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Several recent experiments, including our own experiments in the fission yeast, S. pombe, have
characterized the motions of gene loci within living nuclei by measuring the locus position over
time, then proceeding to obtain the statistical properties of this motion. To address the question of
whether a population of such single particle tracks, obtained from many different cells, corresponds
to a single mode of diffusion, we derive theoretical equations describing the probability distribution of
the displacement covariance, assuming the displacement itself is a zero-mean multivariate Gaussian
random variable. We also determine the corresponding theoretical means, variances, and third
central moments. Bolstering the theory is good agreement between its predictions and the results
obtained for various simulated and measured data sets, including simulated particle trajectories
undergoing simple and anomalous diffusion, and the measured trajectories of an optically-trapped
bead in water, and in a viscoelastic polymer solution. We also show that, for sufficiently long tracks,
each covariance distribution in all of these examples is well-described by a skew-normal distribution
with mean, variance, and skewness given by the theory. However, for the experimentally measured
motion of the gene locus S. pombe, we find that the first two covariance distributions are wider
than predicted, although the third and subsequent covariance distributions are well-described by
theory. This observation suggests that the origin of the theory-experiment discrepancy in this
case is associated with localization noise, which influences only the first two covariances. Thus,
we hypothesized that the discrepancy is caused by locus-to-locus heterogeneity in the localization
noise, of independent measurements of the same tagged site. Indeed, simulations implementing
heterogeneous localization noise revealed that the excess covariance widths can be largely recreated
on the basis of heterogeneous noise. Thus, we conclude that the motion of gene loci in fission yeast
is consistent with a single mode of diffusion.

I. INTRODUCTION

Single particle tracking has long been been applied to
elucidate the dynamics of various soft-matter and biologi-
cal systems [1–5]. Recent advances in fluorescent tagging
and imaging now also enable tracking-based studies of
single molecules or moieties within living cells. The mo-
tion of fluorescently labeled particles is most often an-
alyzed by determining the mean squared displacement
(MSD) as a function of time delay between observations.
This approach has been applied to a wide variety of
macro- and supra-molecular complexes inside cells from
diverse organisms [6–17]. Examples in mammalian cells
include reports of simple diffusion for a transmembrane
protein [7] as well as multiple diffusive states within sub-
populations (immobilized, subdiffusive and diffusive) for
a viral protein [8] or several sub-populations (immobi-
lized, slow and fast diffusion) for a DNA-binding protein
[10]. For the DNA itself, subdiffusion has been reported
for DNA loci in bacteria [18] and subdiffusion [9] or con-
fined diffusion [6, 19] in eukaryotes.
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The question of how to optimally determine the dif-
fusivity from the time-averaged MSD (taMSD) has been
investigated thoroughly for the case of simple diffusion
[15, 16, 20–23]. Typically, the slope of the taMSD for
a limited number of time delays is used to yield an es-
timate of the diffusivity for each track and distribution
of diffusivities across multiple tracks. However, within
a track, the displacements measured for different time
delays are not statistically independent. This, together
with the particle position measurements being imperfect,
as they include static localization noise (the uncertainty
in particle position due to a limited number of detected
photons) [24–26] and motion blur (the spatial spread of
the signal due to camera integrating a particle’s posi-
tions over exposure time) [25], confounds MSD analysis.
Recently, Vestergaard et al. [27] have shown that the
optimal way to gauge diffusivity, while accounting for lo-
calization noise and motion blur, is to use an estimator
based on the covariances of the particle displacements.

Another fundamental question is whether a single or
multiple diffusion coefficients are appropriate to describe
data collected from heterogeneous biological systems.
Several approaches have been developed to sort particle
trajectories into different diffusive states [11, 15, 17, 28,
29]. However, the simplest way to investigate whether
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data realize a single diffusivity or not is to compare
the width of the measured diffusivity distribution to the
width one would expect for a single diffusivity.

Vestergaard et al.[27] derived the expected distribution
and variance of diffusivities measured from tracks of finite
length in the case of simple diffusion, assuming that the
static localization error is Gaussian-distributed. How-
ever, this analysis is not applicable to the more general
case of anomalous diffusion. In the case of simple diffu-
sion analyzed in Ref. [27], there are only two non-zero co-
variances, linearly related to the diffusivity. By contrast,
there are as many non-zero covariances as there are steps
in a track in the case of anomalous diffusion. A biologi-
cally important case of anomalous diffusion is the motion
of a chromosomal locus. While the mean covariances for
anomalous diffusion have been analyzed [30, 31], to-date
we are unaware of any comparison between the measured
and predicted covariance distributions in the context of
gene loci motion, nor any consideration of whether the
motion of gene loci is homogeneous in time or whether
a gene locus may undergo transitions among different
modes of diffusion. The goal of this paper is to answer
the question: Does the in vivo motion of a gene locus in
fission yeast follow a single mode of diffusion, or not?

Specifically, this paper focuses on the expected scatter
in SPT track descriptors for a single diffusive state in or-
der to be able to identify additional scatter that may arise
as a result of variations in the underlying dynamics. To
this end, we calculate the probability distribution func-
tion of these elements, expressed as a Fourier transform,
which we perform numerically for comparison to data and
simulations. However, we find that the exact probability
density can be well approximated by the skew normal
distribution. It follows that fitting measured covariance
distributions to the skew normal provides the important
descriptors of the distribution, namely the mean, vari-
ance, and third central moment, which can then be com-
pared to the exact theoretical values of these quantities.
Agreement between the two strongly suggests that the
particle tracks in question exhibit one mode of diffusion.

The paper is organized as follows. In Sec. II A and
Sec. II B, we present the probability distribution, the
mean, the variance, and the third central moment of
the displacement covariance matrix elements for arbi-
trary modes of diffusion in one and two dimensions (1D
and 2D), respectively. In Sec. II C, we specialize to give
the diffusivity distribution, its variance, and third cen-
tral moment in the case of simple 2D diffusion, repro-
ducing some of the results of Ref. [27] via a different
route. In Sec. III, we compare theoretical covariance dis-
tributions for a zero-mean Gaussian random process, ex-
pressed in terms of the mean covariance matrix elements,
to a number of simulated and experimentally measured
covariances. For simulated simple diffusion (Sec. III A)
we find excellent agreement with theory. We also apply
our methods to optical tweezers data (Sec. III B), and
again find good agreement with theory. The agreement
with theory in this case underscores that the usual pro-

cedures for fitting optical tweezers measurements should
be generally modified to account for the motion blur, as
pointed out previously [32]. Finally, we analyze motion
of gene loci in living S. pombe yeast cells (Sec. III C), and
find an important discrepancy with theory. Our analysis
points to the discrepancy stemming from experimental
locus-to-locus heterogeneity in localization noise, while
the theory assumes the localization error to be drawn
from a single normal distribution. After accounting for
this heterogeneity with simulations, through implement-
ing heterogeneous localization noise, we conclude that
the gene loci in living S. pombe indeed undergo a single
mode of diffusion. Finally, in Sec. IV, we summarize and
conclude.

II. THEORETICAL DISTRIBUTION OF
COVARIANCE MATRIX ELEMENTS

A. One-dimensional analysis

We consider data that consist of a collection of sin-
gle particle tracks, each characterized by the same well-
defined diffusive properties. There are at least three im-
portant reasons to then consider tracks of finite length.
The first is that over time, fluorescently-labeled proteins
in vivo may experience changes in their diffusive prop-
erties – changes in their diffusive state – such as those
caused by binding and unbinding events, for example, to
DNA or other complexes in the cell. The second is that,
even for proteins that always remain in a single diffusive
state, individual fluorescent labels can blink and eventu-
ally bleach. Third, in microscopy experiments, proteins
can readily diffuse out of the focal volume. All of these
processes give rise to tracks that realize a single diffu-
sive state for a finite duration. Therefore, we start off by
considering a population of tracks each comprising N +1
particle coordinates along the x-axis, {xj}, with j = 1
through N , corresponding to N particle displacements
along the x-axis, {∆xj = xj+1 − xj}, and we focus on
the covariance of these one-dimensional displacements.
Each measured track provides an estimate of the covari-
ance matrix elements, which, assuming that the diffusive
properties do not vary within a track, should depend only
on time separation n for a stationary process. Each mea-
sured track provides an estimate of the covariance matrix
elements via:

Sn =
1

N − n

N−n∑
j=1

∆xj∆xj+n, (1)

where ∆xj is the displacement of step j and N is the
total number of steps in the track. Because of their in-
herent stochasticity, different tracks yield different values
for Sn. However, averaging over many tracks yields the
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underlying mean covariance matrix:

Σ =



〈S0〉 〈S1〉 〈S2〉 〈S3〉 ....
〈S1〉 〈S0〉 〈S1〉 〈S2〉 ....
〈S2〉 〈S1〉 〈S0〉 〈S1〉 ....
〈S3〉 〈S2〉 〈S1〉 〈S0〉 ....
. . . . ....
. . . . ....
. . . . ....



=



Σ0 Σ1 Σ2 Σ3 ....
Σ1 Σ0 Σ1 Σ2 ....
Σ2 Σ1 Σ0 Σ1 ....
Σ3 Σ2 Σ1 Σ0 ....
. . . . ....
. . . . ....
. . . . ....


, (2)

where the angular brackets indicate an ensemble average
over tracks, and we have defined Σn = 〈Sn〉. In general,
the covariance matrix is a symmetric Toeplitz matrix.
We note here that through this paper, ”mean” is used in
two different meanings. In the context of SPT, ”mean”
refers to averaging over the ensemble of the tracks, while
in the context of the theoretical probability distribution
function, ”mean” refers to the calculated expected values.

