
CoCo: Interactive Exploration of Conformance Constraints
for Data Understanding and Data Cleaning

Anna Fariha
University of Massachusetts Amherst

afariha@cs.umass.edu

Ashish Tiwari
Microsoft

astiwar@microsoft.com

Alexandra Meliou
University of Massachusetts Amherst

ameli@cs.umass.edu

Arjun Radhakrishna
Microsoft

arradha@microsoft.com

Sumit Gulwani
Microsoft

sumitg@microsoft.com

ABSTRACT

Data profiling refers to the task of extracting technical metadata or

profiles and has numerous applications such as data understanding,

validation, integration, and cleaning. While a number of data profil-

ing primitives exist in the literature, most of them are limited to cat-

egorical attributes. A few techniques consider numerical attributes;

but, they either focus on simple relationships involving a pair of

attributes (e.g., correlations) or convert the continuous semantics of

numerical attributes to a discrete semantics, which results in infor-

mation loss. To capture more complex relationships involving the

numerical attributes, we developed a new data-profiling primitive

called conformance constraints, which can model linear arithmetic

relationships involving multiple numerical attributes.

We present CoCo, a system that allows interactive discovery and

exploration of Conformance Constraints for understanding trends

involving the numerical attributes of a dataset, with a particular fo-

cus on the application of data cleaning. Through a simple interface,

CoCo enables the user to guide conformance constraint discovery

according to their preferences. The user can examine to what extent

a new, possibly dirty, dataset satisfies or violates the discovered

conformance constraints. Further, CoCo provides useful sugges-

tions for cleaning dirty data tuples, where the user can interactively

alter cell values, and verify by checking change in conformance

constraint violation due to the alteration. We demonstrate how

CoCo can help in understanding trends in the data and assist the

users in interactive data cleaning, using conformance constraints.

ACM Reference Format:

Anna Fariha, Ashish Tiwari, Alexandra Meliou, Arjun Radhakrishna, and Su-

mit Gulwani. 2021. CoCo: Interactive Exploration of Conformance Con-

straints for Data Understanding and Data Cleaning. In Proceedings of the

2021 International Conference on Management of Data (SIGMOD ’21), June

18ś27, 2021, Virtual Event , China. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3448016.3452750

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD ’21, June 18ś27, 2021, Virtual Event , China

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8343-1/21/06. . . $15.00
https://doi.org/10.1145/3448016.3452750

1 INTRODUCTION

Data profiling [1] is a key data-management task that involves

discovering technical metadata or profiles that provide a high-level,

informative summary of data. Data profiles encapsulate constraints,

patterns, and trends within data and have important applications

in data integration, validation, and cleaning. A number of data-

profiling primitives exist in the literature such as integrity and

denial constraints [4], functional dependencies and its variants (e.g.,

soft, approximate, relaxed, metric, conditional, pattern) [10], and sta-

tistical constraints [12]. However, most of them focus on categorical

or text attributes and cannot be trivially extended to (noisy) numer-

ical attributes. To support numerical attributes, existing techniques

apply binning or use relational operators to convert the continuous

semantics of numerical attributes to a discrete semantics. However,

such transformations result in significant information loss. Espe-

cially, existing data profiling primitives fall short in capturing the

arithmetic relationships involving multiple numerical attributes.

Example 1.1. Consider a schema of a flight dataset with the nu-

merical attributes: (1) departureTime, (2) arrivalTime, (3) duration,

(4) distance, and (5) delay. There exist a number of natural con-

straints involving these attributes that any instance over this schema

should (ideally) satisfy. E.g., consider the following two constraints:

(C1) arrivalTime − departureTime ≈ duration

(C2) AVG_AIRCRAFT_SPEED × (duration − delay) ≈ distance

The above two constraints can be further used to generate many

other constraints. For instance, we can substitute duration in C1

with (distance
AVG_AIRCRAFT_SPEED + delay)Ðobtained from C2Ðto get a new

constraint over arrivalTime, departureTime, distance and delay.

