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1. Introduction

Numerical techniques for studying marine propellers have seen
immense advances in the past decades. For example, the lifting
surface procedures based on vortex lattice and panel methods have
been widely used in propeller design. A representative program in
this category is the PSF code developed at MIT in the1980s [1].
The vortex lattice and panel methods have very quick turnaround
time, and can predict propeller loads rather accurately when com-
bined with empirical vortex and wake models. They are, how-
ever, incapable of revealing the fine details of a flow field for in-
depth analysis of flow physics such as flow instability and acous-
tics. Since the1990s, the Reynolds-averaged Navier Stokes (RANS)
methods have gained popularity in simulating propeller flows. The
RANS methods do provide richer flow field information than the
inviscid vortex lattice and panel methods. But the averaging na-
ture of a RANS (even an unsteady RANS) method still smooths
out a lot of flow details, especially the small and intermediate
instantaneous eddies. In more recent years, the increasing high-
performance computing power has allowed eddy-resolving tech-
niques, such as detached-eddy simulation (DES) and large-eddy
simulation (LES), to have been performed on marine propellers
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in the scale of millions or even trillions of grid elements. For in-
stance, Muscari et al. [2] and Di Mascio et al. [3] employed DES
to study the vortex dynamics of a propeller in different flow con-
ditions. Verma et al. [4] and Jang and Mahesh [5] used LES to
investigate the flow around a reverse rotating marine propeller.
Balaras et al. [6] applied an immersed boundary based LES tech-
nique to explore the flow around a propeller with and without an
upstream appendage. Kumar and Mahesh [7] systematically stud-
ied the wake instability of a propeller using LES. However, all the
aforementioned DES and LES approaches are of low-order accura-
cies (at most second-order) that could potentially introduce large
numerical dissipation and dispersion to a flow field.

On the other hand, high-order (third and above) methods, espe-
cially polynomial based high-order methods, are seeing rapid de-
velopment in recent years. High-order methods show many ad-
vantages over the traditional low-order ones. For example, for the
same number of degrees of freedom, a high-order method pro-
duces solutions with much smaller numerical error than a low-
order method does. Furthermore, a high-order method can employ
high-order unstructured curved meshes that approximate curved
geometries much more accurately than the linear meshes for a
low-order method. The most popular high-order methods include
the discontinuous Galerkin (DG) method [8,9], the spectral element
method [10-12], the spectral volume method [13,14], the spectral
difference (SD) method [15-20], etc. Among these methods, the SD
method solves equations in differential form directly, and is one of


https://doi.org/10.1016/j.compfluid.2021.104967
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104967&domain=pdf
mailto:bzh@gwmail.gwu.edu
https://doi.org/10.1016/j.compfluid.2021.104967

B. Zhang, C. Ding and C. Liang

the most efficient high-order methods. Recently, the ideas of col-
locating solution and flux points of the SD method and correcting
fluxes using higher-degree polynomials have led to an even more
efficient high-order method — the flux reconstruction (FR) method
[21,22], also known as the correction procedure via reconstruc-
tion (CPR) [23]. Besides its better efficiency, by choosing different
correction polynomials, the FR method can recover many existing
high-order schemes such as DG and SD, and can even produce new
schemes that had never been reported before. The stability of the
FR method has been proved in [24]. The most recent developments
on the FR method are summarized in [25].

To the authors’ knowledge, there is still no reported high-order
eddy-resolving simulation of marine propellers. One important rea-
son is the severe challenge on how to treat the complex rotational
geometry of a propeller in a high-order method without deterio-
rating the method’s accuracies in both space and time. To tackle
this challenge, Zhang and Liang [26,27] developed a high-order
sliding-mesh method for the SD and FR methods by introducing
the concept of curved dynamic mortar elements. A parallelization
approach was proposed for this method in [28], and the exten-
sion to three-dimensions was achieved in [29]. More recently, this
method was further extended to sliding interfaces with general
nonuniform meshes [30]. An updated version that is high-order
in time, arbitrarily high-order in space, provably conservative, and
provably outflow preservative has also been established [31]. In the
present work, we apply this method to implicit LES (without us-
ing an explicit sub-grid-scale model) [32-36] of the loads and flow
fields of a real marine propeller at various working conditions. This
is the first time a high-order method being applied to simulate a
marine propeller.

The rest of this paper is organized as follows. Section 2 gives a
brief description of the flow equations and the numerical methods.
Section 3 details the simulation setup. Simulation results and dis-
cussions are reported in Section 4. Finally, Section 5 concludes this

paper.
2. Numerical methods
2.1. The physical equations

We numerically solve the following three-dimensional unsteady
Navier-Stokes equations in a conservative form,

0Q OF 0G oOH
—+—+—+5-=0, 1
ot Tax "oy T oz M
where Q is the vector of conservative variables, F, G and H are
the flux vectors in each coordinate direction. These terms have the
following expressions,

Q=[p pu pv pw E|", (2)
F=Finy (Q) + Fiis(Q VQ, 3)
G =Gy (Q) + Gis(Q VQ, (4)
H = H,y (Q) + Hys(Q VQ), (5)

where p is fluid density, u, v and w are the velocity components, E
is the total energy per volume defined as E = p/(y — 1) + %,O(u2 +
v2 +w?), p is pressure, y is the ratio of specific heats and is set to
14.

The fluxes have been split into inviscid and viscous parts. The
inviscid fluxes are only functions of the conservative variables and
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have the following expressions,

pu pv
pu?+p ouv
l:inv = puv s Ginv = pv2 +D |
puw oUW
L u(E +p) V(E +p)
- ow
puw
l'linv = 1444 . (6)
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| w(E + p)

The viscous fluxes are functions of the conservative variables and
their gradients. The expressions are

r 0

Fiis = — Tyx ) (7)
LUTxx + VTyx + WTx + KT,
_ 0 -
Txy
Gvis = - Tyy 5 (8)

Ty
[ UTxy + UTyy + WTzy + KTy

Hys = - Tyz ) (9)

| UTx; + UTyz + WTg + KT,

where 7;; is shear stress tensor which is related to velocity gra-
dients as T;; = u(u; j + uj;) + Adjjuy k. (1 is dynamic viscosity, A =
—2/314 based on Stokes’ hypothesis, d;; is the Kronecker delta, «
is thermal conductivity, T is temperature that is related to density
and pressure through the ideal gas law p = pRT, where R is the
gas constant.

2.2. The computational equations

As will be discussed later, we map each moving grid element
from the physical space to a stationary standard cubic element
in the computational space where the equations are solved. As-
sume the mapping is: t =7, x=x(7.£,1.¢), y=y(t.&,1n,¢) and
z=12(t,&,n,¢), where (t,&,n,¢) are the computational time and
space. It can be shown that the flow equations will take the fol-
lowing conservative form in the computational space,
9 OF,IC, M _,
at ~ d¢&  an  0¢C
and the computational variable and fluxes are related to the phys-
ical ones through

(10)

Q Q
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where | 7| is determinant of the Jacobian matrix and 7! is the
inverse Jacobian matrix, and their expressions are
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Fig. 1. Schematic of solution points (circles) and flux points (squares) in the &-n
plane for a fourth-order FR method.

