Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Conformance Constraint Discovery:
Measuring Trust in Data-Driven Systems

Anna Fariha*

University of Massachusetts Amherst
afariha@cs.umass.edu

Ashish Tiwari®
Arjun Radhakrishna
Sumit Gulwani

Alexandra Meliou
University of Massachusetts Amherst
ameli@cs.umass.edu

Microsoft
{astiwar,arradha, sumitg}@microsoft.com

ABSTRACT

The reliability of inferences made by data-driven systems hinges
on the data’s continued conformance to the systems’ initial settings
and assumptions. When serving data (on which we want to apply in-
ference) deviates from the profile of the initial training data, the out-
come of inference becomes unreliable. We introduce conformance
constraints, a new data profiling primitive tailored towards quantify-
ing the degree of non-conformance, which can effectively character-
ize if inference over that tuple is untrustworthy. Conformance con-
straints are constraints over certain arithmetic expressions (called
projections) involving the numerical attributes of a dataset, which ex-
isting data profiling primitives such as functional dependencies and
denial constraints cannot model. Our key finding is that projections
that incur low variance on a dataset construct effective conformance
constraints. This principle yields the surprising result that low-
variance components of a principal component analysis, which are
usually discarded for dimensionality reduction, generate stronger
conformance constraints than the high-variance components. Based
on this result, we provide a highly scalable and efficient technique—
linear in data size and cubic in the number of attributes—for discov-
ering conformance constraints for a dataset. To measure the degree
of a tuple’s non-conformance with respect to a dataset, we propose
a quantitative semantics that captures how much a tuple violates the
conformance constraints of that dataset. We demonstrate the value
of conformance constraints on two applications: trusted machine
learning and data drift. We empirically show that conformance
constraints offer mechanisms to (1) reliably detect tuples on which
the inference of a machine-learned model should not be trusted,
and (2) quantify data drift more accurately than the state of the art.

ACM Reference Format:

Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Alexan-
dra Meliou. 2021. Conformance Constraint Discovery: Measuring Trust in
Data-Driven Systems. In Proceedings of the 2021 International Conference on

“Part of the research was done while the author was an intern at Microsoft.
TBoth authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3452795

499

Management of Data (SIGMOD °21), June 20-25, 2021, Virtual Event, China.
ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3448016.3452795

1 INTRODUCTION

The core of modern data-driven systems typically comprises of
models learned from large datasets, and they are usually optimized
to target particular data and workloads. While these data-driven
systems have seen wide adoption and success, their reliability and
proper functioning hinge on the data’s continued conformance to
the systems’ initial settings and assumptions. When the serving
data (on which the system operates) deviates from the profile of the
initial data (on which the system was trained), system performance
degrades and system behavior becomes unreliable. Therefore, a
mechanism to assess the trustworthiness of a system’s inferences
is paramount, especially for systems that perform safety-critical or
high-impact operations.

A machine-learned (ML) model typically works best if the serving
dataset follows the profile of the dataset the model was trained
on; when it doesn’t, the model’s inference can be unreliable. One
can profile a dataset in many ways, such as by modeling the data
distribution of the dataset [2], or by finding the (implicit) constraints
that the dataset satisfies [49]. Distribution-oriented approaches
learn data likelihood (e.g., joint or conditional distribution) from the
training data, and can be used to check if the serving data is unlikely.
An unlikely tuple does not necessarily imply that the model would
fail for it. The problem with the distribution-oriented approaches is
that they tend to overfit, and, thus, are overly conservative towards
unseen tuples, leading them to report many such false positives.

We argue that certain constraints offer a more effective and
robust mechanism to quantify trust of a model’s inference on a
serving tuple. The reason is that learning systems implicitly exploit
such constraints during model training, and build models that as-
sume that the constraints will continue to hold for serving data.
For example, when there exist high correlations among attributes
in the training data, learning systems will likely reduce the weights
assigned to redundant attributes that can be deduced from others,
or eliminate them altogether through dimensionality reduction. If
the serving data preserves the same correlations, such operations
are inconsequential; otherwise, we may observe model failure.

In this paper, we characterize datasets with a new data-profiling
primitive, conformance constraints, and we present a mechanism to
identify strong conformance constraints, whose violation indicates
unreliable inference. Conformance constraints specify constraints
over arithmetic relationships involving multiple numerical attributes

Research Data Management Track Paper

Departure Departure Time Arrival Time Duration (min)
Date [DT] [AT] [DUR]
t May 2 14:30 18:20 230
ty July 22 09:05 12:15 195
t3 June 6 10:20 12:20 115
ty May 19 11:10 13:05 117
ts April 7 22:30 06:10 458

Figure 1: Sample of the airlines dataset (details are in Section 6.1),
showing departure, arrival, and duration only. The dataset does not
report arrival date, but an arrival time earlier than departure time
(e.g., last row), indicates an overnight flight. All times are in 24 hour
format and in the same time zone. There is some noise in the values.

of a dataset. We argue that a tuple’s conformance to the confor-
mance constraints is more critical for accurate inference than its
conformance to the training data distribution. This is because any
violation of conformance constraints is likely to result in a cata-
strophic failure of a learned model that is built upon the assumption
that the conformance constraints will always hold. Thus, we can use
a tuple’s deviation from the conformance constraints as a proxy for
the trust on a learned model’s inference for that tuple. We proceed
to describe a real-world example of conformance constraints, drawn
from our case-study evaluation on trusted machine learning (TML).

ExAMPLE 1. We used a dataset with flight information that in-
cludes data on departure and arrival times, flight duration, etc. (Fig. 1)
to train a linear regression model to predict flight delays. The model
was trained on a subset of the data that happened to include only day-
time flights (such as the first four tuples). In an empirical evaluation of
the regression accuracy, we found that the mean absolute error of the
regression output more than quadruples for overnight flights (such as
the last tuple t5), compared to daytime flights. The reason is that tuples
representing overnight flights deviate from the profile of the training
data that only contained daytime flights. Specifically, daytime flights
satisfy the conformance constraint that “arrival time is later than
departure time and their difference is very close to the flight duration”,
which does not hold for overnight flights. Note that this constraint is
Jjust based on the covariates (predictors) and does not involve the target
attribute delay. Critically, although this conformance constraint is
unaware of the regression task, it was still a good proxy of the regres-
sor’s performance. In contrast, approaches that model data likelihood
may report long daytime flights as unlikely, since all flights in the
training data (t1—t4) were also short flights, resulting in false alarms,
as the model works very well for most daytime flights, regardless of
the duration (i.e., for both short and long daytime flights).

Example 1 demonstrates that when training data has coincidental
relationships (e.g., the one between AT, DT, and DUR for daytime
flights), then ML models may implicitly assume them as invariants.
Conformance constraints can capture such data invariants and flag
non-conforming tuples (overnight flights) during serving.

Conformance constraints. Conformance constraints complement
the existing data profiling literature, as the existing constraint mod-
els, such as functional dependencies and denial constraints, cannot
model arithmetic relationships. For example, the conformance con-
straint of Example 1 is: —e; < AT — DT — DUR < e, where €1 and
€7 are small values. Conformance constraints can capture complex
linear dependencies across attributes within a noisy dataset. For
example, if the flight departure and arrival data reported the hours

500

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

and the minutes across separate attributes, the constraint would
be on a different arithmetic expression: (60 - arrHour + arrMin) —
(60 - depHour + depMin) — duration.

The core component of a conformance constraint is the arith-
metic expression, called projection, which is obtained by a linear
combination of the numerical attributes. There is an unbounded
number of projections that we can use to form arbitrary confor-
mance constraints. For example, for the projection AT, we can find a
broad range [€3, €4], such that all training tuples in Example 1 satisfy
the conformance constraint €3 < AT < e4. However, this constraint
is too inclusive and a learned model is unlikely to exploit such a
weak constraint. In contrast, the projection AT — DT — DUR leads
to a stronger conformance constraint with a narrow range as its
bounds, which is selectively permissible, and, thus, more effective.

Challenges and solution sketch. The principal challenge is to
discover an effective set of conformance constraints that are likely
to affect a model’s inference implicitly. We first characterize “good”
projections (that construct effective constraints) and then propose a
method to discover them. We establish through theoretical analysis
two important results: (1) A projection is good over a dataset if it is
almost constant (i.e., has low variance) over all tuples in that dataset.
(2) A set of projections, collectively, is good if the projections have
small pair-wise correlations. We show that low variance compo-
nents of a principal component analysis (PCA) on a dataset yield
such a set of projections. Note that this is different from—and, in
fact, completely opposite of—the traditional approaches (e.g., [51])
that perform multidimensional analysis based on the high-variance
principal components, after reducing dimensionality using PCA.

Scope. Fig. 2 summarizes prior work on related problems, but our
scope differs significantly. Specifically, we can detect if a serving tu-
ple is non-conforming with respect to the training dataset only based
on its predictor attributes, and require no knowledge of the ground
truth. This setting is essential in many practical applications when
we observe extreme verification latency [62], where ground truths
for serving tuples are not immediately available. For example, con-
sider a self-driving car that is using a trained controller to generate
actions based on readings of velocity, relative positions of obstacles,
and their velocities. In this case, we need to determine, only based on
the sensor readings (predictors), when the driver should be alerted
to take over vehicle control. Furthermore, we do not assume access
to the model, i.e., model’s predictions on a given tuple. This setting
is necessary for (1) safety-critical applications, where the goal is to
quickly alert the user, without waiting for the availability of the pre-
diction, (2) auditing and privacy-preserving applications where the
prediction cannot be shared, and (3) when we are unaware of the de-
tailed functionality of the system due to privacy concerns or lack of
jurisdiction. We focus on identifying tuple-level non-conformance
as opposed to dataset-level non-conformance that usually requires
observing entire data’s distribution. However, our tuple-level ap-
proach trivially extends (by aggregation) to the entire dataset.

Contrast with prior art. We now discuss where conformance
constraints fit with respect to the existing literature (Fig. 2).

Data profiling techniques. Conformance constraints fall under the
umbrella of data profiling, which refers to the task of extracting tech-
nical metadata about a given dataset [1]. A key task in data profiling

Research Data Management Track Paper

Legend

HP: Hyper Parameter
FD: Functional Dependency
DC: Denial Constraint

@: Does not require

1L: Not applicable

*: Supports via extension
!: Partially
Conformance Constraints
FD [48]
Approximate FD [42]
Metric FD [40]
Conditional FD [19] ! v
Pattern FD [50] !
Soft FD [32]
Relaxed FD [10]
FDX [75]
Differential Dependency [60]
DC [8, 12] !
Approximate DC [44, 49]
Statistical Constraint [74]
Ordinary Least Square
Total Least Square
Auto-encoder [15]
Schelter et al. [56]7
Jiang et al. [34]
Hendrycks et al. [26]
Model’s Prediction Probability

=
4
&

constraints violation| setting | technique

<] notion of weight

| NN NN NN <+ interpretable

4| parametric
<« arithmetic
<« [4]approximate

4| conditional

< continuous

4| tuple-wise

| numerical attr.
NSNS NN NSNS NN N N S 4 categorial attr.

