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a b s t r a c t 
We report the first high-order eddy-resolving simulation of flow over a marine propeller using a recently 
developed high-order sliding-mesh method. This method employs the flux reconstruction framework and 
a new dynamic curved mortar approach to handle the complex rotating geometries. For a wide range of 
working conditions, it is validated to predict the loads very accurately against experiments. The method’s 
low-dissipation characteristic has allowed the capturing of a broad spectrum of turbulence structures for 
very long distances even on a very coarse grid. Comparison with a previous low-order simulation is also 
carried out to show the low-dissipation advantage of the present simulations. From detailed load analysis, 
the major loads and their distributions and time and frequency scales are identified. Visualizations of the 
instantaneous, phase-averaged, and time-averaged flow fields have revealed the processes of tip vortex 
formation, major vortex evolutions, and flow instability developments at different working conditions. 
The effects of different fairwaters on the propeller’s overall performance are also quantitatively assessed. 

© 2021 Elsevier Ltd. All rights reserved. 
1. Introduction 

Numerical techniques for studying marine propellers have seen 
immense advances in the past decades. For example, the lifting 
surface procedures based on vortex lattice and panel methods have 
been widely used in propeller design. A representative program in 
this category is the PSF code developed at MIT in the1980s [1] . 
The vortex lattice and panel methods have very quick turnaround 
time, and can predict propeller loads rather accurately when com- 
bined with empirical vortex and wake models. They are, how- 
ever, incapable of revealing the fine details of a flow field for in- 
depth analysis of flow physics such as flow instability and acous- 
tics. Since the1990s, the Reynolds-averaged Navier Stokes (RANS) 
methods have gained popularity in simulating propeller flows. The 
RANS methods do provide richer flow field information than the 
inviscid vortex lattice and panel methods. But the averaging na- 
ture of a RANS (even an unsteady RANS) method still smooths 
out a lot of flow details, especially the small and intermediate 
instantaneous eddies. In more recent years, the increasing high- 
performance computing power has allowed eddy-resolving tech- 
niques, such as detached-eddy simulation (DES) and large-eddy 
simulation (LES), to have been performed on marine propellers 
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in the scale of millions or even trillions of grid elements. For in- 
stance, Muscari et al. [2] and Di Mascio et al. [3] employed DES 
to study the vortex dynamics of a propeller in different flow con- 
ditions. Verma et al. [4] and Jang and Mahesh [5] used LES to 
investigate the flow around a reverse rotating marine propeller. 
Balaras et al. [6] applied an immersed boundary based LES tech- 
nique to explore the flow around a propeller with and without an 
upstream appendage. Kumar and Mahesh [7] systematically stud- 
ied the wake instability of a propeller using LES. However, all the 
aforementioned DES and LES approaches are of low-order accura- 
cies (at most second-order) that could potentially introduce large 
numerical dissipation and dispersion to a flow field. 

On the other hand, high-order (third and above) methods, espe- 
cially polynomial based high-order methods, are seeing rapid de- 
velopment in recent years. High-order methods show many ad- 
vantages over the traditional low-order ones. For example, for the 
same number of degrees of freedom, a high-order method pro- 
duces solutions with much smaller numerical error than a low- 
order method does. Furthermore, a high-order method can employ 
high-order unstructured curved meshes that approximate curved 
geometries much more accurately than the linear meshes for a 
low-order method. The most popular high-order methods include 
the discontinuous Galerkin (DG) method [8,9] , the spectral element 
method [10–12] , the spectral volume method [13,14] , the spectral 
difference (SD) method [15–20] , etc. Among these methods, the SD 
method solves equations in differential form directly, and is one of 
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the most efficient high-order methods. Recently, the ideas of col- 
locating solution and flux points of the SD method and correcting 
fluxes using higher-degree polynomials have led to an even more 
efficient high-order method — the flux reconstruction (FR) method 
[21,22] , also known as the correction procedure via reconstruc- 
tion (CPR) [23] . Besides its better efficiency, by choosing different 
correction polynomials, the FR method can recover many existing 
high-order schemes such as DG and SD, and can even produce new 
schemes that had never been reported before. The stability of the 
FR method has been proved in [24] . The most recent developments 
on the FR method are summarized in [25] . 

To the authors’ knowledge, there is still no reported high-order 
eddy-resolving simulation of marine propellers. One important rea- 
son is the severe challenge on how to treat the complex rotational 
geometry of a propeller in a high-order method without deterio- 
rating the method’s accuracies in both space and time. To tackle 
this challenge, Zhang and Liang [26,27] developed a high-order 
sliding-mesh method for the SD and FR methods by introducing 
the concept of curved dynamic mortar elements. A parallelization 
approach was proposed for this method in [28] , and the exten- 
sion to three-dimensions was achieved in [29] . More recently, this 
method was further extended to sliding interfaces with general 
nonuniform meshes [30] . An updated version that is high-order 
in time, arbitrarily high-order in space, provably conservative, and 
provably outflow preservative has also been established [31] . In the 
present work, we apply this method to implicit LES (without us- 
ing an explicit sub-grid-scale model) [32–36] of the loads and flow 
fields of a real marine propeller at various working conditions. This 
is the first time a high-order method being applied to simulate a 
marine propeller. 

The rest of this paper is organized as follows. Section 2 gives a 
brief description of the flow equations and the numerical methods. 
Section 3 details the simulation setup. Simulation results and dis- 
cussions are reported in Section 4 . Finally, Section 5 concludes this 
paper. 
2. Numerical methods 
2.1. The physical equations 

We numerically solve the following three-dimensional unsteady 
Navier-Stokes equations in a conservative form, 
∂Q 
∂t + ∂F 

∂x + ∂G 
∂y + ∂H 

∂z = 0 , (1) 
where Q is the vector of conservative variables, F , G and H are 
the flux vectors in each coordinate direction. These terms have the 
following expressions, 
Q = [ ρ ρu ρv ρw E] T , (2) 
F = F inv (Q ) + F vis (Q , ∇Q ) , (3) 
G = G inv (Q ) + G vis (Q , ∇Q ) , (4) 
H = H inv (Q ) + H vis (Q , ∇Q ) , (5) 
where ρ is fluid density, u, v and w are the velocity components, E
is the total energy per volume defined as E = p/ (γ − 1) + 1 

2 ρ(u 2 + 
v 2 + w 2 ) , p is pressure, γ is the ratio of specific heats and is set to 
1.4. 

The fluxes have been split into inviscid and viscous parts. The 
inviscid fluxes are only functions of the conservative variables and 

have the following expressions, 
F inv = 

 
   

ρu 
ρu 2 + p 

ρu v 
ρuw 

u (E + p) 

 
   , G inv = 

 
   

ρv 
ρu v 

ρv 2 + p 
ρv w 

v (E + p) 

 
   , 

H inv = 
 
   

ρw 
ρuw 
ρv w 

ρw 2 + p 
w (E + p) 

 
   . (6) 

The viscous fluxes are functions of the conservative variables and 
their gradients. The expressions are 
F vis = −

 
   

0 
τxx 
τyx 
τzx 

uτxx + v τyx + wτzx + κT x 

 
   , (7) 

G vis = −
 
   

0 
τxy 
τyy 
τzy 

uτxy + v τyy + wτzy + κT y 

 
   , (8) 

H vis = −
 
   

0 
τxz 
τyz 
τzz 

uτxz + v τyz + wτzz + κT y 

 
   , (9) 

where τi j is shear stress tensor which is related to velocity gra- 
dients as τi j = µ(u i, j + u j,i ) + λδi j u k,k , µ is dynamic viscosity, λ = 
−2 / 3 µ based on Stokes’ hypothesis, δi j is the Kronecker delta, κ
is thermal conductivity, T is temperature that is related to density 
and pressure through the ideal gas law p = ρR T , where R is the 
gas constant. 
2.2. The computational equations 