1 0 0 O

I(T.E. . & & & &
J’1=a((r%'y7§))= N Nx My Nz|. (12)
v & & & L

Besides the flow equations, the Geometric Conservation Law
(GCL) [37] also needs to be numerically satisfied to ensure free-
stream preservation on moving grids. The GCL equations and the
steps for solving them are described in our previous papers [27,29].

2.3. The flux reconstruction method

The meshes in this work consist of hexahedral elements only.
The first step of the FR method is to map each hexahedral element
to a standard cubic element of unit size, i.e., 0 <&,n,¢ < 1. This
can be done using the following isoparametric mapping,

X K xi(t)
[y} =ZMi(S,n,§){yi(t)} (13)
V4 i=1 Zj(t)

where K is the number of nodes of a hexahedral element, M; (de-
tailed expressions can be found in, for example, [38]) is the shape
function of the i-th node, and (x;, y;,z;) are the coordinates of the
i-th node.

Next, solution points (SPs, denoted by X;) and flux points (FPs,
denoted by X;) are defined along each coordinate direction in the
standard element. Fig. 1 shows a schematic of the distribution of
the SPs and FPs in the & — n plane for a fourth-order FR method.
Generally, for an N-th order FR scheme, there are N SPs and FPs in
each direction, where the SPs are in the interior and the FPs are
on the boundaries of the standard element. The SPs and FPs are
chosen as the Legendre points in this work.

Subsequently, Lagrange interpolation bases are defined at each
SP. For example, at the i-th SP we have

N

h(X) :SE#(;:))Z). (14)

The resulting bases also form a basis of polynomials of degrees less
than or equal to N —1, i.e., Py_;. These interpolation bases allow
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the construction of solution and flux polynomials inside each ele-
ment through tensor products. For example,

N N N

QE.1.0) =YY > QhiE)h; (i (2). (15)
k=1 j=1 i=1

. N N N -

FGE0.0) =Y > Y Fiphi(©)hjinhi(2). (16)
k=1 j=1 i=1

where the subscript ijk denotes the discrete value at the ijk-th SP.
All these polynomials are in Py nq -

The above solution and flux polynomials are continuous within
each element, but discontinuous across cell boundaries. Therefore,
common values need to be defined on cell boundaries. There are
various ways to calculate these common values. In this work, the
common solution is calculated as the average of the discontinu-
ous values from the two sides of a boundary; the common invis-
cid fluxes are computed using the Rusanov Riemann solver[39]; the
common viscous fluxes are computed from the common solutions
and common gradients.

There is one more issue: after taking the first-order spatial
derivatives in the governing equations, the three flux terms be-
come elements in PI\LZ,I\LL[\LL PI\Ll,I\LZ,[\LL and PM],DL],N—Z# re-
spectively, and are inconsistent with the solution term. To fix this
issue, the original fluxes need to be reconstructed. This is done by
using correction functions that are polynomials of degree no less
than N. Taking the flux in the £ direction as an example, the re-
constructed flux polynomials is

F(E.0.0) =F(E.n.0) + [F"(0.7.2) ~F(0.7.0)] - &u.(§)
+[FOm(1, 0. 0) —F(1. 0. 0)] - gr(§) (17)

where ?(f;‘, n,¢) is from (16); Feom represents the common flux on
a cell boundary; g, and gy are the left and right correction func-
tions, and are required to at least satisfy

g(0) =1, g (1)=0,

g&r(0) =0, g(1)=1, (18)
which ensures that

F(0.7.0) =F°"(0,7.¢). F(1,1.¢) =F°"(1,1,0), (19)

i.e., the reconstructed fluxes still take the common values at cell
interfaces. In this work, we have employed the gp¢ correction func-
tion [21]. The other two fluxes are reconstructed in the same way.

Finally, the governing equations can be written in the following
residual form,

Q
at

68 "an "o

:—|:8F aG 8Hi| :i)%ijk, l,],k=1,2,,N,
ijk ijk

(20)

where 9, is the residual at the (i, j, k)-th SP. This system can be
time marched using either explicit or implicit temporal schemes.

24. A sliding-mesh method

In three-dimensions, we consider two types of sliding interfaces
as depicted in Fig. 2: one is annular, and the other is cylindrical.
To simplify the explanation, we have required the mesh to only
unmatch in the azimuthal direction but match in the radial (for
annular sliding) or axial (for cylindrical sliding) direction. We also
require equal mesh size in the azimuthal direction. These restric-
tions are imposed for explanation purposes only and can be easily
lifted in practice. More details can be found in our previous papers
[26-31].
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Fig. 2. Two types of sliding meshes: left, annular sliding; right, cylindrical sliding.

Since the SPs on the two sides of a nonconforming sliding inter-
face do not match, we aim to find the best-possible common val-
ues of a variable on the two sides of a sliding interface. This can be
achieved by least-squares projections using mortar elements as the
intermediate medium. A mortar element is formed by the overlap-
ping region of two cell faces. Taking the cylindrical sliding interface
as an example, based on the assumptions we have made, a cell face
has two mortar elements as sketched in Fig. 3. The first step is to
map a cell face and the mortars to standard ones as shown in the
same figure, using, for example, isoparametric mapping or transfi-
nite mapping.

Let the (£/,n’) denote the mortar space, then the computa-
tional and the mortar spaces are related as

E=0+s&', n=n, (21)

where 0 <&,7n,&’,n <1, and o and s are the offset and scaling of
a mortar with respect to a cell face.

Let ¢ represent the variable of interest, and obviously it can be
represented by the following polynomials on a cell face 2 and on
the left side of a mortar &,

N N
S2E 1) =3 $2hi(§)h; (), (22)
j=1 i=1
$ELE ) = 3 S @S hi(E (), (23)
j=1i=1

where ¢isjz and qbi]s‘L are the discrete values at the (i, j)-th SP on

Q and the left side of E, respectively. The (¢$"L)'s are unknown,

and can be obtained through the following projection (refer to
Fig. 4(a)),

1 1
L[ @360 = 0% & mha (€ )8 'dn o,
Ya,B=1,2,....N. (24)
Considering the relations in (21), it can be shown that the above

two-dimensional projection is equivalent to the following one-
dimensional one,

1
fo (@HE X)) — (€. X)ha(E)dE =0, Ya =1.2,....N,
(25)

where X; is the coordinate of the j-th SP. Evaluating the above
equation for all the o’s, we will get a system of equations about
¢1:1\5 i Repeating this process for every j, we will obtain every
¢$’L. The values on the right side of a mortar, i.e. the (¢i?‘R)'s,
can be obtained in the same way.