Conformance constraints. The constraints in Example 1.1 encode
linear arithmetic relationships involving the numerical attributes,
which can generally be expressed using the following template:

LOWER_BOUND ≤
∑

𝑖

𝑤𝑖A𝑖 ≤ UPPER_BOUND

Here, LOWER_BOUND and UPPER_BOUND are numerical constants, A𝑖
denotes the 𝑖th attribute, and𝑤𝑖 denotes the corresponding numer-

ical coefficient (relative weight). Unfortunately, no existing data

profiling primitive is expressive enough to capture these linear

arithmetic constraints. To model linear dependencies across numer-

ical attributes within a noisy dataset, we developed conformance

constraints [9], which can model constraints in the above template.

Automatic discovery of conformance constraints. Traditionally, in-

tegrity constraints are specified along with the schema to keep the

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2706

łintegrityž of new data over that schema, e.g., to prevent erroneous

tuple insertion. Like other data profiles, conformance constraints

can also be specified during schema design. However, it is difficult

to come up with the right set of conformance constraints manually.

First, real-world data is often noisy and pre-specified constraints

can be too strict, resulting in unwanted conservativeness during

future data operations. Second, figuring out the right set of confor-

mance constraints requires complete understanding of the domain

and semantics of each attribute (e.g., duration includes both the

flight time and the delay). Third, finding the coefficients manually

is tedious: it requires knowledge of the measurement units of the

attributes (e.g., distance is in miles). Thus, it is preferable to have

a mechanism for automatic discovery of conformance constraints

from a given dataset, which we developed in a prior work [9].

Interactive exploration of conformance constraints. A shortcoming

of our approach for conformance constraint discovery is that it pri-

oritizes effectiveness (finds the strongest conformance constraints)

over interpretability (may involve a large number of numerical at-

tributes). For example, if there exists a correlation between the two

constraints of Example 1.1 over the data, i.e., all tuples tend to incur

similar violation scores against both, then they can be merged to

derive a stronger constraint. However, such an increase in strength

comes at the cost of interpretability, as a conformance constraint

that involves too many numerical attributes is less interpretable. To

address this issue, CoCo allows the user to tune the parameters for

conformance constraint discovery: they can specify the attributes

that are of interest and the maximum number of attributes they pre-

fer within the conformance constraints. While this might produce

suboptimal constraints, it nonetheless is valuable because it gives

users more control and confidence. In particular, CoCo displays

the strength of each discovered conformance constraint and also

shows the top 15 most violating tuples, which helps the user judge

the effectiveness of the constraints.

Conformance constraints for data cleaning. An obvious application

of conformance constraints is data cleaning. The idea is to first

learn conformance constraints over a clean (reference) dataset and

then consult the learned constraints for data cleaning. Specifically,

violation of the learned constraints by a new tuple indicates that

the tuple may be dirty. Furthermore, the closed form expression

of conformance constraints also allows us to provide suggestions

regarding valid values for each cell (Figure 1), which can guide

the user throughout the data cleaning process. CoCo provides an

interactive data cleaning solution where the user can edit a cell

within a tuple and gets immediate feedback about the corresponding

change in constraint violation: reduction or removal of constraint

violation confirm a correct cleaning operation (Figure 2).

Related work. We developed complete algorithms for conformance

constraint discovery and demonstrated their effectiveness in trusted

machine learning and data drift quantification in a prior work [9].

To interpret conformance constraints in the context of trusted ma-

chine learning, we previously demonstrated ExTuNe [8], which

blames data attributes for causing tuple nonconformance. CoCo sig-

nificantly differs from ExTuNe, in three ways: (1) Unlike ExTuNe,

CoCo allows the user to guide conformance constraint discovery

and explore the discovered constraints directly. (2) CoCo associates

constraint violation with the constraints themselves and not with

the data attributes. (3) CoCo is focused on data cleaning, while Ex-

TuNe’s focus was trusted machine learning. In summary, ExTuNe

was a causal-intervention-centric system built on top of confor-

mance constraints, while CoCo is a demonstration of the discovery

and implication of conformance constraints and their application

in interactive data cleaning.

