et al., 2013), fine-grained provenance is often too large for human con-

sumption. Examples of use cases where fine-grained provenance is too

detailed are queries with aggregation which derive a small number of

outputs from a large number of input rows, and why-not provenance (Lee

et al., 2020) that may consist of a very large number of derivations even

for simple queries. Summarization methods aim to refine explanations

in ways that improve their succinctness, and, by consequence, their

understandability.

Summarization by patterns or predicates

Selection patterns or predicates (discussed in Section 3.4.1) can serve as

a summarization mechanism. For example, given a relation augmented

with a binary outcome attribute, explanation tables (Gebaly et al., 2014;

Gebaly et al., 2018) aim to find ets of patterns (predicates) that affect

the outcome attribute the most. Gebaly et al. (2014) presented an

athlete’s exercise log as an example for this approach. Each row in the

log records the day of the week and time of the exercise, the meal eaten
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before the exercise, and a binary outcome attribute indicating whether

the exercise target goal was met. An explanation table consists of a

set of patterns. Each pattern is a tuple of values and wildcards (similar

to other work on predicate-based explanations, the wildcard symbol “*”

represents all possible values of an attribute) along with the number

of tuples it matches (count) and a fraction indicating how many of

these tuples have a positive outcome (the outcome attribute is one).

For instance, an explanation table for the exercise log may contain an

entry (Sat, ∗, ∗) with a count of 20 and a fraction of 0.2. This pattern

states that the exercise goal was only met 20% of the time out of the 20

Saturdays recorded in the log, independent of the time and what the

athlete has eaten.

Lee et al. (2020) offer another example of pattern-based explanations:

they generate approximate summaries for why-not provenance to solve

both the scalability as well as usability challenges stemming from

the large size of why-not provenance. This approach highlighted the

need of approximate techniques for application domains like why-not

provenance where even enumerating all fine-grained provenance as input

to summarization is not feasible.

Abuzaid et al. (2021) propose to integrate pattern-based summa-

rization of the differences between two datasets into relational query

processing in the form of a new logical operator called DIFF and demon-

strated that several existing pattern-based explanations approaches

can be expressed using the DIFF operator. Furthermore, the authors

discussed several logical and physical optimizations for the DIFF opera-

tor. Earlier, Sarawagi and Sathe (Sarawagi, 2000; Sarawagi and Sathe,

2000; Sathe and Sarawagi, 2001) proposed operators (RELAX, DIFF,

SURPRISE) for interactive exploration of OLAP data cubes that con-

tinuously adapt to the knowledge of the user on the data and guide her

to the most informative parts of the cube from the viewpoint of the

user.

Summarization with taxonomies

Another class of summarization approaches that has been used in this

context is summarization based on taxonomies (Glavic et al., 2015),
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or more generally ontologies to summarize data for the purpose of

explanations. Cate et al. (2015) used ontologies which are mapped

to concepts in a database in the spirit of ontology-based database

access (Calvanese et al., 2007) to generalize a missing answer to a set of

missing answers explained through a higher-level concept in the ontology.

As an example, a user may wonder why there are no train connections

from New York to Paris. The approach would explain this through the

generalization of this missing answer: there are no train connections from

any city in the US (the concept UScity subsumes New York) to any city

in Europe (the concept EuropeanCity subsumes Paris). Interestingly,

this work showed that in lieu of an user-provided taxonomy, a taxonomy

can be build over queries (such as the selection patterns mentioned

above) based on query subsumption: if a query Q1 is contained in

a query Q2 then the ontological concept corresponding to the set of

values described by Q1 is a specialization of the ontological concept

corresponding to the values described by Q2. In this example, the query

σcounty=US (US cities) subsumes the query σstate=NY (NYstateCities).

Other approaches that use taxonomies are Data X-Ray (Wang et al.,

2015a), which creates summaries to describe errors in data based on

hierarchical meta-data, and Glavic et al. (2015), which applies ideas from

Cate et al. (2015) to explain the provenance of answers and non-answers.

Summarization with natural language

Another summarization mechanism is to factorize provenance informa-

tion. Deutch et al. (2017) leveraged the structure of the user’s explana-

tion query in natural language to factorize the provenance by replacing

subexpressions with counts. For example, for a query returning authors

that from a particular university who have published at least one paper,

an explanation for the provenance of a result tuple may replace the set

of papers published by an author in the provenance with the number of

such papers.
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3.5 Explaining queries

In many cases, explanations focus on understanding how a query, rather

than the input data, affected a result. For example, when constructing a

complex query, a user may want to understand which parts of the query

are responsible for producing (or, failing to produce) an unexpected

(or, expected) result. That is, explaining an answer or missing answer

through properties of a query can aide users in debugging the query.

Following terminology used for distinguishing between these two types

of explanations for missing answers, we refer to such explanations

as query-based as opposed to instance-based like the intervention and

summarization-based approaches described in Section 3.4.