Eq. 1 permits us to calculate Sn for each individual
track, and thus, to determine the experimental distribu-
tion Sn from a population of experimental or simulated
tracks. We can then test our understanding of the un-
derlying diffusive process by comparing these empirical
distributions to corresponding theoretical predictions.

To determine theoretical expressions for the distribu-

tions of Sn, our starting point is the hypothesis that the
probability of observing a particular N -step track is given
by a multivariate Gaussian distribution, characterized by
the N ×N covariance matrix Σ (Eq. 2):

P (∆x|Σ) =
1

(2π)N/2|Σ|1/2
exp

[
−1

2
∆xTΣ−1∆x

]
,

(3)

where ∆x = (∆x1,∆x2, ...∆xN )T is the vector of N
successive particle displacements along the x-direction
within the track, and |Σ| is the determinant of the co-
variance matrix. To proceed, we introduce the (Toeplitz)
matrices, [C0]jk = 2

N I and [Cn]jk = 1
(N−n)δj k±n, which

permits us to re-write Eq. 1 as

S0 =
1

N

N∑
j=1

∆xj∆xj =
1

2
∆xTC0∆x, (4)

and

Sn =
1

N − n

N−n∑
j=1

∆xj∆xj+n =
1

2
∆xTCn∆x, (5)

for n > 0.
Using Eq. 3, Eq. 4, and Eq. 5, and the Fourier trans-

form representation of the Dirac delta function, we may
express the probability distribution of the random vari-
ables, Sn, for a given covariance matrix, in terms of a
certain matrix determinant:

P (Sn|Σ) =
∫
d(∆x1)d(∆x2)...d(∆xN )P (∆x|Σ)δ

(
Sn − 1

2∆xTCn∆x
)

=
∫∞
−∞

dω
2π

∫
d(∆x1)d(∆x2)...d(∆xN ) 1√

(2π)N |Σ|
eiωSn−

1
2 ∆xT (Σ−1+iωCn)∆x

=
∫∞
−∞

dω
2π

1√
|Σ||Σ−1+iωCn|

eiωSn

=
∫∞
−∞

dω
2π

1√
|I+iωΣCn|

eiωSn ,

(6)

where |Σ−1+iωCn| and |I+iωΣCn| are the determinants
of Σ−1 + iωCn and I+ iωΣCn, respectively. Eq. 6 is the
probability density of Sn, given the covariance matrix Σ.
After calculating the determinant as a function of ω, the
integral over ω may be performed numerically to obtain
p(Sn|Σ).

From Appendix A, we show from Eq. 6 that the first
three moments of Sn are

〈Sn〉 =
1

2
Tr(ΣCn), (7)

< S2
n >=

(TrΣCn)2

4
+

Tr(ΣCn)2

2
, (8)

and〈
S3
n

〉
=

1

8
(TrΣCn)3 +

3

4
Tr(ΣCn)Tr(ΣCn)2 +Tr(ΣCn)3.

(9)
Combining Eq. 7 and Eq. 8, we find that the variance of
Sn is

σ2
Sn =

〈
S2
n

〉
− 〈Sn〉2 =

Tr(ΣCn)2

2
. (10)

Combining Eq. 7, Eq. 8, and Eq. 9, we find that the third
central moment of Sn is

µ3 =
〈
(Sn − 〈Sn〉)3

〉
= Tr(ΣCn)3. (11)
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B. Two-dimensional analysis

Single-particle tracking often results in two-
dimensional data, so that two vectors are available

for each track, namely ∆x and ∆y. In this case, given
that the motion along each dimension is independent
of the other, the likelihood of observing a particular
trajectory is

P (∆x,∆y|Σx,Σy) =
1

(2π)N |Σ|
exp

[
−1

2
∆xTΣ−1

x ∆x− 1

2
∆yTΣ−1

y ∆y

]
, (12)

where Σx and Σy are the covariance matrices for x- and
y-displacements, respectively. If we redefine Sn to corre-
spond to two dimensions via

Sn =
1

N − n

N−n∑
j=1

∆xj∆xj+n +
1

N − n

N−n∑
j=1

∆yj∆yj+n,

(13)

then, correspondingly, we can introduce a two-
dimensional covariance matrix, Σ, via

Σ = Σx + Σy. (14)

Commonly, the diffusive behavior is isotropic, in which
case we furthermore have that

Σx = Σy =
1

2
Σ. (15)

In this isotropic case, it follows that the probability den-
sity for the two-dimensional covariance is (calculated sim-
ilarly to Eq. 6)

P (Sn|Σ) =
∫
d(∆x1)...d(∆y1)...P (∆x,∆y|Σ)δ

(
Sn − 1

2∆xTCn∆x− 1
2∆yTCn∆y

)
=
∫∞
−∞

dω
2π

1
|I+ i

2ωΣCn|
eiωSn .

(16)

From Appendix A, we calculate 〈Sn〉,
〈
S2
n

〉
, and

〈
S3
n

〉
in this two-dimensional case. Using these results, it is
straightforward to show that the mean, variance, and
third central moment of the Sn in 2D are

〈Sn〉 =
1

2
Tr(ΣCn), (17)

σ2
Sn =

1

4
Tr(ΣCn)2, (18)

and 〈
(Sn − 〈Sn〉)3

〉
=

1

4
Tr(ΣCn)3. (19)

C. Simple 2D diffusion

Many experimental systems can be expected to real-
ize simple 2D diffusion with experimental errors, corre-
sponding to a tridiagonal covariance matrix, where the
only non-zero covariance matrix elements are Σ0 and Σ1,
which are related to the diffusion coefficient, D, the static

localization noise, σ2, the time between camera expo-
sures, ∆t, and the exposure time, ∆tE , via [27]

Σ0 = 4D∆t− 4

3
D∆tE + 2σ2 (20)

and

Σ1 = −σ2 +
2

3
D∆tE . (21)

The static localization noise, σ2, is the error in particle
localization that results from counting a limited number
of photons. The terms involving the exposure time, ∆tE ,
correspond to motion blur, because the particle position
is integrated while the shutter is open.

In this case, 1
4Tr(ΣCn)2 and 1

4Tr(ΣCn)3 can be eval-
uated in closed form with the results that

σ2
S0

=
Σ2

0 + (2− 2
N )Σ2

1

N
, (22)

σ2
S1

=
Σ2

0 + (3− 2
N−1 )Σ2

1

2(N − 1)
, (23)

σ2
Sn =

Σ2
0 + (2− 2

N−n )Σ2
1

(N − n)
, (24)
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for n > 1,

〈
(S0 − 〈S0〉)3

〉
=

2NΣ3
0 + (12N − 12)Σ0Σ2

1

N3
, (25)

〈
(S1 − 〈S1〉)3

〉
=

(10N − 22)Σ3
1 + (9N − 15)Σ2

0Σ1

2(N − 1)3
,

(26)

〈
(S2 − 〈S2〉)3

〉
=

((N − 30)Σ2
1Σ0

2(N − 2)
, (27)

〈
(S3 − 〈S3〉)3

〉
=

(3N − 15)Σ3
1

2(N − 3)2
, (28)

〈
(Sn − 〈Sn〉)3

〉
= 0, (29)

for n ≥ 4. Eqs. 22, 23, and 24 reproduce Eq. 9 of Ref. [27],
which employs a different method to find the variance of
Sn.

Eqs. 20 and 21 can be used to estimate D from each
individual track. For a given N -displacement track we
have:

D =
1

4

(
S0

∆t
+

2S1

∆t

)
=

∆xTC0∆x

4∆t
+

∆yTC0∆y

4∆t
+

∆xTC1∆x

2∆t
+

∆yTC1∆y

2∆t
. (30)

Because of the physical importance of the diffusion coefficient, we also consider its distribution, mean, variance and
third moment for a distribution of D values estimated from tracks using Eq. 30.

It follows that the the probability density, the variance, and the third central moment of the diffusion coefficient
are

P (D|Σ) =
∫∞
−∞

dω
2π

1
|I+ i

8∆tωΣ(C0+2C1)|e
iωD, (31)

σ2
D =

1

4
Tr[Σ(

C0 + 2C1

4∆t
)]2 =

1
4

(
3N−1
N(N−1)Σ2

0 + 8
NΣ0Σ1 + 8N3−16N2+6N−2

N2(N−1)2 Σ2
1

)
4(∆t)2

(32)

=

D2

18 (2N − 1)(1 +N(22N − 25)) + D
6
σ2

∆t (4N
3 − 3N + 1) + 1

8

(
σ2

∆t

)2

(2N3 − 3N − 1)

(N − 1)2N2
,

and〈
(D − 〈D〉)3

〉
=

1

4
Tr[Σ(

C0 + 2C1

4∆t
)]3

=
[ 1
N2 + 6

N(N−1) ]Σ3
0 + [ 18

N2 + 18N−30
(N−1)3 ]Σ2

0Σ1 + [ 6N−6
N3 + 54N−90

N(N−1)2 ]Σ0Σ2
1 + [ 18N−30

N2(N−1) + 20N−44
(N−1)3 ]Σ3

1

32∆t3
, (33)

respectively.

We show in Appendix B, that Eq. 31 reproduces Eq. C17
of Ref. [27]. Eq. 32 is exact; it reproduces approximated
solution Eq. 17 of Ref. [27] to second order in 1

N .