As will be discussed later, we map each moving grid element 
from the physical space to a stationary standard cubic element 
in the computational space where the equations are solved. As- 
sume the mapping is: t = τ, x = x (τ, ξ , η, ζ ) , y = y (τ, ξ , η, ζ ) and 
z = z(τ, ξ , η, ζ ) , where (τ, ξ , η, ζ ) are the computational time and 
space. It can be shown that the flow equations will take the fol- 
lowing conservative form in the computational space, 
∂ ̃  Q 
∂t + ∂ ̃  F 

∂ξ
+ ∂ ̃  G 

∂η
+ ∂ ̃  H 

∂ζ
= 0 , (10) 

and the computational variable and fluxes are related to the phys- 
ical ones through 
 
  

˜ Q 
˜ F ̃ G 
˜ H 
 
  = |J |J −1 

 
  

Q 
F 
G 
H 
 
  , (11) 

where |J | is determinant of the Jacobian matrix and J −1 is the 
inverse Jacobian matrix, and their expressions are 
|J | = ∣∣∣∣ ∂(t, x, y, z) 

∂(τ, ξ , η, ζ ) 
∣∣∣∣ = 

∣∣∣∣∣∣∣

1 0 0 0 
x t x ξ x η x ζ
y t y ξ y η y zη
z t z ξ z η z ζ

∣∣∣∣∣∣∣
, 
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Fig. 1. Schematic of solution points (circles) and flux points (squares) in the ξ - η
plane for a fourth-order FR method. 

J −1 = ∂(τ, ξ , η, ζ ) 
∂(t, x, y, z) = 

 
   

1 0 0 0 
ξt ξx ξy ξz 
ηt ηx ηy ηz 
ζt ζx ζy ζz 

 
   . (12) 

Besides the flow equations, the Geometric Conservation Law 
(GCL) [37] also needs to be numerically satisfied to ensure free- 
stream preservation on moving grids. The GCL equations and the 
steps for solving them are described in our previous papers [27,29] . 
2.3. The flux reconstruction method 

The meshes in this work consist of hexahedral elements only. 
The first step of the FR method is to map each hexahedral element 
to a standard cubic element of unit size, i.e., 0 ≤ ξ , η, ζ ≤ 1 . This 
can be done using the following isoparametric mapping, 
[ 

x 
y 
z 
] 

= K ∑ 
i =1 M i (ξ , η, ζ ) 

[ 
x i (t) 
y i (t) 
z i (t) 

] 
, (13) 

where K is the number of nodes of a hexahedral element, M i (de- 
tailed expressions can be found in, for example, [38] ) is the shape 
function of the i -th node, and (x i , y i , z i ) are the coordinates of the 
i -th node. 

Next, solution points (SPs, denoted by X s ) and flux points (FPs, 
denoted by X f ) are defined along each coordinate direction in the 
standard element. Fig. 1 shows a schematic of the distribution of 
the SPs and FPs in the ξ − η plane for a fourth-order FR method. 
Generally, for an N-th order FR scheme, there are N SPs and FPs in 
each direction, where the SPs are in the interior and the FPs are 
on the boundaries of the standard element. The SPs and FPs are 
chosen as the Legendre points in this work. 

Subsequently, Lagrange interpolation bases are defined at each 
SP. For example, at the i -th SP we have 
h i (X ) = N ∏ 

s =1 ,s % = i 
(

X − X s 
X i − X s 

)
. (14) 

The resulting bases also form a basis of polynomials of degrees less 
than or equal to N − 1 , i.e., P N−1 . These interpolation bases allow 

the construction of solution and flux polynomials inside each ele- 
ment through tensor products. For example, 
˜ Q (ξ , η, ζ ) = N ∑ 

k =1 
N ∑ 

j=1 
N ∑ 

i =1 ˜ Q i jk h i (ξ ) h j (η) h k (ζ ) , (15) 
˜ F (ξ , η, ζ ) = N ∑ 

k =1 
N ∑ 

j=1 
N ∑ 

i =1 ˜ F i jk h i (ξ ) h j (η) h k (ζ ) , (16) 
where the subscript i jk denotes the discrete value at the i jk -th SP. 
All these polynomials are in P N−1 ,N−1 ,N−1 . 

The above solution and flux polynomials are continuous within 
each element, but discontinuous across cell boundaries. Therefore, 
common values need to be defined on cell boundaries. There are 
various ways to calculate these common values. In this work, the 
common solution is calculated as the average of the discontinu- 
ous values from the two sides of a boundary; the common invis- 
cid fluxes are computed using the Rusanov Riemann solver [39] ; the 
common viscous fluxes are computed from the common solutions 
and common gradients. 

There is one more issue: after taking the first-order spatial 
derivatives in the governing equations, the three flux terms be- 
come elements in P N−2 ,N−1 ,N−1 , P N−1 ,N−2 ,N−1 , and P N−1 ,N−1 ,N−2 , re- 
spectively, and are inconsistent with the solution term. To fix this 
issue, the original fluxes need to be reconstructed. This is done by 
using correction functions that are polynomials of degree no less 
than N. Taking the flux in the ξ direction as an example, the re- 
constructed flux polynomials is 
̂ F (ξ , η, ζ ) = ̃  F (ξ , η, ζ ) + [̃  F com (0 , η, ζ ) −˜ F (0 , η, ζ ) ] · g L (ξ ) 

+ [ ̃  F com (1 , η, ζ ) −˜ F (1 , η, ζ )] · g R (ξ ) (17) 
where ̃  F (ξ , η, ζ ) is from (16) ; ̃  F com represents the common flux on 
a cell boundary; g L and g R are the left and right correction func- 
tions, and are required to at least satisfy 
g L (0) = 1 , g L (1) = 0 , 
g R (0) = 0 , g R (1) = 1 , (18) 
which ensures that 
̂ F (0 , η, ζ ) = ̃  F com (0 , η, ζ ) , ̂ F (1 , η, ζ ) = ̃  F com (1 , η, ζ ) , (19) 
i.e., the reconstructed fluxes still take the common values at cell 
interfaces. In this work, we have employed the g DG correction func- 
tion [21] . The other two fluxes are reconstructed in the same way. 

Finally, the governing equations can be written in the following 
residual form, 
∂ ̃  Q 
∂t 

∣∣∣∣
i jk = −[

∂ ̂  F 
∂ξ

+ ∂ ̂  G 
∂η

+ ∂ ̂  H 
∂ζ

]

i jk = R i jk , i, j, k = 1 , 2 , · · · , N, 
(20) 

where R i jk is the residual at the (i, j, k ) -th SP. This system can be 
time marched using either explicit or implicit temporal schemes. 
2.4. A sliding-mesh method 

In three-dimensions, we consider two types of sliding interfaces 
as depicted in Fig. 2 : one is annular, and the other is cylindrical. 
To simplify the explanation, we have required the mesh to only 
unmatch in the azimuthal direction but match in the radial (for 
annular sliding) or axial (for cylindrical sliding) direction. We also 
require equal mesh size in the azimuthal direction. These restric- 
tions are imposed for explanation purposes only and can be easily 
lifted in practice. More details can be found in our previous papers 
[26–31] . 
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Fig. 2. Two types of sliding meshes: left, annular sliding; right, cylindrical sliding. 
Since the SPs on the two sides of a nonconforming sliding inter- 

face do not match, we aim to find the best-possible common val- 
ues of a variable on the two sides of a sliding interface. This can be 
achieved by least-squares projections using mortar elements as the 
intermediate medium. A mortar element is formed by the overlap- 
ping region of two cell faces. Taking the cylindrical sliding interface 
as an example, based on the assumptions we have made, a cell face 
has two mortar elements as sketched in Fig. 3 . The first step is to 
map a cell face and the mortars to standard ones as shown in the 
same figure, using, for example, isoparametric mapping or transfi- 
nite mapping. 

