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Abstract. Let X be a centered Gaussian random variable in a separable Hilbert space H with
covariance operator 6. We study the problem of estimation of a smooth functional of 6 based on
a sample X1, . . . , Xn of n independent observations of X. More specifically, we are interested in
functionals of the form 〈f (6), B〉, where f : R → R is a smooth function and B is a nuclear
operator in H. We prove concentration and normal approximation bounds for the plug-in estimator
〈f (6̂), B〉, 6̂ := n−1∑n

j=1Xj ⊗ Xj being the sample covariance based on X1, . . . , Xn. These

bounds show that 〈f (6̂), B〉 is an asymptotically normal estimator of its expectation E6〈f (6̂), B〉
(rather than of the parameter of interest 〈f (6), B〉) with parametric convergence rate O(n−1/2)
provided that the effective rank r(6) := tr(6)/‖6‖ (tr(6) the trace and ‖6‖ the operator norm of
6) satisfies the assumption r(6) = o(n). At the same time, we show that the bias of this estimator
is typically as large as r(6)/n (which is larger than n−1/2 if r(6) ≥ n1/2). When H is a finite-
dimensional space of dimension d = o(n), we develop a method of bias reduction and construct an
estimator 〈h(6̂), B〉 of 〈f (6), B〉 that is asymptotically normal with convergence rate O(n−1/2).
Moreover, we study the asymptotic properties of the risk of this estimator and prove asymptotic
minimax lower bounds for arbitrary estimators showing the asymptotic efficiency of 〈h(6̂), B〉 in
a semiparametric sense.

Keywords. Asymptotic efficiency, sample covariance, bootstrap, effective rank, concentration in-
equalities, normal approximation, perturbation theory

1. Introduction

Let X be a random variable in a separable Hilbert space H sampled from a Gaussian
distribution with mean 0 and covariance operator 6 := E(X ⊗ X) (denoted N(0;6)).
The purpose of this paper is to study the problem of estimation of smooth functionals
of unknown covariance 6 based on a sample X1, . . . , Xn of i.i.d. observations of X.
Specifically, we deal with the functionals of the form 〈f (6), B〉, where f : R→ R is a
smooth function1 and B is a nuclear operator. The estimation of bilinear forms of spectral
projection operators of 6, which is of importance in the principal component analysis,
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can be easily reduced to this basic problem. Moreover, the estimation of 〈f (6), B〉 is
a major building block in the development of methods of statistical estimation of more
general functionals of covariance like 〈f1(6), B1〉 . . . 〈fk(6), Bk〉 and their linear com-
binations.

Throughout the paper, we use the following notations. Given A,B ≥ 0, A . B

means that A ≤ CB for a numerical (most often, unspecified) constant C > 0; A & B is
equivalent to B . A; A � B is equivalent to A . B and B . A. Sometimes, constants
in the above relationships might depend on some parameter(s). In such cases, the signs .,
& and � are provided with subscripts: say, A .γ B means that A ≤ CγB for a constant
Cγ > 0 that depends on γ .

Let B(H) denote the space of all bounded linear operators in a separable Hilbert space
H equipped with the operator norm and let Bsa(H) denote the subspace of all self-adjoint
operators.2 In what follows, A∗ denotes the adjoint of A ∈ B(H), tr(A) denotes its trace
(provided that A is trace class) and ‖A‖ denotes its operator norm. We use the notation
‖A‖p for the Schatten p-norm of A: ‖A‖pp := tr(|A|p), |A| = (A∗A)1/2, p ∈ [1,∞].
In particular, ‖A‖1 is the nuclear norm of A, ‖A‖2 is its Hilbert–Schmidt norm and
‖A‖∞ = ‖A‖ is its operator norm. We denote the space of self-adjoint operators A
with ‖A‖p < ∞ (p-th Schatten class operators) by Sp = Sp(H), 1 ≤ p ≤ ∞. The
space of compact self-adjoint operators in H is denoted by Csa(H). The inner product
notation 〈·, ·〉 is used both for inner products in the underlying Hilbert space H and for
the Hilbert–Schmidt inner product between operators. Moreover, it is also used to denote
bounded linear functionals on spaces of operators (for instance, 〈A,B〉, where A is a
bounded operator and B is a nuclear operator, is a value of such a linear functional on the
space of bounded operators). For u, v ∈ H, u ⊗ v denotes the tensor product of vectors
u and v: (u⊗ v)x := u〈v, x〉 for x ∈ H. The operator u⊗ v is of rank 1 and finite linear
combinations of rank 1 operators are operators of finite rank. The rank of A is denoted
by rank(A). Finally, C+(H) denotes the cone of self-adjoint positive semidefinite nuclear
operators in H (covariance operators).

In what follows, we often use exponential bounds for random variables of the follow-
ing form: for all t ≥ 1, with probability at least 1− e−t we have ξ ≤ Ct . Sometimes, our
derivation would yield a slightly different probability bound, for instance: for all t ≥ 1
with probability at least 1 − 3e−t we have ξ ≤ Ct . Such bounds could be easily rewrit-
ten again as 1 − e−t by adjusting the value of C: for t ≥ 1 with probability at least
1− e−t = 1− 3e−t−log(3) we have ξ ≤ C(t + log(3)) ≤ 2 log(3)Ct . Such an adjustment
of constants will be used in many proofs without further notice.

2 The main results of the paper are proved in the case when H is a real Hilbert space. However,
on a couple of occasions, especially in auxiliary statements, its complexification HC

= {u + iv :
u, v ∈ H} with a standard extension of the inner product and complexification of the operators
acting in H is needed. With some abuse of notation, we keep in such cases the notation H for the
complex Hilbert space.
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1.1. Sample covariance and effective rank

Let 6̂ denote the sample covariance based on the data X1, . . . , Xn:

6̂ := n−1
n∑
j=1

Xj ⊗Xj .

It is well known that 6̂ is a complete sufficient statistic and equals the maximum likeli-
hood estimator in the problem of estimation of the unknown covariance of i.i.d. observa-
tions X1, . . . , Xn sampled from N(0;6).

In what follows, we often use the so called effective rank of the covariance 6 as a
complexity parameter of the covariance estimation problem. It is defined as

r(6) :=
tr(6)
‖6‖

.

Note that r(6) ≤ rank(6) ≤ dim(H). The following result of Koltchinskii and Lounici
[KL2] shows that, in the Gaussian case, the size of the random variable ‖6̂ −6‖/‖6‖
(which is a relative operator norm error of the estimator 6̂ of 6) is completely character-
ized by the ratio r(6)/n.

Theorem 1. The following bound holds:

E‖6̂ −6‖ � ‖6‖
(√

r(6)
n
∨

r(6)
n

)
. (1.1)

Moreover, for all t ≥ 1, with probability at least 1− e−t ,

∣∣‖6̂ −6‖ − E‖6̂ −6‖
∣∣ . ‖6‖((√r(6)

n
∨ 1

)√
t

n
∨
t

n

)
. (1.2)

It follows from the expectation bound (1.1) and the concentration inequality (1.2) that for
all t ≥ 1, with probability at least 1− e−t ,

‖6̂ −6‖ . ‖6‖

(√
r(6)
n
∨

r(6)
n
∨

√
t

n
∨
t

n

)
(1.3)

and, for all p ≥ 1,

E1/p
‖6̂ −6‖p .p ‖6‖

(√
r(6)
n
∨

r(6)
n

)
. (1.4)

To avoid the dependence of the constant on p, the following modification of the above
bound will be used on a couple of occasions:

E1/p
‖6̂ −6‖p . ‖6‖

(√
r(6)
n
∨

r(6)
n
∨

√
p

n
∨
p

n

)
. (1.5)
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Since r(6) ≤ d := dim(H), the bounds in terms of effective rank imply well known
bounds in terms of dimension. For instance, for all t ≥ 1, with probability at least 1−e−t ,

‖6̂ −6‖ . ‖6‖

(√
d

n
∨
d

n
∨

√
t

n
∨
t

n

)
(1.6)

(see, e.g., [Ver]). Of course, the bound (1.6) is meaningless in the infinite-dimensional
case. In the finite-dimensional case, it is sharp if6 is isotropic (6 = cId for a constant c),
or if it is of isotropic type, that is, the spectrum of 6 is bounded above and bounded away
from zero (by constants). In this case, r(6) � d , which makes (1.6) sharp. This is the
case, for instance, for popular spiked covariance models introduced by Johnstone [Jo]
(see also [JoLu, Paul, BJNP]). However, in the case of fast decay of eigenvalues of 6,
the effective rank r(6) could be significantly smaller than d and it becomes the right
complexity parameter in covariance estimation.