III. COMPARISONS OF THEORY TO
SIMULATIONS AND EXPERIMENTS

A. Simulations of simple 2D diffusion

First, we compare the theory of Sec. II to simulated
particle trajectories undergoing simple 2D diffusion, gen-

erated as described in Ref. [29]. We simulated 106 steps,
and set D = 0.0055 µm2 s−1, σ2 = 7.94 × 10−5 µm2,
and ∆t = ∆tE = 0.058s. Calculating the r2 value sets
the scale for statistical quantities, where r2 = 4D∆t =
0.0013 µm2. The scale of the localization noise is then
σ2

r2 = 0.062. Lastly, the root-mean-square (RMS) step
size for this simulation is 35.7 nm. These values de-
scribing the datasets analyzed in this paper are shown
together in Table I. We partitioned these displacements
into tracks of varied length, N , ranging from 19 to 419
steps, and then calculated the covariance matrix elements
and diffusion coefficient (Eq. 30) for each such track.
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FIG. 1. Covariance distributions for simulated simple 2D dif-
fusion for D = 0.0055 µm2s−1, σ2 = 7.94 × 10−5 µm2, and
∆t = ∆tE = 0.058s. Distribution of covariances S0 (a), S1

(b), S2 (c), and S3 (d) for particle tracks of 19 (light gray),
39 (medium gray), and 79 (dark gray) steps are represented
as histograms. Red lines correspond to the theoretical dis-
tributions. Black dashed lines correspond to the best fit of a
skew normal distribution to the simulated distributions. With
increasing number of time steps, the distribution narrows.
Higher S terms tend to center on 0.
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FIG. 2. Covariance distributions plotted on a logarithmic
y-axis for simulated simple 2D diffusion, for the same data
shown in FIG. 1. Distribution of covariances S0 (a), S1 (b),
S2 (c), and S3 (d) for particle tracks of 19 (light gray), 39
(medium gray), and 79 (dark gray) steps are represented as
histograms. Red lines correspond to the theoretical distri-
butions. Black dashed lines correspond to the best fit of a
skew normal distribution to the simulated distributions. Only
slight discrepancies between theory and skew normal curves
are observed at the tails of the distributions.
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Normalized histograms of thus calculated S0, S1, S2,
and S3 are plotted in Fig. 1(a), (b), (c), and (d), respec-
tively, for different track lengths N = 19, 39, and 79. The
S0-distributions are entirely positive, as required. The
mean of the S1-distributions are positive, as expected
when motion blur dominates static localization error. For
n > 1, the means of the Sn-distributions appear to be
zero, also as expected. The distributions become pro-
gressively narrower with increasing track length, because
a longer track length represents a more accurate mea-
surement. Also shown in Fig. 1 as the solid red lines
are the corresponding theoretical distributions (Eq. 16),
calculated using only the experimental mean covariance
matrix elements. Clearly, these theoretical predictions
closely match the simulated distributions. Logarithmic-
linear plots of the same data and model are presented in
Fig. 2, demonstrating that the simulated and theoretical
distributions continue to agree well, even in the far tails.

The Central Limit Theorem informs us that the dis-
tributions must each approach a Gaussian in the limit of
large N . However, the simulated and theoretical distri-
butions for N = 19, and even for N = 39, are noticeably
skewed. To provide a simple way to empirically gauge the
mean, variance, and third central moment of measured
covariance distributions by fitting, we approximate them
with a skew normal distribution [33]:

p(Sn) =
1√
2πρ

e
− (Sn−ζ)2

2ρ2

[
1 + erf

(
α(Sn − ζ)√

2ρ

)]
, (34)

with mean

〈Sn〉 = ζ +

√
2

π

αρ√
1 + α

(35)

variance

σ2
Sn = ρ2(1− 2α2

π
(1 + α)) (36)

and third central moment〈
(Sn − 〈Sn〉)3

〉
=

4− π
2

(δ
√

2/π)3

(1− 2δ2/π)
3
2

(ρ2(1−2α2

π
(1+α)))

3
2

(37)
The black lines in Figs. 1 and 2 are the best fits of a

skew normal distribution to distributions sampled from
the simulations, varying α, ζ, and ρ as fitting parame-
ters. Near the peak, it is evident that the skew normal
fit is able to accurately capture the shape of each dis-
tribution. While the best-fit skew normal distribution
shows small deviations from both theory and simulated
data (Fig. 2) in the far tails, we judge that it provides
a good approximation to both. The distributions of es-
timated diffusion coefficients are shown in Figs. 3 and 4,
together with skew-normal fits. Again close examination
reinforces that the theoretical curves very closely match
the simulated distributions, and that the skew-normal
fits provide an excellent description with only small de-
viations in the tails.
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FIG. 3. Distribution of diffusion coefficients, D, for simulated
simple 2D diffusion with D = 0.0055 µm2s−1, σ2 = 7.94 ×
10−5 µm2, and ∆t = ∆tE = 0.058s (same data as shown
in FIGs. 1-2), for track lengths of (a) 29 steps, (b) 79 steps,
and (c) 319 steps, shown using a linear y-axis. The red curve
represents the theoretical prediction given by Eq. 31. The
black dashed curve corresponds to the best skew normal fit
to the simulated distribution.

Fig. 5 shows how estimates of the covariance distri-
butions from skew-normal fits depend on the inverse
length of the tracks. Estimated mean (Fig. 5a), vari-
ance (Fig. 5b) and 3rd moment (Fig. 5d) for S0, S1, S2,
and S3 are compared to the ground-truth mean and to
theoretical predictions for the variance and 3rd moment
(Eqs. 17-19). Because the covariance distributions are
skewed, we include the third central moment to com-
pare the fitted third moment (related to the skewness,
see Eq. A12) to the theoretically predicted. In Fig. 5(c),
we show specifically the variance of S0+2S1. This combi-
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Dataset D σ2 (µm2) ∆t (s) r2 (µm2) σ2/r2 RMS step size (nm)
Simulated simple 2D diffusion 0.0055 (µm2/s) 7.94 ×10−5 0.058 0.00128 0.062 35.7
Simulated simple 2D diffusion 0.1389 (µm2/s) 0.0015 0.01 0.0056 0.270 74.6
Simulated simple 2D diffusion 0.0062 (µm2/s) 0.0013 0.01 2.48 ×10−4 5.24 15.7

Optically-trapped bead in water 0.14 (µm2/s) 2.80 ×10−7 4.8 ×10−5 1.34 ×10−5 0.021 3.7
Optically-trapped bead in PEO 3.3 ×10−5 (µm2/s0.20) 2.80 ×10−7 5.0 ×10−5 9.1 ×10−5 0.031 3.0

Gene locus mmf1 0.0061 (µm2/s0.39) 0.0027 0.058 0.0080 0.338 89.4
Simulated fBm 0.0055 (µm2/s0.44) 0.0032 0.058 0.0063 0.51 79.4

TABLE I. Table of the SPT parameters and calculated length scale values for the datasets analyzed in this paper. For 2D
simple diffusion the length scale of the step size is r2 = 4D∆t. For optical tweezers data, which is one-dimensional, r2 = 2D∆t
for the bead in water. For the bead in PEO solution, which exhibits fractional Brownian motion (fBm) r2 = 2D∆tα, where α
is the anomalous exponent. For the gene locus and simulated fBm tracks, r2 = 4D∆tα.
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FIG. 4. Distribution of diffusion coefficients, D, plotted on a
logarithmic y axis (same data as FIG. 3), for track lengths of
(a) 29 steps, (b) 79 steps, and (c) 319 steps, shown using a log-
arithmic y-axis. The red curve represents the theoretical pre-
diction given by Eq. 31. The black dashed curve corresponds
to the best skew normal fit to the simulated distribution.

nation removes static localization noise, leaving a result
proportional to the diffusion coefficient. In every case,
the best fit parameters match closely the corresponding
theoretical values, supporting the utility of the skew nor-
mal function as a simple route to describe covariance and
diffusivity distributions.

We further evaluate whether a skew normal distribu-
tion provides a good approximation to the data by ap-
plying the Kolmogorov-Smirnov (KS) test, which uses
the difference between the CDFs of two distributions to
estimate whether they originate from the same underly-
ing distribution [34]. We performed analysis with track
lengths N = 4 − 419. A plot of the KS statistic versus
inverse track length for fits of S0 and S1 covariance dis-
tributions on simple 2D diffusion simulations, with D =
0.1389 µm2s−1, σ2 = 0.0015 µm2, and ∆t = ∆tE = 0.01s