Integrity constraints and functional dependencies have long been

used for error detection and data cleaning [3, 6, 7]. Holistic data

cleaning [5] provides a unified framework to allow different types

of user-provided constraints for data cleaning. Instead of relying

on user-provided rules, a practical idea is to automatically discover

them from clean data. ANMAT [11] exploits automatically discov-

ered pattern functional dependencies for error detection, but it is

limited to text attributes. In summary, none of the existing efforts in

data cleaning consider automatically generated constraints involv-

ing linear arithmetic expressions over numerical attributes, which is

the primary focus of conformance-constraint-driven data cleaning.

In our demonstration, participants will observe how CoCo dis-

covers interpretable conformance constraints, based on their pref-

erences, and experience how violation of conformance constraints

can facilitate interactive data cleaning. We proceed to describe the

solution sketch and then provide an outline of our demonstration.

2 SOLUTION SKETCH

Conformance constraint discovery. The core component of CoCo

is a discovery engine for conformance constraints. Conformance

constraints enforce that certain projections of the data tuples stay

within certain bounds. A projection ®𝑃 is simply a weighted linear

combination of the numerical attributes (
∑
𝑖 𝑤𝑖A𝑖). Given a projec-

tion ®𝑃 , we can compute the bounds of the corresponding confor-

mance constraint by evaluating ®𝑃 over the dataset 𝐷 . In our work,

we use the following formulas to compute the bounds, where 𝜇 and

𝜎 denote mean and standard deviation, respectively:

LOWER_BOUND = 𝜇 (®𝑃 (𝐷)) − 4 × 𝜎 (®𝑃 (𝐷))

UPPER_BOUND = 𝜇 (®𝑃 (𝐷)) + 4 × 𝜎 (®𝑃 (𝐷))

However, the key task here is to find a set of good projections that

result in strong conformance constraints. To this end, we apply

our prior work on conformance constraint discovery [9], which

is based on the principles of principal component analysis (PCA).

At a high level, the key idea is to find projections that incur low

variance over the reference data, as this, intuitively, implies that the

data shows an łalmost constantž trend along that low-variance pro-

jection. PCA generates a set of projections (principal components)

over a given data, where the first principal component captures the

maximum variance and the last principal component captures the

least variance of the data. While traditionally, only high-variance

principal components have been used to reduce data dimensionality

with the aim of reducing reconstruction error, our key idea is that

we can use the łby-productž of PCAÐthe low-variance principal

componentsÐto construct strong conformance constraints.

Strength of conformance constraints. A projection with very low

variance yields a strong constraint, as łlow variancež implies łal-

most constantž value for a projection, i.e., a steady trend. In contrast,

a high-variance projection does not yield a useful constraint. Hence,

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2707

we use inverse of standard deviation (square root of variance) of

a projection to denote the łstrengthž of the corresponding confor-

mance constraint: lower the variance, stronger the constraint. We

normalize the strength using the conversion 𝜆𝜎 :
1

ln(𝑒+𝜎)
.

Interpretable conformance constraints. Involving all attributes dur-

ing learning yields the strongest set of conformance constraints.

However, as discussed before, it results in poor interpretability.

CoCo allows the user to specify a parameter 𝐾 that denotes the

maximum number of attributes preferred within a conformance

constraint. Additionally, CoCo allows the user to tune a second

parameter A which denotes a set of attributes over which con-

formance constraint discovery should be limited. With 𝐾 and A

specified by the user, CoCo learns constraints on different vertical

partitions of the reference dataset, with each partition limited to

a subset of 𝐾 attributes from A. Although, theoretically, this re-

sults in combinatorial explosion, the set A is expected to be small

and the value 𝐾 must be small (≤ 5) for ensuring interpretability.