In what follows, we are interested in problems in which r(6) is allowed to be large,
but r(6) = o(n) as n → ∞. This is a necessary and sufficient condition for 6̂ to be an
operator norm consistent estimator of 6, which also means that 6̂ is a small perturbation
of 6 when n is large and methods of perturbation theory can be used to analyze the
behavior of f (6̂) for smooth functions f .

1.2. Overview of main results

In this subsection, we state and discuss the main results of the paper concerning asymptot-
ically efficient estimation of the functionals 〈f (6), B〉 for a smooth function f : R→ R
and a nuclear operator B. It turns out that the proper notion of smoothness of f in these
problems is in terms of Besov spaces and Besov norms. The relevant definitions (of the
spaces Bs

∞,1(R) and the corresponding norms), notations and references are provided in
Section 2.

A standard approach to asymptotic analysis of plug-in estimators (in particular, such
as 〈f (6̂), B〉) in statistics is the Delta Method based on the first order Taylor expansion
of f (6̂). Due to a result by Peller (see Section 2), for any f ∈ B1

∞,1(R), the mapping
A 7→ f (A) is Fréchet differentiable with respect to the operator norm on the space of
bounded self-adjoint operators in H. Let6 be a covariance operator with spectral decom-
position 6 :=

∑
λ∈σ(6) λPλ, σ(6) the spectrum of 6, λ an eigenvalue of 6 and Pλ the

corresponding spectral projection (the orthogonal projection onto the eigenspace of 6).
Then the derivative Df (6)(H) = Df (6;H) of the operator function f (A) at A = 6 in
the direction H is given by

Df (6;H) =
∑

λ,µ∈σ(6)

f [1](λ, µ)PλHPµ,

where f [1](λ, µ) = f (λ)−f (µ)
λ−µ

for λ 6= µ and f [1](λ, λ) = f ′(λ) (see Section 2). More-
over, if f ∈ Bs

∞,1(R) for some s ∈ (1, 2], then the following first order Taylor expansion
holds:

f (6̂)− f (6) = Df (6; 6̂ −6)+ Sf (6; 6̂ −6)
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with the linear termDf (6; 6̂−6) = n−1∑n
j=1Df (6;Xj⊗Xj−6) and the remainder

Sf (6; 6̂ −6) satisfying the bound

‖Sf (6; 6̂ −6)‖ .s ‖f ‖Bs
∞,1
‖6̂ −6‖s

(see (2.15)). Since the linear termDf (6; 6̂−6) is the sum of i.i.d. random variables, it is
easy to check (for instance, using the Berry–Esseen bound) that

√
n 〈Df (6; 6̂ −6),B〉

is asymptotically normal with limit mean zero and limit variance

σ 2
f (6;B) := 2‖61/2Df (6;B)61/2

‖
2
2.

Using the exponential bound (1.3) on ‖6̂ − 6‖, one can easily conclude that the re-
mainder 〈Sf (6; 6̂ − 6),B〉 is asymptotically negligible (that is, of order o(n−1/2)) if
(r(6)/n)s/2 = o(n−1/2), or equivalently r(6) = o(n1−1/s). In the case when s = 2,
this means that r(6) = o(n1/2). This implies that 〈f (6̂), B〉 is an asymptotically nor-
mal estimator of 〈f (6), B〉 with convergence rate n−1/2 and limit normal distribution
N(0; σ 2

f (6;B)) (under the assumption that r(6) = o(n1−1/s)). The above perturbation

analysis is essentially the same as for spectral projections of 6̂ in the case of fixed finite
dimension (see Anderson [A]), or in the infinite-dimensional case when the “complexity”
of the problem (characterized by tr(6) or r(6)) is fixed (see Dauxois, Pousse and Romain
[DPR]). Note also that the bias of the estimator 〈f (6̂), B〉,

〈E6f (6̂)− f (6), B〉 = 〈E6Sf (6; 6̂ −6),B〉,

is . ‖f ‖Bs
∞,1
‖B‖1(r(6)/n)s/2, so it is of order o(n−1/2) (asymptotically negligible)

under the same condition r(6) = o(n1−1/s). Moreover, it is easy to see that this bound
on the bias is sharp for generic smooth functions f . For instance, if f (x) = x2 and
B = u⊗ u, then one can check by a straightforward computation that

sup
‖u‖≤1

|〈E6f (6̂)− f (6), u⊗ u〉| =
‖tr(6)6 +62

‖

n
� ‖6‖2

r(6)
n
.

This means that, as long as r(6) ≥ n1/2, one can choose a vector u from the unit ball
(for which the supremum is “nearly attained”) such that both the bias and the remainder
are not asymptotically negligible, and moreover it turns out that if r(6)/n1/2

→∞, then
〈f (6̂), B〉 is not even a

√
n-consistent estimator of 〈f (6), B〉. If in addition the operator

norm ‖6‖ is bounded by a constant R > 0, one can find a function in the space B2
∞,1(R)

that coincides with f (x) = x2 in a neighborhood of the interval [0, R], and the above
claims hold for this function, too (see also Remark 2 below).

Our first goal is to show that 〈f (6̂), B〉 is an asymptotically normal estimator of its
own expectation 〈E6f (6̂), B〉 with convergence rate n−1/2 and limit variance σ 2

f (6;B)

in the class of covariances with effective rank of order o(n). Given r > 1 and a > 0,
define G(r; a) := {6 : r(6) ≤ r, ‖6‖ ≤ a}.
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Theorem 2. Suppose f ∈ Bs
∞,1(R) for some s ∈ (1, 2]. Let a, σ0 > 0. Suppose that

rn > 1 and rn = o(n) as n→∞. Then

sup
6∈G(rn;a), ‖B‖1≤1, σf (6;B)≥σ0

sup
x∈R

∣∣∣∣P6{n1/2
〈f (6̂)− E6f (6̂), B〉

σf (6;B)
≤ x

}
−8(x)

∣∣∣∣→ 0

(1.7)
as n→∞, where 8(x) := 1

√
2π

∫ x
−∞

e−t
2/2 dt , x ∈ R.

This result is a consequence of Corollary 4 proved in Section 4 that provides an explicit
bound on the accuracy of normal approximation. Its proof is based on a concentration
bound for the remainder 〈Sf (6; 6̂−6),B〉 of the first order Taylor expansion developed
in Section 3. This bound essentially shows that the centered remainder

〈Sf (6; 6̂ −6),B〉 − E〈Sf (6; 6̂ −6),B〉

is of order (r(6)/n)(s−1)/2√1/n, which is o(n−1/2) as long as r(6) = o(n).
Theorem 2 shows that the naive plug-in estimator 〈f (6̂), B〉 “concentrates” around

its expectation with approximately standard normal distribution of the random variables

n1/2
〈f (6̂)− E6f (6̂), B〉

σf (6;B)
.