(r2 = 0.0056 µm2, σ2

r2 = 0.27, RMS step size = 74.6

nm), and D = 0.0062 µm2s−1, σ2 = 0.0013 µm2, and

∆t = ∆tE = 0.01s (r2 = 0.00025 µm2, σ2

r2 = 5.24, RMS
step size = 15.7 nm), as well as the diffusivity parame-
ters used in Figs. 3-5, is shown in Fig. 6(a). For smaller
track lengths (i.e. N=19-49), the KS statistic is small,
indicating a better fit, relative to other track lengths. In-
terestingly, very short track lengths (less than about 19)
produce a poor fit using the skew normal distribution.
This phenomenon can be explained by a limitation of the
skew normal distribution, which is constrained to a maxi-
mum/minimum skewness of ±1. For the same three data
sets, Fig. 6(b) shows the theoretically calculated skew-
ness values for S0 and S1 versus inverse track length. For
very small track lengths, the skewness can go beyond the
range between ±1. In the case of D = 0.0062 µm2s−1,
for example, the skewness of S1 is more negative than
−1 at N = 12, rendering the skew normal distribution
a poor descriptor of the data for this and smaller track
lengths. To avoid this limitation, we use the exact the-
ory to calculate the covariance distribution for very small
track lengths, instead of fitting with the skew normal dis-
tribution.
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FIG. 5. Dependence of the covariance matrix estimates on
the track length for simple 2D diffusion data (same data as
FIGs. 1-4). (a) The means of the covariances S0 (red cir-
cle), S1 (blue square), S2 (green triangle), and S3 (orange
upside-down triangle) are independent of track length. The
maximum y-value corresponds to 0.94 in units of the mean-
square step size (0.00128 µm2). (b) Variance of the covariance
vs. inverse track length for S0 (red circle), S1 (blue square),
S2 (green triangle), and S3 (orange upside-down triangle).
Theory (Eq. 18) is shown as the solid lines. Maximum y-
value corresponds to 0.031 in units of the mean-square step
size (0.00128 µm4) (c) Variance of the covariance of S0 + 2S1

vs. inverse track length. Theory (Tr(Σ(C0+2C1))
2

4
) is shown

as the solid line. Maximum y-value corresponds to 0.15 in
units of the mean-square step size (0.00128 µm4) (d) Third
central moment of the covariance vs. inverse track length. In
this case too, theory (Eq. 19) agrees well with the results of
simulations. Maximum y-value corresponds to 0.0038 in units
of the mean-square step size (0.00128 µm6)
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FIG. 6. (a) KS statistic on fits of S0 (red) and S1 (blue)
versus inverse track length, for D = 0.0055 µm2s−1, σ2 =
7.94 × 10−5 µm2, and ∆t = ∆tE = 0.058s (triangles); D =
0.1389 µm2s−1, σ2 = 0.0015 µm2, and ∆t = ∆tE = 0.01s
(circles); and D = 0.0062 µm2s−1, σ2 = 0.0013 µm2, and
∆t = ∆tE = 0.01s (squares). For very small track length, the
KS statistic is large. (b) Corresponding theoretical skewness
of S0 and S1 versus inverse track length. Gray solid lines
signify skewness values of ±1, the max/min skewness values
that describe the skew normal distribution. For smaller track
lengths, the skewness approaches ±1.

B. Confined diffusion of optically-trapped beads

1. Optically-trapped bead in water

Next, we compare the theory of Sec. II to measure-
ments of confined diffusion of the x-coordinate of a 1 µm-
diameter optically-trapped polystyrene bead suspended
in water, from Ref. [35]. Specifically, ten independent
time series of the bead position were recorded at 20 kHz,
each containing 100,000 points, using a National Instru-
ments DAQ PCIe-6343. In an optical trap, a parti-
cle experiences thermal Brownian motion, subject to a
quadratic confining potential [36]. Theoretical results
for the mean-square displacement (MSD) and covariance
matrix elements of such a particle are presented in Ap-
pendix C, demonstrating that the covariance matrix ele-
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ments are non-zero for n > 1, in contrast to the case of
simple diffusion.

Normalized histograms of the experimental covariance
distributions for S0, S1, S2, and S3 are shown in Fig. 7,
along with the corresponding theoretical curves (red
lines, Eq. 18) and best fits to the skew normal distribu-
tion (black lines). This figure demonstrates good agree-
ment between theory and experiment, and that the skew
normal fit describes both well. The same plots are pre-
sented on logarithmic-linear axes in Fig. 8, again reveal-
ing that the skew normal fits show only small discrep-
ancies in the tails of the distributions. Results from the
skew normal fits are compared to theory in Fig. 9, again
showing good agreement.

The mean covariance (red) and mean MSD (blue) of
the bead determined from 12650 79-step tracks for the
first twenty time delays (i.e., n = 1...20) is shown in
Fig. 10. The MSD is equivalent, via Fourier transfor-
mation, to the power spectral density (PSD), which is
usually fit to determine the stiffness of the optical trap.
However, the fitting is typically carried out without con-
sidering the integration time of the optical detector. To
assess accuracy of such an approach, we fit the measured
MSD and covariance simultaneously by varying κ, τ , and
σ2, along with ∆tE (i.e., considering integration time) or
by fixing ∆tE = 0 (i.e., neglecting integration time). The
results are shown as dashed (∆tE = 0) and solid (varied
∆tE) lines in Fig. 10. Including an integration time pro-
vides a significantly improved description of the data as
judged by χ2 values (4600 vs 23 for ∆tE = 0 and varied
∆tE , respectively) and by visual inspection (Fig. 10). Im-
portantly, the best value of ∆tE is 0.048 ms, just slightly
smaller than the time between successive measurements
(0.050 ms). This analysis suggests that it is important
to take into consideration a non-zero exposure time and
the concomitant motion blur, when calibrating and an-
alyzing optical tweezer data, as previously pointed out
in Ref. [32]. Although Eq. C10 reveals that the expo-
nential time dependence of the MSD is unchanged by
motion blur, this circumstance is peculiar to this partic-
ular (exponential) form of the MSD [37]. In general, the
shapes of the MSD and PSD are modified by motion blur
(Appendix D).

2. Optically-trapped bead in a viscoelastic PEO solution

We also compared the theory of Sec. II to other
data from Ref. [35], comprising 106 measurements of
the x-coordinate of a 1 µm-diameter optically-trapped
polystyrene bead suspended in a 1.5 wt% viscoelastic so-
lution of long-chain (8 MDa) polyethylene oxide (PEO).
Again, ten independent time series were recorded at
20 kHz, each containing 100,000 points, using a National
Instruments DAQ PCIe-6343. As shown in Ref. [35], the
PSD of a bead within this solution is well-described by a
power law versus frequency, suggesting that a power law
in time could be an appropriate basis for modeling the
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FIG. 7. Covariance distributions for a bead in water sus-
pended in an optical trap, measured by optical tweezers. Co-
variances S0 (a), S1 (b), S2 (c), and S3 (d) for particle tracks
of 19 (light gray), 39 (medium gray), and 79 (dark gray) steps
are represented as histograms. Red lines correspond to the
theoretical distributions. Black dashed lines correspond to
the best fit of a skew normal distribution to the simulated
distributions.
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FIG. 8. Covariance distributions for a bead in water sus-
pended in an optical trap, measured by optical tweezers, plot-
ted on a logarithmic y-axis. Distribution of covariances S0

(a), S1 (b), S2 (c), and S3 (d) for particle tracks of 19 (light
gray), 39 (medium gray), and 79 (dark gray) steps are repre-
sented as histograms. Red lines correspond to the theoretical
distributions. Black dashed lines correspond to the best fit of
a skew normal distribution to the simulated distributions.
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FIG. 9. Dependence of the covariance matrix estimates on
the track length for a bead in water suspended in an optical
trap, measured by optical tweezers. (a) The mean of the co-
variances S0 (red circle), S1 (blue square), S2 (green triangle),
and S3 (orange upside-down triangle). Theory (straight lines)
is calculated by Eq. 7. Maximum y-value corresponds to 1.49
in units of the mean-square step size (1.34 × 10−5 µm2). (b)
Variance of the covariance vs. inverse track size of S0 (red
circle), S1 (blue square), S2 (green triangle), and S3 (orange
upside-down triangle). The theoretical variances (solid lines)
agree well with the data. The theory is calculated by Eq. 10.
Maximum y-value corresponds to 0.18 in units of the mean-
square step size (1.34 × 10−5 µm4)(c) Third central moment
of the covariance vs. inverse track length. The theoretical
values (solid lines) are calculated using Eq. 11. Maximum y-
value corresponds to 0.062 in units of the mean-square step
size (1.34 × 10−5 µm6)
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FIG. 10. Experimental MSD (circles) and covariance
(squares) versus time delay for an optically-trapped bead
in water, compared to corresponding best-fit model MSDs
(blue solid and dashed lines) and covariances (red solid and
dashed lines). The experimental MSD and covariance were
determined from 12650 79-step tracks. Errors (standard er-
rors of the mean) are smaller than the plotted points, and
therefore no error bars are plotted. The MSD and the co-
variance were fit using Eqs. C10 through C13 by varying
κ, τ , and σ2 and by varying ∆tE (solid line) or by fixing
∆tE = 0 (dashed line). Shown are the best fit curves with
values of κ = 0.160 ± 0.008 pN nm−1, τ = 0.078 ± 0.005 ms,
σ2 = 2.8 ± 1.6 × 10−7 µm2 and ∆tE = 0.048 ± 0.001 ms
(χ2 = 23) and κ = 0.19 pN nm−1, τ = 0.091 ms, and
σ2 = 1.0 × 10−10 µm2 (χ2 = 4.6 × 103), for varied ∆tE
and ∆tE = 0, respectively. The former corresponds to r2 =

1.34 × 10−5 µm2, σ2

r2
= 0.021, and RMS step size = 3.7 nm

corresponding MSD and covariance, i.e. suggesting that
the bead undergoes fractional Brownian motion (fBM),
characterized by a subdiffusive exponent α < 1. In Ap-
pendix D, we derive theoretical expressions for the MSD
and covariance for a bead undergoing fractional Brown-
ian motion (fBM) with a subdiffusive exponent (α < 1),
in the presence of motion blur and static localization
noise. In this case too, the covariance is non-zero for
n > 1.