& scalable

4| task agnostic

| @access to model

< «|@thresholds

NN NSNS @distance metric

<

<

N

Data Profiling

not addressed in prior work

<

<
RRRRR

5

J<
<<

Learning

M
M

varies

&
S TS TG4 [noisy data
< T S H << oHP tuning

RRRRRRRRRRERR
<
RERERRRRR

S<LEEEE

SEEEEERR
NERERERERR

F| | - | =

* Requires additional information
Figure 2: Conformance constraints complement existing data profil-
ing primitives and provide an efficient mechanism to quantify trust
in prediction, with minimal assumption on the setting,.

is to learn relationships among attributes. Functional dependencies
(FD) [48] and their variants only capture if a relationship exists be-
tween two sets of attributes, but do not provide a closed-form (para-
metric) expression of the relationship. Using the FD “{AT,DT} —
{DUR}” to model the constraint of Example 1 suffers from several
limitations. First, since the data is noisy, no exact FD can be learned.
Metric FDs [40] allow small variations in the data, but hinge on
appropriate distance metrics and thresholds. For example, if time
is split across two attributes (hour and minute), the distance met-
ric is non-trivial: it needs to encode that (hour = 4,min = 59)
and (hour = 5,min = 1) are similar, while (hour = 4,min = 1)
and (hour = 5,min = 59) are not. In contrast, conformance con-
straints can model the composite attribute (60 - hour + minute) by
automatically discovering the coefficients 60 and 1.

Denial constraints (DC) [8, 12, 44, 49] encapsulate a number of
different data-profiling primitives such as FDs and their variants
(e.g, [19]). Exact DCs can adjust to noisy data by adding predicates
until the constraint becomes exact over the entire dataset, but this
can make the constraint extremely large and complex, which might
even fail to provide the desired generalization. For example, a finite
DC—whose language is limited to universally quantified first-order
logic—cannot model the constraint of Example 1, which involves an
arithmetic expression (addition and multiplication with a constant).
Expressing conformance constraints requires a richer language that
includes linear arithmetic expressions. Pattern functional depen-
dencies (PFD) [50] move towards addressing this limitation of DCs,
but they focus on text attributes: they are regex-based and treat
digits as characters. However, modeling arithmetic relationships
of numerical attributes requires interpreting digits as numbers.

To adjust for noise, FDs and DCs either relax the notion of con-
straint violation or allow a user-defined fraction of tuples to violate
the (strict) constraint [10, 30, 32, 40, 42, 44, 49]. Some approaches [32,
74, 75] use statistical techniques to model other types of data profiles

501

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

such as correlations and conditional dependencies. However, they
require additional parameters such as noise and violation thresholds
and distance metrics. In contrast, conformance constraints do not
require any parameter from the user and work on noisy datasets.

Existing data profiling techniques are not designed to learn what
ML models exploit and are sensitive to noise in the numerical
attributes. Moreover, data constraint discovery algorithms typically
search over an exponential set of candidates, and hence, are not
scalable: their complexity grows exponentially with the number of
attributes or quadratically with data size. In contrast, our technique
for deriving conformance constraints is highly scalable (linear in
data size) and efficient (cubic in the number of attributes). It does
not explicitly explore the candidate space, as PCA—which lies at the
core of our technique—performs the search implicitly by iteratively
refining weaker constraints to stronger ones.

Learning techniques. While ordinary least square finds the lowest-
variance projection, it minimizes observational error on only the
target attribute, and, thus, does not apply to our setting. Total least
square offers a partial solution as it takes observational errors on all
predictor attributes into account; but, it finds only one projection—
the lowest variance one—that fits the data tuples best. But there
may exist other projections with slightly higher variances and we
consider them all. As we show empirically in Section 6.2, constraints
derived from multiple projections, collectively, capture various
aspects of the data, and result in an effective data profile targeted
towards certain tasks such as data-drift quantification [21].

Contributions. We make the following contributions:

e We ground the motivation of our work with two case studies on
trusted machine learning (TML) and data drift. (Section 2)

e We introduce and formalize conformance constraints, a new data

profiling primitive that specifies constraints over arithmetic rela-

tionships among numerical attributes of a dataset. We describe a

conformance language to express conformance constraints, and

a quantitative semantics to quantify how much a tuple violates

the conformance constraints. In applications of constraint viola-

tions, some violations may be more or less critical than others.

To capture that, we consider a notion of constraint importance,

and weigh violations against constraints accordingly. (Section 3)

We formally establish that strong conformance constraints are

constructed from projections with small variance and small mu-

tual correlation on the given dataset. Beyond simple linear con-
straints (e.g., the one in Example 1), we derive disjunctive con-
straints, which are disjunctions of linear constraints. We achieve
this by dividing the dataset into disjoint partitions, and learning
linear constraints for each partition. We provide an efficient, scal-
able, and highly parallelizable algorithm for computing a set of
linear conformance constraints and disjunctions over them. We

also analyze its runtime and memory complexity. (Section 4)

o We formalize the notion of unsafe tuples in the context of trusted
machine learning and provide a mechanism to detect unsafe
tuples using conformance constraints. (Section 5)

o We empirically analyze the effectiveness of conformance con-
straints in two case-study applications—TML and data-drift quan-
tification. We show that conformance constraints can reliably
predict the trustworthiness of linear models and quantify data
drift precisely, outperforming the state of the art. (Section 6)

Research Data Management Track Paper

2 CASE STUDIES

Like other data-profiling primitives, conformance constraints have
general applicability in understanding and describing datasets.
However, their true power lies in quantifying the degree of a tuple’s
non-conformance with respect to a reference dataset. Within the
scope of this paper, we focus on two case studies to motivate our
work. We provide an extensive evaluation over these applications
in Section 6.

Trusted machine learning (TML) refers to the problem of quan-
tifying trust in the inference made by a machine-learned model on
a new serving tuple [34, 52, 55, 65, 71]. When a model is trained
using a dataset, the conformance constraints for that dataset specify
a safety envelope [65] that characterizes the tuples for which the
model is expected to make trustworthy predictions. If a serving
tuple falls outside the safety envelope (violates the conformance
constraints), then the model is likely to produce an untrustworthy
inference. Intuitively, the higher the violation, the lower the trust.
Some classifiers produce a confidence measure along with the class
prediction, typically by applying a softmax function to the raw
numeric prediction values. However, such confidence measures are
not well-calibrated [25, 34], and, therefore, cannot be reliably used
as a measure of trust in the prediction. Additionally, a similar mech-
anism is not available for inferences made by regression models.
In the context of TML, we formalize the notion of unsafe tuples,
on which the prediction may be untrustworthy. We establish that
conformance constraints provide a sound and complete procedure
for detecting unsafe tuples, which indicates that the search for
conformance constraints should be guided by the class of models
considered by the corresponding learning system (Section 5).

Data drift [6, 24, 43, 51] specifies a significant change in a dataset
with respect to a reference dataset, which typically requires that
systems be updated and models retrained. To quantify how much
a dataset D’ drifted from a reference dataset D, our three-step
approach is: (1) compute conformance constraints for D, (2) evaluate
the constraints on all tuples in D’ and compute their violations
(degrees of non-conformance), and (3) finally, aggregate the tuple-
level violations to get a dataset-level violation. If all tuples in D’
satisfy the constraints, then we have no evidence of drift. Otherwise,
the aggregated violation serves as the drift quantity.

While we focus on these two applications here, we mention other
applications of conformance constraints in our technical report [21].

3 CONFORMANCE CONSTRAINTS

In this section, we first provide the general definition of confor-
mance constraints. Then we propose a language for representing
them. Finally, we define quantitative semantics over conformance
constraints, which allows us to quantify their violation.

Basic notation. We use R(A1,As,...,Apn) to denote a relation
schema where A; denotes the ith attribute of R. We use Dom; to de-
note the domain of attribute A;. Then the set Dom™ = Domy X - - - X
Dom,, specifies the domain of all possible tuples. We use t € Dom
to denote a tuple in the schema R. A dataset D C Dom™ is a spe-
cific instance of the schema R. For ease of notation, we assume
some order of tuples in D and we use t; € D to refer to the i*" tuple
and t;.A;j € Dom; to denote the value of the j* h attribute of ;.

502

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Conformance constraint. A conformance constraint ® charac-
terizes a set of allowable or conforming tuples and is expressed
through a conformance language (Section 3.1). We write ®(t) and
—®(t) to denote that ¢ satisfies and violates ®, respectively.

DEFINITION 2 (CONFORMANCE CONSTRAINT). A conformance
constraint for a dataset D C Dom™ is a formula ® : Dom™ +—
{True,False} such that |{t € D | =®(¢)}| < |D|.

The set {t € D | =®(t)} denotes atypical tuples in D that do not
satisfy the conformance constraint ®. In our work, we do not need
to know the set of atypical tuples, nor do we need to purge the
atypical tuples from the dataset. Our techniques derive constraints
in ways that ensure there are very few atypical tuples (Section 4).

3.1 Conformance Language

Projection. A central concept in our conformance language is
projection. Intuitively, a projection is a derived attribute that spec-
ifies a “lens” through which we look at the tuples. More formally,
a projection is a function F : Dom™ + R that maps a tuple ¢ €
Dom™ to a real number F(t) € R. In our language for conformance
constraints, we only consider projections that correspond to linear
combinations of the numerical attributes of a dataset. Specifically, to
define a projection, we need a set of numerical coefficients for all at-
tributes of the dataset and the projection is defined as a sum over the
attributes, weighted by their corresponding coefficients. We extend
a projection F to a dataset D by defining F(D) to be the sequence
of reals obtained by applying F on each tuple in D individually.

Grammar. Our language for conformance constraints consists of
formulas ® generated by the following grammar:

¢ = 1b<F(A) <ub | A(d,....9)
l//A = V((A:C])l>¢, (AZCZ)I>¢,)
Y o= ya | AW Ya,)

P = ¢ | ¥

The language consists of (1) bounded constraints 1b < F (/Y) <
ub where F is a projection on Dom™, A is the tuple of formal
parameters (A1, Az, ..., Apm), and 1b, ub € R are reals; (2) equality
constraints A = ¢ where A is an attribute and c is a constant in A’s
domain; and (3) operators (>, A, and V,) that connect the constraints.
Intuitively, > is a switch operator that specifies which constraint ¢
applies based on the value of the attribute A, A denotes conjunction,
and V denotes disjunction. Formulas generated by ¢ and ¥ are called
simple constraints and compound constraints, respectively. Note that
a formula generated by ¢4 only allows equality constraints on a
single attribute, namely A, among all the disjuncts.