We can classify query-based explanation problems based on what

should be explained and what properties of queries are explored for

the explanation. A common class of query-based explanation problems

explains a particular result, i.e., why the query returned the particu-

lar answer. Examples of this class of problems include debugging an

erroneous query result by identifying which parts of the query caused

the erroneous output to be returned (Glavic et al., 2010; Alexe et al.,

2006; Fehrenbach and Cheney, 2019), explaining a missing answer by

pointing out parts of the query that should be changed to make the

missing answer appear in the result (Chapman and Jagadish, 2009;

Tran and Chan, 2010; Bidoit et al., 2014), and program slicing that

identifies which parts of an input program are sufficient for producing

an output or intermediate result of interest (Cheney, 2007; Xu et al.,

2005; Tip, 1994; Weiser, 1981). Note that, in this problem setting, we

assume that the query (or program) can be broken into parts, and these

individual parts are considered to be potential causes for the observed

outcome (existing or missing answers). For example, we may define the

parts of a query expressed in relational algebra to be the operators of

the query. Closely related to this type of explanations are approaches

that explain why a query result is empty (this is often called the empty

answer problem) or why a query returns too many results (Mottin et al.,

2013). While identifying the parts of a query that are responsible for

producing a result (or failing to produce a result), this may not be

sufficient information to repair the query and resolve the error. An
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alternative type of explanation may directly derive a repaired version of

the query. Finally, counterexample-based mechanisms can also be used

in query-based explanations (Chu et al., 2017b; Miao et al., 2019a). We

proceed to discuss some of these approaches at a high-level, and refer

the reader to the corresponding papers for more details.

3.5.1 Query-based explanations for missing answers

The problem of query-based explanations for missing answers was first

studied by Chapman and Jagadish (2009). Their approach assumes that

the input data is sufficient for producing the missing answer, and, thus, a

query repair exists that can derive it. Given a query Q, database D and

tuple t with the same schema as Q such that t ̸∈ Q(D), the approach

identifies a set of operators that are “frontier picky”. Intuitively, these are

the operators that are responsible for removing intermediate data items,

which were derived from input data items that could have contributed

to the missing answers. In particular, the approach identifies the input

tuples u that have attribute values compatible with the missing answer

t (i.e., u and t agree on their common attributes). An operator is called

frontier picky if there are successors of compatible tuples (tuples that

have at least one compatible tuple in their provenance) in the input

of the operator, but no successors of such tuples exist in the output

from the operator. In other words, all tuples that could have produced

the missing answer were removed by such an operator. The rationale is

that only such tuples can be in the provenance of the missing answer

if the picky operators are fixed so that they no longer filter out the

missing answer. Bidoit et al. (2015) introduced why-not polynomials

that represent query-based explanations as polynomials which encode

all alternative (addition) of sets of conditions (multiplication) that

caused a compatible input to be filtered out. The main advantage of

this approach is that it enumerates all possible explanations and utilizes

factorization to construct the set of explanations from explanations for

simpler subqueries. Diestelkämper et al. (2021) presents an approach

for nested data models and queries that scales to large data sizes and is

based on a sound formalization rooted in query repairs. This approach

is also the first to detect errors based on misuse of attributes (e.g., the
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missing answer is caused by projecting on work address instead of home

address).

Repairing queries

Several approaches moved beyond identifying the parts of the query

responsible for a missing answer, to deriving repairs, i.e., modify the

query, such that the modified version contains the (previously missing)

answer in its result. Query refinement techniques such as Mishra and

Koudas (2009) and Vélez et al. (1997) generate such repairs. Tran and

Chan (2010) presented an early approach for this problem that tries

to balance the similarity between the modified query and the original

query as well as the side effects of the modification on the query’s

result. The approach enumerates possible changes, e.g., to selection

conditions of queries, as potential repairs. Bidoit et al. (2016) refine

queries using a syntax-independent representation of queries. Closely

related to query refinement are techniques for query reverse engineering

(QRE) (Kalashnikov et al., 2018; Tran et al., 2014) where the task is to

given a query answer R and input database D to find a query such that

Q(D) = R. The main difference to query refinement is that instead of

refining an existing query, in QRE, no query is provided as reference.

3.5.2 Explaining wrong queries by counterexamples

In this section, we focus on the setting motivated by Example 2.5, where

a user knows that a query is erroneous, and an explanation needs to

elucidate the problems in the user’s query. Typically, in a classroom

setting, such errors in a wrong query Q2 are detected (manually or by an

autograder) based on a reference test database D and a correct query

Q1 such that Q1(D) ̸= Q2(D). However, as the reference database

D is meant to capture many ways in which a query can go wrong,

it is too large to shed light on the student’s mistake. In addition, in

a classroom setting, it is often undesirable to reveal the entire test

database D. The RATest tool (Miao et al., 2019a; Miao et al., 2019b)

derives an explanation for the wrong query Q2 by aiming to find a

smallest database sub-instance D′ ⊆ D such that Q1(D′) ̸= Q2(D′).

In Example 2.5, to convince the student that their query is wrong,
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the instructor can provide the full contents of the S and R tables

as a counterexample comprising 11 tuples. However, a smaller and

better counterexample can simply contain three tuples (e.g., t1 from

S and t4, t5 from R in Figure 2.4) to illustrate the non-equivalence of

Q1, Q2. This problem is NP-hard in the general case (when the input

queries are non-monotone) with respect to data complexity (Vardi,

1982). Moreover, the problem of minimizing counterexamples becomes

much more challenging for queries with aggregates and group-by (e.g.,

with a “HAVING count(*) >= 10000” condition in the query). Miao

et al. (2019a) give efficient solutions by tracking provenance semirings

for non-aggregates and aggregates (Green et al., 2007; Amsterdamer

et al., 2011), parameterization for queries with group-by and having

conditions, and using SMT-solvers and other optimizations. They also

discuss the effectiveness of this approach by deploying this tool in an

undergraduate database course. The primary focus of Miao et al. (2019a)

is simple relational algebra and SQL queries with at most one step of

group-by and aggregates at the end. Miao et al. (2020) demonstrates

a tool for complex SQL queries including set operators and nested

subqueries where even the tracing problem becomes non-trivial.