Figs. 11 and 12 show the experimental covariance dis-
tributions, represented as histograms, overlaid with the
theoretical distributions from Eq. 6 (red lines) and best-
fit skew normal curves (black lines). Fig. 13 displays the
skew normal fitting results versus track length, together
with the correspponding theoretical predictions. For all
of these figures, there is good agreement between theory
and experiment.

In Fig. 14, we compare the measured covariance and
MSD to the corresponding theoretically expected quan-
tities (Appendix D). Plotted in this figure as circles and
squares are the mean covariance and mean MSD, respec-
tively, determined from 12650 79-step tracks, for the first
twenty time delays. In this case too, we carried out
global fits of the theoretically expected forms (Eq. D2,
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FIG. 11. Covariance distributions for an optically-trapped
bead in a 1.5 wt% viscoelastic PEO solution. Covariances S0

(a), S1 (b), S2 (c), and S3 (d) for particle tracks of 19 (light
gray), 39 (medium gray), and 79 (dark gray) steps are repre-
sented as histograms. Red lines correspond to the theoretical
distributions. Black dashed lines correspond to the best fit
of a skew normal distribution to the simulated distributions.
With increasing number of time steps, the distribution nar-
rows.
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FIG. 12. Covariance distributions for an optically-trapped
bead in a 1.5 wt% viscoelastic PEO solution, plotted on a
logarithmic y-axis. Distribution of covariances S0 (a), S1 (b),
S2 (c), and S3 (d) for particle tracks of 19 (light gray), 39
(medium gray), and 79 (dark gray) steps are represented as
histograms. Red lines correspond to the theoretical distri-
butions. Black dashed lines correspond to the best fit of a
skew normal distribution to the simulated distributions. Only
slight discrepancies between theory and skew normal curves
are observed at the tails of the distributions.
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FIG. 13. Dependence of the covariance matrix estimates on
the track length for a bead in viscous PEO solution measured
by optical tweezers. (a) The mean of the covariances S0 (red
circle), S1 (blue square), S2 (green triangle), and S3 (orange
upside-down triangle). Theory (straight lines) is calculated
by Eq. 7. Maximum y-value corresponds to 0.27 in units of
the mean-square step size (9.1 × 10−6 µm2) (b) Variance of
the covariance vs. inverse track size of S0 (red circle), S1

(blue square), S2 (green triangle), and S3 (orange upside-
down triangle). The theoretical variances (solid lines) agree
well with the data. The theory is calculated by Eq. 10. Maxi-
mum y-value corresponds to 0.006 in units of the mean-square
step size (9.1 × 10−6 µm4) (c) Third central moment of the
covariances S0 (red circle), S1 (blue square), S2 (green trian-
gle), and S3 (orange upside-down triangle) vs. inverse track
length. The theoretical values (solid lines) are calculated us-
ing Eq. 11. Maximum y-value corresponds to 3.32 × 10−4 in
units of the mean-square step size (9.1 × 10−6 µm6).
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FIG. 14. Experimental MSD (circles) and covariance
(squares) versus time delay for an optically-trapped bead in
1.5 wt% PEO solution, compared to corresponding best-fit
model MSDs (blue solid and dashed lines) and covariances
(red solid and dashed lines). The experimental MSD and co-
variance were determined from 12650 79-step tracks. Errors
(standard errors of the mean) are smaller than the plotted
points, and therefore no error bars are plotted. The MSD
and the covariance were fit together in two ways. For the fits
shown as the solid lines, four fitting parameters were used,
namely α, D, σ2, and ∆tE , yielding best-fit parameter val-
ues of α = 0.20 ± 0.13, D = 3.3 ± 2.4 × 10−5 µm2/s0.2,
σ2 = 2.8 ± 2.9 × 10−7 µm2 and ∆tE = 0.05 ± 0.03 ms,
yielding χ2 = 110, corresponding to r2 = 9.1 × 10−6 µm2,
σ2

r2
= 0.031, and RMS step size = 3.0 nm. For the fits shown

as dashed lines, ∆tE was set equal to zero, leaving three fit-
ting parameters, α, D, and σ2. The best-fit parameter values
in this case are α = 0.42, D = 8.7 × 10−5 µm2/s0.42, and
σ2 = 2.8 × 10−7 µm2, yielding χ2 = 1.7 × 104.

and Eq. D12 through D14), first, allowing for a non-zero
∆tE and varying α, ∆tE , D, and σ2, yielding best fits
with χ2 = 110, shown as the solid lines in the figure,
and, second, setting ∆tE = 0, varying α, D, and σ2 as
fitting parameters, yielding best fits with χ2 = 1.7× 104,
shown as the dashed lines in the figure. Evidently, in this
example too, including motion blur provides a superior
description of the experimental measurements. Here, we
also find that the best fit value of ∆tE is close to 0.05 ms.

C. Measurements and simulations of a
chromosomal locus in fission yeast

1. Experimental measurements of a chromosomal locus

Next, we sought to apply the theory of Sec. II to the
motion of a fluorescently-labeled genetic locus. We ex-
amined the motion of a specific DNA locus visualized
by the lacO/GFP-lacI system in cells of the live fission
yeast S. pombe (MKSP2039) [38]. Specifically, a lacO ar-

ray was integrated near the mmf1 gene on chromosome
II (at 3,4442,981 bp position), which is approximately
in the middle between the centromeres and telomeres of
the chromosome. Typically, one fluorescent focus per
cell is observed. Fluorescence and bright field images
were acquired at 30C on a DeltaVision widefield micro-
scope (Applied Precision/GE) equipped with a tempera-
ture control chamber, a 1.4 NA, ×100 objective (Olym-
pus), solid-state-based illumination (Lumencor), and an
Evolve 512 EMCCD camera (Photometrics). Fluores-
cence was excited at 488 nm and collected with emission
filters passing 500-550 nm.

We analyzed 19 video microscopy movies, each con-
taining 1000 images. Each image was acquired for an
integration time, ∆tE = 10 ms and was separated from
the next image by ∆t = 58 ms [39]. A total of 157871
time steps were included in the analysis. The position
of each labeled locus was then tracked, as described in
Ref. [11], and the resultant trajectories were partitioned
into tracks of length N = 19, 29, 39, 49, 59, 69, 79, 89,
99, 109, 159, 319, and 419 steps, as above.

As also described in Ref. [39], the locus MSD is well-
described by a model corresponding to fBm, chartacter-
ized by an exponent α ' 0.44. In Fig. 15, we com-
pare the measured covariance (blue circles) and MSD
(red squares), determined from 5398 29-step tracks to
the corresponding theoretically expected quantities (Ap-
pendix D), similar to the analysis done on the optical
tweezers data in Sec. III B 2. We carried out global fits of
the theoretically expected forms (Eq. D2 through D14),
varying α, D, and σ2, yielding best fits with χ2 = 166,
shown as the solid lines in the figure. The resulting best-
fit parameter values were α = 0.39 ± 5 × 10−4, D =
0.0061± 9× 10−4 µm2s−1, and σ2 = 0.0027± 0.08 µm2,

corresponding to r2 = 0.0080 µm2, σ
2

r2 = 0.34, and RMS
step size = 89.4 nm.

The measured covariance distributions, together with
the corresponding theoretical predictions, based on the
mean covariance, and the corresponding best-fits to a
skew normal distribution are shown in Fig. 16. In con-
trast to the previous examples, the theoretical curves
(red) for the S0 distribution predict a significantly
narrower distribution, than found experimentally (his-
tograms). A similar trend, albeit less pronounced, can
be discerned for the S1 distributions. By contrast, the
theoretical curves seem to accurately represent the ex-
perimental S2 and S3 distributions. The means and vari-
ances, determined from skew normal fits to these distri-
butions, are plotted in Fig. 17(a) and 17(b), and provide
further insight. As expected, the mean covariance is inde-
pendent of track length, and the variance in track length
increases with decreasing track length. However, in this
case, the measured variance of S0 is much larger than
predicted, especially for long track lengths (Fig. 17(b)
red circles and line). The measured variance of S1 is
also noticeably larger than predicted, but to a lesser ex-
tent. In contrast, the measured variances of S2 and S3

seem well-described by theory. It appears that the vari-



15

ances of both S0 and S1 display more-or-less constant
offsets above their predicted values. To test this idea, we
fit the experimental covariances of S0 and S1 versus in-
verse track length to the theoretical form plus a constant.
The results of these fits are shown as the dashed lines in
Fig. 17(b) and 17(c), and indeed describe the data well.

In general, localization noise contributes 2σ2 to Σ0 and
−σ2 to Σ1 but does not contribute to Σn for n > 1
(Eqs. 20 and 21). Although perhaps not the sole source of
the disparity, this observation suggests that the discrep-
ancy may originate from the localization noise in this
experimental system. This idea is further bolstered by
the observation that S2 and S3 are well described by
theory. Given that localization noise has no contribu-
tion to the mean of Σ0 + 2Σ1, we compared experimen-
tal and predicted variances of Σ0 + 2Σ1 to test whether
the discrepancy with theory stems from the localization
noise. Plotted in Fig. 17(c) versus inverse track length
are the experimental variance of Σ0 + 2Σ1, (diamonds)
and the corresponding theoretical prediction (solid line).
Although a discrepancy between experiment and theory
remains, the actual value of the offset is about a factor
of four smaller than the offset observed for the variance
of S0 alone, bolstering the idea that static localization
noise is the culprit.