ExAaMPLE 3. Consider the dataset D consisting of the first four
tuples {t1, t2, t3, t4} of Fig. 1. A simple constraint for D is:

¢1:—5<AT-DT —-DUR < 5.

Here, the projection F(g) = AT — DT — DUR, with attribute coefficients
(1,-1,-1), 1b = -5, and ub = 5. A compound constraint is:

Yo :M= “May”>—-2 < AT—-DT —DUR <0
V M= “June”> 0< AT-DT-DUR <5
vV M= “July” > -5 < AT—DT —DUR <0

Research Data Management Track Paper

For ease of exposition, we assume that all times are converted to
minutes (e.g.,06:10 = 6 X 60+ 10 = 370) and M denotes the departure
month, extracted from Departure Date.

Note that arithmetic expressions that specify linear combination
of numerical attributes (highlighted above) are disallowed in denial
constraints [12] which only allow raw attributes and constants
(more details are in our technical report [21]).

3.2 Quantitative Semantics

Conformance constraints have a natural Boolean semantics: a tu-
ple either satisfies a constraint or it does not. However, Boolean
semantics is of limited use in practice, because it does not quantify
the degree of constraint violation. We interpret conformance con-
straints using a quantitative semantics, which quantifies violations,
and reacts to noise more gracefully than Boolean semantics.

The quantitative semantics [[®]] (¢) is a measure of the violation
of @ on a tuple t—with a value of 0 indicating no violation and a
value greater than 0 indicating some violation. In Boolean semantics,
if ®(t) is True, then [[®]](¢) will be 0; and if ®(¢) is False, then
[[@]] (¢) will be 1. Formally, [[®]] is a mapping from Dom™ to [0, 1].

Quantitative semantics of simple constraints. We build upon e-insen-
sitive loss [70] to define the quantitative semantics of simple con-
straints, where the bounds 1b and ub define the e-insensitive zone:!

[[1b < F(X) < ub]](t) := n(a - max(0, F(t) — ub, 1b — F(t)))
(A1 prO (1) = 2K v - il (1)

Below, we describe the parameters of the quantitative semantics,
and provide further details on them in our technical report [21].

Scaling factor « € R*.

Projections are unconstrained functions and different projections
can map the same tuple to vastly different values. We use a scaling
factor « to standardize the values computed by a projection F, and
to bring the values of different projections to the same comparable
scale. The scaling factor is automatically computed as the inverse
of the standard deviation, o = o—(F;(D))' We set « to a large positive
number when o(F(D)) = 0.

Normalization function 5(.) : R — [0, 1].

The normalization function maps values in the range [0, o) to the

range [0, 1). While any monotone mapping from R=° to [0, 1) can
z

be used, we pick n(z) =1—-e7%.

Importance factors y; € R, ZIk(vi=1.

The weights y; control the contribution of each bounded-projection
constraint in a conjunctive formula. This allows for prioritizing
constraints that are more significant than others. In our work, we
derive the importance factor of a constraint automatically, based
on its projection’s standard deviation over D.

Quantitative semantics of compound constraints. Compound con-
straints are first simplified into simple constraints, and they get their
meaning from the simplified form. We define a function simp(y, t)
that takes a compound constraint ¢ and a tuple t and returns a

IFor a target value y, predicted value 7, and a parameter €, the e-insensitive loss is 0
if |y — 9| < eand |y — §| — € otherwise.

503

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

simple constraint. It is defined recursively as follows:

simp(V((A=c1) > ¢1,(A=co) > ¢o,...), 1) = ¢ if t.A=cp
SIMP(A (Y Yoty 1) 1= ASEMP(a,.), SIMP(Yiay, 1) ..)

If the condition in the definition above does not hold for any
¢k, then simp(y, t) is undefined and simp(A(...,¥,...),t) is also
undefined. If simp(y,t) is undefined, then [[{/]](#) := 1. When
simp(y, t) is defined, the quantitative semantics of ¢ is given by:

([N (2) = [[simp(y,)11(2)

Since compound constraints simplify to simple constraints, we
mostly focus on simple constraints. Even there, we pay special atten-
tion to bounded-projection constraints (¢) of the form
lb<F (A) < ub, which lie at the core of simple constraints.

ExamPLE 4. Consider the constraint ¢1 from Example 3. Fort € D,
[[¢1]1(t) = 0 since ¢y is satisfied by all tuples in D. The standard
deviation of the projection F over D, o(F(D))=0({0, -5, 5, —2})=3.6.
Now consider the last tuple t5 ¢ D. F(t5) = (370 — 1350) — 458 =
—1438, which is way below the lower bound —5 of ¢1. Now we compute
how much t5 violates ¢1: [[H1]](¢5) = [[-5 < F(X) < 5]|(t5) = n(a-
max(0, 1438 — 5,5 + 1438)) = 1 — e~ 56
implies that ts5 strongly violates ¢1.

~ 1. Intuitively, this

4 CONFORMANCE CONSTRAINT SYNTHESIS

In this section, we describe our techniques for deriving conformance
constraints. We start with the synthesis of simple constraints (the ¢
constraints in our language specification), followed by compound
constraints (the ¥ constraints in our language specification). Finally,
we analyze the time and memory complexity of our algorithm.

4.1 Simple Conformance Constraints

Synthesizing simple conformance constraints involves (a) discover-
ing the projections, and (b) discovering the lower and upper bounds
for each projection. We start by discussing (b), followed by the prin-
ciple to identify effective projections, based on which we solve (a).

4.1.1 Synthesizing Bounds for Projections. Fix a projection F and
consider the bounded-projection constraint ¢: 1b < F (/Y) < ub.
Given a dataset D, a trivial choice for the bounds is: 1b = min(F(D))
and ub = max(F(D)). However, this choice is very sensitive to
noise: adding a single atypical tuple to D can produce very different
constraints. Instead, we use a more robust choice as follows:

1b = u(F(D)) - C- o(F(D)), ub = u(F(D)) +C- (F(D))

Here, y(F(D)) and o(F(D)) denote the mean and standard devi-
ation of the values in F(D), respectively, and C is some positive
constant. With these bounds, [[¢]](¢) = 0 implies that F(¢) is within
C X 0(F(D)) from the mean p(F(D)). In our experiments, we set
C = 4, which ensures that in expectation, very few tuples in D will
violate the constraint for many distributions of the values in F(D).
Specifically, if F(D) follows a normal distribution, then 99.99% of
the population is expected to lie within 4 standard deviations from
mean. Note that we make no assumption on the original data dis-
tribution of each attribute.

Research Data Management Track Paper

2 7 7
v iy Y
7
8 a\ L,
N 7
£
6 ¥
4 4 7 A
. 2 0
o
L]
. N L] N
£ Al
-4 of 2 4 10 1 64 82/ 10 12
X ¥ b'
> o
L4 AS
7
4 A >
|4
£ D,

(a) (b)
Figure 3: Clear and shaded regions depict conformance and non-
conformance zones, respectively. (a) Correlated projections X and Y
yield conformance constraints forming a large conformance zone,
(b) Uncorrelated (orthogonal) projections X — Y and X + Y yield
conformance constraints forming a smaller conformance zone.

Setting the bounds 1b and ub as C - o(F(D))-away from the
mean, and the scaling factor a as m, guarantees the following
property for our quantitative semantics:

LEMMA 5. Let D be a dataset and let ¢y be 1by < Fk(g) < uby. for

- I @O-p(F D) o [F()-p(F(D))|
k = 1,2. Then, for any tuplet, if = O'(FI(DI)) > 2 J(FZ(DZ» s
then [[¢111(2) = [[$211(2).

This means that larger deviation from the mean (proportionally
to the standard deviation) results in higher degree of violation under
our semantics. The proof follows from the fact that the normaliza-

tion function 7(.) is monotonically increasing, and hence, [[¢1]] (¢)
£ B (D—p(Fe (D))
o(Fe(D))

is a monotonically non-decreasing function o

4.1.2 Principle for Synthesizing Projections. We start by investigat-
ing what makes a constraint more effective than others. An effective
constraint (1) should not overfit the data, but rather generalize by
capturing the properties of the data, and (2) should not underfit the
data, because it would be too permissive and fail to identify devi-
ations effectively. Our flexible bounds (Section 4.1.1) serve to avoid
overfitting. In this section, we focus on identifying the principles
that help us avoid underfitting. We first describe the key technical
ideas for characterizing effective projections through example and
then proceed to formalization.

EXAMPLE 6. Let D be a dataset of three tuples {(1,1.1),(2,1.7),(3,3.2)}
with two attributes X and Y. Consider two arbitrary projections: X and
Y. For X: p(X(D)) = 2 and o(X(D)) = 0.8. So, bounds for its confor-
mance constraint are: 1b = 2—4x0.8 = —1.2 andub = 2+4X0.8 = 5.2.
This gives us the conformance constraint: —1.2 < X < 5.2. Similarly,
forY, we get the conformance constraint: —=1.6 <Y < 5.6. Fig. 3(a)
shows the conformance zone (clear region) defined by these two con-
formance constraints. The shaded region depicts non-conformance
zone. The conformance zone is large and too permissive: it allows
many atypical tuples with respect to D, such as (0,4) and (4,0).

A natural question arises: are there other projections that can
better characterize conformance with respect to the tuples in D?
The answer is yes and next we show another pair of projections
that shrink the conformance zone significantly.

ExAMPLE 7. In Fig. 3(b), the clear region is defined by the confor-
mance constraints —0.8 < X—-Y < 0.8 and—-2.8 < X+Y < 10.8, over
projections X — Y and X + Y, respectively. The region is indeed much
smaller than the one in Fig. 3(a) and allows fewer atypical tuples.

504

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

How can we derive projection X — Y from the projections X
and Y, given D? Note that X and Y are highly correlated in D. In
Lemma 11, we show that two highly correlated projections can be
linearly combined to construct another projection with lower stan-
dard deviation that generates a stronger constraint. We proceed to
formalize stronger constraint—which defines whether a constraint is
more effective than another in quantifying violation—and incongru-
ous tuples—which help us estimate the subset of the data domain
for which a constraint is stronger than the others.