Two related topics studied in the literature are deciding query

equivalence and test data generation. In general, query equivalence is

undecidable (Abiteboul et al., 1995). A practical system, Cosette (Chu

et al., 2017b; Chu et al., 2017a), aims to decide SQL equivalence without

any test instances; it encodes SQL queries to constraints using symbolic

execution, and uses a constraint solver to find counterexamples (with

symbolic tuples and expressions) that differentiate two input queries.

Another approach called XData (Chandra et al., 2015) aims to capture

as many erroneous queries as possible but does not consider a particular

wrong query. Other methods for generating test data instances and

helping users understand the behavior of their dataflow programs are

discussed in Veanes et al. (2010) and Olston et al. (2009).

3.6 Explaining data differences and evolution

Explanations typically target something surprising that deviates from

some norm or expectation. Certain problem settings may allow for
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the specification of these deviations in a precise manner, usually by

contrasting a normal and an abnormal pattern of data or behavior. For

example, a value or pattern may appear deviant in comparison with

another observed value or pattern. This can arise in many settings:

different datasets or analyses may derive different results, time series

data may show a significant pattern change, or data evolution over

time may result in significant value changes that merit explanation.

While the element we seek to explain may still be a tuple or a set of

tuples, the fact that the source of the discrepancy is the difference or

comparison with another tuple or pattern can help guide explanations

more precisely.

3.6.1 Data differences

The explanation literature has often focused on some crude measures

for labeling an element, e.g., a tuple, as explanation-worthy, such as

indicating that its value is surprisingly low or high. This typically alludes

to a tuple being an outlier, deviating from a general trend within a

dataset; it does not usually refer to a direct comparison with a particular

different value. But if this comparison is made more explicit and precise,

it can steer explanations to target the particular discrepancy more

explicitly.

A situation where this direct contrast of values or results is possible

and effective is when the same analysis or query is performed over

different datasets. Data management research on explanations has

focused on the assumption that data resides in a single dataset, under

one common schema. But the reality of today’s data diverges from that

ideal. More often than not, datasets evolve separately, under different

schemas, and even datasets from trustworthy sources frequently end up

diverging, both in format and content, causing headaches to downstream

applications and users. While datasets may be related and overlapping,

their separate production and evolution can lead to disagreements, even

when datasets come from trustworthy sources. A case study of this

problem is summarized in Example 2.4. In this example, a query over

the data from the National Center for Education Statistics, a curated

and trustworthy source, suggests a number of majors provided by the
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University of Massachusetts Amherst that vastly disagrees with the

UMass database.

When different datasets provide different answers to semantically

similar questions, understanding the reasons for the discrepancies is

challenging and cannot be handled by single-dataset solutions. The key

insight within this setting is that the underlying assumption of similarity

between two datasets can supply a lot of additional information on

where the significant differences lie. There are two key considerations in

modeling this setting: (1) how to encode this similarity, and (2) what a

proper explanation looks like in this setting. These two considerations

are naturally linked, as the model for encoding similarity can serve as

the medium to highlight the differences.

A model-based approach

Explain3D (Wang and Meliou, 2019) models the similarity across

datasets using traditional schema mapping techniques. Specifically, tra-

ditional mapping techniques can provide an initial probabilistic mapping

M between the tuples of two datasets, D1 and D2. When two queries

Q1 and Q2 over D1 and D2, respectively, are expected to produce the

same result, but they do not, we can use their expected agreement to

refine the initial mapping M. Specifically, the goal is to identify the

most likely deterministic mapping M∗ given the queries’ provenance

and the initial mapping M. Intuitively, a particular mapping pinpoints

specific discrepancies; given the expectation of agreement between two

results and the principle of Occam’s razor, a mapping that indicates

the fewest discrepancies is preferred.

Ultimately, the derived mapping can serve as explanation, or it can

be further processed to derive more high-level explanations. But the

main point here is that the encoding of the expected agreement (the

tuple mapping in Explain3D) carries the information to highlight the

observed disagreement. This intuition appears fundamental and we ex-

pect generalizes to many explanation settings: if the expected agreement

or pattern can be encoded in sufficient detail, this encoding can serve

as a pattern for modeling and deriving appropriate explanations.
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Summarizing differences

The DIFF operator (Abuzaid et al., 2021) used in Macrobase (Abuzaid

et al., 2018) that we already discussed in Section 3.4.3 summarizes the

differences between two datasets using patterns. While technically, this

approach does not require the two datasets to be compared have the

same schema, it is still not suited very well for generating explanations

that explain the difference between the two schema of the input instead

of just the data. DataDiff (Yilmaz et al., 2018) computes a summary of

the difference between two datasets that includes transformations such

as deleting all rows matching a predicate (pattern) and or adding or

removing attributes.