At the same time, as discussed above, the plug-in estimator has a large bias when the
effective rank of 6 is sufficiently large (say, r(6) ≥ n1/2 for functions f of smoothness
s = 2). In the case when 6 ∈ G(rn; a) with rn = o(n1/2) and σf (6;B) ≥ σ0, the bias
is negligible and 〈f (6̂), B〉 becomes an asymptotically normal estimator of 〈f (6), B〉.
Moreover, we will also derive the asymptotics of the risk of the plug-in estimator for loss
functions satisfying the following assumption:

Assumption 1. Let ` : R → R+ be a loss function such that `(0) = 0, `(u) = `(−u)
for u ∈ R, ` is nondecreasing and convex on R+ and, for some constants c1, c2 > 0,
`(u) ≤ c1e

c2u for u ≥ 0.

Corollary 1. Suppose f ∈ Bs
∞,1(R) for some s ∈ (1, 2]. Let a, σ0 > 0. Suppose that

rn > 1 and rn = o(n1−1/s) as n→∞. Then

sup
6∈G(rn;a), ‖B‖1≤1, σf (6;B)≥σ0

sup
x∈R

∣∣∣∣P6{n1/2(〈f (6̂), B〉 − 〈f (6), B〉)

σf (6;B)
≤ x

}
−8(x)

∣∣∣∣→ 0

(1.8)
as n → ∞. Moreover, under the same assumptions on f and rn, and for any loss func-
tion ` satisfying Assumption 1,

sup
6∈G(rn;a), ‖B‖1≤1, σf (6;B)≥σ0

∣∣∣∣E6`(n1/2(〈f (6̂), B〉 − 〈f (6), B〉)

σf (6;B)

)
− E`(Z)

∣∣∣∣→ 0

(1.9)
as n→∞, where Z is a standard normal random variable.
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The main difficulty in asymptotically efficient estimation of 〈f (6), B〉 is related to the
development of bias reduction methods. We will now discuss an approach to this problem
in the case when H is finite-dimensional of dimension d = dn = o(n) and the covariance
operator 6 is of isotropic type (the spectrum of 6 is bounded from above and bounded
away from zero by constants that do not depend on n). In this case, the effective rank
r(6) is of the same order as the dimension d , so d will be used as a complexity parameter.
Developing a similar approach in a more general setting (when the effective rank r(6) is
a relevant complexity parameter) remains an open problem.

Consider the integral operator

T g(6) := E6g(6̂) =
∫
C+(H)

g(S)P (6; dS), 6 ∈ C+(H),

where C+(H) is the cone of positive semidefinite self-adjoint operators in H (covariance
operators) and P(6; ·) is the distribution of the sample covariance 6̂ based on n i.i.d.
observations sampled from N(0;6) (which is a rescaled Wishart distribution). In what
follows, T will be called the Wishart operator. We will view it as an operator acting on
bounded measurable functions on C+(H) taking values either in the real line, or in the
space of self-adjoint operators. Such operators play an important role in the theory of
Wishart matrices (see, e.g., James [James, James1, James2], Graczyk, Letac and Massam
[GLM, GLM1], Letac and Massam [LetMas]). Their properties will be discussed in detail
in Section 5. To find an unbiased estimator g(6̂) of f (6), one has to solve the integral
equation T g(6) = f (6),6 ∈ C+(H) (the Wishart equation). Let B := T − I, I being
the identity operator. Then the solution of the Wishart equation can be formally written
as the Neumann series

g(6) = (I + B)−1f (6) = (I − B + B2
− · · · )f (6) =

∞∑
j=0

(−1)jBjf (6).

We do not use this representation in what follows and do not need any facts about the
convergence of the series. Instead, we will define an approximate solution of the Wishart
equation in terms of a partial sum of the Neumann series,

fk(6) :=

k∑
j=0

(−1)jBjf (6), 6 ∈ C+(H).

With this definition, we have

E6fk(6̂)− f (6) = (−1)kBk+1f (6), 6 ∈ C+(H).

It remains to show that 〈Bk+1f (6), B〉 is small for smooth enough functions f , which
would imply that the bias 〈E6fk(6̂)−f (6), B〉 of the estimator 〈fk(6̂), B〉 of 〈f (6), B〉
is also small. [Very recently, a similar approach was considered by Jiao, Han and Weiss-
man [JHW] in the case of estimation of a function f (θ) of the parameter θ of binomial
model B(n; θ), θ ∈ [0, 1]. In this case, T f is the Bernstein polynomial of degree n ap-
proximating f , and some results of classical approximation theory ([GonZ], [Tot]) were
used in [JHW] to control Bkf.]
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Note that P(·; ·) is a Markov kernel and it could be viewed as the transition kernel
of a Markov chain 6̂(t), t = 0, 1, . . . , in the cone C+(H), where 6̂(0) = 6, 6̂(1) = 6̂,
and, in general, for any t ≥ 1, 6̂(t) is the sample covariance based on n i.i.d. obser-
vations sampled from the distribution N(0; 6̂(t−1)) (conditionally on 6̂(t−1)). In other
words, the Markov chain {6̂(t)} is based on iterative applications of bootstrap, and it will
be called the bootstrap chain. As a consequence of (1.6), with a high probability (condi-
tionally on 6̂(t−1)), ‖6̂(t) − 6̂(t−1)

‖ . ‖6̂(t−1)
‖
√
d/n, so when d = o(n), the Markov

chain {6̂(t)}moves in “small steps” of order�
√
d/n. Clearly, with the above definitions,

T kf (6) = E6f (6̂(k)).

Note that, by Newton’s binomial formula,

Bkf (6) = (T − I)kf (6) =
k∑

j=0

(−1)k−j
(
k

j

)
T jf (6) = E6

k∑
j=0

(−1)k−j
(
k

j

)
f (6̂(j)).

The expression
∑k
j=0(−1)k−j

(
k
j

)
f (6̂(j)) can be viewed as the k-th order difference of f

along the Markov chain {6̂(t)}. It is well known that, for a k times continuously differen-
tiable function f on the real line, the k-th order difference 1khf (x) (where 1hf (x) :=
f (x + h)− f (x)) is of order O(hk) for a small increment h. Thus, at least heuristically,
one can expect that Bkf (6) would be of order O((d/n)k/2) (since

√
d/n is the size of

the “steps” of the Markov chain {6̂(t)}). This means that, for d much smaller than n,
one can achieve a significant bias reduction in a relatively small number of steps k. The
justification of this heuristic is rather involved. It is based on a representation of the op-
erator function f (6) in the form Dg(6) := 61/2Dg(6)61/2, where g is a real valued
function on C+(H) invariant with respect to the orthogonal group. The properties of or-
thogonally invariant functions are then used to derive an integral representation for the
function Bkf (6) = BkDg(6) = DBkg(6), which implies, for a sufficiently smooth f ,
bounds on Bkf (6) of order O((d/n)k/2) and, as a consequence, bounds on the bias of
the estimator 〈fk(6̂), B〉 of 〈f (6), B〉 of order o(n−1/2), provided that d = o(n) and k
is sufficiently large (see (5.15), and Theorem 8 and Corollary 5 in Section 6).

The next step in the analysis of the estimator 〈fk(6̂), B〉 is to derive normal approx-
imation bounds for 〈fk(6̂), B〉 − E6〈fk(6̂), B〉. To this end, in Section 7 we study
smoothness properties of the functions DBkg(6) for a smooth orthogonally invariant
function g that are later used to prove proper smoothness of 〈fk(6), B〉 and derive con-
centration bounds on the remainder 〈Sfk (6; 6̂−6),B〉 of the first order Taylor expansion
of 〈fk(6̂), B〉, which is the main step in showing that the centered remainder is asymp-
totically negligible and proving the normal approximation. In addition, we show that the
limit variance in the normal approximation of 〈fk(6̂), B〉−E6〈fk(6̂), B〉 coincides with
σ 2
f (6;B) (which is exactly the same as the limit variance in the normal approximation

of 〈f (6̂), B〉 −E6〈f (6̂), B〉). This finally yields normal approximation bounds of The-
orems 10 and 11 in Section 8.