DEFINITION 8 (STRONGER CONSTRAINT). A conformance con-
straint ¢ is stronger than another conformance constraint ¢z on
a subset H C Dom™ ifVt € H, [[¢111(¢) = [[¢211(8).

Given a dataset D C Dom™ and a projection F, for any tuple ¢, let
AF(t) = F(t) — p(F(D)). For projections F; and Fz, the correlation
11 Zeen AFL (AR (1)

o(Fi(D))o(F,(D))

coefficient pr, r, (over D) is defined as

DEFINITION 9 (INCONGRUOUS TUPLE). A tuplet is incongruous
w.r.t. a projection pair(Fy, F2) on D if: AFi(t) - AF>(t) - pp, F, < 0.

Informally, an incongruous tuple for a pair of projections does
not follow the general trend of correlation between the projection
pair. For example, if F1 and F» are positively correlated (pf, r, > 0),
an incongruous tuple t deviates in opposite ways from the mean of
each projection (AF; (t) - AF2(t) < 0). Our goal is to find projections
that yield a conformance zone with very few incongruous tuples.

ExAMPLE 10. In Example 6, X andY are positively correlated with
px,y = 1. The tuple t = (0,4) is incongruous wr.t. (X,Y), because
X(t) = 0 < pu(X(D)) = 2, whereas Y(t) = 4 > p(Y(D)) = 2.
Intuitively, the incongruous tuples do not behave like the tuples in D
when viewed through the projections X and Y. Note that the narrow
conformance zone of Fig. 3(b) no longer contains the incongruous
tuple (0, 4). In fact, the conformance zone defined by the conformance
constraints derived from projections X — Y and X + Y are free from a
vast majority of the incongruous tuples.

We proceed to state Lemma 11, which informally says that any
two highly correlated projections can be linearly combined to con-
struct a new projection to obtain a stronger constraint. We write ¢
to denote the conformance constraint 1b < F (g) < ub, synthesized
from F. (All proofs are in our technical report [21].)

LEmMA 11. Let D be a dataset and Fy, Fy be two projections on D
st |pr F| = % Then, 31, f2 € R s.t. ﬂf + ﬂg = 1 and for the new
projection F = p1F; + foFo:

(1) o(F(D)) < o(F1(D)) and o(F(D)) < o(F2(D)), and
(2) ¢r is stronger than both ¢, and ¢, on the set of tuples that are
incongruous w.r.t.(F, F2).

We now extend the result to multiple projections in Theorem 12.

THEOREM 12 (LOow STANDARD DEVIATION CONSTRAINTS). Given
a dataset D, let F={F1,...,Fx} denote a set of projections on D
s.t. 3F;, F;eF with |pF, F; |>1. Then, there exist a nonempty subset
IC{1,...,K} and a projection F= Y ¢ B F, where fi€R s.t.
(1) Yk € I, o(F(D)) < o(Fy(D)),
(2) Yk € 1, ¢F is stronger than $r, on the subset H, where

H={t | Vkel (B AF(t)=0) V Vkel(fAF(t)<0)}, and

(3) Vk ¢ I, |pr.p | < 3.

Research Data Management Track Paper

Algorithm 1: Procedure to generate linear projections.

Inputs : A dataset D C Dom™
Output: A set {(Fi,y1),..., (Fk, yk)} of projections and
importance factors
1 DN « D after dropping non-numerical attributes
2 Dy < [T, DnN]
3 {W,..., Wk} < eigenvectors of D;VTD}V
4 foreach1 < k < K do

5 Wy, < Wi with first element removed
- ATy
6 Fp « AA: ==&
kAl

1
Yk < Tog(Zvo (F (DN)))
s return {(F;, %),..., (Fk,)}, where Z = T v

The theorem establishes that to detect violations for tuples in H:
(1) projections with low standard deviations define stronger con-
straints (and, thus, are preferable), and (2) a set of constraints with
highly correlated projections is suboptimal (as they can be linearly
combined to generate stronger constraints). Note that H is a con-
servative estimate for the set of tuples where ¢r is stronger than
each ¢, ; there exist tuples outside H for which ¢ is stronger.

Bounded projections vs. convex polytope. Bounded projections
(Example 7) relate to the computation of convex polytopes [68].
For example, one can compute a convex hull—the minimal convex
polytope that includes all the training tuples—and then any tuple
falling outside it is considered non-conforming. However, a convex
hull overfits to the training tuples and is extremely sensitive to
outliers. For example, consider a training dataset over attributes
X and Y: {(1,10), (2, 20), (3,30)}. A convex hull in this case would
be a line segment—starting at (1, 10) and ending at (3,30)—and
the tuple (5,50) will fall outside it. Unlike convex hull—whose
goal is to find the smallest possible “inclusion zone” that includes
all training tuples—our goal is to find a “conformance zone” that
reflects the trend of the training tuples. This is inspired from the
fact that ML models aim to generalize to tuples outside training
set; thus, conformance constraints also need to capture trends and
avoid overfitting. Our definition of good conformance constraints
(low variance and low mutual correlation) balances overfitting
and overgeneralization. Therefore, beyond the minimal bounding
hyper-box over the training tuples, we take into consideration the
distribution of the interaction among attributes (trends). For the
above example, conformance constraints will model the interaction
trend: Y = 10X, allowing the tuple (5, 50).

4.1.3 PCA-inspired Projection Derivation. Theorem 12 sets the re-
quirements for good projections (see also [43, 46, 69] that make
similar observations in different ways). It indicates that we can
start with any arbitrary projections and then iteratively improve
them. However, we can get the desired set of best projections in one
shot using an algorithm inspired by principal component analysis
(PCA). PCA relies on computing eigenvectors. There exist different
algorithms for computing eigenvectors (from the infinite space of
possible vectors). The general mechanism involves applying nu-
merical approaches to iteratively converge to the eigenvectors (up
to a desired precision) as no analytical solution exists in general.
Algorithm 1 returns projections that correspond to the principal
components of a slightly modified version of the given dataset:

505

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Line 1 Drop all non-numerical attributes from D to get the numeric
dataset Dy. This is necessary because PCA only applies to numer-
ical values. Instead of dropping, one can also consider embedding
techniques to convert non-numerical attributes to numerical ones.
Line 2 Add a new column to Dy that consists of the constant 1,
to obtain the modified dataset DJ’\J := [1; Dy, where 1 denotes the
column vector with 1 everywhere. We do this transformation to
capture the additive constant within principal components, which
ensures that the approach works even for unnormalized data.
Line 3 Compute K eigenvectors of the square matrix DJ’VTD;V,
where K denotes the number of columns in Dj;. These eigenvec-
tors provide coefficients to construct projections.

Lines 5-6 Remove the first element (coefficient for the newly
added constant column) of all eigenvectors and normalize them
to generate projections. Note that we no longer need the constant
element of the eigenvectors since we can appropriately adjust the
bounds, 1b and ub, for each projection by evaluating it on Dy;.
Line 7 Compute importance factor for each projection. Since pro-
jections with smaller standard deviations are more discerning (i.e.,
stronger), we assign each projection an importance factor (y) that
is inversely proportional to its standard deviation over Dy.

Line 8 Return the linear projections with corresponding normal-
ized importance factors.

We now claim that the projections returned by Algorithm 1
include the projection with minimum standard deviation and the
correlation between any two projections is 0. This indicates that we
cannot further improve the projections, and, thus they are optimal.

THEOREM 13 (CORRECTNESS OF ALGORITHM 1). Given a numerical
dataset D over the schema R, let ¥ = {F1, Fa, ..., Fx} be the set of
linear projections returned by Algorithm 1. Let 6* = minf o(Fi(D)).
If (A (D)) = 0 for all attribute Ay in R, then,?

(1) o* < o(F(D)) VF = ATw where ||| > 1, and
(2) VFj,F € F s.t. Fj # Fy, PF;F. = 0.

Using projections Fy, . .., Fi, and importance factors yy, ..., yx,
returned by Algorithm 1, we generate the simple (conjunctive) con-
straint with K conjuncts: Ag 1bg < Fi (A) < ubg. We compute the
bounds 1by and uby following Section 4.1.1 and use the importance
factor yj, for the k' conjunct in the quantitative semantics.

ExAMPLE 14. Algorithm 1 finds the projection of the conformance
constraint of Example 1, but in a different form. The actual airlines
dataset has an attribute distance (DIS) that represents miles trav-
elled by a flight. In our experiments, we found the following confor-
mance constraint> over the dataset of daytime flights:

0.7 X AT — 0.7 X DT — 0.14 X DUR — 0.07 X DIS = 0 (1)

This constraint is not quite interpretable by itself, but it is in fact a
linear combination of two expected and interpretable constraints:

()
®)

AT —DT—-DUR =~ 0
DUR - 0.12 X DIS = 0

2When the condition YAy p1(Ax (D)) = 0 does not hold, slightly modified variants
of the claim hold. However, by normalizing D (i.e., by subtracting attribute mean
11(Ak (D)) from each Ag (D)), it is always possible to satisfy the condition.

3For ease of exposition, we use F(/Y) ~ 0 to denote €; < F(K) < €, where €; ~ 0.
“We developed a tool [20] to explain causes of non-conformance. [21]

Research Data Management Track Paper

Here, (2) is the one mentioned in Example 1 and (3) follows from the
fact that average aircraft speed is about 500 mph implying that it
requires 0.12 minutes per mile. 0.7 X (2) + 0.56 X (3) yields:

0.7 X (AT = DT — DUR) + 0.56 X DUR — 0.56 X 0.12 X DIS ~ 0
= 0.7 X AT = 0.7 X DT — 0.14 X DUR — 0.07 X DIS = 0

Which is exactly the conformance constraint (1). Algorithm 1 found
the optimal projection of (1), which is a linear combination of the
projections of (2) and (3). The reason is: there is a correlation between
the projections of (2) and (3) over the dataset (Theorem 12). One
possible explanation of this correlation is: whenever there is an error
in the reported duration of a tuple, it violates both (2) and (3). Due to
this natural correlation, Algorithm 1 returned the optimal projection
of (1), that “covers” both projections of (2) or (3).

4.2 Compound Conformance Constraints

The quality of our PCA-based simple linear constraints relies on
how many low variance linear projections we are able to find on
the given dataset. For many datasets, it is possible we find very few,
or even none, such linear projections. In these cases, it is fruitful
to search for compound constraints; we first focus on disjunctive
constraints (defined by /4 in our language grammar).