Let the (ξ ′ , η′ ) denote the mortar space, then the computa- 
tional and the mortar spaces are related as 
ξ = o + sξ ′ , η = η′ , (21) 
where 0 ≤ ξ , η, ξ ′ , η′ ≤ 1 , and o and s are the offset and scaling of 
a mortar with respect to a cell face. 

Let φ represent the variable of interest, and obviously it can be 
represented by the following polynomials on a cell face , and on 
the left side of a mortar -, 
φ,(ξ , η) = N ∑ 

j=1 
N ∑ 

i =1 φ,
i j h i (ξ ) h j (η) , (22) 

φ-,L (ξ ′ , η′ ) = N ∑ 
j=1 

N ∑ 
i =1 φ-,L 

i j h i (ξ ′ ) h j (η′ ) , (23) 
where φ,

i j and φ-,L 
i j are the discrete values at the (i, j) -th SP on 

, and the left side of -, respectively. The (φ-,L 
i j ) ’s are unknown, 

and can be obtained through the following projection (refer to 
Fig. 4 (a)), 
∫ 1 

0 
∫ 1 

0 (φ-,L (ξ ′ , η′ ) − φ,(ξ , η)) h α(ξ ′ ) h β (η′ ) d ξ ′ d η′ = 0 , 
∀ α, β = 1 , 2 , . . . , N. (24) 

Considering the relations in (21) , it can be shown that the above 
two-dimensional projection is equivalent to the following one- 
dimensional one, 
∫ 1 

0 (φ-,L (ξ ′ , X j ) − φ,(ξ , X j )) h α(ξ ′ ) d ξ ′ = 0 , ∀ α = 1 , 2 , . . . , N, 
(25) 

where X j is the coordinate of the j-th SP. Evaluating the above 
equation for all the α’s, we will get a system of equations about 
φ-,L 

1: N, j . Repeating this process for every j, we will obtain every 
φ-,L 

i j . The values on the right side of a mortar, i.e., the (φ-,R 
i j ) ’s, 

can be obtained in the same way. 
After that, we are able to compute a common value on the mor- 

tar, e.g., through averaging or Riemann solver. Let us denote this 
common value as 0-. We then project this common variable back 

to a cell face from mortars as demonstrated in Fig. 4 (b). And the 
projection is 
∫ ξ= o 2 
ξ=0 

∫ η=1 
η=0 (

0,( ξ , η) − 0-1 (ξ ′ , η′ ))h α( ξ ) h β ( η) d ξd η
+ ∫ ξ=1 

ξ= o 2 
∫ η=1 
η=0 (

0,( ξ , η) − 0-2 (ξ ′ , η′ ))
h α( ξ ) h β ( η) d ξd η = 0 , ∀ α, β = 1 , 2 , . . . , N, (26) 

where 0, represents the polynomial of the unknown common 
variable on face ,. Similarly, this projection is equivalent to the 
following one-dimensional projection, 
∫ o 2 

0 (
0,

(
ξ , X j ) − 0-1 (ξ ′ , X j ))h α( ξ ) d ξ

+ ∫ 1 
o 2 

(
0,

(
ξ , X j )−0-2 (ξ ′ , X j ))h α( ξ ) d ξ = 0 , ∀ α = 1 , 2 , . . . , N, 

(27) 
from which 0,

1: N, j are obtained, and then also every 0,
i j by repeat- 

ing this process for j. 
3. Simulation setup 

The propeller studied in this work is the DTMB 4119 model de- 
signed at the David Taylor Model Basin [40–42] . Its parameters 
are summarized in Table 1 , and the geometry is given in Table 2 , 
where r represents radial position, R = D/ 2 is propeller radius, c is 
blade section chord length, P is section pitch, φP is section pitch 
angle, t is section thickness, and f is section camber. 

When the geometry is given, a propeller flow is governed by 
two nondimensional parameters: advance ratio and Reynolds num- 
ber. The advance ratio is defined as 
J = U ∞ 

nD , (28) 
where U ∞ is the incoming flow speed, n is propeller’s revolu- 
tion per second (RPS), and D is propeller diameter. The follow- 
ing Reynolds number is usually adopted in experimental studies 
of marine propellers 
Re c = c 0 . 7 U 0 . 7 

ν
= c 0 . 7 √ 

U 2 ∞ + (2 π0 . 7 Rn ) 2 
ν

, (29) 
Table 1 
Design parameters of the DTMB 4119 propeller. 

Parameter Value 
Number of blades Z 3 
Diameter D [m] 0.305 
Hub diameter ratio D h /D 0.2 
Design advance ratio J 0.833 
Rotation Right handed 
Section thickness NACA66 modified 
Section mean line NACA, a = 0 . 08 

Table 2 
Geometry of the DTMB 4119 propeller. 

r/R c/D P/D φP [ ◦] t/c f/c

0.2 0.3200 1.105 60.38 0.20550 0.01429 
0.3 0.3625 1.102 49.47 0.15530 0.02318 
0.4 0.4048 1.098 41.15 0.11800 0.02303 
0.5 0.4392 1.093 34.84 0.09016 0.02182 
0.6 0.4610 1.088 29.99 0.06960 0.02072 
0.7 0.4622 1.084 26.24 0.05418 0.02003 
0.8 0.4347 1.081 23.28 0.04206 0.01967 
0.9 0.3613 1.079 20.88 0.03321 0,01817 
0.95 0.2775 1.077 19.84 0.03228 0.01631 
1.0 0.0 1.075 18.89 0.03160 0.01175 
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Fig. 3. Map curved cell face and mortars to straight ones. 

Fig. 4. Projection between face and mortar: (a) from face to the left side of a mortar, (b) from two mortars back to a face. 

Fig. 5. Two views of the DTMB 4119 propeller: left, side view; right, back view (pressure side). 
where c 0 . 7 and U 0 . 7 = √ 

U 2 ∞ + (2 π0 . 7 Rn ) 2 are the chord length and 
the relative speed, respectively, at r/R = 0 . 7 , and ν is fluid kine- 
matic viscosity. For numerical simulations, it is more convenient 
to define the Reynolds number as, 
Re D = D U ∞ 

ν
. (30) 

It can be shown that these two Reynolds numbers are conveniently 
convertible through the following relation, 
Re D = Re c 

c 0 . 7 
D √ 

1 + ( 0 . 7 π
J )2 . (31) 

Depending on c 0 . 7 /D and J, Re D could be either larger or smaller 
than Re c , but usually not much different. 

The geometry is visualized in Fig. 5 . As a typical screw-type 
propeller, DTMB 4119 consists of four components: the shaft, the 
blades, the hub, and the fairwater. All components, except the 
shaft, rotate at an angular speed ω. Hub and fairwater are usually 
not part of propeller design. In this work, the hub has a length 
L h = 0 . 5 D, with the three blades installed evenly along the circum- 
ferential direction of the mid-hub. The fairwater in the figure is a 
1 : 2 ellipsoid, but cylindrical and hemispherical fairwaters are also 
employed in a later section to study their effects. 