3.6.2 Changing patterns in time series

A natural setting where change takes a central role is in time series and

streaming data. Such datasets typically represent evolving phenomena—

environmental monitoring, resource use, supply chains—and monitoring

applications seek to find, and potentially explain, interesting patterns.

What makes a pattern interesting, is a deviation from an expected norm,

e.g., a sudden spike in resource use, or high temperature measurements

during the winter. Instead of isolating the deviation and describing it

crudely (e.g., why is the resource use / temperature high), we gain more

information by specifying it more precisely, through direct comparison

with some reference data. For example, an interval of a stream can

be labeled as anomalous with respect to another reference interval.

Providing an explicit comparison point can target the explanations

more precisely as the causes of deviation between the anomaly and the

reference.

A solution to this setting again needs to consider the encoding of

the differences to specify an explanation format. EXStream (Zhang

et al., 2017) models stream intervals in a feature space; for example,

in a resource monitoring application, relevant features can include the

mean free memory during a time interval, the swap space, etc. Then,

the explanation is also feature-based: a conjunction of features that best

represents the differences between two intervals. In EXStream, the opti-

mal explanation is defined through a submodular optimization problem
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relying on an entropy-based distance function, but other definitions of

optimality are possible.

3.7 Explaining query performance

A different type of explanations that has appeared in the data man-

agement literature targets query performance, as illustrated by the

examples in Section 2.2.3. There is a large body of work in the litera-

ture using very different techniques for cluster monitoring, performance

debugging, root cause diagnosis, configuration recommendation, etc.;

we mention a few tools here and refer the reader to the corresponding

papers and the references therein for a detailed study.

The tool iQCAR (inter-Query Contention Analyzer), proposed in

Kalmegh et al. (2019) (see Example 2.10) attributes blame for the slow-

down of a query to concurrent queries using blocked times (Ousterhout

et al., 2015), time a task is blocked for resources like CPU, network,

memory, or IO used concurrently by other contentious queries, and helps

an admin understand why a query is slow in an execution which might

take hours of effort to do manually. Another explanation tool for de-

bugging performance in cluster computing is PerfXplain (Khoussainova

et al., 2012) that uses a decision-tree approach to provide explanations

for slowdown of MapReduce jobs comparing multiple executions. Here

the users can specify the expected and observed performance of pairs of

MapReduce jobs as well as a despite clause which captures how similar

the jobs are, and the system outputs top explanations based on metrics

like relevance, precision, and generality. EXStream (Zhang et al., 2017)

similarly contrasts performance metrics across executions, in the setting

of event stream monitoring. The methodology in this framework is based

on solving a submodular optimization problem to identify combinations

of high-level features, such as mean free memory during a time interval,

the swap space, etc., that best explain the divergence in performance.

There are several root-cause diagnosis tools (Dias et al., 2005; Borisov

et al., 2009; Yoon et al., 2016; Ousterhout et al., 2015; Roy et al., 2015b),

as well as tools for cluster monitoring, such as Ganglia (Ganglia Moni-

toring System 2019), Spark UI (Spark Monitoring and Instrumentation

2019), and Ambari (Apache Ambari 2019), that provide query metrics.
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Finally, configuration monitoring tools, such as Starfish (Herodotou et

al., 2011), Dr. Elephant (Dr. Elephant 2019), and OtterTune (Van Aken

et al., 2017), analyze performance and suggest changes in configuration.

3.8 Explainable AI and Machine Learning

Machine learning techniques are increasingly being used to make de-

cisions that have significant real-world impact, such as determining

mortgage rates and even to recommend criminal sentences. Therefore,

providing human-understandable explanations of such automated de-

cisions and processes is now a critical need to ensure transparency,

troubleshooting, and fairness. Explainable AI (XAI) is a new, active

field that aims to address explainability challenges in these systems (e.g.,

Lundberg and Lee, 2017; Ribeiro et al., 2018; Rudin, 2019; Barredo

Arrieta et al., 2020). This is a vast and fast moving research area, and

it is beyond the scope of this article to provide an exhaustive overview.

Instead, we will focus the discussion on a selected set of techniques

rooted in data management or approaches that we deem interesting to

data management researchers.

One of the most prevalent machine learning tasks is classification.

Complex models such as deep neural networks have been demonstrated

to excel in classification tasks. A commonly cited disadvantage of using

such complex models is that these models are quite opaque and, thus, it

is hard to understand why a test data point is assigned to a particular

class. A frequently studied XAI problem is: a classifier f was used to

classify a test data point x∗ and the user wants to understand the

classification outcome f(x∗); the same question can arise when an ML

model is used for estimation instead of classification.

3.8.1 Explaining Model Predictions through Feature Attribution

One possible type of explanations for an unexpected prediction outcome

is to identify which features of the test data point x∗ are responsi-

ble for the prediction. This class of techniques is often referred to as

feature attribution methods, because they attribute responsibility for

a prediction outcome to features of the data point x∗ (possibly also
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considering related data points). Methods in this category use a variety

of techniques to determine the responsibility of a feature. Note that

the two approaches we discuss here (Shapley values and causality) were

already discussed in Section 3.3.1, but for a different purpose: refining

provenance by computing the degree of responsibility each data item in

the provenance has for an observed query result.