The PCA-based approach fails in cases where there exist differ-
ent piecewise linear trends within the data, as it will result into
low-quality constraints, with very high variances. In such cases,
partitioning the dataset and then learning constraints separately on
each partition will result in significant improvement of the learned
constraints. A disjunctive constraint is a compound constraint of
the form Vi ((A = cg) > ¢), where each @ is a constraint for
a specific partition of D. Finding disjunctive constraints involves
horizontally partitioning the dataset D into smaller disjoint datasets
D1, Do, . ..,Dr. Our strategy for partitioning D is to use categorical
attributes with a small domain in D; in our implementation, we
use those attributes A; for which [{t.Aj|t € D}| < 50.If A;j is
such an attribute with values vy, v, ...,vr, we partition D into L
disjoint datasets D1, Dy, ..., Dy, where D; = {t € D|t.A; = v;}. Let
¢1,¢2, ..., ¢r be the L simple conformance constraints we learn
for Dy, Ds, ..., Dy using Algorithm 1, respectively. We compute the
following disjunctive conformance constraint for D:

((Aj=01)>d1) V((Aj=0v2)>2) V-V ((Aj =0r) > r)

We repeat this process and partition D across multiple attributes
and generate a compound disjunctive constraint for each attribute.
Then we generate the final compound conjunctive conformance
constraint (¥) for D, which is the conjunction of all these disjunc-
tive constraints. Intuitively, this final conformance constraint forms
a set of overlapping hyper-boxes around the data tuples.

4.3 Theoretical Analysis

4.3.1
two computational steps: (1) computing X7 X, where X is an n x m
matrix with n tuples and m attributes, which takes O(nm?) time,
and (2) computing the eigenvalues and eigenvectors of an m X m
positive definite matrix, which has complexity O(m>) [47]. Once
we obtain the linear projections using the above two steps, we
need to compute the mean and variance of these projections on the
original dataset, which takes O(nmz) time. In summary, the overall

Runtime Complexity. Computing simple constraints involves

506

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

procedure is cubic in the number of attributes and linear in the num-
ber of tuples. For computing disjunctive constraints, we greedily
pick attributes that take at most L (typically small) distinct values,
and then run the above procedure for simple constraints at most
L times. This adds just a constant factor overhead per attribute.

4.3.2 Memory Complexity. The procedure can be implemented in
O(m?) space. The key observation is that XT X can be computed as
Z?:l t,—tl.T, where t; is the ith tuple in the dataset. Thus, XTX can
be computed incrementally by loading only one tuple at a time into
memory, computing t; tl.T , and then adding that to a running sum,
which can be stored in O(m?) space. Note that instead of such an in-
cremental computation, this can also be done in an embarrassingly
parallel way where we horizontally partition the data (row-wise)
and each partition is computed in parallel.

4.3.3 Implication, Redundancy, and Minimality. Definition 8 gives
us the notion of implication on conformance constraints: for a
dataset D, satisfying ¢; that is stronger than ¢, implies that D
would satisfy ¢, as well. Lemma 11 and Theorem 12 associate re-
dundancy with correlation: correlated projections can be combined
to construct a new projection that makes the correlated projections
redundant. Theorem 13 shows that our PCA-based procedure finds
a non-redundant (orthogonal and uncorrelated) set of projections.
For disjunctive constraints, it is possible to observe redundancy
across partitions. However, our quantitative semantics ensures that
redundancy does not affect the violation score. Another notion
relevant to data profiles (e.g., FDs) is minimality. In this work, we
do not focus on finding the minimal set of conformance constraints.
Towards achieving minimality for conformance constraints, a fu-
ture direction is to explore techniques for optimal data partitioning.
However, our approach computes only m conformance constraints
for each partition. Further, for a single tuple, only my - mc confor-
mance constraints are applicable, where mp and m¢ are the number
of numerical and categorical attributes in D (i.e., m = my + m¢).

The quantity mp - mc is upper-bounded by '"TZ.

5 TRUSTED MACHINE LEARNING

In this section, we provide a theoretical justification of why con-
formance constraints are effective in identifying tuples for which
learned models are likely to make incorrect predictions. To that end,
we define unsafe tuples and show that an “ideal” conformance con-
straint provides a sound and complete mechanism to detect unsafe
tuples. In Section 4, we showed that low-variance projections con-
struct strong conformance constraints. We now make a similar argu-
ment, but in a slightly different way: we show that projections with
zero variance give us equality constraints that are useful for trusted
machine learning. We start with an example to provide the intuition.

ExampLE 15. Consider the airlines dataset D and assume that all
tuples in D satisfy the equality constraint ¢ := AT — DT — DUR = 0
(i.e., 1b = ub = 0). Note that for equality constraint, the correspond-
ing projection has zero variance—the lowest possible variance. Now,
suppose that the task is to learn some function f (AT, DT, DUR). If the
above constraint holds for D, then the ML model can instead learn the
function g(AT,DT,DUR) = f(DT + DUR, DT, DUR). g will perform just as
well as f on D: in fact, it will produce the same output as f on D. If a
new serving tuple t satisfies ¢, then g(t) = f(t), and the prediction

Research Data Management Track Paper

will be correct. However, if t does not satisfy ¢, then g(t) will likely be
significantly different from f(t). Hence, violation of the conformance
constraint is a strong indicator of performance degradation of the
learned prediction model. Note that f need not be a linear function:
as long as g is also in the class of models that the learning procedure
is searching over, the above argument holds.

We proceed to formally define unsafe tuples. We use [D; Y] to
denote the annotated dataset obtained by appending the target
attribute Y to a dataset D, and coDom to denote Y’s domain.

DEFINITION 16 (UNSAFE TUPLE). Given a class C of functions
with signature Dom™ + coDom, and an annotated dataset [D; Y] C
(Dom™ X coDom), a tuple t € Dom™ is unsafe w.r.t. C and [D;Y],

if3f.g € C st. f(D) = g(D) = Y but f(£) # g(t).

Intuitively, t is unsafe if there exist two different predictor func-
tions f and g that agree on all tuples in D, but disagree on ¢. Since,
we can never be sure whether the model learned f or g, we should
be cautious about the prediction on ¢. Example 15 suggests that ¢
can be unsafe when all tuples in D satisfy the equality conformance
constraint f (fY) - g(z‘_f) = 0 but ¢ does not. Hence, we can use the
following approach for trusted machine learning:

(1) Learn conformance constraints ® for the dataset D.
(2) Declare t as unsafe if t does not satisfy ®.

The above approach is sound and complete for characterizing
unsafe tuples, thanks to the following proposition.

PROPOSITION 17. There exists a conformance constraint ® for D
s.L. the following statement is true: “=®(t) iff t is unsafe w.r.t. C and
[D;Y] forallt € Dom™”.

The required conformance constraint @ is: Vf,g € C : f(D) =
gD)=Y=f (A) - g(ﬁ) = 0. Intuitively, when all possible pairs of
functions that agree on D also agree on ¢, only then the prediction
on ¢t can be trusted. (More discussion is in our technical report [21].)

5.1 Applicability

Generalization to noisy settings. While our analysis and formal-
ization for using conformance constraints for TML focused on the
noise-free setting, the intuition generalizes to noisy data. Specifi-
cally, suppose that f and g are two possible functions a model may
learn over D; then, we expect that the difference f — g will have
small variance over D, and, thus, would be a good conformance con-
straint. In turn, the violation of this constraint would mean that f
and g diverge on a tuple ¢ (making ¢ unsafe); since we are oblivious
of the function the model learned, prediction on ¢ is untrustworthy.

False positives. Conformance constraints are designed to work in
a model-agnostic setting. Although this setting is of great practical
importance, designing a perfect mechanism for quantifying trust in
ML model predictions, while remaining completely model-agnostic,
is challenging. It raises the concern of false positives: conformance
constraints may incorrectly flag tuples for which the model’s predic-
tion is in fact correct. This may happen when the model ignores the
trend that conformance constraints learn. Since we are oblivious of
the prediction task and the model, it is preferable that conformance
constraints behave rather conservatively so that the users can be
cautious about potentially unsafe tuples. Moreover, if a model ig-
nores some attributes (or their interactions) during training, it is still

507

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

necessary to learn conformance constraints over them. Particularly,
in case of concept drift [66], the ground truth may start depending
on those attributes, and by learning conformance constraints over
all attributes, we can better detect potential model failures.

False negatives. Another concern involving conformance con-
straints is of false negatives: linear conformance constraints may
miss nonlinear constraints, and, thus, fail to identify some unsafe
tuples. However, the linear dependencies modeled in conformance
constraints persist even after sophisticated (nonlinear) attribute
transformations. Therefore, violation of conformance constraints is
a strong indicator of potential failure of a possibly nonlinear model.

Modeling nonlinear constraints. While linear conformance con-
straints are the most common ones, we note that our framework can
be easily extended to support nonlinear conformance constraints
using kernel functions [57]—which offer an efficient, scalable, and
powerful mechanism to learn nonlinear decision boundaries for sup-
port vector machines (also known as kernel trick). Briefly, instead
of explicitly augmenting the dataset with transformed nonlinear
attributes—which grows exponentially with the desired degree of
polynomials—kernel functions enable implicit search for nonlinear
models. The same idea also applies for PCA called kernel-PCA [5,
34]. While we limit our evaluation to only linear kernel, polynomial
kernels—e.g., radial basis function (RBF) [38]—can be plugged into
our framework to model nonlinear conformance constraints.

In general, our conformance language is not guaranteed to model
all possible functions that an ML model can potentially learn, and,
thus, is not guaranteed to find the best conformance constraint.
However, our empirical evaluation on real-world datasets shows
that our language models conformance constraints effectively.

6 EXPERIMENTAL EVALUATION

We now present experimental evaluation to demonstrate the ef-
fectiveness of conformance constraints over our two case-study
applications (Section 2): trusted machine learning and data drift.
Our experiments target the following research questions:

o How effective are conformance constraints for trusted machine
learning? Is there a relationship between constraint violation
score and the ML model’s prediction accuracy? (Section 6.1)

e Can conformance constraints be used to quantify data drift?
How do they compare to other state-of-the-art drift-detection
techniques? (Section 6.2)

Efficiency. In all our experiments, our algorithms for deriving con-
formance constraints were extremely fast, and took only a few
seconds even for datasets with 6 million rows. The number of
attributes were reasonably small (~40), which is true for most prac-
tical applications. As our theoretical analysis showed (Section 4.3),
our approach is linear in the number of data rows and cubic in
the number of attributes. Since the runtime performance of our
techniques is straightforward, we opted to not include further dis-
cussion of efficiency here and instead focus this empirical analysis
on the techniques’ effectiveness.

Implementation: CCSYNTH. We created an implementation of
conformance constraints and our method for synthesizing them,
CCSyNTH, in Python 3 [11]. Experiments were run on a Windows
10 machine (3.60 GHz processor and 16GB RAM).