Given d > 1 and a ≥ 1, denote by S(d; a) the set of all covariance operators in a d-
dimensional space H such that ‖6‖, ‖6−1

‖ ≤ a. The following result on uniform normal
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approximation of the estimator 〈fk(6̂), B〉 of 〈f (6), B〉 is an immediate consequence of
Theorem 11.

Theorem 3. Let a ≥ 1 and σ0 > 0. Suppose that, for some α ∈ (0, 1), 1 < dn ≤ n
α for

n ≥ 1. Suppose also that f ∈ Bs
∞,1(R) for some s > 1

1−α . Let k be an integer such that
1

1−α < k + 1+ β ≤ s for some β ∈ (0, 1]. Then

sup
6∈S(dn;a), ‖B‖1≤1, σf (6;B)≥σ0

sup
x∈R

∣∣∣∣P6{n1/2(〈fk(6̂), B〉 − 〈f (6), B〉)

σf (6;B)
≤ x

}
−8(x)

∣∣∣∣
→ 0 (1.10)

as n→∞. Moreover, if ` is a loss function satisfying Assumption 1, then

sup
6∈S(dn;a), ‖B‖1≤1, σf (6;B)≥σ0

∣∣∣∣E6`(n1/2(〈fk(6̂), B〉 − 〈f (6), B〉)

σf (6;B)

)
− E`(Z)

∣∣∣∣→ 0

(1.11)
as n→∞.

Remark 1. Note that for α ∈ (0, 1/2) and s > 1
1−α , one can choose k = 0, implying

that fk(6̂) = f (6̂) in Theorem 3 is a usual plug-in estimator (cf. Corollary 1). However,
for α = 1/2, we have to assume that s > 2 and choose k = 1 to satisfy the condition
k + 1 + β > 1

1−α = 2. Thus, in this case, the bias correction is already nontrivial. For
larger values of α, even more smoothness of f is required and more iterations k in our
bias reduction method are needed.

Remark 2. It easily follows from well known embedding theorems for Besov spaces
(see, e.g., [Tr, Section 2.3.2]) that, for s′ > s > 0, the Hölder space Cs

′

(R) is con-
tained in Bs

∞,1(R). Moreover, it is easy to see that any Cs
′

function defined locally in a
neighborhood of the spectrum of 6 could be extended to a function from Cs

′

(R). These
observations show that Theorem 3 could be applied to all Cs functions defined in a neigh-
borhood of the spectrum of 6 for all s > 1

1−α .

To show the asymptotic efficiency of 〈fk(6̂), B〉, it remains to prove a minimax lower
bound on the risk of an arbitrary estimator Tn(X1, . . . , Xn) of 〈f (6), B〉 that would
imply the optimality of the variance σ 2

f (6;B) in normal approximation (1.10), (1.11).
Let f ∈ Bs

∞,1(R) for some s ∈ (1, 2]. Given a > 1, let S̊(d; a) be the set of all covariance
operators in a Hilbert space H of dimension d such that ‖6‖, ‖6−1

‖ < a. Given σ0 > 0,
denote

S̊f,B(d; a; σ0) := S̊(d; a) ∩ {6 : σf (6;B) > σ0}.

Note that the set S̊f,B(d; a; σ0) is open in the operator norm topology, which easily
follows from the continuity of the functions 6 7→ ‖6‖, 6 7→ ‖6−1

‖ (on the set
of nonsingular operators) and 6 7→ σ 2

f (6;B) (see Lemma 26 in Section 9) with re-
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spect to the operator norm. This set could be empty. For instance, since σ 2
f (6;B) ≤

2‖f ′‖2L∞‖6‖
2
‖B‖22, we have S̊f,B(d; a; σ0) = ∅ if σ 2

0 > 2‖f ′‖2L∞‖6‖
2
‖B‖22. Denote

Bf (d; a; σ0) := {B : ‖B‖1 ≤ 1, S̊f,B(d; a; σ0) 6= ∅}.

The following theorem provides an asymptotic minimax lower bound on the mean
squared error of estimation of the functionals 〈f (6)B〉 for ‖B‖1 ≤ 1. By convention, it
will be assumed that inf∅ = +∞.

Theorem 4. Let a > 1, σ 2
0 > 0 and let {dn} be an arbitrary sequence of integers dn ≥ 2.

Then, for all a′ ∈ (1, a) and σ ′0 > σ0,

lim inf
n→∞

inf
Tn

inf
B∈Bf (dn;a

′;σ ′0)
sup

6∈S̊(dn;a), σf (6;B)>σ0

nE6(Tn − 〈f (6), B〉)2

σ 2
f (6;B)

≥ 1, (1.12)

where the first infimum is taken over all statistics Tn = Tn(X1, . . . , Xn) based on i.i.d.
observations X1, . . . , Xn sampled from N(0;6).

The proof is given in Section 9.

Remark 3. If C ⊂ σ(6) is a “component” of the spectrum of 6 such that the dis-
tance dist(C, σ (6) \ C) from C to the rest of the spectrum is bounded away from zero
by a sufficiently large gap and PC is the orthogonal projection on the direct sum of the
eigenspaces of6 corresponding to the eigenvalues from C, then it is easy to represent PC
as f (6) for a smooth function f that is equal to 1 on C and vanishes outside of a neigh-
borhood of C that does not contain other eigenvalues. The problem of efficient estimation
of linear functionals of PC (such as its matrix entries in a given basis or general bilinear
forms) is of importance in principal component analysis. A related problem of estimation
of linear functionals of principal components was recently studied in [KLN] in the case
of one-dimensional spectral projections. The methods of efficient estimation developed
in [KLN] are rather specialized and they could not be easily extended even to spectral
projections of rank higher than 1. This, in part, was our motivation to study the problem
for more general smooth functionals and to develop a more general approach. Similarly,
one can represent the operator PC6PC as a smooth function of 6 and use the approach
of the current paper to develop efficient estimators of bilinear forms or matrix entries of
such operators. This could be of interest in the case of covariance matrices of the form
6 = 60 + σ

2Id , where 60 is a low rank covariance matrix (say, the covariance matrix
whose eigenvectors are “spikes” of a spiked covariance model). If C is the set of top
eigenvalues of 6 that correspond to its “spikes”, then estimation of 60 could be reduced
to estimation of PC6PC .

Remark 4. The results of this paper could not be directly applied to estimation of func-
tionals of the form tr(f (6)) since in this case B is the identity operator and its nuclear
norm is not bounded by a constant. In such cases,

√
n-consistent estimators do not al-

ways exist in high-dimensional problems, minimax optimal convergence rates are lower
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than n−1/2 and they do depend on the dimension (see, for instance, [CLZ] for an example
of estimation of the log-determinant log det(6) = tr(log(6))). Although some elements
of our approach (in particular, the bias reduction method) could be useful in this case, a
comprehensive theory of estimation of the functionals 〈f (6), B〉 in the case of B with
unbounded nuclear norm remains an open problem and it is beyond the scope of this
paper.

Remark 5. In this paper, the problem was studied only in the case of Gaussian mod-
els with known mean (without loss of generality, set to be zero) and unknown covariance
operators. In [KZh], a similar problem of efficient estimation of smooth functionals of un-
known mean in Gaussian shift models with known covariance was studied. The problem
becomes more complicated when both mean and covariance are unknown (in particular,
it would require a more difficult analysis of the operators T and B involved in the bias
reduction method).