One common approach is to model the prediction as a co-operative

game where the players are the input features and the goal is to deter-

mine a fair attribution of the payoff of the game (the prediction outcome)

to the players. Shapley values can be used to determine the contribution

of each feature (Shapley, 1953; Lundberg et al., 2018; Merrick and Taly,

2019; Frye et al., 2020; Aas et al., 2019). Shapley values have attractive

theoretical properties. However, there are several possible ways of how

the co-operative game modeling the prediction task can be designed that

can significantly affect the generated explanations (Merrick and Taly,

2019). Consider a prediction task with M input features X = ¶Xj♢

and an input point x∗. The Shapley value for a feature Xj with respect

to x∗, denoted as ϕj attributes to Xj part of the difference between

f(x∗) and the expected prediction of the model over all data points:

ϕ0 = E[f(x)] such that:

f(x∗) = ϕ0 +
M∑

j=1

ϕj

The Shapely value ϕj for feature Xj is computed by calculating

the mean over all subsets S of X − ¶Xj♢ of the difference between the

expected prediction of the classifier for all points that agree with x∗ on

S and all points that agree with x∗ on S ∪ ¶Xj♢:

ϕj =
∑

S⊆X −¶Xj♢

♣S♣! (M − ♣S♣ − 1)!

M !



v(S ∪ ¶Xj♢) − v(S)



v(S) = E[f(x)♣xS = x∗
S ]

Shapley values have also been applied to measure global importance

of features across all data points (Owen and Prieur, 2017). Computing

Shapley values is exponential in the number of features and, thus,
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intractable for more than a few features. Several approximate versions

have been proposed, e.g., most of the approaches cited above rely on

some approximation scheme. Note that the use of Shapely values is not

just restricted to explaining the impact a feature has on the outcome of

a prediction; In fact, it can be applied to explain the impact an input

feature has on the result of any type of blackbox function. For instance,

Shapley values have been used to explain data repairs with respect to

a set of denial constraints for a large class of data repair algorithms

(Deutch et al., 2020).

An alternative class of algorithms produces contrastive and causal

explanations that identify interventions, i.e., perturbations of the test

data point or of subset of the test data, that change the prediction for

a data point of interest. Contrastive and causal XAI methods explain

ML model predictions in terms of minimal interventions on input

features that change the prediction (Bertossi et al., 2020; Datta et al.,

2016; Verma et al., 2020; Wachter et al., 2017; Laugel et al., 2018;

Karimi et al., 2020; Ustun et al., 2019; Mahajan et al., 2019; Mothilal

et al., 2020; Ying et al., 2019; Galhotra et al., 2021). For instance,

Bertossi et al. (2020) introduce an explanation score for features based on

counterfactual causality and responsibility. Consider a binary classifier

f and a data point x∗ for which f(x∗) = 1. An intervention that changes

x = x∗[Xi = v], i.e., changing the value of feature Xi to v in data point

x∗ is called a counterfactual cause for the prediction outcome f(x∗) if

f(x) = 0. That is, counterfactual causes change the prediction outcome.

Based on this notion, Bertossi et al. (2020) introduce the COUNTER-

score for each feature Xi of x∗ that is defined as the difference between

the prediction at x∗ and the expectation of the prediction of f(x) over

points x = x∗[Xi = v] for some v. This is the expectation of the change

in prediction over all interventions on Xi:

COUNTER(x∗, Xi) = f(x∗) − E[f(x) ♣ xX −¶Xi♢ = x∗
X −¶Xi♢]

As discussed in Section 3.4.1, approaches based on intervention

and causality have been successfully applied for explaining outcomes of

aggregate queries and to refine provenance information by associating

data with a degree of responsibility instead of using a binary decision
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(in the provenance or not). In summary, both Shapley values and

counterfactual causality are principled techniques for explaining the

result of a blackbox function by assigning responsibility or blame to

input features.

Yet another line of work (Sagadeeva and Boehm, 2021; Chung et al.,

2019) utilizes pattern-based summaries as described in Section 3.4.3

to compactly describe a subset of the test data on which the classifier

performs poorly.

3.8.2 Explaining Black-box Predictions Using Interpretable Models

An alternative to explaining a prediction based on input features, is to

compute a surrogate interpretable model g (e.g., a decision tree or linear

classifier) that approximates the blackbox model f (e.g., a deep neural

network) in the vicinity of the data point x∗. The intuition is that by

using a simpler, but more interpretable model, the opaque behavior of

f with respect to x∗ and points similar to x∗ can be explained to a

user.

LIME (Ribeiro et al., 2016) is one of these approaches that explains

a blackbox classifier f ’s prediction for a data point by locally approxi-

mating it though an interpretable model. In this work, the search for

such an interpretable model is cast as an optimization problem: find

the model g from a set of possible models G that minimizes the sum

of the error of the prediction for the points in the local neighborhood

(determined by a distance function πx) of the data point x∗ of interest

and the complexity of the model Ω(g) (e.g, depth of a decision tree):

argmin
g∈G

L(f, g, πx) + Ω(g)

To improve the efficiency of this process Ribeiro et al. (2016) com-

putes the loss over a random sample of the training data that is biased

towards points that are close to x∗ with respect to πx. Other represen-

tative instances of the idea of explaining outcomes through surrogate

models are Ribeiro et al. (2018) Lundberg and Lee (2017). To the best

of our knowledge, the idea of explaining a complex function through a

simpler function that locally approximates the complex function has
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not been applied for explaining query results. It would be interesting

to investigate whether this idea translates to explanations for query

answers.