The overall computational domain is cylindrical as shown in 
Fig. 6 . It has a length of 15 D in the streamwise (i.e., x ) direction 
and a diameter of 12 D . The resulting blockage ratio of this domain 
with respect to the propeller is 0 . 69% , which is small enough to 
guarantee negligible confinement effects according to the study in 
[43] . The propeller locates 3 D downstream from the inlet, with the 
shaft extends all the way to the inlet. The blades and the hub are 
enclosed in a small sliding disk region whose radius and thickness 
are 0 . 75 D and 0 . 5 D, respectively. A global view of the mesh (with a 
1 / 4 cutout to expose the propeller) is shown on the right of Fig. 6 , 
where the propeller and the sliding interfaces are colored in red. 

The overall mesh consists of about 235,0 0 0 quadratic curved 
hexahedral elements, of which about 36,0 0 0 are within the small 
sliding disk region. The mesh is refined around the propeller as 
well as in the wake region. The first layer of the off wall elements 
on each blade surface has a height of approximately 0 . 015 D, and 
the first off wall solution point is about 0 . 0 0 07 D (for the fifth- 
order scheme) away from the walls. Two local views of the meshes 
on the sliding interfaces and the blade surfaces are shown in Fig. 7 . 
We see that the high-order curved mesh captures the curvatures of 
the blade surfaces very well. 

We treat the inlet as a Dirichlet boundary, the outer cylin- 
drical surface and the outlet as characteristic farfields that al- 
low waves and flow to leave without reflection [44] , and all solid 
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Fig. 6. Overall computational domain (left) and global view of the mesh (right). 

Fig. 7. Close views of the mesh on the sliding interfaces (left) and on the propeller surfaces (right). 
surfaces as no-slip adiabatic walls. The incoming freestream flow 
has a low Mach number of Ma ∞ = 0 . 05 so that compressibility ef- 
fects are small. The Reynolds number is Re D = 5 . 59 × 10 5 , which 
is equivalent to Re c = 7 . 3 × 10 5 . Various advance coefficients are 
studied but with a focus on the design value (i.e., J = 0 . 833 ). The 
nondimensional angular speed of the propeller is ω ∗ = ωD/U ∞ = 
2 πnD/U ∞ = 2 π/J, and the rotation period is tU ∞ /D = J. The simu- 
lations are performed in two ways: to collect time-averaged statis- 
tics, the outer subdomain is fixed, only the inner sliding region ro- 
tates at ω, and a velocity boundary condition is applied on the fair- 
water surface; to collect phase-averaged statistics, the whole do- 
main rotates at angular speed ω, and velocity boundary condition 
is applied to the shaft to make it stationary. 

A four-stage third-order SSP-RK scheme [45] with a nondimen- 
sional time step size of 4tU ∞ /D = 2 . 5 × 10 −5 is adopted for the 
time marching. The propeller therefore rotates about 0.01 degree 
per time step at the design condition. For spatial discretization, it 
is known that high-order simulation of turbulent flow may expe- 
rience instabilities due to aliasing errors [24] . We observed such 
instabilities on the fifth- and above orders. To overcome this issue, 
we have employed the filter reported in [46] (with strength α = 
0 . 05 ) to stabilize the simulations. Meanwhile, we compared the 
design-condition results from the fourth-, the fifth-, and the sixth- 
order schemes to ensure sufficient resolution. It was observed that 
the mean loads from the fourth- and the fifth-order schemes have 
small differences (around 3% ), but the fifth-order scheme resolves 
the flow structures with more details. On the other hand, both 
the mean loads and the flow fields from the fifth- and the sixth- 
order schemes are almost indistinguishable, which indicates that 
the fifth-order is the optimum choice considering both accuracy 
and cost. For this reason, the fifth-order scheme has been used 
for the simulations in what follows. It is also worth mention- 
ing that all simulations were run for a nondimensional time of 

tU ∞ /D = 100 , and phase- and time-averaging were performed on 
the last 85 time units, which represents approximately 102 revolu- 
tions at the design condition. 
4. Results and discussion 
4.1. Propeller loads 

The loads on a propeller are measured by the thrust and torque 
coefficients defined as below, 
K T = T 

ρn 2 D 4 and K Q = Q 
ρn 2 D 5 , (32) 

where T and Q, respectively, represent the force and the torque 
exerted by the fluid on a propeller in the axial direction. The effi- 
ciency of a propeller is defined as 
η = T U ∞ 

2 πnQ = J 
2 π · K T 

K Q , (33) 
where the variables have the same meanings as previously ex- 
plained. 

We first compare the loads predicted by the simulation with 
those measured in a previous experiment [42] at various advance 
ratios. As can be seen from Fig. 8 , the present numerical results 
agree very well with the experimental values under all working 
conditions: overloading condition (when J is small), near-design 
condition, and underloading condition (when J is large). The max- 
imum difference is observed on the efficiency curve, which is 
around 5% . The present simulation predicts the highest efficiency 
around J = 0 . 9 , which is close to the design condition that is J = 
0 . 833 (see Table 1 ). The experiment, however, shows an optimum 
performance slightly above J = 1 . 0 , which is further away from the 
design condition. Meanwhile, in the same figure, we also compare 
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Table 3 
Mean loads on the blades of DTMB 4119 at design condition. 

Re D (×10 5 ) Re c (×10 5 ) K T (diff.) K Q (diff.) η

Present 5.59 7.3 0.1514 0.0274 0.7326 
Design [40] – – 0.1540 ( 1 . 7% ) 0.0290 ( 5 . 5% ) 0.7040 
exp. [41] 5.59 7.3 0.1500 ( 0 . 9% ) 0.0285 ( −3 . 9% ) 0.6978 
exp. [42] 7.66 10.0 0.1460 ( 3 . 7% ) 0.0280 ( −2 . 1% ) 0.6913 
Table 4 
Loads on different parts of DTMB 4119 with an ellipsoidal fairwater at design condition. 

K T K T,p K T, v K Q K Q,p K Q, v 
blades mean 0.1514 0.1519 4.9E-4 0.0274 0.0272 2.4E-4 

r.m.s. 3.6E-4 3.6E-4 5.6E-7 7.0E-5 7.0E-5 2.6E-8 
hub mean 8.5E-5 6.7E-7 8.5E-5 3.9E-6 3.1E-8 3.9E-6 

r.m.s. 2.1E-7 4.5E-8 2.0E-7 2.2E-8 5.1E-9 2.2E-8 
fairwater mean 3.2E-3 3.2E-3 2.4E-5 8.8E-7 6.9E-10 8.8E-7 

r.m.s. 1.2E-4 1.2E-4 4.8E-7 9.9E-8 9.3E-8 3.2E-8 

Fig. 8. The mean blade loads of DTMB 4119 at different working conditions. 
the present results with the latest (also the best available) results 
on the same propeller from a low-order simulation [47] using the 
commercial software STAR-CCM+. It is evident that the low-order 
solver predicts the efficiency well only in a narrow range of work- 
ing conditions where J is small. When J increases, the low-order 
prediction becomes much worse. As will be shown in the next sec- 
tion that when J increases, the flow vortices become weaker, which 
are more vulnerable to numerical dissipations. Since the high-order 
method introduces much smaller numerical dissipations, it predicts 
the loads very accurately under all conditions. In contrast, the large 
numerical dissipations of the low-order method have completely 
demolished the predictions when J is large. 

Since a propeller works around the design condition most of 
the time, therefore a detailed look into this condition is presented 
in what follows. The instantaneous K T and K Q of the blades at this 
condition are plotted in Fig. 9 from tU ∞ /D = 15 to 45 for about 
36 revolutions. The two coefficients are seen to fluctuate at small 
amplitudes about their means chaotically due to the turbulent na- 
ture of the flow. The mean values (averaged for about 102 revo- 
lutions) are compared with the design [40] and the experimental 
[41,42] values in Tab. 3 , where the difference is defined as (sim- 
ulation/experiment −1) × 100% . The design was based on potential 
flow theories. The two experiments were performed in open wa- 
ter at slightly different Reynolds numbers. The present Reynolds 
number is chosen to exactly match that of [41] , but it is obvious 
that the Reynolds number effects are small at this level. Overall, 
we see very good agreements between the simulation and the ex- 
periments as well as the design. 