After that, we are able to compute a common value on the mor-

tar, e.g., through averaging or Riemann solver. Let us denote this
common value as ®Z. We then project this common variable back
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to a cell face from mortars as demonstrated in Fig. 4(b). And the
projection is

o i Q _ on ! oa
io /nzo (@25, 1m) — D= (8", 0) ) ha (§)hg () dEdn
E=1 pn=1
Q  BE(s 4
o AR CEOM R ST CR)
ha (§)hg(n)dédn =0, Ya,f=1.2,....N, (26)

where ®€ represents the polynomial of the unknown common
variable on face 2. Similarly, this projection is equivalent to the
following one-dimensional projection,

[ (@%x) - 0% 6 x) et 10

1
+/o (P9(&.X;) - ©=2(&'.X;) ) he (§)dE =0, Ya=1,2,....N,
(27)

from which ®§, j are obtained, and then also every d>l.§]? by repeat-
ing this process for j.

3. Simulation setup

The propeller studied in this work is the DTMB 4119 model de-
signed at the David Taylor Model Basin [40-42]. Its parameters
are summarized in Table 1, and the geometry is given in Table 2,
where r represents radial position, R = D/2 is propeller radius, c is
blade section chord length, P is section pitch, ¢p is section pitch
angle, t is section thickness, and f is section camber.

When the geometry is given, a propeller flow is governed by
two nondimensional parameters: advance ratio and Reynolds num-
ber. The advance ratio is defined as

Ux
J=5. (28)
where Uy is the incoming flow speed, n is propeller’s revolu-
tion per second (RPS), and D is propeller diameter. The follow-
ing Reynolds number is usually adopted in experimental studies

of marine propellers

C U2 + (2r0.7Rn)?
Re. — C0A7UU0.7 _ Co7v Y% ( ) (29)

’

%
Table 1
Design parameters of the DTMB 4119 propeller.
Parameter Value
Number of blades Z 3
Diameter D [m] 0.305

Hub diameter ratio D,/D 0.2

Design advance ratio J 0.833

Rotation Right handed
Section thickness NACA66 modified

Section mean line NACA, a =0.08

Table 2

Geometry of the DTMB 4119 propeller.
/R c/D P/D o [°1 t/c fre
0.2 0.3200 1.105 60.38 0.20550 0.01429
0.3 0.3625 1.102 49.47 0.15530 0.02318
0.4 0.4048 1.098 41.15 0.11800 0.02303
0.5 0.4392 1.093 34.84 0.09016 0.02182
0.6 0.4610 1.088 29.99 0.06960 0.02072
0.7 0.4622 1.084 26.24 0.05418 0.02003
0.8 0.4347 1.081 23.28 0.04206 0.01967
0.9 0.3613 1.079 20.88 0.03321 0,01817
0.95 0.2775 1.077 19.84 0.03228 0.01631
1.0 0.0 1.075 18.89 0.03160 0.01175
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Fig. 4. Projection between face and mortar: (a) from face to the left side of a mortar, (b) from two mortars back to a face.
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Fig. 5. Two views of the DTMB 4119 propeller: left, side view; right, back view (pressure side).

where ¢y 7 and Uy 7 = /U2 + (270.7Rn)? are the chord length and

the relative speed, respectively, at r/R=0.7, and v is fluid kine-
matic viscosity. For numerical simulations, it is more convenient
to define the Reynolds number as,

DU,

Rep =
b v

(30)

It can be shown that these two Reynolds numbers are conveniently
convertible through the following relation,
R
Rep = %. (31)
51+ ()

Depending on cg7/D and J, Rep could be either larger or smaller
than Re., but usually not much different.

The geometry is visualized in Fig. 5. As a typical screw-type
propeller, DTMB 4119 consists of four components: the shaft, the
blades, the hub, and the fairwater. All components, except the
shaft, rotate at an angular speed w. Hub and fairwater are usually
not part of propeller design. In this work, the hub has a length
L, = 0.5D, with the three blades installed evenly along the circum-
ferential direction of the mid-hub. The fairwater in the figure is a
1 : 2 ellipsoid, but cylindrical and hemispherical fairwaters are also
employed in a later section to study their effects.

The overall computational domain is cylindrical as shown in
Fig. 6. It has a length of 15D in the streamwise (i.e., x) direction
and a diameter of 12D. The resulting blockage ratio of this domain
with respect to the propeller is 0.69%, which is small enough to
guarantee negligible confinement effects according to the study in
[43]. The propeller locates 3D downstream from the inlet, with the
shaft extends all the way to the inlet. The blades and the hub are
enclosed in a small sliding disk region whose radius and thickness
are 0.75D and 0.5D, respectively. A global view of the mesh (with a
1/4 cutout to expose the propeller) is shown on the right of Fig. 6,
where the propeller and the sliding interfaces are colored in red.

The overall mesh consists of about 235,000 quadratic curved
hexahedral elements, of which about 36,000 are within the small
sliding disk region. The mesh is refined around the propeller as
well as in the wake region. The first layer of the off wall elements
on each blade surface has a height of approximately 0.015D, and
the first off wall solution point is about 0.0007D (for the fifth-
order scheme) away from the walls. Two local views of the meshes
on the sliding interfaces and the blade surfaces are shown in Fig. 7.
We see that the high-order curved mesh captures the curvatures of
the blade surfaces very well.

We treat the inlet as a Dirichlet boundary, the outer cylin-
drical surface and the outlet as characteristic farfields that al-
low waves and flow to leave without reflection [44], and all solid
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Fig. 7. Close views of the mesh on the sliding interfaces (left) and on the propeller surfaces (right).

surfaces as no-slip adiabatic walls. The incoming freestream flow
has a low Mach number of Ma,, = 0.05 so that compressibility ef-
fects are small. The Reynolds number is Rep = 5.59 x 10°, which
is equivalent to Rec = 7.3 x 10°. Various advance coefficients are
studied but with a focus on the design value (i.e., ] = 0.833). The
nondimensional angular speed of the propeller is w* = wD/Uy =
2nnD/Uy = 27 /J, and the rotation period is tU, /D =J. The simu-
lations are performed in two ways: to collect time-averaged statis-
tics, the outer subdomain is fixed, only the inner sliding region ro-
tates at w, and a velocity boundary condition is applied on the fair-
water surface; to collect phase-averaged statistics, the whole do-
main rotates at angular speed w, and velocity boundary condition
is applied to the shaft to make it stationary.