Remark 6. The computation of estimators fk(6̂) could be based on Monte Carlo sim-
ulation of the bootstrap chain. To this end, one has to simulate a segment of this chain
of length k + 1 starting at the sample covariance 6̂. This would allow us to compute the
sum

∑k
j=0(−1)k−j

(
k
j

)
f (6̂(j+1)). Averaging such sums over a sufficiently large number

N of independent copies of the bootstrap chain provides a Monte Carlo approximation of
Bkf (6̂), which allows us to approximate fk(6̂). A total of (k+1)N computations of the
function f of covariance operators (each of them based on a singular value decomposi-
tion) would be required to implement this procedure.

1.3. Related results

To the best of our knowledge, the problem of efficient estimation for general classes of
smooth functionals of covariance operators in the setting of the current paper has not been
studied before. However, many results in the literature on nonparametric, semiparamet-
ric and high-dimensional statistics as well as some results in random matrix theory are
relevant in our context. Below we provide a brief discussion of some of these results.

Asymptotically efficient estimation of smooth functionals of infinite-dimensional pa-
rameters has been an important topic in nonparametric statistics for a number of years; it
also has deep connections to efficiency in semiparametric estimation (see, e.g., [BKRW],
[GN] and references therein). The early references include Levit [Lev1, Lev2] and the
book of Ibragimov and Khasminskii [IKh]. In the paper by Ibragimov, Nemirovski and
Khasminskii [IKhN] and later in the paper [Nem1] and in the Saint-Flour lectures [Nem2]
by Nemirovski, sharp results on efficient estimation of general smooth functionals of pa-
rameters of Gaussian white noise models were obtained, precisely describing the depen-
dence between the rate of decay of Kolmogorov’s diameters of parameter space (used as
a measure of its complexity) and the degree of smoothness of functionals for which effi-
cient estimation is possible. A general approach to construction of efficient estimators of
smooth functionals in Gaussian white noise models was also developed in those papers.
The result of Theorem 3 is in the same spirit, with the growth rate α of the dimension of
the space being the complexity parameter instead of the rate of decay of Kolmogorov’s
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diameters. At this point, we do not know whether the smoothness threshold s > 1
1−α for

efficient estimation obtained in this theorem is sharp (although the sharpness of the same
smoothness threshold was proved in [KZh] in the case of the Gaussian shift model).

More recently, there has been a lot of interest in semiparametric efficiency prop-
erties of regularization-based estimators (such as LASSO) in various models of high-
dimensional statistics (see, e.g., [GBRD], [JaMont], [ZZ], [JG]) as well as in minimax
optimal rates of estimation of the special functionals (in particular, linear and quadratic)
in such models [CL1], [CL2], [CCT].

In a series of pioneering papers in the 80s–90s, Girko obtained a number of results
on asymptotically normal estimation of many special functionals of covariance matrices
in high-dimensional setting, in particular, on estimation of the Stieltjes transform of the
spectral function tr((I + t6)−1) (see [Gir] and also [Gir1] and references therein). His
estimators were typically functions of a sample covariance 6̂ defined in terms of certain
equations (so called G-estimators) and the proofs of their asymptotic normality were
largely based on martingale CLT. The centering and normalizing parameters in the limit
theorems in those papers are often hard to interpret and the estimators were not proved to
be asymptotically efficient.

Asymptotic normality of so called linear spectral statistics tr(f (6̂)) centered either
by their own expectations, or by the integral of f with respect to a Marchenko–Pastur
type law has been an active subject of research in random matrix theory both in the case
of high-dimensional sample covariance (or Wishart matrices) and in other random ma-
trix models such as Wigner matrices (see, e.g., Bai and Silverstein [BaiS], Lytova and
Pastur [LP], Sosoe and Wong [SW]). Although these results do not have direct statistical
implications since tr(f (6̂)) does not “concentrate” around the corresponding population
parameter, probabilistic and analytic techniques developed in those papers are highly rel-
evant.

There are many results in the literature on special cases of the above problem, such
as asymptotic normality of the statistic log det(6̂) = tr(log(6̂)) (the log-determinant). If
d = dn ≤ n, then it was shown that the sequence

log det(6̂)− an,d − log det(6)
bn,d

converges in distribution to a standard normal random variable for explicitly given se-
quences an,d , bn,d that depend only on the sample size n and on the dimension d. This
means that log det(6̂) is an asymptotically normal estimator of log det(6) = tr(log(6))
subject to a simple bias correction (see, e.g., Girko [Gir] and more recent paper by
Cai, Liang and Zhou [CLZ]). The convergence rate of this estimator is typically lower
than n−1/2: for instance, if d = nα for α ∈ (0, 1), then the convergence rate is
� n−(1−α)/2 (and, for α = 1, the estimator is not consistent). In this case, the prob-
lem is relatively simple since log det(6̂) − log det(6) = log det(W), where W is the
sample covariance based on a sample of n i.i.d. standard normal random vectors.

In a recent paper by Koltchinskii and Lounici [KL1] (see also [KL3, KL4]), the prob-
lem of estimation of bilinear forms of spectral projections of covariance operators was
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studied in the setting when r(6) = o(n) as n → ∞.3 Normal approximation and con-
centration results for bilinear forms centered by their expectations were proved using
first order perturbation expansions for empirical spectral projections and concentration
inequalities for their remainder terms (which is similar to the approach of the current pa-
per). Special properties of the bias of these estimators were studied that, in the case of
one-dimensional spectral projections, led to the development of a bias reduction method
based on sample splitting that resulted in a construction of

√
n-consistent and asymptot-

ically normal estimators of linear forms of eigenvectors of the true covariance (principal
components) in the case when r(6) = o(n) as n → ∞. This approach has been further
developed in a very recent paper by Koltchinskii, Loeffler and Nickl [KLN] in which
asymptotically efficient estimators of linear forms of eigenvectors of 6 were studied.

Other recent references on estimation of functionals of covariance include Fan, Rigol-
let and Wang [FRW] (optimal rates of estimation of special functionals of covariance
under sparsity assumptions), Gao and Zhou [GaoZ] (Bernstein–von Mises theorems
for functionals of covariance), Kong and Valiant [KoVa] (estimation of “spectral mo-
ments” tr(6k)).

2. Analysis and operator theory preliminaries

In this section, we discuss several results in operator theory concerning perturbations
of smooth functions of self-adjoint operators in Hilbert spaces. They are simple modifi-
cations of known results due to several authors (see recent survey by Aleksandrov and
Peller [AP2]).

2.1. Entire functions of exponential type and Besov spaces

Let f : C → C be an entire function and let σ > 0. We say that f is of exponential
type σ (more precisely, ≤ σ ) if for any ε > 0 there exists C = C(ε, σ, f ) > 0 such that

|f (z)| ≤ Ce(σ+ε)|z|, z ∈ C.

In what follows, Eσ = Eσ (C) denotes the space of all entire functions of exponential
type σ . It is straightforward to see (and well known) that f ∈ Eσ if and only if

lim sup
R→∞

log supϕ∈[0,2π] |f (Re
iϕ)|

R
=: σ(f ) ≤ σ.

With a little abuse of notation, the restriction f�R of f to R will also be denoted by f ;
Ff will denote the Fourier transform of f : Ff (t) =

∫
R e
−itxf (x) dx (if f is not square

integrable, its Fourier transform is understood in the sense of tempered distributions).
According to the Paley–Wiener theorem,

Eσ ∩ L∞(R) = {f ∈ L∞(R) : supp(Ff ) ⊂ [−σ, σ ]}.