The simulation allows us to study the loads on different parts 
of the propeller. We have summarized the results in Tab. 4 , where 

“mean” denotes the time-averaged values, “r.m.s” denotes the root- 
mean-square of the unsteady components, and the subscripts “p”
and “v ” denote pressure and viscous contribution, respectively. Be- 
fore proceeding further, it is worth noting that the thrust on the 
fairwater needs to be treated carefully. Unlike the blades which 
are two-sided and closed, the fairwater is “one-sided”, i.e., it has 
no direct upstream counterpart to balance the pressure force on 
its outer surface. In real applications, this force will be partially 
compensated by the force on an upstream surface with the same 
cross-sectional area (for example, part of the hull), resulting in a 
much smaller net force. The flow in the upstream region is usually 
at reduced speed (or even at stagnation) with higher pressure than 
that of the freestream. Thus, an underestimated pressure force on 
this upstream surface is p ∞ (πD 2 

h / 4) , where D h is the hub diame- 
ter. We then subtract this force from that on the fairwater to ap- 
proximate the net thrust on the fairwater. 

From Table 4 , we see that only the blades experience a thrust 
(positive K T ), while the hub and the fairwater experience drags 
(negative K T ). On the other hand, all three parts experience pos- 
itive torques. For the blades, pressure contribution dominates the 
loads; the r.m.s. values are at least three magnitudes smaller than 
the means, suggesting quasi-steady loads. The K T and K Q of the 
hub are four magnitudes smaller than those of the blades, which 
indicates that the hub has negligible contribution/effect to the 
overall performance of the propeller. Furthermore, viscous contri- 
bution dominates the hub loads, which is consistent with the fact 
that the hub has no projection in the axial direction and thus 
pressure has no way to contribute. In fact, pressure should ide- 
ally have zero contribution to the hub loads, and the present very 
small pressure contribution implies very small geometric imperfec- 
tion of the hub, which obviously has benefited from the high-order 
curved representation of the geometry. For the fairwater, the drag 
is about 2 . 1% of the thrust on the blades, and pressure dominates; 
the torque is negligibly small, and viscosity dominates due to the 
geometric symmetry. Overall, we conclude that the thrust and the 
torque of the blades, and the drag of the fairwater are the main 
factors that affect the propeller’s performance. 

The time and frequency scales of the major loads can be iden- 
tified through the autocorrelation and the power spectral density 
(PSD) curves in Fig. 10 . It is worth mentioning that the torque 
and the thrust of a blade have almost identical characteristics, the 
curves for the torque are therefore not repeated here. The autocor- 
relation is defined as ρ(τ ) = R (τ ) /R (0) , where R (τ ) = < T (t) T (t + 
τ ) > is the autocovariance with a time lag τ, and “< > ” denotes 
ensemble average. We calculate the PSD using Welch’s method 
with a 50% overlapping Hanning window and then average the re- 
sults over 102 revolutions. 
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Fig. 9. Instantaneous loads on the blades of DTMB 4119 at design condition. 

Fig. 10. Autocorrelation and PSD of the blade thrust and fairwater drag. 
The narrow main lobe of the autocorrelation of the blade in 

Fig. 10 implies small integral time scales of the unsteadiness 
around the blade. It also agrees with the corresponding high- 
frequency peak around f D/U ∞ ≈ 7 . 9 on the PSD curve. In con- 
trast, the autocorrelation of the fairwater has a much wider main 
lobe, which indicates much larger time scales of the dominant un- 
steadiness around the fairwater. The corresponding PSD curve is 
rather broadband and is dominated by very low-frequency compo- 
nents. A comparison of the two PSD curves reveals that the fairwa- 
ter experiences more unsteadiness at very high-frequencies (e.g., 
f D/U ∞ > 20 ) than the blade does. These time and frequency scales 
are directly related to flow structures which will be discussed in 
the next section. 
4.2. Flow fields 

The flow fields of a propeller have very distinct flow structures 
that are of crucial importance to the propeller’s performance. This 
has made studying the formation, mutual interaction, and stability 
of these flow structures a constant research topic for decades. In 
this section, we report the details of the flow fields of DTMB 4119, 
including the vortices, the velocity field, and the pressure field. 
4.2.1. Vortices 

The vortical structures in a flow field can be well visualized 
by isosurfaces of Q-criterion [48] . The Q-criterion (denoted by Q cr ) 
is defined as the second invariant of the velocity gradient tensor, 
i.e., Q cr = (,i j ,i j − S i j S i j ) / 2 , where ,i j = (u i, j − u j,i ) / 2 and S i j = 
(u i, j + u j,i ) / 2 are the antisymmetric and the symmetric compo- 
nent, respectively, of the velocity gradient tensor. 

When the Reynolds number is given, the only parameter that 
determines a propeller’s flow field is the advance ratio J. Fig. 11 
shows the instantaneous vortical structures as J decreases from 1.1 
to 0.4. Note that the nondimensional rotational speed is related to 
the advance ratio as ω ∗ = 2 π/J. Thus, a decreasing J is equivalent 
to an increasing ω ∗. 

We notice two dramatic changes in the flow field as J decreases: 
the increase of vortex strength and the occurrence of flow insta- 
bilities. At J = 1 . 1 and 1.0, the vortices are so weak that they are 
quickly dissipated by the wake flow. At J = 0 . 9 and 0.8, the vor- 
tices become strong enough to sustain for a long distance in the 
wake, and a hub vortex is also well established. In addition, up to 
this point the flow remains stable. Obvious instability occurs when 
J decreases to 0.7, and the instability is caused by mutual inter- 
actions between two tip vortices around x/D = 4 . 8 . At J = 0 . 6 , the 
instability is still caused by mutual tip vortex interactions, but the 
occurrence moves upstream to x/D = 3 . 4 . The occurrence further 
moves upstream to x/D = 3 . 2 and 2.7, for J = 0 . 5 and 0.4, respec- 
tively. However, the cause of the instability becomes more com- 
plicated. At J = 0 . 5 , it seems the instability not only comes from 
the mutual interaction between the tip vortices, but also the in- 
teraction between tip and hub vortices. Finally, at J = 0 . 4 , it looks 
like the trailing edge vortices have become strong enough to be 
the leading cause of the instability. It was conjectured in [7] that 
blade trailing edge vortices are an important source of flow in- 
stabilities. Based on our observations here, this is only possible 
when J is small enough (i.e., propeller is at very high relative ro- 
tational speed) and when blade trailing edge vortices are strong 
enough. 

We already saw that the flow fields can be very different at dif- 
ferent working conditions. In the rest of this paper, we focus on 
the design condition only. Fig. 12 shows an instantaneous view of 
the flow structures at this condition. It is seen that the tip vor- 
tices are very much equally spaced along the axial direction, with 
the distance between two successive vortices being approximately 
0 . 36 D, which is about one-third the tip pitch (see Table 2 ). Mean- 
while, the surface velocity contours reveal that a tip vortex has 
lower streamwise speed on the outer surface, and higher speed 
on the inner surface. This indicates that a tip vortex not only re- 
volves helically about the propeller’s axes, but also about its own 
core at the same time. The topology of the root vortices are not 

8 



B. Zhang, C. Ding and C. Liang Computers and Fluids 224 (2021) 104967 

Fig. 11. Isosurfaces of Q cr D 2 /U 2 ∞ = 40 at different working conditions. 