Research Data Management Track Paper

Trai Serving
ram Daytime Overnight Mixed
Average violation 0.02% 0.02% 27.68% 8.87%
MAE 18.95 18.89 80.54 38.60

Figure 4: Average constraint violation (in percentage) and MAE (for
linear regression) of four data splits on the airlines dataset. The con-
straints were learned on Train, excluding the target attribute, delay.

—— Violation

300 A r 0.6

200 A

Violation

100 A

Absolute error

0

400 600 800 1000

Tuples (sampled)

0 200

Figure 5: Constraint violation strongly correlates with the absolute
error of delay prediction of a linear regression model.

Datasets

Airlines [4] contains data about flights and has 14 attributes —year,
month, day, day of week, departure time, arrival time, carrier, flight
number, elapsed time, origin, destination, distance, diverted, and
arrival delay. We used a subset of the data containing all flight
information for year 2008. In this dataset, most of the attributes
follow uniform distribution (e.g., month, day, arrival and departure
time, etc.); elapsed time and distance follow skewed distribution
with higher concentration towards small values (implying that
shorter flights are more common); arrival delay follows a slightly
skewed gaussian distribution implying most flights are on-time, few
arrive late and even fewer arrive early. The training and serving
datasets contain 5.4M and 0.4M rows, respectively.

Human Activity Recognition (HAR) [63] is a real-world dataset
about physical activities for 15 individuals, 8 males and 7 females,
with varying fitness levels and BMIs. We use data from two sensors—
accelerometer and gyroscope—attached to 6 body locations—head,
shin, thigh, upper arm, waist, and chest. We consider 5 activities—
lying down, running, sitting, standing, and walking. The dataset
contains 36 numerical attributes (2 sensors X 6 body-locations X 3
co-ordinates) and 2 categorical attributes—activity-type and person-
ID. We pre-processed the dataset to aggregate the measurements
over a small time window, resulting in 10,000 tuples per person and
activity, for a total of 750,000 tuples.

Extreme Verification Latency (EVL) [62] is a widely used bench-
mark to evaluate drift-detection algorithms in non-stationary en-
vironments under extreme verification latency. It contains 16 syn-
thetic datasets with incremental and gradual concept drifts over
time. The number of attributes of these datasets vary from 2 to 6
and each of them has one categorical attribute.

6.1 Trusted Machine Learning

We now demonstrate the applicability of conformance constraints
in the TML problem. We show that, serving tuples that violate the
training data’s conformance constraints are unsafe, and therefore,
an ML model is more likely to perform poorly on those tuples.

Airlines. We design a regression task of predicting the arrival
delay and train a linear regression model for the task. Our goal

508

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

is to observe whether the mean absolute error of the predictions
(positively) correlates to the constraint violation for the serving
tuples. In a process analogous to the one described in Example 1, our
training dataset (Train) comprises of a subset of daytime flights—
flights that have arrival time later than the departure time (in 24
hour format). We design three serving sets: (1) Daytime: similar to
Train, but another subset, (2) Overnight: flights that have arrival
time earlier than the departure time (the dataset does not explicitly
report the date of arrival), and (3) Mixed: a mixture of Daytime
and Overnight. A few sample tuples of this dataset are in Fig. 1.

Our experiment involves the following steps: (1) CCSYNTH com-
putes conformance constraints ® over Train, while ignoring the tar-
get attribute delay. (2) We compute average constraint violation for
all four datasets—Train, Daytime, Overnight, and Mixed—against
O (first row of Fig. 4). (3) We train a linear regression model over
Train—including delay—that learns to predict arrival delay. (4) We
compute mean absolute error (MAE) of the prediction accuracy
of the regressor over the four datasets (second row of Fig. 4). We
find that constraint violation is a very good proxy for prediction
error, as they vary in a similar manner across the four datasets. The
reason is that the model implicitly assumes that the constraints
(e.g., AT — DT — DUR = 0) derived by CCSynTH will always hold,
and, thus, deteriorates when the assumption no longer holds.

To observe the rate of false positives and false negatives, we inves-
tigate the relationship between constraint violation and prediction
error at tuple-level granularity. We sample 1000 tuples from Mixed
and organize them by decreasing order of violations (Fig. 5). For all
the tuples (on the left) that incur high constraint violations, the re-
gression model incurs high error for them as well. This implies that
CCSYNTH reports no false positives. There are some false negatives
(right part of the graph), where violation is low, but the prediction
error is high. Nevertheless, such false negatives are very few.

HAR. We design a supervised classification task to identify persons
from their activity data that contains 36 numerical attributes. We
construct train_x with data for sedentary activities (lying, stand-
ing, and sitting), and train_y with the corresponding person-IDs.
We learn conformance constraints on train_x, and train a Logistic
Regression (LR) classifier using the annotated dataset [train_x;
train_y]. During serving, we mix mobile activities (walking and
running) with held-out data for sedentary activities and observe
how the classification’s mean accuracy-drop (i.e., how much the
mean prediction accuracy decreases compared to the mean pre-
diction accuracy over the training data) relates to average con-
straint violation. To avoid artifacts due to sampling bias, we repeat
this experiment 10 times for different subsets of the data by ran-
domly sampling 5000 data points for each of training and serving.
Fig. 6(a) depicts our findings: classification degradation has a clear
positive correlation with violation (pcc = 0.99 with p-value = 0).

Noise sensitivity. Intuitively, noise weakens conformance constraints
by increasing variance in the training data, which results in reduced
violations of the serving data. However, this is desirable: as more
noise makes machine-learned models less likely to overfit, and,
thus, more robust. In our experiment for observing noise sensitiv-
ity of conformance constraints, we use mobile activity data as the
serving set and start with sedentary data as the training set. Then
we gradually introduce noise in the training set by mixing mobile

Research Data Management Track Paper

Lo
g B CCSynth W CCSynth g il = cosmn
087 @ Classifier (LR) ol lo ®Cussifier (i) | £ s W-PCA
E])] 3
=06 ° ° B]
g ® ° [9] Lh
Z 04 o® n = ° & 0.2 o
3 L LY & .
] ° ™ ° it .ut
=) u [] o [
5021 oom® . o, z .®
u - AAAAAL
Coo B | TMmpmpagan] Tooitensgeraine s
10 30 50 70 90 5 15 25 35 45 55 135 7 9111315
Fraction of mobile data (%) Noise (%) during training #Persons
(a) (b) (©)

Figure 6: (a) As a higher fraction of mobile activity data is mixed
with sedentary activity data, conformance constraints are violated
more, and the classifier’s mean accuracy-drop increases. (b) As more
noise is added during training, conformance constraints get weaker,
leading to less violation and decreased accuracy-drop. (c) CCSYNTH
detects the gradual local drift on the HAR dataset as more people
start changing their activities. In contrast, weighted-PCA (W-PCA)
fails to detect drift in absence of a strong global drift.

pl p2 p3 p4 p5 p6 p7 p8 p9 pl0 pi1 pi2 pi3 pl4 pi5 Fitness BMI Gender

Moderate Underweight Female

Moderate Normal Male

Moderate ~ Overweight Male

Moderate Normal Male

Moderate Normal Male

High Normal Female

Moderate ~ Overweight Male

Low Obese Female

High Overweight Male

Moderate Obese Male

Moderate Normal Female

Moderate Normal Female

Moderate Normal Female

High Normal Male

Normal Female

05 04 04 05 04

05 05

Figure 7: Inter-person constraint violation heat map. Each person
has a very low self-violation.

activity data. As Fig. 6(b) shows, when more noise is added to the
training data, conformance constraints start getting weaker; this
leads to reduction in violations. However, the classifier also gains
robustness with more noise, which is evident from gradual decrease
in accuracy-drop (i.e., increase in accuracy). Therefore, even under
the presence of noise, the positive correlation between classification
degradation and violation persists (pcc = 0.82 with p-value = 0.002).

Key takeaway: CCSYNTH derives conformance constraints whose
violation is a strong proxy of model prediction accuracy. Their
correlation persists even in the presence of noise.

6.2 Data Drift

We now present results of using conformance constraints for drift-
detection; specifically, for quantifying drift in data. Given a baseline
dataset D, and a new dataset D’, we measure the drift as average
violation of tuples in D’ on conformance constraints learned for D.
HAR. We perform two drift-quantification experiments on HAR:

Gradual drift. For observing how CCSyNTH detects gradual drift, we
introduce drift in an organic way. The initial training dataset con-
tains data of exactly one activity for each person. This is a realistic
scenario as one can think of it as taking a snapshot of what a group
of people are doing during a reasonably small time window. We
introduce gradual drift to the initial dataset by altering the activity

509

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

of one person at a time. To control the amount of drift, we use a
parameter K. When K = 1, the first person switches their activity,
i.e., we replace the tuples corresponding to the first person perform-
ing activity A with new tuples that correspond to the same person
performing another activity B. When K = 2, the second person
switches their activity in a similar fashion, and so on. As we increase
K from 1 to 15, we expect a gradual increase in the drift magnitude
compared to the initial training data. When K = 15, all persons have
switched their activities from the initial setting, and we expect to
observe maximum drift. We repeat this experiment 10 times, and dis-
play the average constraint violation in Fig. 6(c): the drift magnitude
(violation) indeed increases as more people alter their activities.
The baseline weighted-PCA approach (W-PCA) fails to model
local constraints (who is doing what), and learns some weaker
global constraints indicating that “a group of people are perform-
ing some activities”. Thus, it fails to detect the gradual local drift.
CCSyYNTH can detect drift when individuals switch activities, as it
learns disjunctive constraints that encode who is doing what.

Inter-person drift. The goal of this experiment is to observe how
effectively conformance constraints can model the representation
of an entity and whether such learned representations can be used
to accurately quantify drift between two entities. We use half of
each person’s data to learn the constraints, and compute violation
on the held-out data. CCSynTH learns disjunctive constraints for
each person over all activities, and then we use the violation w.r.t.
the learned constraints to measure how much the other persons
drift. While computing drift between two persons, we compute
activity-wise constraint violation scores and then average them out.
In Fig. 7, the violation score at row p1 and column p2 denotes how
much p2 drifts from p1. As one would expect, we observe a very low
self-drift across the diagonal. Interestingly, our result also shows
that some people are more different from others, which appears
to have some correlation with (the hidden ground truth) fitness
and BMI values. This asserts that the constraints we learn for each
person are an accurate abstraction of that person’s activities, as
people do not deviate too much from their usual activity patterns.

EVL. We now compare CCSYNTH against other state-of-the-art
drift detection approaches on the EVL benchmark.