3 For other recent results on covariance estimation under assumptions on its effective rank see
[NSU, RW].
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It is also well known that f ∈ Eσ ∩ L∞(R) if and only if |f (z)| ≤ ‖f ‖L∞(R)e
σ |Im(z)| for

z ∈ C.
We will use the Bernstein inequality ‖f ′‖L∞(R) ≤ σ‖f ‖L∞(R) that holds for all f ∈

Eσ ∩ L∞(R). Moreover, since f ∈ Eσ implies f ′ ∈ Eσ , we also have ‖f ′′‖L∞(R) ≤
σ 2
‖f ‖L∞(R), and similar bounds hold for all the derivatives of f .
The next elementary lemma is a corollary of the Bernstein inequality. It provides

bounds on the remainder of the first order Taylor expansion of f ∈ Eσ ∩ L∞(R).

Lemma 1. Let f ∈ Eσ ∩ L∞(R). Denote

Sf (x;h) := f (x + h)− f (x)− f
′(x)h, x, h ∈ R.

Then

|Sf (x;h)| ≤
σ 2

2
‖f ‖L∞(R)h

2, x, h ∈ R,

and
|Sf (x;h

′)− Sf (x;h)| ≤ σ
2
‖f ‖L∞(R)δ(h, h

′)|h′ − h|, x, h, h′ ∈ R.

where δ(h, h′) := (|h| ∧ |h′|)+ |h′ − h|/2.

We also need an extension of the Bernstein inequality to functions of several complex
variables. Let f : Ck → C be an entire function and let σ := (σ1, . . . , σk), σj > 0.
The function f is of exponential type σ = (σ1, . . . , σk) if for any ε > 0 there exists
C = C(ε, σ, f ) > 0 such that

|f (z1, . . . , zk)| ≤ Ce
∑k
j=1(σj+ε)|zj |, z1, . . . , zk ∈ C.

Let Eσ1,...,σk be the set of all such functions. The following extension of the Bernstein
inequality can be found in the paper by Nikol’skii [Nik], who actually proved it for an
arbitrary Lp-norm, 1 ≤ p ≤ ∞. If f ∈ Eσ1,...,σk ∩ L∞(R), then for any m ≥ 0 and any
m1, . . . , mk ≥ 0 such that

∑k
j=1mj = m,∥∥∥∥ ∂mf

∂x
m1
1 . . . ∂x

mk
k

∥∥∥∥
L∞(Rk)

≤ σ
m1
1 . . . σ

mk
k ‖f ‖L∞(Rk). (2.1)

Let w ≥ 0 be a C∞ function on the real line with supp(w) ⊂ [−2, 2] such that
w(t) = 1 for t ∈ [−1, 1] and w(−t) = w(t) for t ∈ R. Define w0(t) := w(t/2) − w(t)
for t ∈ R, which implies that supp(w0) ⊂ {t : 1 ≤ |t | ≤ 4}. Let wj (t) := w0(2−j t)
for t ∈ R with supp(wj ) ⊂ {t : 2j ≤ |t | ≤ 2j+2

}, j = 0, 1, . . . . These definitions
immediately imply that

w(t)+
∑
j≥0

wj (t) = 1, t ∈ R.

Finally, define functions W,Wj ∈ S(R) (the Schwartz space of functions in R) by their
Fourier transforms as follows:

w(t) = (FW)(t), wj (t) = (FWj )(t), t ∈ R, j ≥ 0.
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For a tempered distribution f ∈ S ′(R), one can define its Littlewood–Paley dyadic
decomposition as the family of functions f0 := f ∗ W , fn := f ∗ Wn−1, n ≥ 1
with compactly supported Fourier transforms. Note that, by the Paley–Wiener theorem,
fn ∈ E2n+1 ∩ L∞(R). It is well known that

∑
n≥0 fn = f with convergence in S ′(R).

We use the Besov norms

‖f ‖Bs
∞,1
:=

∑
n≥0

2ns‖fn‖L∞(R), s ∈ R,

and the corresponding Besov spaces

Bs
∞,1(R) := {f ∈ S ′(R) : ‖f ‖Bs

∞,1
<∞}.

We do not use the whole scale of Besov spaces. Note that Besov norms are equivalent
for different choices of the function w and the corresponding Besov spaces coincide. If
f ∈ Bs

∞,1(R) for some s ≥ 0, then the series
∑
n≥0 fn converges uniformly to f in R,

which easily implies that f ∈ Cu(R), where Cu(R) is the space of all bounded uniformly
continuous functions in R and ‖f ‖L∞ ≤ ‖f ‖Bs∞,1 . Thus, for s ≥ 0, the space Bs

∞,1(R)
is continuously embedded in Cu(R). Moreover, if Cs(R) denotes the Hölder space of
smoothness s > 0, then, for all s′ > s > 0, Cs

′

(R) ⊂ Bs
∞,1(R) ⊂ Cs(R) (see [Tr,

Sections 2.3.2, 2.5.7]). Further details on Besov spaces can also be found in [Tr].

2.2. Taylor expansions for operator functions

For a continuous (and even for a Borel measurable) function f in R and A ∈ Bsa(H),
the operator f (A) is well defined and self-adjoint (for instance, by the spectral theo-
rem). By standard holomorphic functional calculus, the operator f (A) is well defined for
A ∈ B(H) and for any function f : C ⊃ G → C holomorphic in a neighborhood G of
the spectrum σ(A) of A. It is given by the Cauchy formula

f (A) := −
1

2πi

∮
γ

f (z)RA(z) dz,

where RA(z) := (A − zI)−1 for z 6∈ σ(A) is the resolvent of A and γ ⊂ G is a contour
surrounding σ(A)with counterclockwise orientation. In particular, this holds for all entire
functions f and the mapping B(H) 3 A 7→ f (A) ∈ B(H) is Fréchet differentiable with
derivative

Df (A;H) =
1

2πi

∮
γ

f (z)RA(z)HRA(z) dz, H ∈ B(H). (2.2)

The last formula easily follows from the perturbation series for the resolvent

RA+H (z) =

∞∑
k=0

(−1)k(RA(z)H)kRA(z), z ∈ C \ σ(A),

which converges in the operator norm as long as ‖H‖ < 1
‖RA(z)‖

=
1

dist(z,σ (A)) .
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We need to extend the bounds of Lemma 1 to functions of operators, establishing
similar properties for the remainder of the first order Taylor expansion

Sf (A;H) := f (A+H)− f (A)−Df (A;H), A,H ∈ Bsa(H),

where f is an entire function of exponential type σ. This is related to a circle of problems
studied in operator theory literature concerning operator Lipschitz and operator differen-
tiable functions (see, in particular, the survey by Aleksandrov and Peller [AP2]).

We will need the following lemma.

Lemma 2. Let f ∈ Eσ ∩ L∞(R). Then, for all A,H,H ′ ∈ Bsa(H),

‖f (A+H)− f (A)‖ ≤ σ‖f ‖L∞(R)‖H‖, (2.3)
‖Df (A;H)‖ ≤ σ‖f ‖L∞(R)‖H‖, (2.4)

‖Sf (A;H)‖ ≤
σ 2

2
‖f ‖L∞(R)‖H‖

2, (2.5)

‖Sf (A;H
′)− Sf (A;H)‖ ≤ σ

2
‖f ‖L∞(R)δ(H,H

′)‖H ′ −H‖, (2.6)

where δ(H,H ′) := (‖H‖ ∧ ‖H ′‖)+ ‖H ′ −H‖/2.