Fig. 12. Isosurface of instantaneous Q-criterion Q cr D 2 /U 2 ∞ = 40 at design condition. 
very obvious from this instantaneous flow field due to the many 
small turbulent structures. These high-frequency small flow struc- 
tures are closer to the fairwater than to the blades, and thus have 
contributed more to the load unsteadiness of the fairwater than to 
the blades, which agrees with our previous observation on the PSD 
curves in Fig. 10 . These small structures, however, do not dominate 
the load unsteadiness, which is likely because of their isotropy that 
leads to mutual cancellation of the effects. While the tip vortices 
break up about 5 D downstream from the propeller, the hub vor- 
tex stays strong and does not break up even at the outlet (i.e., 12 D 
downstream from the propeller; complete picture not shown here 
due to limited space). 

The phase-averaged isosurfaces of Q-criterion are shown in 
Fig. 13 , and they reveal the major flow structures, especially the 
root vortices, more evidently. The phase-averaged hub vortex is 
still seen to vary along the axial direction. In fact, it is the vari- 
ations of these big structures that dominate the load unsteadiness 
of the fairwater. Similarly, the load unsteadiness of the blades is 
likely dominated by the unsteadiness of the tip and the trailing 
edge vortices. 

The FR method is a discontinuous-type of method, and recon- 
struction must be performed to make the solutions and fluxes 
globally continuous. This rule also applies to the statistics, which 
are only element-wise continuous unless reconstructed. However, 
reconstructing the statistics will impose extra computational and 
memory cost to the simulation. For this reason, this process is not 
performed in this work, which results in non-smoothness across 
cell boundaries as can be seen from Fig. 13 , especially in the 
vicinity of the propeller where flow changes rapidly. Neverthe- 
less, this simplification should not alter any of the conclusions 
here. 

The time-averaged flow field is shown in Fig. 14 . It is worth not- 
ing that time-averaging is impossible for the sliding region due to 
the movement of the propeller, and the flow in this region is thus 
not shown in the figure. Over time, the tip vortices form a slightly 
converging-diverging “duct” in space. The root vortices, because of 
the very small instantaneous turbulent structures, are very diffi- 
cult to converge in time. Nevertheless, they still have a tube-like 
shape over time in space. Unlike the instantaneous and the phase 
averaged ones, the time-averaged the hub vortex is very symmetric 
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Fig. 13. Isosurface of phase-averaged Q-criterion < Q cr > D 2 /U 2 ∞ = 40 at design condition. 

Fig. 14. Isosurface of time-averaged Q-criterion Q cr D 2 /U 2 ∞ = 8 at design condition. 
about the axis, and almost sees no deviation from the axial direc- 
tion. This clearly demonstrates that time-averaging not only helps 
remove most of the small unsteadiness, but also the large ones, 
from the flow field. 

The Q-criterion isosurfaces are able to reveal the most coher- 
ent vortical flow structures. They are, however, inefficient to ex- 
pose the weak ones like the trailing edge vortices at the design 
condition. Additionally, the Q-criterion cannot reveal the sign of a 
vortex. For this reason, we have plotted the streamwise vorticity 
contours in Figs. 15 and 16 to fill these gaps. 

We can clearly see the footprints of the trailing edge vortices 
(TEVs) in Fig. 15 . One end of each TEV connects to a tip vortex, and 

the other end connects to the hub or root vortex. As the flow goes 
downstream, the TEVs tilt more and more towards downstream, 
which obviously complies with the wake velocity distribution. The 
signs of the vortices reveal that the tip vortices rotate in the oppo- 
site direction to all other vortices as well as the propeller. 

The vorticity contours in Fig. 16 uncover how the vortices de- 
velop in the azimuthal and radial directions as the flow travels 
downstream. The evolution of the TEVs is the most prominent: 
they are elongated and bent in the azimuthal direction and fi- 
nally impinge onto the tip vortices. However, because of flow dis- 
sipation and the weak strength of the TEVs, these interactions do 
not destabilize the flow. Again, the change of the TEVs is closely 
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Fig. 15. Contours of phase-averaged streamwise vorticity in the central x - y plane. 

Fig. 16. Contours of phase-averaged streamwise vorticity in y - z planes at different streamwise locations. 

Fig. 17. Isosurfaces of phase-averaged streamwise velocity < u > /U ∞ = 0 . 9 (gray) and 1.4 (yellow).(For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 
related to the velocity distribution that will be discussed in the 
next section. 
4.2.2. Velocity field 

We already noticed that the outer and inner surfaces of a tip 
vortex have different speeds. The tip vortices thus should be well 
bounded by velocity isosurfaces. To confirm this, we plot two iso- 
surfaces of the phase-averaged streamwise velocity in Fig. 17 . It is 
seen that the isosurfaces of < u > /U ∞ = 0 . 9 and 1.4 follow the tra- 
jectories of the tip vortices very well. Meanwhile, the increasing 
gap between the two isosurfaces also agrees with the decreasing 
strength of the tip vortices as the flow moves downstream. 

A closer look of the velocity isosurfaces in the very vicinity of 
the blades also reveals the formation of the tip vortices. In Fig. 18 , 
we are looking towards downstream at the suction side in (a1) and 
(a2), and towards upstream at the pressure side in (b1) and (b2). 
From (a1), it is obvious that each leading edge (LE) decelerates the 
incoming flow, resulting in a strand of low-speed flow along the LE 

and finally sheds off around the tip. From (a2), each trailing edge 
(TE) accelerate the flow and sheds off a strand of high-speed flow 
slightly below the tip. When these two strands of flow meet and 
be convected downstream, a helical tip-vortex system is generated. 

Fig. 19 shows the phase-averaged streamwise velocity contours 
in the central x - y plane (i.e., z = 0 ). It is seen that the blade wake is 
overall accelerated, while the fairwater wake is mostly at reduced 
speed. The flow immediately downstream of the fairwater has very 
low speed, suggesting that a bubble is likely formed in this region. 
The tip vortices show up as local velocity min-max pairs along the 
outer edge of the slipstream. The footprints of other vortices, such 
as the TEVs and the hub vortex, are also visible on the velocity 
contours. 

The Cartesian velocity can be decomposed into three compo- 
nents: streamwise, radial, and azimuthal, denoted by u, v r , and 
v θ , respectively. Fig. 20 shows the time-averaged contours of these 
components. We see that the overall slipstream has a converging- 
diverging shape and is well contained in the propeller’s swept area, 
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Fig. 18. Isosurfaces of < u > /U ∞ = 0 . 9 (gray) and 1.4 (yellow): (a1,a2), suction side; (b1,b2), pressure side. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 19. Contours of phase-averaged streamwise velocity in the central x - y plane. 

Fig. 20. Contours of time-averaged streamwise, radial and azimuthal velocity components in the central x - y plane. 
i.e., r ≤ 0 . 5 D (note that r = | y | in the central plane). The radial ve- 
locity is small almost everywhere, except in the very vicinity of 
the fairwater. The azimuthal speed is large only in the fairwa- 
ter wake and is induced by the strong hub vortex. The two low- 
speed strips on the azimuthal speed contours around r/D = 0 . 1 
and 0 . 4 ≤ x/D ≤ 1 . 2 are footprints of the root vortices. 