A four-stage third-order SSP-RK scheme [45] with a nondimen-
sional time step size of AtUs/D = 2.5 x 107> is adopted for the
time marching. The propeller therefore rotates about 0.01 degree
per time step at the design condition. For spatial discretization, it
is known that high-order simulation of turbulent flow may expe-
rience instabilities due to aliasing errors [24]. We observed such
instabilities on the fifth- and above orders. To overcome this issue,
we have employed the filter reported in [46] (with strength o =
0.05) to stabilize the simulations. Meanwhile, we compared the
design-condition results from the fourth-, the fifth-, and the sixth-
order schemes to ensure sufficient resolution. It was observed that
the mean loads from the fourth- and the fifth-order schemes have
small differences (around 3%), but the fifth-order scheme resolves
the flow structures with more details. On the other hand, both
the mean loads and the flow fields from the fifth- and the sixth-
order schemes are almost indistinguishable, which indicates that
the fifth-order is the optimum choice considering both accuracy
and cost. For this reason, the fifth-order scheme has been used
for the simulations in what follows. It is also worth mention-
ing that all simulations were run for a nondimensional time of

tUs/D = 100, and phase- and time-averaging were performed on
the last 85 time units, which represents approximately 102 revolu-
tions at the design condition.

4. Results and discussion
4.1. Propeller loads

The loads on a propeller are measured by the thrust and torque
coefficients defined as below,
T Q
Kr = —— and Ko = ——, 32
T pn2D4 Q pn2D5 (32)
where T and Q, respectively, represent the force and the torque
exerted by the fluid on a propeller in the axial direction. The effi-
ciency of a propeller is defined as

_TUs _J K
T=27nQ T 21 Ky

where the variables have the same meanings as previously ex-
plained.

We first compare the loads predicted by the simulation with
those measured in a previous experiment [42] at various advance
ratios. As can be seen from Fig. 8, the present numerical results
agree very well with the experimental values under all working
conditions: overloading condition (when J is small), near-design
condition, and underloading condition (when ] is large). The max-
imum difference is observed on the efficiency curve, which is
around 5%. The present simulation predicts the highest efficiency
around J = 0.9, which is close to the design condition that is J =
0.833 (see Table 1). The experiment, however, shows an optimum
performance slightly above | = 1.0, which is further away from the
design condition. Meanwhile, in the same figure, we also compare

(33)
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Table 3
Mean loads on the blades of DTMB 4119 at design condition.
Rep(x10%)  Re.(x10%) Ky (diff.) Kq (diff.) n
Present 5.59 7.3 0.1514 0.0274 0.7326
Design [40] - - 0.1540 (1.7%)  0.0290 (5.5%) 0.7040
exp. [41] 5.59 7.3 0.1500 (0.9%)  0.0285 (-3.9%) 0.6978
exp. [42] 7.66 10.0 0.1460 (3.7%) 0.0280 (-2.1%)  0.6913
Table 4
Loads on different parts of DTMB 4119 with an ellipsoidal fairwater at design condition.
Kr Krp Kry Ko Ko.p Ko
blades mean 0.1514  0.1519 4.9E-4  0.0274 0.0272 2.4E-4
rm.s. 3.6E-4 3.6E-4 5.6E-7  7.0E-5 7.0E-5 2.6E-8
hub mean  8.5E-5 6.7E-7 8.5E-5  3.9E-6 3.1E-8 3.9E-6
rm.s.  2.1E-7 4.5E-8 2.0E-7  2.2E-8 5.1E-9 2.2E-8
fairwater ~mean  3.2E-3 3.2E-3 2.4E-5  8.8E-7 6.9E-10  8.8E-7
r.m.s. 1.2E-4 1.2E-4 4.8E-7  9.9E-8 9.3E-8 3.2E-8
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Fig. 8. The mean blade loads of DTMB 4119 at different working conditions.

the present results with the latest (also the best available) results
on the same propeller from a low-order simulation [47] using the
commercial software STAR-CCM+. It is evident that the low-order
solver predicts the efficiency well only in a narrow range of work-
ing conditions where J is small. When J increases, the low-order
prediction becomes much worse. As will be shown in the next sec-
tion that when J increases, the flow vortices become weaker, which
are more vulnerable to numerical dissipations. Since the high-order
method introduces much smaller numerical dissipations, it predicts
the loads very accurately under all conditions. In contrast, the large
numerical dissipations of the low-order method have completely
demolished the predictions when J is large.

Since a propeller works around the design condition most of
the time, therefore a detailed look into this condition is presented
in what follows. The instantaneous Kr and K, of the blades at this
condition are plotted in Fig. 9 from tU,/D =15 to 45 for about
36 revolutions. The two coefficients are seen to fluctuate at small
amplitudes about their means chaotically due to the turbulent na-
ture of the flow. The mean values (averaged for about 102 revo-
lutions) are compared with the design [40] and the experimental
[41,42] values in Tab. 3, where the difference is defined as (sim-
ulation/experiment—1) x 100%. The design was based on potential
flow theories. The two experiments were performed in open wa-
ter at slightly different Reynolds numbers. The present Reynolds
number is chosen to exactly match that of [41], but it is obvious
that the Reynolds number effects are small at this level. Overall,
we see very good agreements between the simulation and the ex-
periments as well as the design.

The simulation allows us to study the loads on different parts
of the propeller. We have summarized the results in Tab. 4, where

“mean” denotes the time-averaged values, “r.m.s” denotes the root-
mean-square of the unsteady components, and the subscripts “p”
and “v” denote pressure and viscous contribution, respectively. Be-
fore proceeding further, it is worth noting that the thrust on the
fairwater needs to be treated carefully. Unlike the blades which
are two-sided and closed, the fairwater is “one-sided”, i.e., it has
no direct upstream counterpart to balance the pressure force on
its outer surface. In real applications, this force will be partially
compensated by the force on an upstream surface with the same
cross-sectional area (for example, part of the hull), resulting in a
much smaller net force. The flow in the upstream region is usually
at reduced speed (or even at stagnation) with higher pressure than
that of the freestream. Thus, an underestimated pressure force on
this upstream surface is poo (anl/4), where Dy, is the hub diame-
ter. We then subtract this force from that on the fairwater to ap-
proximate the net thrust on the fairwater.

From Table 4, we see that only the blades experience a thrust
(positive K7), while the hub and the fairwater experience drags
(negative K7). On the other hand, all three parts experience pos-
itive torques. For the blades, pressure contribution dominates the
loads; the r.m.s. values are at least three magnitudes smaller than
the means, suggesting quasi-steady loads. The Kr and K, of the
hub are four magnitudes smaller than those of the blades, which
indicates that the hub has negligible contribution/effect to the
overall performance of the propeller. Furthermore, viscous contri-
bution dominates the hub loads, which is consistent with the fact
that the hub has no projection in the axial direction and thus
pressure has no way to contribute. In fact, pressure should ide-
ally have zero contribution to the hub loads, and the present very
small pressure contribution implies very small geometric imperfec-
tion of the hub, which obviously has benefited from the high-order
curved representation of the geometry. For the fairwater, the drag
is about 2.1% of the thrust on the blades, and pressure dominates;
the torque is negligibly small, and viscosity dominates due to the
geometric symmetry. Overall, we conclude that the thrust and the
torque of the blades, and the drag of the fairwater are the main
factors that affect the propeller’s performance.