The bounds (2.3) and (2.4) are well known [AP2] (in fact, (2.3) means that, for f ∈
Eσ ∩ L∞(R), Bsa(H) 3 A 7→ f (A) ∈ Bsa(H) is operator Lipschitz with respect to
the operator norm). The proof of (2.5) and (2.6) is also based on a nice approach by
Aleksandrov and Peller [AP1, AP2] developed to prove the operator Lipschitz property.
We give the proof of the lemma for completeness.
Proof of Lemma 2. LetE be a complex Banach space and let Eσ (E) be the space of entire
functions F : C→ E of exponential type σ , that is, entire functions F such that for any
ε > 0 there exists a constant C = C(ε, σ, F ) > 0 for which ‖F(z)‖ ≤ Ce(σ+ε)|z|, z ∈ C.
If F ∈ Eσ (E) and supx∈R ‖F(x)‖ <∞, then the Bernstein inequality holds for F :

sup
x∈R
‖F ′(x)‖ ≤ σ sup

x∈R
‖F(x)‖. (2.7)

Indeed, for any l ∈ E∗, l(F (·)) ∈ Eσ ∩ L∞(R), which implies that

sup
x∈R
‖F ′(x)‖ = sup

‖l‖≤1
sup
x∈R
|l(F ′(x))| ≤ σ sup

‖l‖≤1
sup
x∈R
|l(F (x))| = σ sup

x∈R
‖F(x)‖

and
‖F(x + h)− F(x)‖ ≤ σ sup

x∈R
‖F(x)‖ |h|. (2.8)

A similar simple argument (now based on Lemma 1) shows that for SF (x;h) := F(x+h)
− F(x)− F ′(x)h, we have

‖SF (x;h)‖ ≤
σ 2

2
sup
x∈R
‖F(x)‖h2, x, h ∈ R, (2.9)

and

‖SF (x;h
′)− SF (x;h)‖ ≤ σ

2 sup
x∈R
‖F(x)‖

[
|h| |h′ − h| +

|h′ − h|2

2

]
, x, h, h′ ∈ R.

(2.10)
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Next, forA,H ∈ Bsa(H) and f ∈ Eσ ∩L∞(R), define F(z) := f (A+zH) for z ∈ C.
Then F ∈ Eσ‖H‖(B(H)). Indeed, F is complex-differentiable at any point z ∈ C with
derivative F ′(z) = Df (A+ zH ;H), so it is an entire function with values in E = B(H).
In addition, by the von Neumann theorem (see, e.g., [Dav, Theorem 9.5.3]),

‖F(z)‖ = ‖f (A+ zH)‖ ≤ sup
|ζ |≤‖A‖+|z| ‖H‖

|f (ζ )| ≤ ‖f ‖L∞(R)e
σ‖A‖eσ‖H‖|z|, z ∈ C,

implying that F is of exponential type σ‖H‖. Note also that

sup
x∈R
‖F(x)‖ = sup

x∈R
‖f (A+ xH)‖ ≤ sup

x∈R
|f (x)| = ‖f ‖L∞(R).

Hence, (2.7) and (2.8) imply that

‖f (A+H)− f (A)‖ = ‖F(1)− F(0)‖ ≤ sup
x∈R
‖F ′(x)‖

≤ σ‖H‖ sup
x∈R
‖F(x)‖ ≤ σ‖f ‖L∞(R)‖H‖

and
‖Df (A;H)‖ = ‖F ′(0)‖ ≤ σ‖f ‖L∞(R)‖H‖,

which proves (2.3) and (2.4). Similarly, using (2.9), we get

‖Sf (A;H)‖ = ‖f (A+H)− f (A)−Df (A;H)‖ = ‖F(1)− F(0)− F ′(0)(1− 0)‖

= ‖SF (0, 1)‖ ≤
σ 2
‖H‖2

2
sup
x∈R
‖F(x)‖ ≤

σ 2

2
‖f ‖L∞(R)‖H‖

2,

proving (2.5).
To prove (2.6), define

F(z) := f (A+H + z(H ′ −H))− f (A+ z(H ′ −H)), z ∈ C.

As in the previous case, F is an entire function with values in B(H). The bound

‖F(z)‖ ≤ ‖f ‖L∞(R)(e
σ‖A+H‖

+ eσ‖A‖)eσ‖H
′
−H‖|z|

implies that F ∈ Eσ‖H ′−H‖(B(H)). Clearly, also supx∈R ‖F(x)‖ ≤ 2‖f ‖L∞(R).
Note that

Sf (A;H
′)− Sf (A;H)

= Df (A+H ;H ′ −H)−Df (A;H ′ −H)+ Sf (A+H ;H
′
−H) (2.11)

and (2.5) implies

‖Sf (A+H ;H
′
−H)‖ ≤

σ 2

2
‖f ‖L∞(R)‖H

′
−H‖2.
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On the other hand, we have (by the Bernstein inequality)

‖Df (A+H ;H ′ −H)−Df (A;H ′ −H)‖ = ‖F ′(0)‖ ≤ σ‖H ′ −H‖ sup
x∈R
‖F(x)‖

and (2.3) implies that

sup
x∈R
‖F(x)‖ = sup

x∈R
‖f (A+H + x(H ′−H))− f (A+ x(H ′−H))‖ ≤ σ‖f ‖L∞(R)‖H‖.

Now, it follows from (2.11) that

‖Sf (A;H
′)− Sf (A;H)‖ ≤ σ

2
‖f ‖L∞(R)

(
‖H‖ +

‖H ′ −H‖

2

)
‖H ′ −H‖,

which implies (2.6). ut

Remark 7. In addition to (2.6), the following bound follows from (2.3) and (2.4):

‖Sf (A;H
′)− Sf (A;H)‖ ≤ 2σ‖f ‖L∞(R)‖H

′
−H‖. (2.12)

Note also that δ(H,H ′) ≤ ‖H‖ + ‖H ′‖ for H,H ′ ∈ Bsa(H).

Following Aleksandrov and Peller [AP2], we use Littlewood–Paley dyadic decomposi-
tion and the corresponding family of Besov norms to extend the bounds of Lemma 2 to
functions in Besov classes. It would be more convenient for our purposes to use inhomo-
geneous Besov norms instead of homogeneous norms used in [AP2]. Peller [Pel] proved
that any function f ∈ B1

∞,1(R)
4 is operator Lipschitz and operator differentiable on the

space of self-adjoint operators with respect to the operator norm (in [AP2], these facts
were proved using Littlewood–Paley theory and extensions of the Bernstein inequality
for operator functions; see also the earlier paper [AP1]). We will state Peller’s results in
the next lemma in a convenient form along with some additional bounds on the remainder
of the first order Taylor expansion Sf (A;H) = f (A+H)− f (A)−Df (A;H) for f in
suitable Besov spaces.

Lemma 3. If f ∈ B1
∞,1(R), then for all A,H ∈ Bsa(H),

‖f (A+H)− f (A)‖ ≤ 2‖f ‖B1
∞,1(R)

‖H‖. (2.13)

Moreover, the function Bsa(H) 3 A 7→ f (A) ∈ Bsa(H) is Fréchet differentiable with
respect to the operator norm with derivative given by the following series (that converges
in the operator norm):

Df (A;H) =
∑
n≥0

Dfn(A;H). (2.14)

If f ∈ Bs
∞,1(R) for some s ∈ [1, 2], then, for all A,H,H ′ ∈ Bsa(H),

‖Sf (A;H)‖ ≤ 23−s
‖f ‖Bs

∞,1
‖H‖s (2.15)

and

‖Sf (A;H
′)− Sf (A;H)‖ ≤ 4‖f ‖Bs

∞,1
(δ(H,H ′))s−1

‖H ′ −H‖. (2.16)

4 In fact, Peller used modified homogeneous Besov classes instead of inhomogeneous Besov
spaces we use in this paper.
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Proof. Recall that, for f ∈ B1
∞,1(R), the series

∑
n≥0 fn converges to f uniformly in R.