In experiments, while fluorescent foci in different cells
correspond to the same genetic locus (chromosomal po-
sition), each gene locus may show a different static lo-
calization noise because of uneven illumination, different
focal planes, different optical environments, etc. from
other loci, all of which affect its localization noise. In-
vestigating fluorescent focus widths with intensity in our
movies reveals cell-to-cell variations. Hence all these rea-
sons suggest that we may expect locus-to-locus hetero-
geneity in the localization noise, and thus some variation
in the covariance matrix Σ underlying the observed lo-
cus motion. However, the theory presented in this paper
is predicated on Eq. 3, which assumes that all samples
are drawn from the same multivariate Gaussian distribu-
tion. To investigate the possible role of localization noise
heterogeneity, we carried out additional simulations, de-
scribed in Sec. III C 2.

2. Simulated fractional Brownian motion data with
heterogeneous localization noise

To incorporate localization noise heterogeneity, we car-
ried out simulations of fBm, for which the localization er-
ror varies from track to track, determined via two Gaus-
sian random variables as follows. We consider that each
track has its own unique localization noise described by
a Gaussian (referred to as G1) with zero mean and a
standard deviation determined randomly from another
Gaussian distribution with the mean equal to the ex-
perimentally determined static localization noise

〈
σ2
〉

=

0.0032 µm2, and a standard deviation equal to σσ2 , which
is a variable parameter of the model. Thus, each track

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.005

0

0.005

0.01

0.015

0.02

M
S

D
 a

n
d
 C

o
v
a
ri
a
n
c
e
 (

μ
m

2
)

Time (s)

FIG. 15. Experimental MSD (circles) and covariance
(squares) versus time delay for the gene locus mmf1 in S.
pombe, compared to the corresponding best-fit model MSD
(blue solid line) and covariance (red solid line). The experi-
mental MSD and covariance were determined from 5398 29-
step tracks. Errors (standard errors of the mean) are smaller
than the plotted points, and therefore no error bars are plot-
ted. The MSD and the covariance were fit together, using
three fitting parameters, namely α, D, and σ2. The re-
sulting best-fit parameter values were α = 0.39 ± 5 × 10−4,
D = 0.0061± 9× 10−4 µm2s−1, and σ2 = 0.0027± 0.08 µm2,
yielding χ2 = 166.

has its own unique localization noise. The localization
noise heterogeneity may be quantified by the value of
σσ2

〈σ2〉 , which we term the “localization heterogeneity”.

For each of several different inhomogeneities, we sim-
ulated 1000 500-step tracks, for D = 0.0055 µm2s−0.44,
α = 0.44, σ2 = 0.0032 µm2, and ∆t = ∆tE = 0.058s

(r2 = 0.0063 µm2, σ2

r2 = 0.51, and RMS step size =
79.4 nm), comparable to the values determined from the
experiment [39]. The resultant trajectories were parti-
tioned as usual into tracks of length 19, 29, 39, 49,.....
319, 419, and the resultant covariance distributions fit
by a skew normal function. Fig. 18 shows histograms of
simulated S0, S1, S2 and S3 distributions, corresponding
to

σσ2

〈σ2〉 = 0.20. Also shown in Fig. 18 are the corre-

sponding theoretical predictions (red lines) and the skew
normal best-fits (black dashed lines), which describe the
simulated distributions well in this case too. By contrast,
the theoretical curves are significantly narrower, reminis-
cent of the disparity seen in Fig. 16 for the experimental
gene locus data. Also similar to the gene locus data,
the simulated and theoretical distributions of S2 and S3

agree.

The means, variances and 3rd moment of the covari-
ances calculated from the best-fits for the simulated data
are shown in Fig. 19a-d as a function inverse track length.
The theory (Eq. 18) and the theory plus offset are shown
as solid and dashed lines, respectively. The means repro-
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FIG. 16. Covariance distributions for gene locus mmf1 in
S. pombe. Covariances S0 (a), S1 (b), S2 (c), and S3 (d)
for particle tracks of 19 (light gray), 39 (medium gray), and
79 (dark gray) steps are represented as histograms. Red lines
correspond to the theoretical distributions. Black dashed lines
correspond to the best fit of a skew normal distribution to
the simulated distributions. With increasing number of time
steps, the distribution narrows.
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FIG. 17. Dependence of the covariance matrix estimates on
the track length for the gene locus mmf1 in S. pombe. (a)
The mean of the covariances S0 (red circle), S1 (blue square),
S2 (green triangle), and S3 (orange upside-down triangle) vs.
inverse track length. Theory (straight lines) is calculated by
Eq. 17. Maximum y-value corresponds to 1.25 in units of the
mean-square step size (8.0 × 10−3 µm2). (b) Variance of the
covariance vs. inverse track size of S0 (red circle), S1 (blue
square), S2 (green triangle), and S3 (orange upside-down tri-
angle). The theory is calculated by Eq. 18. Dashed lines
correspond to a fit of the experimental data to the theoretical
form plus a constant. Maximum y-value corresponds to 0.11
in units of the mean-square step size (8.0 × 10−3 µm4). (c)
Variance of the covariance vs. inverse bin size of S0 + 2S1

(diamond). Calculating S0 + 2S1 removes static localization
noise. Hence, the data variances are closer in value to the
theory, compared the plot of S0. Theory (solid line) is cal-

culated using Tr(Σ(C0+2C1))
2

4
. Dashed lines correspond to a

fit of the experimental data to the theoretical form plus a
constant. Maximum y-value corresponds to 0.078 in units of
the mean-square step size (8.0 × 10−3 µm4). (d) The third
central moment of the covariance Σ0 (circle), Σ1 (square), Σ2

(triangle), and Σ3 (upside-down triangle) vs. inverse track
length. Theory (lines) is calculated by Eq. 19. Maximum y-
value corresponds to 0.020 in units of the mean-square step
size (8.0 × 10−3 µm6)
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duce what is expected from the given simulation parame-
ters. Note, that this is true regardless of the values of the
localization heterogeneity (data not shown). Strikingly
reminiscent of the experimental results shown in Fig. 17,
while the variance of S0 lies above the theoretically pre-
dicted values by a relatively large offset, the variance of
S1 also lies above that predicted theoretically, but by a
relatively small offset.

The fact that our simple simulations recapitulate im-
portant features of the experimental results on gene
loci support the hypothesis that the observed theory-
experiment discrepancy is the result of inhomogeneous lo-
calization noise. To further test our model, we also deter-
mined the simulated and theoretical variance of Σ0 +2Σ1

which are plotted together in Fig. 19(c) as the diamonds
and line, respectively. In this case, however, simulation
and theory match well, in contrast to the experiment-
theory comparison which shows a residual discrepancy
(Fig. 17(c)), indicating that our simple model does not
perfectly model the experimental situation.

Next, we explore how localization heterogeneity levels
affect the discrepancy between theory and the simula-
tions. We vary the heterogeneity level, and, for each
simulation, fit S0 and S1 by the theory plus offset and
plot corresponding offsets vs.

σσ2

σ2 (Fig. 20). Fig. 20 plots

the offsets in S0 (red) and S1 (blue) versus
σσ2

σ2 . Unsur-
prisingly, small locus-to-locus variation in the localiza-
tion noise results in small offsets; and ramping up the
localization noise increases offsets. For increasing inho-
mogeneity, i.e. a broader initial Gaussian, G1, the offset
increases. Also shown in Fig. 20 are the offsets for the
experimental mmf1 gene locus data, where the red hor-
izontal line is the S0 offset, and the blue horizontal line
is the S1 offset. The lines derived from experiment in-
tersect the simulated curves at comparable values of the
heterogeneity, namely

σσ2

σ2 = 0.21 for Σ0 and
σσ2

σ2 = 0.16
for Σ1. In view of the simplicity of our model, we re-
gard this small discrepancy as satisfactory. Distributions
alternative to Gaussians yielded similar results.

IV. CONCLUSION

We have developed and applied a simple method to de-
termine whether a population of finite-length single par-
ticle tracks exhibits a single mode of diffusion. First,
we derived theoretical equations that describe the distri-
bution of displacement covariance matrix elements for a
particle in an arbitrary, but well-defined, diffusive state.
For both 1D and 2D, we determined the probability dis-
tribution of the covariance matrix elements, Sn, given the
covariance matrix, and then calculated the first three mo-
ments of Sn, namely, the mean (trivially equal to Σn),
variance, and third central moment. To test these theo-
retical results, we first simulated tracks undergoing sim-
ple 2D diffusion, uncovering excellent agreement between
theoretical and simulated covariance matrix element dis-
tributions. We further showed that least-mean-squares
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FIG. 18. Covariance distributions for simulated tracks un-
dergoing fBm, with heterogeneous noise determined from a
Gaussian distribution of widths for each track. The width
of the noise distribution is determined using homogeneity =
σ
σ2

σ2 = 0.20. Covariances S0 (a), S1 (b), S2 (c), and S3 (d) for
particle tracks of 19 (light gray), 39 (medium gray), and 79
(dark gray) steps are represented as histograms. Red lines cor-
respond to the theoretical distributions. Black dashed lines
correspond to the best fit of a skew normal distribution to
the simulated distributions. With increasing number of time
steps, the distribution narrows.
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FIG. 19. Dependence of the covariance matrix estimates on
the track length for simulated particles undergoing fractional
Brownian motion, with noise determined from a Gaussian dis-
tribution of widths for each track. The width of the noise dis-
tribution G1 is determined using homogeneity =