The time and frequency scales of the major loads can be iden-
tified through the autocorrelation and the power spectral density
(PSD) curves in Fig. 10. It is worth mentioning that the torque
and the thrust of a blade have almost identical characteristics, the
curves for the torque are therefore not repeated here. The autocor-
relation is defined as p(t) = R(t)/R(0), where R(t) =< T(t)T(t +
T) > is the autocovariance with a time lag 7, and “< >" denotes
ensemble average. We calculate the PSD using Welch’s method
with a 50% overlapping Hanning window and then average the re-
sults over 102 revolutions.
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Fig. 10. Autocorrelation and PSD of the blade thrust and fairwater drag.

The narrow main lobe of the autocorrelation of the blade in
Fig. 10 implies small integral time scales of the unsteadiness
around the blade. It also agrees with the corresponding high-
frequency peak around fD/Usx ~7.9 on the PSD curve. In con-
trast, the autocorrelation of the fairwater has a much wider main
lobe, which indicates much larger time scales of the dominant un-
steadiness around the fairwater. The corresponding PSD curve is
rather broadband and is dominated by very low-frequency compo-
nents. A comparison of the two PSD curves reveals that the fairwa-
ter experiences more unsteadiness at very high-frequencies (e.g.,
fD/Uy > 20) than the blade does. These time and frequency scales
are directly related to flow structures which will be discussed in
the next section.

4.2. Flow fields

The flow fields of a propeller have very distinct flow structures
that are of crucial importance to the propeller’s performance. This
has made studying the formation, mutual interaction, and stability
of these flow structures a constant research topic for decades. In
this section, we report the details of the flow fields of DTMB 4119,
including the vortices, the velocity field, and the pressure field.

4.2.1. Vortices

The vortical structures in a flow field can be well visualized
by isosurfaces of Q-criterion [48]. The Q-criterion (denoted by Q)
is defined as the second invariant of the velocity gradient tensor,
ie, Q= (QUQU 751]511)/2, where Ql] = (ui_j — u],)/Z and S,] =
(ujj+uj;)/2 are the antisymmetric and the symmetric compo-
nent, respectively, of the velocity gradient tensor.

When the Reynolds number is given, the only parameter that
determines a propeller’s flow field is the advance ratio J. Fig. 11
shows the instantaneous vortical structures as J decreases from 1.1
to 0.4. Note that the nondimensional rotational speed is related to
the advance ratio as w*= 2w /J. Thus, a decreasing | is equivalent
to an increasing w*.

We notice two dramatic changes in the flow field as J decreases:
the increase of vortex strength and the occurrence of flow insta-
bilities. At J = 1.1 and 1.0, the vortices are so weak that they are
quickly dissipated by the wake flow. At ] =0.9 and 0.8, the vor-
tices become strong enough to sustain for a long distance in the
wake, and a hub vortex is also well established. In addition, up to
this point the flow remains stable. Obvious instability occurs when
J decreases to 0.7, and the instability is caused by mutual inter-
actions between two tip vortices around x/D = 4.8. At | = 0.6, the
instability is still caused by mutual tip vortex interactions, but the
occurrence moves upstream to x/D = 3.4. The occurrence further
moves upstream to x/D = 3.2 and 2.7, for ] = 0.5 and 0.4, respec-
tively. However, the cause of the instability becomes more com-
plicated. At J = 0.5, it seems the instability not only comes from
the mutual interaction between the tip vortices, but also the in-
teraction between tip and hub vortices. Finally, at J = 0.4, it looks
like the trailing edge vortices have become strong enough to be
the leading cause of the instability. It was conjectured in [7] that
blade trailing edge vortices are an important source of flow in-
stabilities. Based on our observations here, this is only possible
when J is small enough (i.e., propeller is at very high relative ro-
tational speed) and when blade trailing edge vortices are strong
enough.

We already saw that the flow fields can be very different at dif-
ferent working conditions. In the rest of this paper, we focus on
the design condition only. Fig. 12 shows an instantaneous view of
the flow structures at this condition. It is seen that the tip vor-
tices are very much equally spaced along the axial direction, with
the distance between two successive vortices being approximately
0.36D, which is about one-third the tip pitch (see Table 2). Mean-
while, the surface velocity contours reveal that a tip vortex has
lower streamwise speed on the outer surface, and higher speed
on the inner surface. This indicates that a tip vortex not only re-
volves helically about the propeller’s axes, but also about its own
core at the same time. The topology of the root vortices are not
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Fig. 12. Isosurface of instantaneous Q-criterion Q.-D?/U2 = 40 at design condition.

very obvious from this instantaneous flow field due to the many
small turbulent structures. These high-frequency small flow struc-
tures are closer to the fairwater than to the blades, and thus have
contributed more to the load unsteadiness of the fairwater than to
the blades, which agrees with our previous observation on the PSD
curves in Fig. 10. These small structures, however, do not dominate
the load unsteadiness, which is likely because of their isotropy that
leads to mutual cancellation of the effects. While the tip vortices
break up about 5D downstream from the propeller, the hub vor-
tex stays strong and does not break up even at the outlet (i.e., 12D
downstream from the propeller; complete picture not shown here
due to limited space).

The phase-averaged isosurfaces of Q-criterion are shown in
Fig. 13, and they reveal the major flow structures, especially the
root vortices, more evidently. The phase-averaged hub vortex is
still seen to vary along the axial direction. In fact, it is the vari-
ations of these big structures that dominate the load unsteadiness
of the fairwater. Similarly, the load unsteadiness of the blades is
likely dominated by the unsteadiness of the tip and the trailing
edge vortices.

The FR method is a discontinuous-type of method, and recon-
struction must be performed to make the solutions and fluxes
globally continuous. This rule also applies to the statistics, which
are only element-wise continuous unless reconstructed. However,
reconstructing the statistics will impose extra computational and
memory cost to the simulation. For this reason, this process is not
performed in this work, which results in non-smoothness across
cell boundaries as can be seen from Fig. 13, especially in the
vicinity of the propeller where flow changes rapidly. Neverthe-
less, this simplification should not alter any of the conclusions
here.

The time-averaged flow field is shown in Fig. 14. It is worth not-
ing that time-averaging is impossible for the sliding region due to
the movement of the propeller, and the flow in this region is thus
not shown in the figure. Over time, the tip vortices form a slightly
converging-diverging “duct” in space. The root vortices, because of
the very small instantaneous turbulent structures, are very diffi-
cult to converge in time. Nevertheless, they still have a tube-like
shape over time in space. Unlike the instantaneous and the phase
averaged ones, the time-averaged the hub vortex is very symmetric
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about the axis, and almost sees no deviation from the axial direc-
tion. This clearly demonstrates that time-averaging not only helps
remove most of the small unsteadiness, but also the large ones,
from the flow field.

The Q-criterion isosurfaces are able to reveal the most coher-
ent vortical flow structures. They are, however, inefficient to ex-
pose the weak ones like the trailing edge vortices at the design
condition. Additionally, the Q-criterion cannot reveal the sign of a
vortex. For this reason, we have plotted the streamwise vorticity
contours in Figs. 15 and 16 to fill these gaps.