Therefore, in practice, such a runtime complexity is acceptable.

CoCo preprocesses the discovered conformance constraints be-

fore presenting them to the user. The preprocessing involves (1) re-

moving attributes that are associated with very small weights

within a constraint, as this improvs interpretability, and (2) remov-

ing redundant constraints that involve the same attributes (and,

thus, are equivalent) by keeping only one of the redundant con-

straints. E.g., the constraints −2 ≤ 𝑋+𝑌 ≤ 2 and −4 ≤ 2𝑋+2𝑌 ≤ 4

are equivalent and keeping only one of them is sufficient.

Computing constraint violation. A violation function computes how

much a tuple 𝑡 violates a conformance constraint involving projec-

tion ®𝑃 . Specifically, it measures howmany standard deviations away
®𝑃 (𝑡) is from the bounds of the conformance constraint involving ®𝑃 :

violation (𝑡, lb ≤ ®𝑃 ≤ ub) =





0 if lb ≤ ®𝑃 (𝑡) ≤ ub

®𝑃 (𝑡)−ub

𝜎 (®𝑃 (𝐷))
if ®𝑃 (𝑡) > ub

lb− ®𝑃 (𝑡)

𝜎 (®𝑃 (𝐷))
if ®𝑃 (𝑡) < lb

To aggregate violation scores over a set of constraints, we com-

pute a weighted sum over all constraint violations, where weights

are proportional to the strength of the constraint. Finally, we nor-

malize the violation score using the monotonic function 𝜆𝑧 : 1−𝑒−𝑧 .

Generating suggestions for data cleaning. For data cleaning, we use

a reasonably clean dataset as a reference data. Discovery of con-

formance constraints requires only a small amount of data that

are reasonably clean (number of tuples should be more than the

number of attributes for PCA to work). However, our technique for

conformance constraint discovery is robust to uniformly distributed

outliers across all projections, and straightforward modification

in bound computation (tightening) can adjust to noisy data. For a

tuple 𝑡 , all of whose attributes are correct, except the jth attribute,

we can generate a range of valid values for the jth attribute to fix

it by exploiting a given conformance constraint 𝐶 . When we have

a set of such constraints 𝐶1, 𝐶2, . . . , we can generate a range of

valid values for each 𝐶𝑖 and take their intersection to find a range

that will satisfy all of the constraints. Using this mechanism, CoCo

generates suggestions on how to alter value of a single cell of a

tuple to fix it. However, we note that when multiple attributes are

incorrect, such a suggestion may not be helpful.

3 DEMONSTRATION

We will demonstrate CoCo on a real-world airlines dataset [2].

The dataset contains information about flights over 14 attributes

including origin, destination, departure time, arrival time, duration,

distance, and delay. We will use a subset of the data, manually se-

lected to be reasonably clean, as a reference dataset. We expect that

most participants will be familiar with this data domain and will be

able to correctly interpret the conformance constraints that CoCo

discovers. Figure 1 shows a screenshot of CoCo’s graphical user in-

terface. The top panel is for conformance constraint discovery and

selection, and the bottom panel serves the purpose of interactive

exploration of constraint violations by data tuples and data cleaning.

During the demonstration, we will guide the participants through

ten steps. We have annotated each step with a circle in Figure 1.

Step 1○ (Uploading reference data) First, the user uploads a

reference dataset, over which CoCo will learn conformance con-

straints. Ideally, tuples within the reference dataset should bemostly

clean. For our guided scenario, the user uploads a clean subset of

the airlines dataset as the reference data.