An alternative to finding interpretable models is to directly train

models that are more interpretable (Rudin, 2019). For instance, Letham

et al. (2015) and LIBRE (Mita et al., 2020) learn classifiers that are

built from simple conditional rules.

3.8.3 Explanations based on Training Data

The two techniques discussed so far have in common that they explain

the model’s behavior, but do not provide any insight into why the model

is exhibiting this behavior. To answer this question, we need to dig

deeper and analyze how the training data affects the model trained over

this data and, thus, indirectly affects the outcome of prediction made

by the model. Methods following this paradigm, explain a prediction

for a data point or other property of the model (e.g., the prediction

performance of the classifier or whether it is biased against a protected

group) by attributing responsibility for the prediction to training data

points.

The general techniques discussed in Section 3.8.1 are also applicable

to generating explanations based on training data. For instance, an

intervention based on training data may be modeled as deleting a subset

Dinter of the training data D. The effect this intervention has on the

prediction outcome then can be determined by retraining the classifier

over D − Dinter. Let us use finter to denote this classifier. The effect

Dinter has on the prediction of data point x∗ is then the difference

between finter(x∗) and f(x∗).

One line of work has applied Shapley values for this purpose. Data

Shapley (Ghorbani and Zou, 2019) assigns value to (sets of) training

data points based on the their contribution to the performance of

a classifier over a test dataset. Distributional Shapley (Kwon et al.,

2021; Ghorbani et al., 2020) extends Data Shapley to take into account

that the training data is only a sample from an unknown underlying

distribution.



3.9. Other related topics 289

Recall that computing measures like Shapley values for feature

attribution is already computationally infeasible because of their combi-

natorial nature. When computing such measures based on interventions

to the training data, this additionally requires retraining the classi-

fier over subsets of the training data. To address this issue, several

techniques have been developed to approximate the effect of removing

or updating a training data point. A popular technique is based on

influence functions which have a long history in statistics (Cook and

Weisberg, 1982). Koh and Liang (2017) propose the use of influence func-

tions for explaining how training data affects the predictions made by a

model. While the quality of the approximation produced by influence

functions is typically good for predicting the influence of single data

points, the error increases for larger subsets of the training data. Basu

et al. (2019) propose using second order approximations instead. This

reduces the approximation error for sets. Influence functions have also

been explored in the context of explanations for queries. For instance,

Wu et al. (2020) use influence functions to find training data points

that are responsible for an error in a query result where the query has

access to a model trained over that data. Making further connections

between database techniques/explanations in databases and XAI will

be an interesting direction to explore.

3.9 Other related topics

Beyond the work on explaining query answers and outliers, query for-

mulation, data differences and transformation, and query performances,

several other approaches exist to get useful insights from data and pro-

cesses. Explaining interactions with a data-driven system is inherently

related to visualizations, as most of the explanation systems are likely

to be interactive with suitable user interfaces. There is a line of work on

summarizing relational data or query answers often with interactive ex-

ploration in mind, which focuses on diversity, relevance, and/or coverage,

to give the maximum interesting information to users while inspecting a

much shorter summary (Vieira et al., 2011; Qin et al., 2012; Drosou and

Pitoura, 2012; Joglekar et al., 2017; Wen et al., 2018; Kim et al., 2020).

On the other hand, systems like ZenVisage (Siddiqui et al., 2016) or
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DeepEye (Luo et al., 2018) help users explore large datasets by automat-

ically generating and recommending interesting visualizations. A related

topic is explaining recommendations that tries to address ‘why’ questions

to users or system designers regarding why certain items are recom-

mended by the algorithm or the models used in recommendation systems

(e.g, see the article by Zhang and Chen, 2020 and references therein).

In addition to general explanations, application-specific explanations

have also been studied in the literature. Das et al. (2011) and Thiru-

muruganathan et al. (2012) studied the problem of Meaningful Ratings

Interpretation (MRI) based on the idea of data cube to help a user

easily interpret ratings of items on Yelp or IMDb; e.g., instead of simply

giving the average rating of a movie, MRI attempts to give explanations

like “male reviewers under 30 from NYC love this movie”. Barman

et al. (2007) and Agarwal et al. (2007) studied explaining changes in

hierarchical summaries in data warehouses identifying optimally par-

simonious explanations. Fabbri and LeFevre (2011) and Bender et al.

(2014) studied explanation-based auditing of access logs. Ré and Suciu

(2008) and Kanagal et al. (2011) studied the problem of computing the

top-k influential variables (the input variables that can significantly

modify the output probabilities) and top-k explanations (to answer

questions like “why a tuple is in the output” and “why the probability

of an output tuple is greater than another one”) for conjunctive queries

on probabilistic databases; Abiteboul et al. (2014) studied a similar

problem for recursive datalog queries.