We can clearly see the footprints of the trailing edge vortices
(TEVs) in Fig. 15. One end of each TEV connects to a tip vortex, and

10

the other end connects to the hub or root vortex. As the flow goes
downstream, the TEVs tilt more and more towards downstream,
which obviously complies with the wake velocity distribution. The
signs of the vortices reveal that the tip vortices rotate in the oppo-
site direction to all other vortices as well as the propeller.

The vorticity contours in Fig. 16 uncover how the vortices de-
velop in the azimuthal and radial directions as the flow travels
downstream. The evolution of the TEVs is the most prominent:
they are elongated and bent in the azimuthal direction and fi-
nally impinge onto the tip vortices. However, because of flow dis-
sipation and the weak strength of the TEVs, these interactions do
not destabilize the flow. Again, the change of the TEVs is closely



B. Zhang, C. Ding and C. Liang

Computers and Fluids 224 (2021) 104967

(wz) D/Uso

—0.5j = - _— —
T+ 1+ r~r+ g1 - r—r—r g r—r~—r— 1 r—rr~—rr 11— rr 111111 11T T T T 1T T T T T T T T T T T T T -3.0
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
z/D
Fig. 15. Contours of phase-averaged streamwise vorticity in the central x-y plane.
(&) s =05 dos (b) /D =0.7__ dos (c) x/D:(gt; N dos
%= %: 1
; \ T
(! |
0 [ §\ o’ )10 /D
~ -’/! i
WA 1
\‘~\ 7/
N \\% b
-0.5 == —-0.5
| T S SR ST |
0.5 0 -0.5
05 [@ z/D:3'5,\ +0.5
7 N\
0 ( . | oD
. / |
0.5 — =4-0.5
| I i o [ (M S (A B | IS s [N R I e ] e G B

5 1.5

LI L L L L L L L DL L L L L L L L LI L L L L
5 5 2.5 :

z/D

TT T T T T T T T 1T T T T T 1T 717
3.5 4.5 5

Fig. 17. Isosurfaces of phase-averaged streamwise velocity < u > /U, = 0.9 (gray) and 1.4 (yellow).(For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

related to the velocity distribution that will be discussed in the
next section.

4.2.2. Velocity field

We already noticed that the outer and inner surfaces of a tip
vortex have different speeds. The tip vortices thus should be well
bounded by velocity isosurfaces. To confirm this, we plot two iso-
surfaces of the phase-averaged streamwise velocity in Fig. 17. It is
seen that the isosurfaces of < u > /U, = 0.9 and 1.4 follow the tra-
jectories of the tip vortices very well. Meanwhile, the increasing
gap between the two isosurfaces also agrees with the decreasing
strength of the tip vortices as the flow moves downstream.

A closer look of the velocity isosurfaces in the very vicinity of
the blades also reveals the formation of the tip vortices. In Fig. 18,
we are looking towards downstream at the suction side in (al) and
(a2), and towards upstream at the pressure side in (b1) and (b2).
From (a1), it is obvious that each leading edge (LE) decelerates the
incoming flow, resulting in a strand of low-speed flow along the LE

1

and finally sheds off around the tip. From (a2), each trailing edge
(TE) accelerate the flow and sheds off a strand of high-speed flow
slightly below the tip. When these two strands of flow meet and
be convected downstream, a helical tip-vortex system is generated.

Fig. 19 shows the phase-averaged streamwise velocity contours
in the central x-y plane (i.e., z = 0). It is seen that the blade wake is
overall accelerated, while the fairwater wake is mostly at reduced
speed. The flow immediately downstream of the fairwater has very
low speed, suggesting that a bubble is likely formed in this region.
The tip vortices show up as local velocity min-max pairs along the
outer edge of the slipstream. The footprints of other vortices, such
as the TEVs and the hub vortex, are also visible on the velocity
contours.

The Cartesian velocity can be decomposed into three compo-
nents: streamwise, radial, and azimuthal, denoted by u, v,, and
vy, respectively. Fig. 20 shows the time-averaged contours of these
components. We see that the overall slipstream has a converging-
diverging shape and is well contained in the propeller’s swept area,
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i.e.,, r <0.5D (note that r = |y| in the central plane). The radial ve-
locity is small almost everywhere, except in the very vicinity of
the fairwater. The azimuthal speed is large only in the fairwa-
ter wake and is induced by the strong hub vortex. The two low-
speed strips on the azimuthal speed contours around r/D = 0.1
and 0.4 < x/D < 1.2 are footprints of the root vortices.

More detailed velocity profiles are shown in Fig. 21. We see al-
most no induced velocity outside the slipstream (i.e., r/D > 0.5) on
all profiles, which suggests that the propeller introduces very little
disturbance to the flow outside its swept area. The streamwise ve-
locity u reaches its maximum values in the region 0.2 < r/D < 0.4,

12

where the flow is accelerated by more than 30% over U,. Out-
side this region, u quickly decreases to Uy, around r/D = 0.5, and
also decreases to the hub-vortex-core speed at r/D = 0. This ve-
locity distribution leads to the TEV deformation that is observed
in Fig. 15. The streamwise hub-vortex-core speed is close to zero
in the near wake region (e.g., x/D = 0.46), and then consistently
increases towards downstream. At x/D = 5.0, it is already slightly
over U,. The radial velocity 7, is only noticeable in the near wake,
for example, at x/D = 0.46 and 0.5, and then quickly drops to very
small values as the flow travels downstream. The azimuthal ve-
locity Uy is mostly induced by the hub vortex. It has almost the
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same profile at different locations, except in two small regions: one
around r/D = 0.1 that is affected by the root vortices, and the other
around r/D = 0.42 that is affected by the tip vortices. The profiles
of Ty are very close to that of a typical Rankine vortex, and is re-
sponsible for the TEV deformation in Fig. 16. The maximum value
of Uy is about 0.62U in the near field, and 0.36Uy in the interme-
diate wake. These are very large values, and clearly indicate how
strong the hub vortex is.

As a further validation of the simulation, in Fig. 22 we com-
pare the velocity profiles at x/R = 0.951 with a water tunnel mea-
surement from [42]. Overall, very good agreements are seen be-
tween the simulation and the experiment. For example, in the re-
gion 0.3 < /R < 1.2, the maximum difference on u is only around
2%. However, we do see large discrepancies in the region that is
close to r/R = 0.2. This is because of the setup difference between
the experiment and the simulation. In the experiment, the pro-
peller shaft is actually at downstream, making it a stationary wall
surface at (x/R,r/R) = (0.951,0.2). In contrast, for the simulation,
the shaft is at upstream, and it is a flow region at the same loca-
tion.