Step 2○ (Parameter tuning) Next, the user tunes two param-

eters for conformance constraints: (1) The maximum number of

attributes (𝐾) that can appear in any conformance constraint, which

can be specified through a slider. A small value for this parame-

ter yields more interpretable conformance constraints that involve

fewer attributes. However, this might compromise the effectiveness

of the discovered constraints. For our scenario, the user sets the

value of 𝐾 to be 3. (2) A set of attributes A over which confor-

mance constraints should be learned. The user selects the attributes

{distance, arrivalTime, departureTime, duration, and delay},

as they deem these attributes as most relevant.

Step 3○ (Conformance constraint discovery) The user re-

quests CoCo to discover conformance constraints based on the

specified parameters 𝐾 andA. CoCo learns accordingly and shows

a progress bar to keep the user informed about its progress during

conformance constraint discovery.

Step 4○ (Viewing constraints for data understanding)CoCo

presents the discovered conformance constraints to the user, along

with their strengths, from which the user can gain insights about

the dataset. For example, the first conformance constraint is equiv-

alent to the constraint C1 of Example 1.1. The green bars indicate

the strengths of the constraints.

Steps 5○ - 6○ (Constraint selection) CoCo can produce many

constraints and not all of them are useful for the task at hand. Hence,

CoCo lets the user choose a subset of the discovered constraints

that they deem useful. Once the user confirms their selection, the

selected constraints are shown in the left side of the bottom panel.

Step 7○ (Uploading test data) The user now uploads a new,

potentially dirty, dataset for observing to what extent its tuples

satisfy or violate the selected conformance constraints. For our

guided scenario, the user uploads the dataset containing all flights.

Step 8○ (Viewing and selecting tuples) CoCo presents the

top 15 most violating tuples within the test data to the user, along

with their overall violation scores (not shown in Figure 1). The user

selects the 7th tuple to dig deeper.

Step 9○ (Viewing constraint-wise violation) In this step, the

user views breakdown of constraint-wise violation by the selected

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2708

REFERENCES
[1] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. 2015. Profiling relational

data: a survey. VLDB J. 24, 4 (2015), 557ś581.
[2] Airlines Dataset. 2009. http://kt.ijs.si/elena_ikonomovska/data.html.
[3] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-

etsidis. 2007. Conditional Functional Dependencies for Data Cleaning. In ICDE.
746ś755.

[4] Xu Chu, Ihab F Ilyas, and Paolo Papotti. 2013. Discovering denial constraints.
PVLDB 6, 13 (2013), 1498ś1509.

[5] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In ICDE. 458ś469.

[6] Wenfei Fan, Floris Geerts, and Xibei Jia. 2008. A revival of integrity constraints
for data cleaning. PVLDB 1, 2 (2008), 1522ś1523.

[7] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Con-
ditional functional dependencies for capturing data inconsistencies. TODS 33, 2

(2008), 6:1ś6:48.
[8] Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, and Sumit Gulwani. 2020.

ExTuNe: Explaining Tuple Non-conformance. In SIGMOD. 2741ś2744.
[9] Anna Fariha, Ashish Tiwari, Arjun Radhakrishna, Sumit Gulwani, and Alexandra

Meliou. 2021. Conformance Constraint Discovery: Measuring Trust in Data-
Driven Systems. In SIGMOD. https://doi.org/10.1145/3448016.3452795

[10] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. 2015. Functional
dependency discovery: An experimental evaluation of seven algorithms. PVLDB
8, 10 (2015), 1082ś1093.

[11] Abdulhakim Ali Qahtan, Nan Tang, Mourad Ouzzani, Yang Cao, and Michael
Stonebraker. 2019. ANMAT: Automatic Knowledge Discovery and Error Detec-
tion through Pattern Functional Dependencies. In SIGMOD. 1977ś1980.

[12] Jing Nathan Yan, Oliver Schulte, Mohan Zhang, Jiannan Wang, and Reynold
Cheng. 2020. SCODED: Statistical Constraint Oriented Data Error Detection. In
SIGMOD. 845ś860.

Demo Track Paper SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2710

	Abstract
	1 Introduction
	2 Solution Sketch
	3 Demonstration
	References