Baselines. We use two drift-detection baselines as described below:

(1) PCA-SPLL [43] similar to us, also argues that principal com-
ponents with lower variance are more sensitive to a general drift,
and uses those for dimensionality reduction. It then models multi-
variate distribution over the reduced dimensions and applies semi-
parametric log-likelihood (SPLL) to detect drift between two multi-
variate distributions. However, PCA-SPLL discards all high-variance
principal components and does not model disjunctive constraints.

(2) CD (Change Detection) [51] is another PCA-based approach
for drift detection in data streams. But unlike PCA-SPLL, it ignores
low-variance principal components. CD projects the data onto top
k high-variance principal components, which results into multiple
univariate distributions. We compare against two variants of CD:
CD-Area, which uses the intersection area under the curves of
two density functions as a divergence metric, and CD-MKL, which
uses Maximum KL-divergence as a symmetric divergence metric,
to compute divergence between the univariate distributions.

Research Data Management Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

-------- PCA-SPLL (25%) ——CCSynth
2CDT 4CR 4CRE-V1 4CRE-V2 5CVT
1.0 4 . I~) A 2 p
— WA Y | AR A L £\ \ I\
RN e
= 0.0
£
e 1CSurr 4CE1CF MG-2C-2D FG-2C-2D UG-2C-3D UG-2C-5D GEARS-2C-2D
o 1.0 e =S P g JU— [\
~ 0.0 1
0 0.5 10 0.5 0 0.5 10 0.5 10 0.5 10 0.5 10 0.5 10 0.5 1

-
1
Time step (norm.) Time step (norm.)

Time step (norm.) Time step (norm.) Time step (norm.) Time step (norm.) Time step (norm.) Time step (norm.)

Figure 8: In the EVL benchmark, CCSYNTH quantifies drift correctly for all cases, outperforming other approaches. PCA-SPLL fails to detect
drift in a few cases by discarding all principal components; CD-MKL and CD-Area are too sensitive to small drift and detect spurious drifts.

Fig. 8 depicts how CCSyNTH compares against CD-MKL, CD-
Area, and PCA-SPLL, on 16 datasets in the EVL benchmark. For
PCA-SPLL, we retain principal components that contribute to a
cumulative explained variance below 25%. Beyond drift detection,
which just detects if drift is above some threshold, we focus on drift
quantification. A tuple (x,y) in the plots denotes that drift magni-
tude for dataset at x*" time window, w.r.t. the dataset at the first
time window, is y. Since different approaches report drift magni-
tudes in different scales, we normalize the drift values within [0, 1].
Additionally, since different datasets have different number of time
windows, for the ease of exposition, we normalize the time window
indices. Below we state our key findings from this experiment:

CCSyYNTH’s drift quantification matches the ground truth. In all of
the datasets in the EVL benchmark, CCSYNTH is able to correctly
quantify the drift, which matches the ground truth [17] exception-
ally well. In contrast, as CD focuses on detecting the drift point,
it is ill-equipped to precisely quantify the drift, which is demon-
strated in several cases (e.g., 2CHT), where CD fails to distinguish
the deviation in drift magnitudes. In contrast, both PCA-SPLL and
CCSyNTH correctly quantify the drift. Since CD only retains high-
variance principal components, it is more susceptible to noise and
considers noise in the dataset as significant drift, which leads to
incorrect drift quantification. In contrast, PCA-SPLL and CCSyNTH
ignore the noise and only capture the general notion of drift.

CCSYNTH models local drift. When the dataset contains instances
from multiple classes, the drift may be just local, and not global (e.g.,
4CR dataset [21]). In such cases, PCA-SPLL fails to detect drift (4CR,
4CRE-V2, and FG-2C-2D). In contrast, CCSYNTH learns disjunctive
constraints and quantifies local drifts accurately.

Key takeaways: CCSYNTH can effectively detect data drift, both
global and local, is robust across drift patterns, and significantly
outperforms the state-of-the-art methods.

7 RELATED WORK

There is extensive literature on data-profiling [1] primitives that
model relationships among data attributes, such as functional de-
pendencies (FD) [48, 75] and their variants [10, 19, 30, 32, 40, 42, 50],
differential dependencies [60], denial constraints [8, 12, 44, 49],
statistical constraints [74], etc. However, none of them focus on
learning approximate arithmetic relationships that involve multiple
numerical attributes in a noisy setting, which is the focus of our
work. Some FD variants [10, 30, 32, 40, 42] consider noisy setting,

510

but they require noise parameters to be explicitly specified by the
user. In contrast, we do not require any explicit noise parameter.

The issue of trust, resilience, and interpretability of artificial
intelligence (AI) systems has been a theme of increasing interest
recently [33, 35, 55, 71], particularly for safety-critical data-driven
Al systems [65, 72]. A standard way to decide whether to trust a
classifier or not, is to use the classifier-produced confidence score.
However, this is not always effective since the classifier’s confi-
dence scores are not well-calibrated [34]. While some recent tech-
niques [15, 26, 34, 56] aim at validating the inferences made by
machine-learned models on unseen tuples, they usually require
knowledge of the inference task, access to the model, and/or ex-
pected cases of data shift, which we do not. Furthermore, they
usually require costly hyper-parameter tuning and do not generate
closed-form data profiles like conformance constraints (Fig. 2). Prior
work on data drift, change detection, and covariate shift [3, 7, 9,
13, 14, 16, 18, 22, 23, 28, 29, 31, 37, 39, 54, 58, 59, 61, 67, 73] relies
on modeling data distribution. However, data distribution does not
capture constraints, which is the primary focus of our work.

Few works [15, 26, 45] use autoencoder’s [27, 53] input recon-
struction error to determine if a new data point is out-of-distribution.
Our approach is similar to outlier-detection [41] and one-class-
classification [64]. However, conformance constraints differ from
these approaches as they perform under the additional requirement
to generalize the data in a way that is exploited by a given class
of ML models. In general, there is a clear gap between represen-
tation learning (that models data likelihood) [2, 27, 36, 53] and
the (constraint-oriented) data-profiling techniques to address the
problem of trusted Al and our aim is to bridge this gap.

8 SUMMARY AND FUTURE DIRECTIONS

We introduced conformance constraints, and the notion of unsafe
tuples for trusted machine learning. We presented an efficient and
scalable approach for synthesizing conformance constraints and
empirically demonstrated their effectiveness in tagging unsafe tu-
ples and quantify data drift. We studied two use-cases from a large
pool of potential applications using linear conformance constraints.
In future, we want to explore more powerful nonlinear conformance
constraints using autoencoders. Moreover, we plan to explore ap-
proaches to learn conformance constraints in a decision-tree-like
structure where categorical attributes will guide the splitting con-
ditions and leaves will contain simple conformance constraints.

Acknowledgements: This work was partially supported by the
NSF grants IIS-1453543 and CCF-1763423, and by Oracle Labs.

Research Data Management Track Paper

REFERENCES

(1]

[10]

[11

[12]

[13]

[14

[15]

[19]
[20]

[21]

[22]

Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational
data: a survey. VLDB . 24, 4 (2015), 557-581.

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas.
2018. Learning Representations and Generative Models for 3D Point Clouds. In
ICML, Vol. 80. 40-49.

Charu C. Aggarwal. 2003. A Framework for Diagnosing Changes in Evolving
Data Streams. In SIGMOD. 575-586.

Airlines Dataset 2009. http://kt.ijs.si/elena_ikonomovska/data.html.

Carlos Alzate and Johan AK Suykens. 2008. Kernel component analysis using an
epsilon-insensitive robust loss function. IEEE Transactions on Neural Networks
19, 9 (2008), 1583-1598.

Jean Paul Barddal, Heitor Murilo Gomes, Fabricio Enembreck, and Bernhard
Pfahringer. 2017. A survey on feature drift adaptation: Definition, benchmark,
challenges and future directions. Journal of Systems and Software 127 (2017),
278-294.

Albert Bifet and Ricard Gavalda. 2007. Learning from Time-Changing Data with
Adaptive Windowing. In SDM. 443-448.

Tobias Bleifuf3, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial
Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311-323.

Li Bu, Cesare Alippi, and Dongbin Zhao. 2018. A pdf-Free Change Detection Test
Based on Density Difference Estimation. IEEE Trans. Neural Netw. Learning Syst.
29, 2 (2018), 324-334.

Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. 2016. On the dis-
covery of relaxed functional dependencies. In Proceedings of the 20th International
Database Engineering & Applications Symposium. 53-61.

CCSynth Source Code 2021. https://github.com/microsoft/prose/tree/main/misc/
CCSynth.

Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.
PVLDB 6, 13 (2013), 1498-1509.

Tamraparni Dasu, Shankar Krishnan, Suresh Venkatasubramanian, and Ke
Yi. 2006. An information-theoretic approach to detecting changes in multi-
dimensional data streams. In Symp. on the Interface of Statistics, Computing
Science, and Applications.

Rodrigo Fernandes de Mello, Yule Vaz, Carlos Henrique Grossi Ferreira, and Albert
Bifet. 2019. On learning guarantees to unsupervised concept drift detection on
data streams. Expert Syst. Appl. 117 (2019), 90-102.

Taylor Denouden, Rick Salay, Krzysztof Czarnecki, Vahdat Abdelzad, Buu Phan,
and Sachin Vernekar. 2018. Improving Reconstruction Autoencoder Out-of-
distribution Detection with Mahalanobis Distance. CoRR abs/1812.02765 (2018).
arXiv:1812.02765

Denis Moreira dos Reis, Peter A. Flach, Stan Matwin, and Gustavo E. A. P. A.
Batista. 2016. Fast Unsupervised Online Drift Detection Using Incremental
Kolmogorov-Smirnov Test. In SIGKDD. 1545-1554.

Extreme Verification Latency Benchmark Video (Nonstationary Environments -
Archive): 2020. https://sites.google.com/site/nonstationaryarchive/home.
William J. Faithfull, Juan José Rodriguez Diez, and Ludmila I. Kuncheva. 2019.
Combining univariate approaches for ensemble change detection in multivariate
data. Information Fusion 45 (2019), 202-214.

Wenfei Fan, Floris Geerts, Laks V. S. Lakshmanan, and Ming Xiong. 2009. Dis-
covering Conditional Functional Dependencies. In ICDE. 1231-1234.

Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, and Sumit Gulwani. 2020.
ExTuNe: Explaining Tuple Non-conformance. In SIGMOD. 2741-2744.

Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Alexandra
Meliou. 2020. Conformance Constraint Discovery: Measuring Trust in Data-
Driven Systems. CoRR abs/2003.01289 (2020).

Mohamed Medhat Gaber and Philip S Yu. 2006. Classification of changes in evolv-
ing data streams using online clustering result deviation. In Proc. Of International
Workshop on Knowledge Discovery in Data Streams.