More detailed velocity profiles are shown in Fig. 21 . We see al- 
most no induced velocity outside the slipstream (i.e., r/D > 0 . 5 ) on 
all profiles, which suggests that the propeller introduces very little 
disturbance to the flow outside its swept area. The streamwise ve- 
locity u reaches its maximum values in the region 0 . 2 < r/D < 0 . 4 , 

where the flow is accelerated by more than 30% over U ∞ . Out- 
side this region, u quickly decreases to U ∞ around r/D = 0 . 5 , and 
also decreases to the hub-vortex-core speed at r/D = 0 . This ve- 
locity distribution leads to the TEV deformation that is observed 
in Fig. 15 . The streamwise hub-vortex-core speed is close to zero 
in the near wake region (e.g., x/D = 0 . 46 ), and then consistently 
increases towards downstream. At x/D = 5 . 0 , it is already slightly 
over U ∞ . The radial velocity v r is only noticeable in the near wake, 
for example, at x/D = 0 . 46 and 0.5, and then quickly drops to very 
small values as the flow travels downstream. The azimuthal ve- 
locity v θ is mostly induced by the hub vortex. It has almost the 
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Fig. 21. Time-averaged velocity profiles at different streamwise locations in the central plane. 

Fig. 22. Comparison of mean velocity profiles at x/R = 0 . 951 with experiment. 
same profile at different locations, except in two small regions: one 
around r/D = 0 . 1 that is affected by the root vortices, and the other 
around r/D = 0 . 42 that is affected by the tip vortices. The profiles 
of v θ are very close to that of a typical Rankine vortex, and is re- 
sponsible for the TEV deformation in Fig. 16 . The maximum value 
of v θ is about 0 . 62 U ∞ in the near field, and 0 . 36 U ∞ in the interme- 
diate wake. These are very large values, and clearly indicate how 
strong the hub vortex is. 

As a further validation of the simulation, in Fig. 22 we com- 
pare the velocity profiles at x/R = 0 . 951 with a water tunnel mea- 
surement from [42] . Overall, very good agreements are seen be- 
tween the simulation and the experiment. For example, in the re- 
gion 0 . 3 < r/R < 1 . 2 , the maximum difference on u is only around 
2% . However, we do see large discrepancies in the region that is 
close to r/R = 0 . 2 . This is because of the setup difference between 
the experiment and the simulation. In the experiment, the pro- 
peller shaft is actually at downstream, making it a stationary wall 
surface at (x/R, r/R ) = (0 . 951 , 0 . 2) . In contrast, for the simulation, 
the shaft is at upstream, and it is a flow region at the same loca- 
tion. 

Based on the Kutta-Joukowski theorem, for an inviscid flow the 
“lift” on a unit span of a body (such as a propeller blade) is pro- 
portional to the circulation. Following the derivation in [49,50] , the 
circulation around a blade section at r, denoted by 6(r) , is related 
to the circumferential speed of the slipstream as 
6(r) ≈ −2 π rv θ (r) /Z, (34) 

where Z is the number of blades of a propeller. Applying the above 
relation to the mean flow, we can define the following nondimen- 
sional circulation for a blade, 
G (r) = −1 

Z r R v θ (r) 
U ∞ ≈ 6(r) 

2 πRU ∞ . (35) 
This variable can be employed to measure the load distribution on 
a blade. Moreover, G is conservative for inviscid flows, and should 
be roughly conservative for high Reynolds number flows (where 
viscous effects are small). Fig. 23 shows the circulation profiles 
at different streamwise locations. The curves in (a) and (b) start 
around r/R = 0 . 2 because of the presence of the fairwater at these 
two locations. An experimental measurement from [42] is also 
shown in (c), which agrees well with the simulation result. Overall, 
we see that all profiles have very similar shapes and amplitudes, 
which confirms that the circulation is indeed roughly conserved. 
Nevertheless, viscous effects are still evident since the local nar- 
row peaks are gradually smoothed out as the flow travels down- 
stream. These curves also signify that the load is mostly concen- 
trated around the mid-section (i.e., r/R = 0 . 5 ) of each blade. The 
large peak around r/R = 0 . 9 in the near filed indicates that the 
propeller is also heavily loaded around the tips, which is consis- 
tent with the strong tip vortices that we have observed in the flow 
field. 
4.2.3. Pressure field 

Fig. 24 shows the phase-averaged pressure field in the central 
x - y plane. Comparing with the isosurfaces of Q-criterion in Fig. 13 , 
we see that the tip vortices show up as local pressure minima 
along the edge of the slipstream. Meanwhile, the fairwater wake, 
especially the hub vortex, is a very low pressure region, and is re- 
sponsible for the large drag on the fairwater (see Table 4 ). 

Of great importance is the pressure distribution around the 
blades, which directly affects the thrust and torque on the pro- 
peller. To see the pressure effects on the thrust more clearly, we 
have plotted in Fig. 25 several slices in the x - y plane through the 
top blade at different spanwise (i.e., z) locations. From (a) to (h), 
we are moving from the leading edge to the trailing edge of the 
blade (refer to Fig. 5 ) along the z direction. The suction side is on 
the left, and the pressure side is on the right. As expected, we see 
that most part of the suction side is in a low pressure region, and 
the pressure side is in a high pressure region. When we go from 
the leading edge to the trailing edge, the size of the low pressure 
region first increases and then decreases, with the maximum size 
around the mid-span, i.e., z = 0 . In contrast, the size of the high 
pressure region first decreases, and then increases. These pressure 
distributions apparently suggest that the thrust load is more con- 
centrated on the trailing portion ( z > 0 ) of the blade. 
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Fig. 23. Flow circulation at different streamwise locations. 

Fig. 24. Contours of phase-averaged pressure in the central x - y plane. 

Fig. 25. Contours of phase-averaged pressure in different x - y planes through the top blade. 

Similarly, the contribution from different parts of a blade to the 
torque can be visualized through the pressure distribution in dif- 
ferent y - z planes through the blades as shown in Fig. 26 . Again, 
from (a) to (h) we are moving from the leading edge to the trailing 
edge (refer to Fig. 5 ), but along the x direction this time. Taking the 
top blade for example, the suction side is on the left, and the pres- 
sure side is on the right. From this perspective, the suction side is 
almost always in a low pressure region. In (a)-(d), a large portion 
of the pressure side actually has low surface pressure (although 
there is a large high-pressure “bubble”, but it is detached from the 
blade surface). In contrast, the pressure side has increased pres- 
sure in (e)-(h). This pressure distribution results in higher torque 
on the trailing portion of the blade. We also notice that the tips of 
the cross-sections have the largest pressure difference most of the 
time. Considering the fact that the tips also has the largest arms in 

the cross-sections, the torque is therefore also very heavily loaded 
around the edge of each blade. 

The time-averaged pressure field in the central x - y plane is 
shown in Fig. 27 , and a series of pressure profiles are given in 
Fig. 28 . From the contours, it is seen that on average the pro- 
peller generates an obvious high-pressure region in the near field 
x/D < 1 . 0 (inside and outside of the slipstream). Other than this 
region, the propeller’s effects on the pressure field are mostly con- 
tained within the slipstream. The hub vortex represents the pres- 
sure minima of the whole flow field. From the profiles, we no- 
tice three local pressure minima around r/D = 0 , r/D ≈ 0 . 12 (only 
in the very near field), and r/D ≈ 0 . 42 . They actually correspond 
to the hub vortex, the root vortices, and the tip vortices, respec- 
tively. The pressure recovery in the blade wake ( 0 . 1 < r/D < 0 . 5 ) is 
evident as the flow goes downstream. In contrast, we do not see 
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Fig. 26. Contours of phase-averaged pressure in different y - z planes through the blades. 

Fig. 27. Contours of time-averaged pressure in the central x - y plane. 