Based on the Kutta-Joukowski theorem, for an inviscid flow the
“lift” on a unit span of a body (such as a propeller blade) is pro-
portional to the circulation. Following the derivation in [49,50], the
circulation around a blade section at r, denoted by I'(r), is related
to the circumferential speed of the slipstream as

['(r) ~ =2mwrvy(1r)/Z, (34)
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where Z is the number of blades of a propeller. Applying the above
relation to the mean flow, we can define the following nondimen-
sional circulation for a blade,
o _LrTm T

ZR Uy 27 RU,,
This variable can be employed to measure the load distribution on
a blade. Moreover, G is conservative for inviscid flows, and should
be roughly conservative for high Reynolds number flows (where
viscous effects are small). Fig. 23 shows the circulation profiles
at different streamwise locations. The curves in (a) and (b) start
around r/R = 0.2 because of the presence of the fairwater at these
two locations. An experimental measurement from [42] is also
shown in (c), which agrees well with the simulation result. Overall,
we see that all profiles have very similar shapes and amplitudes,
which confirms that the circulation is indeed roughly conserved.
Nevertheless, viscous effects are still evident since the local nar-
row peaks are gradually smoothed out as the flow travels down-
stream. These curves also signify that the load is mostly concen-
trated around the mid-section (i.e., r/R = 0.5) of each blade. The
large peak around r/R = 0.9 in the near filed indicates that the
propeller is also heavily loaded around the tips, which is consis-
tent with the strong tip vortices that we have observed in the flow
field.

(35)

4.2.3. Pressure field

Fig. 24 shows the phase-averaged pressure field in the central
x-y plane. Comparing with the isosurfaces of Q-criterion in Fig. 13,
we see that the tip vortices show up as local pressure minima
along the edge of the slipstream. Meanwhile, the fairwater wake,
especially the hub vortex, is a very low pressure region, and is re-
sponsible for the large drag on the fairwater (see Table 4).

Of great importance is the pressure distribution around the
blades, which directly affects the thrust and torque on the pro-
peller. To see the pressure effects on the thrust more clearly, we
have plotted in Fig. 25 several slices in the x-y plane through the
top blade at different spanwise (i.e., z) locations. From (a) to (h),
we are moving from the leading edge to the trailing edge of the
blade (refer to Fig. 5) along the z direction. The suction side is on
the left, and the pressure side is on the right. As expected, we see
that most part of the suction side is in a low pressure region, and
the pressure side is in a high pressure region. When we go from
the leading edge to the trailing edge, the size of the low pressure
region first increases and then decreases, with the maximum size
around the mid-span, i.e.,, z= 0. In contrast, the size of the high
pressure region first decreases, and then increases. These pressure
distributions apparently suggest that the thrust load is more con-
centrated on the trailing portion (z > 0) of the blade.
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Fig. 25. Contours of phase-averaged pressure in different x-y planes through the top blade.

Similarly, the contribution from different parts of a blade to the
torque can be visualized through the pressure distribution in dif-
ferent y-z planes through the blades as shown in Fig. 26. Again,
from (a) to (h) we are moving from the leading edge to the trailing
edge (refer to Fig. 5), but along the x direction this time. Taking the
top blade for example, the suction side is on the left, and the pres-
sure side is on the right. From this perspective, the suction side is
almost always in a low pressure region. In (a)-(d), a large portion
of the pressure side actually has low surface pressure (although
there is a large high-pressure “bubble”, but it is detached from the
blade surface). In contrast, the pressure side has increased pres-
sure in (e)-(h). This pressure distribution results in higher torque
on the trailing portion of the blade. We also notice that the tips of
the cross-sections have the largest pressure difference most of the
time. Considering the fact that the tips also has the largest arms in
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the cross-sections, the torque is therefore also very heavily loaded
around the edge of each blade.

The time-averaged pressure field in the central x-y plane is
shown in Fig. 27, and a series of pressure profiles are given in
Fig. 28. From the contours, it is seen that on average the pro-
peller generates an obvious high-pressure region in the near field
x/D < 1.0 (inside and outside of the slipstream). Other than this
region, the propeller’s effects on the pressure field are mostly con-
tained within the slipstream. The hub vortex represents the pres-
sure minima of the whole flow field. From the profiles, we no-
tice three local pressure minima around r/D = 0, r/D ~ 0.12 (only
in the very near field), and r/D ~ 0.42. They actually correspond
to the hub vortex, the root vortices, and the tip vortices, respec-
tively. The pressure recovery in the blade wake (0.1 < r/D < 0.5) is
evident as the flow goes downstream. In contrast, we do not see



B. Zhang, C. Ding and C. Liang

Computers and Fluids 224 (2021) 104967

(a) o/D = —0.12 (b) @/D = =0:10 (c) @/D = —0108 1 (d) @/D = =004
Jos , Ho5 , Hos H0.5
(») /poo n 4 30 ) 0 - Jo =40 Q?\_
LT ‘ . ] '\ | '\ ‘ | - |
1.0005 4-0.5 4-05 0.5 05
1.0000
0-9905 g =05 [— BT (Y 05 05 05 [C—
0.9990
0.9985 (e) /D = 0.00 (f) =/D = 0.04 (g) =/D = 0.08 ] (h) /D = 0.10
0.9980 Jos Jos off Jos Hos
0.9975 7 \ 1 74
.997 ,
0.9970 o Ho §— ) S o %_
Y s ki B ’
dos 405 - Jos = Jos
1 [ 1 L | L 8 L L 1 1 1 = il L 1 L 1y SRRy
0.5 0 05 0.5 0 05 0.5 0 05 0.5 0 05
z/D z/D z/D z/D
Fig. 26. Contours of phase-averaged pressure in different y-z planes through the blades.
0.5 B/pes
«A = 1001
] . i
S 0Ly e
s V] 0.999
. 0.998
-0.54 0.997

z/D

LUNNL IS L s e B ) e I B B B B
b b ‘ P

Fig. 27. Contours of time-averaged pressure in the central x-y plane.

1.5
l -
F z/D = 0.46
L z/D = 0.5
0.5 z/D = 0.6
[ z/D = 0.7
- z/D = 0.8
2 oL ©/D =09
= F z/D = 1.0
L z/D =15
F z/D = 2.0
051 e i /Di=30
r st z/D = 4.0
) L z/D = 5.0
F 006 0054 0.996
qsee b b
0.995 1 1.005
P/Poo

Fig. 28. Profiles of time-averaged pressure at different streamwise locations in the
central x-y plane.

consistent pressure recovery in the fairwater wake (r/D < 0.1) due
to the strong hub vortex.