[23] Jodao Gama, Pedro Medas, Gladys Castillo, and Pedro Pereira Rodrigues. 2004.

[24]

[25]

[26]
[27]

[28

[29]

Learning with Drift Detection. In Advances in Artificial Intelligence - SBIA. 286~
295.

Jodo Gama, Indre Zliobaite, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. 2014. A survey on concept drift adaptation. ACM Comput. Surv. 46,
4(2014), 44:1-44:37.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration
of modern neural networks. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70. 1321-1330.

Dan Hendrycks and Kevin Gimpel. 2017. A Baseline for Detecting Misclassified
and Out-of-Distribution Examples in Neural Networks. In ICLR.

Geoffrey E Hinton and Ruslan R Salakhutdinov. 2006. Reducing the dimensional-
ity of data with neural networks. science 313, 5786 (2006), 504—-507.
Shen-Shyang Ho. 2005. A martingale framework for concept change detection
in time-varying data streams. In ICML. 321-327.

Bryan Hooi and Christos Faloutsos. 2019. Branch and Border: Partition-Based
Change Detection in Multivariate Time Series. In Proceedings of the 2019 SIAM
International Conference on Data Mining, SDM. 504-512.

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Yka Huhtala, Juha Karkkiinen, Pasi Porkka, and Hannu Toivonen. 1999. TANE:
An efficient algorithm for discovering functional and approximate dependencies.
The computer journal 42, 2 (1999), 100-111.

Dino Ienco, Albert Bifet, Bernhard Pfahringer, and Pascal Poncelet. 2014. Change
detection in categorical evolving data streams. In SAC. 792-797.

Ihab F. Ilyas, Volker Markl, Peter J. Haas, Paul Brown, and Ashraf Aboulnaga. 2004.
CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies.
In SIGMOD. 647-658.

Susmit Jha. 2019. Trust, Resilience and Interpretability of AT Models. In Numerical
Software Verification - 12th International Workshop, NSV@CAV. 3-25.

Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya R. Gupta. 2018. To Trust
Or Not To Trust A Classifier. In NeurIPS. 5546—-5557.

Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2020. Model
Assertions for Monitoring and Improving ML Models. In MLSys.

Theofanis Karaletsos, Serge J. Belongie, and Gunnar Rétsch. 2016. When crowds
hold privileges: Bayesian unsupervised representation learning with oracle con-
straints. In ICLR.

Yoshinobu Kawahara and Masashi Sugiyama. 2009. Change-Point Detection in
Time-Series Data by Direct Density-Ratio Estimation. In SDM. 389-400.

S Sathiya Keerthi and Chih-Jen Lin. 2003. Asymptotic behaviors of support vector
machines with Gaussian kernel. Neural computation 15, 7 (2003), 1667-1689.
Daniel Kifer, Shai Ben-David, and Johannes Gehrke. 2004. Detecting Change in
Data Streams. In PVLDB. 180-191.

Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian.
2009. Metric functional dependencies. In ICDE. 1275-1278.

Hans-Peter Kriegel, Peer Kroger, Erich Schubert, and Arthur Zimek. 2012. Outlier
Detection in Arbitrarily Oriented Subspaces. In ICDM. 379-388.

Sebastian Kruse and Felix Naumann. 2018. Efficient discovery of approximate
dependencies. PVLDB 11, 7 (2018), 759-772.

Ludmila I. Kuncheva and William J. Faithfull. 2014. PCA Feature Extraction for
Change Detection in Multidimensional Unlabeled Data. IEEE Trans. Neural Netw.
Learning Syst. 25, 1 (2014), 69-80.

Ester Livshits, Alireza Heidari, Thab F. Ilyas, and Benny Kimelfeld. 2020. Approx-
imate Denial Constraints. PVLDB 13, 10 (2020), 1682-1695.

Haochuan Lu, Huanlin Xu, Nana Liu, Yangfan Zhou, and Xin Wang. 2019.
Data Sanity Check for Deep Learning Systems via Learnt Assertions. CoRR
abs/1909.03835 (2019). arXiv:1909.03835

Tveten Martin and Ingrid K. Glad. 2019. Online Detection of Sparse Changes
in High-Dimensional Data Streams Using Tailored Projections. arXiv preprint
arXiv:1908.02029 (2019).

Victor Y. Pan and Zhao Q. Chen. 1999. The Complexity of the Matrix Eigenprob-
lem. In ACM Symposium on Theory of Computing. 507-516.

Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schonberg, Jakob Zwiener, and Felix Naumann. 2015. Functional
dependency discovery: An experimental evaluation of seven algorithms. PVLDB
8,10 (2015), 1082-1093.

Eduardo HM Pena, Eduardo C de Almeida, and Felix Naumann. 2019. Discovery
of approximate (and exact) denial constraints. PVLDB 13, 3 (2019), 266-278.
Abdulhakim Qahtan, Nan Tang, Mourad Ouzzani, Yang Cao, and Michael Stone-
braker. 2020. Pattern functional dependencies for data cleaning. PVLDB 13, 5
(2020), 684-697.

Abdulhakim Ali Qahtan, Basma Alharbi, Suojin Wang, and Xiangliang Zhang.
2015. A PCA-Based Change Detection Framework for Multidimensional Data
Streams: Change Detection in Multidimensional Data Streams. In SIGKDD. 935~
944.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why Should I
Trust You?”: Explaining the Predictions of Any Classifier. In SIGKDD. 1135-1144.
David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. 1985. Learning
internal representations by error propagation. Technical Report. California Univ
San Diego La Jolla Inst for Cognitive Science.

Leszek Rutkowski, Maciej Jaworski, Lena Pietruczuk, and Piotr Duda. 2015. A
New Method for Data Stream Mining Based on the Misclassification Error. IEEE
Trans. Neural Netw. Learning Syst. 26, 5 (2015), 1048-1059.

Suchi Saria and Adarsh Subbaswamy. 2019. Tutorial: Safe and Reliable Machine
Learning. CoRR abs/1904.07204 (2019). arXiv:1904.07204

Sebastian Schelter, Tammo Rukat, and Felix BieBmann. 2020. Learning to Validate
the Predictions of Black Box Classifiers on Unseen Data. In SIGMOD. 1289-1299.
Bernhard Schélkopf, Alexander J Smola, Francis Bach, et al. 2002. Learning with
kernels: support vector machines, regularization, optimization, and beyond.
Tegjyot Singh Sethi and Mehmed M. Kantardzic. 2017. On the reliable detection
of concept drift from streaming unlabeled data. Expert Syst. Appl. 82 (2017),
77-99.

Tegjyot Singh Sethi, Mehmed M. Kantardzic, and Elaheh Arabmakki. 2016. Mon-
itoring Classification Blindspots to Detect Drifts from Unlabeled Data. In IEEE
International Conference on Information Reuse and Integration, IRI. 142-151.
Shaoxu Song and Lei Chen. 2011. Differential dependencies: Reasoning and
discovery. ACM Transactions on Database Systems (TODS) 36, 3 (2011), 1-41.
Xiuyao Song, Mingxi Wu, Christopher M. Jermaine, and Sanjay Ranka. 2007.
Statistical change detection for multi-dimensional data. In SIGKDD. 667-676.

Research Data Management Track Paper

[62] V.M. A. Souza, D.F. Silva, J. Gama, and G. E. A. P. A. Batista. 2015. Data Stream
Classification Guided by Clustering on Nonstationary Environments and Extreme
Verification Latency. In SDM. 873-881.

[63] Timo Sztyler and Heiner Stuckenschmidt. 2016. On-body Localization of Wearable
Devices: An Investigation of Position-Aware Activity Recognition. In PerCom.
1-9.

[64] David M. J. Tax and Klaus-Robert Miiller. 2003. Feature Extraction for One-Class
Classification. In ICANN/ICONIP. 342-349.

[65] Ashish Tiwari, Bruno Dutertre, Dejan Jovanovic, Thomas de Candia, Patrick
Lincoln, John M. Rushby, Dorsa Sadigh, and Sanjit A. Seshia. 2014. Safety envelope
for security. In HiCoNS. 85-94.

[66] Alexey Tsymbal. 2004. The problem of concept drift: definitions and related work.

Computer Science Department, Trinity College Dublin 106, 2 (2004), 58.

Alexey Tsymbal, Mykola Pechenizkiy, Padraig Cunningham, and Seppo Puuronen.

2006. Handling Local Concept Drift with Dynamic Integration of Classifiers:

Domain of Antibiotic Resistance in Nosocomial Infections. In IEEE International

Symposium on Computer-Based Medical Systems (CBMS). 679-684.

[68] Francesco Turchini, Lorenzo Seidenari, and Alberto Del Bimbo. 2017. Convex
polytope ensembles for spatio-temporal anomaly detection. In International Con-
ference on Image Analysis and Processing. 174-184.

[67

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Martin Tveten. 2019. Which principal components are most sensitive to distribu-
tional changes? arXiv preprint arXiv:1905.06318 (2019).

Vladimir Vapnik, Steven E Golowich, and Alex] Smola. 1997. Support vector
method for function approximation, regression estimation and signal processing.
In NeurIPS. 281-287.

Kush R. Varshney. 2019. Trustworthy machine learning and artificial intelligence.
ACM Crossroads 25, 3 (2019), 26-29.

KushR. Varshney and Homa Alemzadeh. 2017. On the Safety of Machine Learning:
Cyber-Physical Systems, Decision Sciences, and Data Products. Big Data 5, 3
(2017), 246-255.

Heng Wang and Zubin Abraham. 2015. Concept Drift Detection for Imbalanced
Stream Data. CoRR abs/1504.01044 (2015). arXiv:1504.01044

[74] Jing Nathan Yan, Oliver Schulte, Mohan Zhang, Jiannan Wang, and Reynold

Cheng. 2020. SCODED: Statistical Constraint Oriented Data Error Detection. In
SIGMOD. 845-860.

Yunjia Zhang, Zhihan Guo, and Theodoros Rekatsinas. 2020. A Statistical Per-
spective on Discovering Functional Dependencies in Noisy Data. In SIGMOD.
861-876.

	Abstract
	1 Introduction
	2 Case Studies
	3 Conformance Constraints
	3.1 Conformance Language
	3.2 Quantitative Semantics

	4 Conformance Constraint Synthesis
	4.1 Simple Conformance Constraints
	4.2 Compound Conformance Constraints
	4.3 Theoretical Analysis

	5 Trusted Machine Learning
	5.1 Applicability

	6 Experimental Evaluation
	6.1 Trusted Machine Learning
	6.2 Data Drift

	7 Related Work
	8 Summary and Future Directions
	References