Fig. 28. Profiles of time-averaged pressure at different streamwise locations in the 
central x - y plane. 
consistent pressure recovery in the fairwater wake ( r/D < 0 . 1 ) due 
to the strong hub vortex. 
4.3. Fairwater effects 

The fairwater is usually not considered in propeller design. A 
user has the freedom to choose a fairwater based on their pref- 
erence or the availability of parts. The quantitative effects of fair- 
water shape have rarely been studied. In this section, we briefly 
study two more fairwater shapes: cylindrical and hemispherical, to 
compare with the ellipsoidal one from the previous sections. For a 
fair comparison, we require the three fairwaters to have the same 
surface area so that they contact with the same amount of flu- 

Fig. 29. DTMB 4119 with cylindrical fairwater (left) and hemispherical fairwater 
(right). 
ids. This means that the fairwaters will have different lengths. The 
1:2 ellipsoidal fairwater has a length of 0 . 2 D as shown in Fig. 5 . 
The geometries and sizes of the other two are shown in Fig. 29 . 
As marked in the figure, the cylindrical fairwater has a length of 
0 . 121 D, and the hemispherical one has a length of 0 . 171 D (a hemi- 
sphere of radius 0 . 1 D sitting on top of a cylinder whose height is 
0 . 071 D ). Overall, the shape is more elongated (streamlined) as the 
shape changes from cylindrical to hemispherical and then to ellip- 
soidal. 

The loads for the above two configurations are summarized in 
Tables 5 and 6 , respectively. The overall loads on the hubs and the 
torques on the fairwaters are once again negligibly small. Com- 
paring with the ellipsoidal configuration (see Table 4 ), we notice 
that the blades in both configurations here have smaller thrust and 
torque. However, the efficiencies of the blades (excluding fairwater 
contributions) in all three configurations stay almost unaffected as 
shown in the first row of Table 7 , where the efficiency differences 
are around 0 . 3% . The drags on the fairwaters, on the other hand, 
are dramatically different for the three configurations. The cylin- 
drical fairwater has the largest drag, followed by the hemispheri- 
cal one, and then the ellipsoidal one. The overall efficiencies (with 
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Table 5 
Loads on different parts of DTMB 4119 with a cylindrical fairwater. 

K T K T,p K T, v K Q K Q,p K Q, v 
blades mean 0.1503 0.1507 4.8E-4 0.0271 0.0268 2.4E-4 

r.m.s. 1.4E-4 1.4E-4 1.1E-7 2.8E-5 2.8E-5 5.8E-9 
hub mean 9.8E-5 8.5E-7 9.7E-5 4.0E-6 2.9E-8 3.9E-6 

r.m.s. 1.1E-7 3.9E-8 9.4E-8 1.1E-8 2.2E-9 1.0E-8 
fairwater mean 4.9E-3 4.9E-3 2.9E-5 1.5E-6 1.3E-11 1.5E-6 

r.m.s. 6.0E-5 6.0E-5 1.2E-7 1.9E-8 7.9E-12 1.9E-8 
Table 6 
Loads on different parts of DTMB 4119 with a hemispherical fairwater. 

K T K T,p K T, v K Q K Q,p K Q, v 
blades mean 0.1502 0.1507 −4.8E-4 0.0271 0.0269 2.4E-4 

r.m.s. 3.2E-4 3.2E-4 5.6E-7 6.2E-5 6.2E-5 3.0E-8 
hub mean 9.1E-5 9.2E-7 9.0E-5 3.9E-6 2.9E-8 3.9E-6 

r.m.s. 1.8E-7 5.2E-8 1.6E-7 2.9E-8 3.4E-9 2.9E-8 
fairwater mean 4.4E-3 4.4E-3 3.9E-5 1.3E-6 3.5E-11 1.3E-6 

r.m.s. 1.6E-4 1.6E-4 2.8E-7 4.0E-8 5.8E-10 4.0E-8 

Fig. 30. Time-averaged pressure in the central x - y plane of DTMB 4119 with cylindrical and hemispherical fairwaters. 
Table 7 
Blade efficiency and overall efficiency for different fairwater (FW) configura- 
tions. 

cylindrical hemispherical ellipsoidal 
blades efficiency (excl. FW) 0.7353 0.7348 0.7326 
overall efficiency (incl. FW) 0.7113 0.7133 0.7171 
efficiency loss (from FW) 3.3% 2.9% 2.1% 

fairwater contributions included) are also summarized in Table 7 . 
We see that the cylindrical, the hemispherical, and the ellipsoidal 
fairwaters reduce the propeller’s overall efficiency by 3 . 3% , 2 . 9% , 
and 2 . 1% , respectively. We need to emphasize that these numbers 
are not small for a propulsion system, and we also need to repeat 
that these numbers are underestimated based on the assumptions 
that we made in Section 4.1 . Since pressure contribution dominates 
the drag on a fairwater, it is worth looking into the pressure fields 
to see how the fairwaters affect the pressure distributions. 

The time-averaged pressure fields for the above two configura- 
tions are shown in Fig. 30 . Comparing with the ellipsoidal configu- 
ration in Fig. 27 , we see that the three configurations overall have 
very similar pressure distribution in the wake, which explains why 
the blade efficiencies are not affected much. The differences are 
mostly limited to the region immediately downstream of the fair- 

water. The cylindrical fairwater generates a very large low-pressure 
region at its end. The hemispherical fairwater has a low-pressure 
region of similar size to that of the ellipsoidal one. However, at 
the junction of the hemispherical fairwater and the hub, there is 
another small but very low-pressure region due to the geometric 
change, which leads to an overall larger drag for this configuration 
than the ellipsoidal one. 
5. Summary 

The first high-order eddy-resolving simulation of a marine pro- 
peller has been successfully performed in this work using a re- 
cently developed sliding-mesh method. This method combines the 
flux reconstruction framework and a new dynamic curved mortar 
approach to deal with the complex rotating geometry of a pro- 
peller without sacrificing the high-order accuracy at all. Even on 
a very coarse mesh with less than one-fourth million cells, the 
method predicts the propeller loads very accurately under a wide 
range of working conditions, and also captures the flow structures 
with a lot of details. Moreover, this method allows both phase and 
time averaging on the same set of grid, and thus can provide more 
information about a flow field. 

Through visualization of vortical flow structures, it is revealed 
that when the advance coefficient J decreases, the strengths of the 
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major vortices grow and flow instability gradually develops. The 
instability first comes from tip-tip vortex interaction, then tip-tip 
as well as tip-hub vortex interactions, and finally the trailing-edge 
vortices become strong enough and start playing an important rule 
when J is sufficiently small. At the design condition, the sources of 
each tip vortex are identified through velocity isosurfaces to be a 
strand of decelerated flow from the leading edge and a strand of 
accelerated flow from the trailing edge of each blade. 

A comparison between the present high-order simulation and a 
previous low-order one on the same propeller has clearly demon- 
strated the low-dissipation advantage of the high-order method, 
which has allowed accurate prediction of the loads under all work- 
ing conditions. In contrast, the high-dissipation of the low-order 
method completely failed the mission for large J that generates 
weak flow vortices. Detailed load analysis at the design condition 
has revealed that the major loads are the blade thrust and torque 
as well as the fairwater drag, and pressure contribution domi- 
nates these loads. The pressure field and the circulation distribu- 
tion show that the blade loads concentrate more on the trailing 
portion as well as the radial mid-section of each blade. 

By studying three fairwaters of different shapes, it is found that 
these fairwaters do not have obvious effects on the blade per- 
formance in the present setups. They, however, do dramatically 
change the pressure distribution on their surfaces, resulting in dif- 
ferent induced drags and different performance degradation to the 
overall propulsion system. More specifically, we see an efficiency 
loss of at least 3 . 3% , 2 . 9% , and 2 . 1% , from the cylindrical, the hemi- 
spherical, and the ellipsoidal fairwater, respectively. It remains to 
be investigated whether there is an optimum fairwater shape that 
can minimize the efficiency loss. 
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