4.3. Fairwater effects

The fairwater is usually not considered in propeller design. A
user has the freedom to choose a fairwater based on their pref-
erence or the availability of parts. The quantitative effects of fair-
water shape have rarely been studied. In this section, we briefly
study two more fairwater shapes: cylindrical and hemispherical, to
compare with the ellipsoidal one from the previous sections. For a
fair comparison, we require the three fairwaters to have the same
surface area so that they contact with the same amount of flu-

15

0.121D

Fig. 29. DTMB 4119 with cylindrical fairwater (left) and hemispherical fairwater
(right).

ids. This means that the fairwaters will have different lengths. The
1:2 ellipsoidal fairwater has a length of 0.2D as shown in Fig. 5.
The geometries and sizes of the other two are shown in Fig. 29.
As marked in the figure, the cylindrical fairwater has a length of
0.121D, and the hemispherical one has a length of 0.171D (a hemi-
sphere of radius 0.1D sitting on top of a cylinder whose height is
0.071D). Overall, the shape is more elongated (streamlined) as the
shape changes from cylindrical to hemispherical and then to ellip-
soidal.

The loads for the above two configurations are summarized in
Tables 5 and 6, respectively. The overall loads on the hubs and the
torques on the fairwaters are once again negligibly small. Com-
paring with the ellipsoidal configuration (see Table 4), we notice
that the blades in both configurations here have smaller thrust and
torque. However, the efficiencies of the blades (excluding fairwater
contributions) in all three configurations stay almost unaffected as
shown in the first row of Table 7, where the efficiency differences
are around 0.3%. The drags on the fairwaters, on the other hand,
are dramatically different for the three configurations. The cylin-
drical fairwater has the largest drag, followed by the hemispheri-
cal one, and then the ellipsoidal one. The overall efficiencies (with
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Table 5
Loads on different parts of DTMB 4119 with a cylindrical fairwater.
Kr Kr,p Kry Ko Ko.p Kov
blades mean  0.1503  0.1507 4.8E-4  0.0271  0.0268 2.4E-4
r.m.s. 1.4E-4 1.4E-4 1.1E-7  2.8E-5 2.8E-5 5.8E-9
hub mean  9.8E-5 8.5E-7 9.7E-5  4.0E-6 2.9E-8 3.9E-6
r.m.s. 1.1E-7 3.9E-8 9.4E-8  1.1E-8 2.2E-9 1.0E-8
fairwater mean  4.9E-3 4.9E-3 2.9E-5 1.5E-6 1.3E-11 1.5E-6
rm.s. 6.0E-5 6.0E-5 1.2E-7  1.9E-8 7.9E-12  1.9E-8
Table 6
Loads on different parts of DTMB 4119 with a hemispherical fairwater.
Kr Krp Kry Ko Ko.p Kov
blades mean  0.1502  0.1507 —4.8E-4  0.0271  0.0269 2.4E-4
rms.  3.2E-4 3.2E-4 5.6E-7 6.2E-5 6.2E-5 3.0E-8
hub mean  9.1E-5 9.2E-7 9.0E-5 3.9E-6 2.9E-8 3.9E-6
r.m.s. 1.8E-7 5.2E-8 1.6E-7 2.9E-8 3.4E-9 2.9E-8
fairwater ~mean  4.4E-3 4.4E-3 3.9E-5 1.3E-6 3.5E-11 1.3E-6
r.m.s. 1.6E-4 1.6E-4  2.8E-7 4.0E-8 5.8E-10  4.0E-8
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Fig. 30. Time-averaged pressure in the central x-y plane of DTMB 4119 with cylindrical and hemispherical fairwaters.

Table 7
Blade efficiency and overall efficiency for different fairwater (FW) configura-
tions.

cylindrical ~ hemispherical  ellipsoidal
blades efficiency (excl. FW) 0.7353 0.7348 0.7326
overall efficiency (incl. FW)  0.7113 0.7133 0.7171
efficiency loss (from FW) 3.3% 2.9% 2.1%

fairwater contributions included) are also summarized in Table 7.
We see that the cylindrical, the hemispherical, and the ellipsoidal
fairwaters reduce the propeller’s overall efficiency by 3.3%, 2.9%,
and 2.1%, respectively. We need to emphasize that these numbers
are not small for a propulsion system, and we also need to repeat
that these numbers are underestimated based on the assumptions
that we made in Section 4.1. Since pressure contribution dominates
the drag on a fairwater, it is worth looking into the pressure fields
to see how the fairwaters affect the pressure distributions.

The time-averaged pressure fields for the above two configura-
tions are shown in Fig. 30. Comparing with the ellipsoidal configu-
ration in Fig. 27, we see that the three configurations overall have
very similar pressure distribution in the wake, which explains why
the blade efficiencies are not affected much. The differences are
mostly limited to the region immediately downstream of the fair-

water. The cylindrical fairwater generates a very large low-pressure
region at its end. The hemispherical fairwater has a low-pressure
region of similar size to that of the ellipsoidal one. However, at
the junction of the hemispherical fairwater and the hub, there is
another small but very low-pressure region due to the geometric
change, which leads to an overall larger drag for this configuration
than the ellipsoidal one.

5. Summary

The first high-order eddy-resolving simulation of a marine pro-
peller has been successfully performed in this work using a re-
cently developed sliding-mesh method. This method combines the
flux reconstruction framework and a new dynamic curved mortar
approach to deal with the complex rotating geometry of a pro-
peller without sacrificing the high-order accuracy at all. Even on
a very coarse mesh with less than one-fourth million cells, the
method predicts the propeller loads very accurately under a wide
range of working conditions, and also captures the flow structures
with a lot of details. Moreover, this method allows both phase and
time averaging on the same set of grid, and thus can provide more
information about a flow field.

Through visualization of vortical flow structures, it is revealed
that when the advance coefficient J decreases, the strengths of the
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major vortices grow and flow instability gradually develops. The
instability first comes from tip-tip vortex interaction, then tip-tip
as well as tip-hub vortex interactions, and finally the trailing-edge
vortices become strong enough and start playing an important rule
when ] is sufficiently small. At the design condition, the sources of
each tip vortex are identified through velocity isosurfaces to be a
strand of decelerated flow from the leading edge and a strand of
accelerated flow from the trailing edge of each blade.

A comparison between the present high-order simulation and a
previous low-order one on the same propeller has clearly demon-
strated the low-dissipation advantage of the high-order method,
which has allowed accurate prediction of the loads under all work-
ing conditions. In contrast, the high-dissipation of the low-order
method completely failed the mission for large J that generates
weak flow vortices. Detailed load analysis at the design condition
has revealed that the major loads are the blade thrust and torque
as well as the fairwater drag, and pressure contribution domi-
nates these loads. The pressure field and the circulation distribu-
tion show that the blade loads concentrate more on the trailing
portion as well as the radial mid-section of each blade.

By studying three fairwaters of different shapes, it is found that
these fairwaters do not have obvious effects on the blade per-
formance in the present setups. They, however, do dramatically
change the pressure distribution on their surfaces, resulting in dif-
ferent induced drags and different performance degradation to the
overall propulsion system. More specifically, we see an efficiency
loss of at least 3.3%, 2.9%, and 2.1%, from the cylindrical, the hemi-
spherical, and the ellipsoidal fairwater, respectively. It remains to
be investigated whether there is an optimum fairwater shape that
can minimize the efficiency loss.
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