The need for explanations also arises in error detection, data repair,

and data integration, where the users needs to understand the result

produced by a semi-automated or automated data curation algorithms

or pipeline. Chalamalla et al. (2014) generate explanations for violations

to a set of integrity constraints defined over a query result as patterns

that describe subsets of the input data which are responsible for the

violation. The QFix system (Wang et al., 2017) explains errors in a

dataset generate through a sequence of updates by identifying which

updates are responsible for the error. Most data cleaning and integration

techniques use heuristics to select one solution for repair or integration

task, because typically there is insufficient information available for

uncovering the unknown ground truth solution. For instance, when
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imputing missing values (Stekhoven and Bühlmann, 2012), the correct

value to be substituted for a missing value is unknown. One possibility

to help a user to understand how to choices made by the cleaning

algorithm affect their result is to treat the alternative choices available

to the algorithm as a probabilistic or incomplete database and using

uncertain query processing to propagate this information through queries

(Beskales et al., 2009; Yang et al., 2015). This idea was first popularized

in consistent query answering (Bertossi, 2011). The Vizier system (Feng

et al., 2021; Brachmann et al., 2019) visualizes such uncertainty in its

provenance and explains which analysis results are trustworthy and

why.



4

A Research Roadmap

Explanations in data systems is a relatively young field that is enjoying

continued interest and a steady presence in data management venues.

Our goal has been to identify and summarize general principles in the

specification of explanation problems (“Who”, “Why”, and “What”),

and high-level objectives in designing explanations and methodologies

for deriving them (“How”). To conclude this article, we identify gaps

in the existing work, and potential ripe ground for next directions to

pursue, some being more open-ended compared to the others.

Causal explanations

Many of the examples we discussed in the previous chapters implicitly

assume that the ideal explanation would be one or more causes of the

observation; e.g., in Example 2.3, we would ideally like to find the cause

that led to the slowdown of publications from industry in SIGMOD in

recent years. Causality and the related concept of intervention have

been used in various contexts in database research for explanations,

borrowing concepts from the study of causal analysis in AI (Pearl,

2000), e.g., in Meliou et al., 2010, Roy and Suciu, 2014, and Fariha

et al., 2020. However, the study of true cause as explanations, e.g., ‘how

292
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much smoking can be attributed to the cause of lung cancer’ or ‘how

much a new vaccine can be attributed to a slowdown of the spread

of a contagious disease’, has not been explored much in the database

community (recently, Salimi et al. (2020) proposed a framework for

causal analysis in relational databases).

As is commonly noted, ‘correlation is not causation’ ; thus, answering

such causal questions, which goes beyond inferring correlation or predic-

tions, is critical for making principled and informed decisions in clinical

research, epidemiology, economics, and social sciences. The notion of

causal inference has been studied not only in AI (by Pearl’s Graphical

Causal Model (Pearl, 2000)), but also for several decades in Statistical

Science (e.g., by Rubin-Neyman’s potential Outcome Model (Rosen-

baum and Rubin, 1983; Rubin, 2005)). In general, randomized controlled

trials (such as clinical trials for medical research), where the partici-

pating units are randomly divided into treatment and control groups,

and the average difference of outcome in these two groups is computed

as the ‘average treatment effect’, is considered the gold standard for

causal analysis. However, due to cost or ethics concerns, one often needs

to do observational causal studies using observed data under various

(untestable) assumptions as studied in the above models. This connects

observational causal studies with explanations for data and queries

in database research, since many explanations settings start with an

observed/collected dataset.

However, there are several challenges that need to be addressed

to adapt standard causal analysis techniques to explanation questions

related to data processing. A significant difference is that typical causal

studies consider a single and flat table with information regarding units

(treatment, outcome, other attributes or confounding covariates that

should be conditioned on, etc.), while in relational databases and data

lakes there can be several tables / datasets (e.g., Author-Pub-Authored

tables in Example 3.1). Further, a critical assumption is that there is ‘no

interference’ among units stored in this table (treatment assigned to one

unit cannot affect the outcome of another unit); in contrast, in relational

databases and data processing in general, multiple tables are related

to each other with common attributes, foreign keys, many-to-many

join patterns, and intricate integrity constraints. In addition, there can
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be derived data or ‘views’ generated by complex queries or analysis

pipelines in the causal question, and the ‘treatment’ and ‘outcome’

attribute can appear in different tables.

A further complication is that datasets in typical statistical studies

are much smaller than the ‘big data’ commonly encountered in data

analytics, making sound yet scalable causal analysis a practical challenge

(it has been observed that SQL queries can make standard causal analysis

approaches much more scalable (Wang et al., 2021)). Finally, there might

not be an obvious translation of many explanation questions in database

research to the causal analysis framework in terms of ‘treatment’ and

‘outcome’. Strengthening the connections between causal analysis and

explanations for data-driven systems, borrowing concepts from Statistics,

AI, and ML, is a relatively new but important research direction.

Confidence in explanations

The various approaches discussed in Chapter 3 propose ways to navigate

the search space to derive explanations that optimize some desired

properties (summarized in Section 3.1). In Section 3.4 in particular, we

discussed scoring functions that rank possible explanations in the search

space. Most of these methods aim to return best possible explanations

based on the available data. However, existing approaches do not delve

deep into the question of whether the input dataset even has enough

information to provide meaningful explanations (e.g., in the example of

Section 3.4.2, fewer than usual publications by an author in a venue in

a year may be explained by a sabbatical, involvement with a startup,

or more engagement in administrative duties, but this information is

unavailable in the DBLP publication database), or how likely it is for the

returned explanations to be ‘true’ explanations for the questions posed

by the user. With this in mind, it is important to consider whether

we can provide a confidence measure for the returned explanations.