σ
σ2

σ2 = 0.20.
(a) The mean of the covariances S0 (red circle), S1 (blue
square), S2 (green triangle), and S3 (orange upside-down tri-
angle) vs. inverse track length. Max y-value corresponds to
1.59 in units of the mean-square step size (6.3 × 10−3 µm2).
(b)Variance of the covariance vs. inverse track size of S0 (red
circle), S1 (blue square), S2 (green triangle), and S3 (orange
upside-down triangle). The theory is calculated by Eq. 18.
Dotted lines represent a linear fit plus a constant to the data
points. Max y-value corresponds to 0.20 in units of the mean-
square step size (6.3× 10−3 µm4). (c) Variance of the covari-
ance vs. inverse bin size of S0 +2S1 (diamond). Theory (solid

line) is calculated using Tr(Σ(C0+2C1))
2

4
. Max y-value corre-

sponds to 0.15 in units of the mean-square step size (6.3×10−3

µm4). (d) The third central moment of the covariance Σ0

(circle), Σ1 (square), Σ2 (triangle), and Σ3 (upside-down tri-
angle) vs. inverse track length. Theory (lines) is calculated
by Eq. 19. Max y-value corresponds to 0.06 in units of the
mean-square step size (6.3 × 10−3 µm6).
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FIG. 20. Offsets between theoretical and fitted variances of
simulated data with inhomogeneous localization noise for S0

(red circle) and S1 (blue square), versus heterogeneity of the
localization used to determine the Gaussian noise distribu-
tion. Dashed lines represent a guide to the eye for each Sn
offset. The horizontal red and blue solid lines are the S0 and
S1 offsets for gene locus mmf1, respectively.

fits of a skew normal function to the simulated distribu-
tions were able to accurately capture the shape of the
simulated distributions. Best-fit parameters from skew
normal fits, carried out for different track lengths also
matched well to the theoretical expressions for the vari-
ance and third central moment versus track length. In
addition to simulated tracks, we also followed this proce-
dure for experimental data, first for an optically-trapped
bead in water and then an optically-trapped bead in a
viscoelastic high polymer solution. In these cases also,
we found that the experimental covariance distributions
are well described by the theoretical covariance distribu-
tions, using the measured mean covariances as the sole
input. In these cases too, skew normal best fits yielded
parameters that well described the mean, variance, and
third central moment of the experimental covariance dis-
tributions versus inverse track length. These collected
results give us confidence that the theory, presented in
Sec. 2, is correct.

Finally, we analyzed the covariance distributions of the
mmf1 gene locus in S. pombe. Here, the analysis revealed
that the experimental S0 and S1 distributions are signif-
icantly wider than predicted on the basis of the mean
covariance matrix elements, initially suggesting the pres-
ence of more than one diffusive state. However, the fact
that the discrepancy is confined only to S0 and S1 led us
to consider the hypothesis that the discrepancy originates
with locus-to-locus heterogeneity in the static localiza-
tion noise. To test this idea, we simulated fBm tracks
with static localization noise of varying degrees of het-
erogeneity. Analyses of these tracks recreated a similar
disparity between the theoretical and measured variance
of S0 and S1 versus inverse track length. We explored
varying the degree of the heterogeneity in the context
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of simulations in an attempt to more closely recapitu-
late the discrepancy seen in the gene locus data. While
the heterogeneous noise we added largely accounts for
the offsets we saw between the measured and theoreti-
cal variances of the covariance, it did not fully account
for this behavior. Further investigation is needed to com-
pletely understand the factors that contribute to this dis-
crepancy. In summary, we found that, for a single mode
of diffusion, covariance distributions can be accurately
predicted using the presented theory and mean covari-
ances. Comparison of the predicted distributions with
the experimentally measured ones enabled us to answer
whether particles display a single or multiple diffusive

states. Hence, this method is a simple yet powerful tool
to determine whether a biological system exhibits a single
diffusive state.
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Appendix A: Calculation of the central moments generalized to k-dimensional space

The probability distribution of Sn in k-dimensional space is

P (Sn|Σ) =
∫∞
−∞

dω
2π

1
|I+ i

kωΣCn|k/2 e
iωSn . (A1)

Expand |I + i
kωΣCn| to the third order,
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It follows that

d

dω
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k
ωΣCn|
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Tr(ΣCn), (A3)
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1
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1
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k

2

1
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(TrΣCn)3 − 3Tr(ΣCn)2Tr(ΣCn) + 2Tr(ΣCn)3

]
=

1

8
(TrΣCn)3 +
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4k
Tr(ΣCn)Tr(ΣCn)2 +

1
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Tr(ΣCn)3. (A8)

Using Eq. A6, A7 and A8, we obtain the first central moment

µ = 〈Sn〉 =
1

2
Tr(ΣCn), (A9)

the second central moment

σ2
Sn =

〈
S2
n

〉
− 〈Sn〉2

=
1

4
(TrΣCn)2 +

1

2k
Tr(ΣCn)2 −

(
1

2
TrΣCn

)2

=
1

2k
Tr(ΣCn)2, (A10)

and the third central moment

µ3 = E[(Sn − 〈Sn〉)3]

=
〈
S3
n

〉
− 3 〈Sn〉σ2

Sn − 〈Sn〉
3

=
1

8
(TrΣCn)3 +

3

4k
Tr(ΣCn)Tr(ΣCn)2 +

1

k2
Tr(ΣCn)3

−3
Tr(ΣCn)

2

Tr(ΣCn)2

2k
−
[
Tr(ΣCn)

2

]3

=
1

k2
Tr(ΣCn)3. (A11)

The skewness (3rd standardized moment) µ̃3 is

µ̃3 =
µ3

σ3
Sn

=
Tr(ΣCn)3

k2[Tr(ΣCn)2

2k ]
3
2

. (A12)
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Appendix B

Because all tridiagonal Toeplitz matrices possess the
same eigenvectors, the matrices, Σ, C1, I + i

2ωΣC0, I +
i
2ωΣC1 and I+ i

8∆tω(ΣC0+2ΣC1), are all diagonalized
by the same orthogonal transformation, given by [U]jk =√

2
N sin πjk

N+1 . For Σ and C1, the eigenvalues are

Λk = Σ0 + 2Σ1 cos
kπ

N + 1
(B1)

and

λ1k =
2

N − 1
cos

kπ

N + 1
, (B2)

respectively, where k = 1, 2, .. N . It follows that

p(S0|Σ) =

∫ ∞
−∞

dω

2π

eiωS0∏N
k=1 1 + iω

(
Σ0 + 2Σ1 cos kπ

N+1

)
1
N

,

(B3)

p(S1|Σ) =
∫∞
−∞

dω
2π

eiωS1∏N
k=1 1+iω(Σ0+2Σ1 cos kπ

N+1 ) 1
N−1 cos kπ

N+1

,

(B4)
and

P (D|Σ) =
∫∞
−∞

dω
2π

eiωD∏N
k=1

[
1+ iω

4∆t (Σ0+2Σ1 cos kπ
N+1 )

(
1
N +

2 cos kπ
N+1

N−1

)] , (B5)

which is the 2D version of Eq. C17 of Ref. [27].

Appendix C: MSD and covariance matrix elements
for a particle in a harmonic potential

The usual approach for analyzing optical tweezers data
is to calculate the power spectrum of the displacement
fluctuations away from the potential minimum, which is
equivalent to consideration of the mean-square displace-
ment (MSD) versus time. To determine what new in-
formation can be gleaned by considering the covariance
matrix elements of optical tweezers data, in this section,
we calculate both the MSD and the covariance matrix
elements for a particle in a viscous fluid, subject to a
harmonic potential. Some of these results can be found

in [40].
Our starting point is the theoretical result for the dis-

placement correlation function:

〈x(t)x(s)〉 =
kBT

κ
e−|t−s|/τ , (C1)

where κ is the trap stiffness, τ is the characteristic time
of the trap, kB is Boltzmann’s constant and T is the ab-
solute temperature. Thus, for times t0 and tn, separated
by a time n∆t, we have

〈x(tn)x(t0)〉 = 〈xnx0〉 =
kBT

κ
e−(tn−t0)/τ =

kBT

κ
e−n∆t/τ .

(C2)
It follows that the MSD, Mn, after n time steps, each of
∆t, is

Mn =
〈
(xn − x0)2

〉
=
〈
x2
n

〉
+
〈
x2

0

〉
− 2 〈xnx0〉 =

2kBT

κ
(1− e−n∆t/τ ), (C3)

while the covariance matrix elements are

Σ0 = M0 =
〈
(x1 − x0)2

〉
=
〈
x2

1

〉
+
〈
x2

0

〉
− 2 〈x1x0〉 =

2kBT

κ
(1− e−∆t/τ ), (C4)

Σ1 = 〈(x2 − x1)(x1 − x0)〉 = 〈x2x1〉 −
〈
x2

1

〉
+ 〈x1x0〉 − 〈x2x0〉 = −kBT

κ
(1− e−∆t/τ )2, (C5)

and

Σn = 〈(xn+1 − xn)(x1 − x0)〉 = 〈xn+1x1〉 − 〈xnx1〉+ 〈xnx0〉 − 〈xn+1x0〉 = −kBT
κ

e−(n−1)∆t/τ (1− e−∆t/τ )2. (C6)

However, data acquisition actually occurs for a time period ∆tE , while the spacing between successive acqui-
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sitions is ∆t. Thus, rather than measuring an instanta-
neous particle position, in general, experiments measure
a motion-blurred position, averaged over the duration of

data acquisition, i.e., acquisition period n measures

1

∆tE

∫ ∆tE

0

dt x(n∆t+ t), (C7)

where x(n∆t+ t) is the particle position at time n∆t+ t.
To incorporate motion blur into our calculations of the
MSD and the covariance matrix elements, we must re-
place