The lack of a training dataset or gold standard for explanations adds

to the challenges of this problem. Collaboration with domain experts,

integration with other datasets, and integration and cross-reference with

‘common knowledge’ known to humans (e.g., using knowledge bases,

such as YAGO (Suchanek et al., 2007) or NELL (Mitchell, 2012), or by

web crawling) can be beneficial for this purpose.
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Explaining data evolution

Data is often dynamic and subject to change. In fact, constants are

not generally interesting in data analysis; what analysis tends to focus

on is understanding how and why something in the data changes. As

we discussed in Section 3.6, to explain a change more precisely, it is

best to specify the change succinctly (e.g., in reference to other data).

Existing frameworks however, do not explicitly account for the cases

where diverging datasets may have a common original source, or simply

a dataset may be a later, evolved copy of another. Leveraging evolution

aspects of the data such as schema restructuring, and broad data updates

can lead to better targeted explanations.

Syntactic vs semantic explanations

Existing work on explaining data differences has come up with dif-

ferent explanation models, but these models often focus on syntactic

differences, i.e., low-level, fine-grained differences between two refer-

ence elements. For example, to explain the differences between two

diverging query results, Explain3D (Wang and Meliou, 2019) attempts

to find minimal modifications to an initial data mapping from one

dataset to the other. The resulting mapping is an explanation, but

it is too low-level, specifying divergence tuple-by-tuple. The ultimate

explanation to be served to the user should often be something more

high-level; e.g., the number of majors derived from two educational

datasets differs because one dataset does not include associate degrees.

These high-level explanations are semantic and provide a more holistic

view of the difference. While such semantic explanations can often be

derived from syntactic explanations through summarization techniques,

a key observation is that explanation desiderata are optimized over the

low-level syntactic explanations, rather than the final semantic expla-

nation. This gap potentially indicates an opportunity for improving

explanation products, by targeting the optimization solutions directly

on them. While our example focused on the explanation of differences,

this observation generalizes to all explanation settings.
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Flexible explanations

In our classification, we discussed explanation desiderata as driven by

the dimensions of “Who”, “Why”, and “What” of the problem speci-

fication. For example, we noted that explanations for the purposes of

debugging need to be more low-level and detailed than those meant to

enhance understandability for a non-technical audience. However, some

settings need to accommodate a variety of users and purposes, requir-

ing explanation frameworks to flexibly adapt to differing needs. Such

adaptive frameworks could support navigating explanations at different

“zoom” levels, and potentially switch among different explanation types

for the same problem.

Explainable explanations

Explanations are an interpretive tool, helping data users better un-

derstand and explore their data. As an element meant primarily for

human consumption, explanations bring forth interactivity challenges

that have not been deeply explored. Most existing works focus on the

basic action of seeking explanations, but more complex interactions

may be necessary for users to achieve their analysis goals. Users may

wish to refine, explore, and analyze explanation results, essentially

imposing explainability requirements on the explanations themselves.

Just as one places more trust on observations that can be explained,

explainable explanations are likely to enhance the confidence that one

places on the explanations themselves, which, in turn, will lead to

more trust on the data or observations. For example, if a framework

returns a feature-based explanation such as [(zipcode = 01003) AND

(age<22)] for the question “why was there a spike in COVID cases

in Hampshire county in MA, during February 2021?”, this can give

rise to new questions on the explanation itself. For example, a user

may wish to understand “why is this the best explanation?” or “why is

the explanation [(zipcode = 01003)] not sufficient?” To answer such

questions, the framework would need to produce evidence to illustrate

how the explanation was derived, and why other options are subopti-

mal. Ultimately, explanation support may need to extend to variable

lengths of recursive investigation, which in turn would likely augment
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or alter the explanation objectives and potentially point to particular

methodologies as more amenable to explainability.

Other directions

Aside from these broader research directions, there are many possi-

bilities for improvements over existing approaches, both in terms of

functionality and efficiency. For example, intervention-based approaches

(Section 3.4.1) have primarily focused on tuple deletions as the mode of

explanation, and deterministic and well-defined interventions. Modeling

meaningful additions or updates, while preserving the semantics of the

data, will require creative solutions. Another possibility is studying

stochastic interventions to model interdependencies among tuples when

changes are made to the database; e.g., in the context of Example 3.1 if

an author is removed, a possible intervention model is that with some

probability each paper written by this author should be removed from

the database, and this probability might be a function of properties

(like contributions or seniority) of all authors of that paper. As another

example, showing a small counterexample or illustrating how a “wrong”

query can be repaired (Section 3.5) offers useful intuition to students

or new programmers, but focusing on a particular counterexample or

repair method may also be misleading as they can miss the high-level

properties of the desired queries or draw attention to only one type of

errors. Based on the context (“What” and “Why”) and the intended

users (“Who”), it is important to study the best possible representation

of explanations as an integrated research agenda for all explanation

questions.

Finally, the big question of ‘what is an explanation’ is closely related

to philosophy (e.g., Aristotle’s ‘Four Causes’, or Hempel’s ‘Deductive-

nomological model’) and has been studied for centuries. Exploring such

notions of explanations, establishing close collaborations with domain

experts, cognitive scientists, experts in human-computer interaction,

and education specialists, exploring interesting practical applications

and designing meaningful user studies, should be consistent pillars

in our research efforts to establish the efficacy of different notions of

explanations for data-driven systems.
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