〈
x2

0

〉
, etc. in Eqs. C3 through C6 by the appropri-

ate time-averaged quantities. Using

〈
x2

0

〉
=

1

∆tE
2

∫ ∆tE

0

dt

∫ ∆tE

0

ds e−|t−s|/τ =
2

∆tE
2

∫ ∆tE

0

dt

∫ t

0

ds e−(t−s)/τ =
2(e−∆tE/τ − 1 + ∆tE

τ )

∆tE
2/τ2

, (C8)

and

〈xmx0〉 =
1

∆tE
2

∫ ∆tE

0

dt

∫ ∆tE

0

ds e−(tm+t−t0−s)/τ =
2(cosh ∆tE/τ − 1)

∆tE
2/τ2

e−(tm−t0)/τ . (C9)

and incorporating static localization noise, the motion-blurred MSD becomes:

Mn =
4kBT

κ

(
e−∆tE/τ − 1 + ∆tE

τ

∆tE
2/τ2

− cosh ∆tE/τ − 1

∆tE
2/τ2

e−n∆t/τ

)
+ 2σ2. (C10)

Similarly, the covariance matrix elements become:

Σ0 =
4kBT

κ

(
e−∆tE/τ − 1 + ∆tE

τ

∆tE
2/τ2

− cosh ∆tE/τ − 1

∆tE
2/τ2

e−∆t/τ

)
+ 2σ2, (C11)

Σ1 = −2kBT

κ

(
e−∆tE/τ − 1 + ∆tE

τ

∆tE
2/τ2

+
cosh ∆tE/τ − 1

∆tE
2/τ2

e−∆t/τ (−2 + e−∆t/τ )

)
− σ2, (C12)

and

Σn = −2kBT

κ

cosh ∆tE/τ − 1

∆tE
2/τ2

e−(n−1)∆t/τ (1− e−∆t/τ )2, (C13)

for n > 1.

In the limit that ∆t� τ and ∆tE � τ , using kBT
κτ = D,

where D is the particle’s diffusion coefficient, Eqs. C11,
C12, and C13 reproduce the corresponding results for
free diffusion with motion blur and static localization
noise (Eqs. 20 and 21), as expected. Generally, power-
spectrum-based analyses of optical tweezers data ignore
any possible motion blur [41]. Comparison between
Eq. C3 and C10 suggests that in the case of exponential
time-dependence motion blur changes the interpretation
of the fluctuation amplitude without changing the shape
of the MSD or PSD. However, this circumstance is spe-
cial to the case of exponential relaxations and does not

hold in general [37]. (See also, for example, Sec. III B 2)
Appendix D: MSD and Covariance matrix elements

for fractional Brownian motion (1D)

In the case of fractional Brownian motion (fBm), our
starting point is theoretical mean-square displacement
from time t1 to time t2 [31], namely〈

[x(t2)− x(t1)]2
〉

= 2D|t2 − t1|α, (D1)

where α is the exponent characterizing the fBm, and
where we refer to D as the diffusion coefficient, although
its dimensions are m2s−α. Incorporating motion blur and
static localization noise, the MSD becomes
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Mn =
2D

∆t2E

∫ ∆tE

0

dt

∫ ∆tE

0

ds[|n∆t+ t− s|α − |t− s|α] + 2σ2

=
2D(∆t)2+α

(
(n− ∆tE

∆t )2+α − 2n2+α + (n+ ∆tE
∆t )2+α

)
(1 + α)(2 + α)∆t2E

− 4D∆tαE
(1 + α)(2 + α)

+ 2σ2, (D2)

which reproduces the result given in Ref. [25].
The calculation for the fBm covariance terms can be performed as follows:

Σn =

∫ ∆tE

0

ds

∫ ∆tE

0

dt[x((n+ 1)∆t+ t)− x(n∆t+ t)][x(∆t+ s)− x(s)]

=

∫ ∆tE

0

ds

∫ ∆tE

0

dt[x((n+ 1)∆t+ t)x(∆t+ s)− x((n+ 1)∆t+ t)x(s)− x(n∆t+ t)x(∆t+ s) + x(n∆t+ t)x(s)]

=

∫ ∆tE

0

ds

∫ ∆tE

0

dt[2x(n∆t+ t)x(s)− x((n+ 1)∆t+ t)x(s)− x(n∆t+ t)x(∆t+ s)] (D3)

Condense to form
〈
[x(t2)− x(t1)]2

〉
= 2D|t2 − t1|α, from Eq. D1

Σn =

∫ ∆tE

0

ds

∫ ∆tE

0

dt[
1

2
[x((n+ 1)∆t+ t)− x(s)]2 +

1

2
[x((n− 1)∆t+ t)− x(s)]2 − [x(n∆t+ t)− x(s)]2] (D4)

Plug in 2D|t2 − t1|α:

Σn =
D

∆t2E

∫ ∆tE

0

ds

∫ ∆tE

0

dt[|n∆t+ ∆t+ t− s|α + |n∆t−∆t+ t− s|α − 2|n∆t+ t− s|α] (D5)

Now break Eq. D5 into 3 integrals, and calculate each one. Starting with the left-most integral:

∫ ∆tE

0

ds

∫ ∆tE

0

dt|n∆t+ ∆t+ t− s|α =

∫ ∆tE

0

ds

∫ ∆tE

0

dt[n∆t+ ∆t+ t− s]α (D6)

Absolute value can be ignored since n∆t+ ∆t+ t− s > 0. The result is:

−2(n∆t+ ∆t)α+2

(α+ 1)(α+ 2)
+

(n∆t+ ∆t−∆tE)α+2

(α+ 1)(α+ 2)
+

(n∆t+ ∆t+ ∆tE)α+2

(α+ 1)(α+ 2)
(D7)

Next we have the middle integral: ∫ ∆tE

0

ds

∫ ∆tE

0

dt|n∆t−∆t+ t− s|α (D8)

To evaluate this integral, we must take the cases when n = 1 and n > 1 into account. For n = 1, the integrand
becomes |t− s|α: ∫ ∆tE

0

ds

∫ ∆tE

0

dt|t− s|α =
2(∆tE)α+2

(α+ 1)(α+ 2)
(D9)

For n > 1, n∆t−∆t+ t− s > 0, so we can do the integral normally.∫ ∆tE

0

ds

∫ ∆tE

0

dt[n∆t−∆t+ t− s]α =
−2(n∆t−∆t)α+2

(α+ 1)(α+ 2)
+

(n∆t−∆t−∆tE)α+2

(α+ 1)(α+ 2)
+

(n∆t−∆t+ ∆tE)α+2

(α+ 1)(α+ 2)
(D10)

Lastly, the third part of the integral can be done without the absolute value, since n∆t > ∆tE :

−2

∫ ∆tE

0

ds

∫ ∆tE

0

dt[(n∆t+ t− s)α] =
4(n∆t)α+2

(α+ 1)(α+ 2)
− 2(n∆t−∆tE)α+2

(α+ 1)(α+ 2)
− 2(n∆t+ ∆tE)α+2

(α+ 1)(α+ 2)
(D11)
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Thus, the covariance terms are:

Σ0 =
2D(∆t)2+α

(
(1− ∆tE

∆t )2+α − 2 + (1 + ∆tE
∆t )2+α

)
(1 + α)(2 + α)∆t2E

− 4D∆tαE
(1 + α)(2 + α)

(D12)

Σ1 =
D

∆t2E
[
−2(2∆t)α+2

(α+ 1)(α+ 2)
+

(2∆t−∆tE)α+2

(α+ 1)(α+ 2)
+

(2∆t+ ∆tE)α+2

(α+ 1)(α+ 2)
+

2(∆tE)α+2

(α+ 1)(α+ 2)

+
4(∆t)α+2

(α+ 1)(α+ 2)
− 2(∆t−∆tE)α+2

(α+ 1)(α+ 2)
− 2(∆t+ ∆tE)α+2

(α+ 1)(α+ 2)
]

(D13)

Σn =
D

∆t2E
[
−2(n∆t+ ∆t)α+2

(α+ 1)(α+ 2)
+

(n∆t+ ∆t−∆tE)α+2

(α+ 1)(α+ 2)
+

(n∆t+ ∆t+ ∆tE)α+2

(α+ 1)(α+ 2)

−2(n∆t−∆t)α+2

(α+ 1)(α+ 2)
+

(n∆t−∆t−∆tE)α+2

(α+ 1)(α+ 2)
+

(n∆t−∆t+ ∆tE)α+2

(α+ 1)(α+ 2)

+
4(n∆t)α+2

(α+ 1)(α+ 2)
− 2(n∆t−∆tE)α+2

(α+ 1)(α+ 2)
− 2(n∆t+ ∆tE)α+2

(α+ 1)(α+ 2)
]

(D14)

For n = 2, 3, 4, ...

In the limit that ∆tE = 0,

Σ0 = 2D(∆t)α, (D15)

Σ1 = D[(2∆t)α − 2(∆t)α], (D16)

Σn = D[(n∆t+ ∆t)α + (n∆t−∆t)α− 2(n∆t)α], (D17)

For n = 2, 3, 4, ...
In the limit that α = 1,

Σ0 = 2D∆t− 2D∆tE
3

, (D18)

Σ1 =
D∆tE

3
, (D19)

Σn = 0, (D20)

for n ≥ 2.

Appendix E: Additional figures

a. Simulated fractional Brownian motion with uniform
localization noise
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