Since A,A+H,A+H ′ are bounded self-adjoint operators, we also get∑
n≥0

fn(A) = f (A),
∑
n≥0

fn(A+H) = f (A+H),
∑
n≥0

fn(A+H
′) = f (A+H ′),

(2.17)
with all series converging in the operator norm.

To prove (2.13), observe that

‖f (A+H)− f (A)‖ =

∥∥∥∑
n≥0

[fn(A+H)− fn(A)]

∥∥∥
≤

∑
n≥0

‖fn(A+H)− fn(A)‖ ≤
∑
n≥0

2n+1
‖fn‖L∞(R)‖H‖ = 2‖f ‖B1

∞,1
‖H‖,

where we use (2.3).
By (2.4),∑

n≥0

‖Dfn(A;H)‖ ≤
∑
n≥0

2n+1
‖fn‖L∞(R)‖H‖ = 2‖f ‖B1

∞,1
‖H‖ <∞,

implying the convergence of
∑
n≥0Dfn(A;H) in the operator norm. We define

Df (A;H) :=
∑
n≥0

Dfn(A;H). (2.18)

We will prove that this yields the Fréchet derivative of f (A). To this end, note that (2.17)
and (2.18) imply that

Sf (A;H) =
∑
n≥0

[fn(A+H)− fn(A)−Dfn(A;H)] =
∑
n≥0

Sfn(A;H). (2.19)

As a consequence,

‖Sf (A;H)‖ ≤
∑
n≤N

‖Sfn(A;H)‖ +
∑
n>N

‖fn(A+H)− fn(A)‖ +
∑
n>N

‖Dfn(A;H)‖

≤

∑
n≤N

22(n+1)
‖fn‖L∞(R)‖H‖

2
+ 2

∑
n>N

2n+1
‖fn‖L∞(R)‖H‖,

where we use (2.3)–(2.5). Given ε > 0, take N such that
∑
n>N 2n+1

‖fn‖L∞ ≤ ε/4
and suppose ‖H‖ ≤ ε

2
∑
n≤N 22(n+1)‖fn‖L∞(R)

. This implies that ‖Sf (A;H)‖ ≤ ε‖H‖ and

Fréchet differentiability of f (A) with derivative Df (A;H) follows.
To prove (2.16), use (2.6) and (2.12) to get

‖Sfn(A;H
′)− Sfn(A;H)‖

≤ 22(n+1)
‖fn‖L∞(R)δ(H,H

′)‖H ′ −H‖ ∧ 2n+2
‖fn‖L∞(R)‖H

′
−H‖

= 2n+2
‖fn‖L∞(R)(2

nδ(H,H ′) ∧ 1)‖H ′ −H‖.
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It follows that

‖Sf (A;H
′)− Sf (A;H)‖ ≤

∑
n≥0

‖Sfn(A;H
′)− Sfn(A;H)‖

≤

∑
n≥0

2n+2
‖fn‖L∞(R)(2

nδ(H,H ′)∧1)‖H ′−H‖

= 4
( ∑

2n≤1/δ(H,H ′)

22n
‖fn‖L∞(R)δ(H,H

′)+
∑

2n>1/δ(H,H ′)

2n‖fn‖L∞(R)
)
‖H ′−H‖

≤ 4
( ∑

2n≤1/δ(H,H ′)

2sn‖fn‖L∞(R)

(
1

δ(H,H ′)

)2−s

δ(H,H ′)

+

∑
2−n<δ(H,H ′)

2sn‖fn‖L∞(R)(δ(H,H
′))s−1

)
‖H ′−H‖

≤ 4
( ∑

2n≤1/δ(H,H ′)

2sn‖fn‖L∞(R)+
∑

2n>1/δ(H,H ′)

2sn‖fn‖L∞(R)
)
(δ(H,H ′))s−1

‖H ′−H‖

= 4‖f ‖Bs
∞,1
(δ(H,H ′))s−1

‖H ′−H‖,

which yields (2.16). The bound (2.15) follows from (2.16) when H ′ = 0. ut

Suppose A ∈ Bsa(H) is a compact operator with spectral representation A =∑
λ∈σ(A) λPλ, where Pλ denotes the spectral projection corresponding to the eigen-

value λ. The following formula for the derivative Df (A;H) with f ∈ B1
∞,1(R) is well

known (see [Bh, Theorem V.3.3] for a finite-dimensional version):

Df (A;H) =
∑

λ,µ∈σ(A)

f [1](λ, µ)PλHPµ, (2.20)

where f [1](λ, µ) := f (λ)−f (µ)
λ−µ

for λ 6= µ and f [1](λ, λ) := f ′(λ). In other words,
the operator Df (A;H) can be represented in the basis of eigenvectors of A as a Schur
product of the Loewner matrix (f [1](λ, µ))λ,µ∈σ(A) and the matrix of the operator H in
this basis. We will need this formula only in the case of discrete spectrum, but there are
also extensions to more general operators A with continuous spectrum (with the sums re-
placed by double operator integrals): see Aleksandrov and Peller [AP2, Theorems 3.5.11
and 1.6.4].

Finally, we need some extensions of the results stated above to higher order derivatives
(see [Skr], [ACDS], [KS] and references therein for a number of subtle results in this
direction). If g : Bsa(H) → Bsa(H) is a k times Fréchet differentiable function, its k-th
derivative Dkg(A) for A ∈ Bsa(H) can be viewed as a symmetric multilinear operator
valued form

Dkg(A)(H1, . . . , Hk) = D
kg(A;H1, . . . , Hk), H1, . . . , Hk ∈ Bsa(H).

Given such a form M : Bsa(H)× · · · × Bsa(H)→ Bsa(H), define its operator norm as

‖M‖ := sup
‖H1‖,...,‖Hk‖≤1

‖M(H1, . . . , Hk)‖.
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The derivatives Dkg(A) are defined iteratively:

Dkg(A)(H1, . . . , Hk−1, Hk) = D(D
k−1g(A)(H1, . . . , Hk−1))(Hk).

For f ∈ Eσ ∩ L∞(R), the k-th derivative Dkf (A) is given by the formula

Dkf (A;H1, . . . , Hk)

=
(−1)k+1

2πi

∑
π∈Sk

∮
γ

f (z)RA(z)Hπ(1)RA(z)Hπ(2) . . . RA(z)Hπ(k)RA(z) dz

for H1, . . . , Hk ∈ Bsa(H), where γ ⊂ C is a contour surrounding σ(A) with counter-
clockwise orientation.

The following lemmas hold.

Lemma 4. Let f ∈ Eσ ∩ L∞(R). Then, for all k ≥ 1,

‖Dkf (A)‖ ≤ σ k‖f ‖L∞(R), A ∈ Bsa(H). (2.21)

Proof. Given A,H1, . . . Hk ∈ Bsa(H), denote

F(z1, . . . , zk) = f (A+ z1H1 + · · · + zkHk), (z1, . . . , zk) ∈ Ck.

Then f is an entire operator valued function of exponential type (σ‖H1‖, . . . , σ‖Hk‖):

‖F(z1, . . . , zk)‖ ≤ sup
|ζ |≤‖A+z1H1+···+zkHk‖

|f (ζ )|

≤ e‖A‖ exp{σ‖H1‖ |z1| + · · · + σ‖Hk‖ |zk|}.

By the Bernstein inequality (2.1) (extended to Banach space valued functions as at the
beginning of the proof of Lemma 2), we get∥∥∥∥∂kF(x1, . . . , xk)

∂x1 . . . ∂xk

∥∥∥∥ ≤ σ k‖H1‖ . . . ‖Hk‖ sup
x1,...,xk∈R

‖F(x1, . . . , xk)‖.

Therefore,

‖Dkf (A+ x1H1 + · · · + xkHk)(H1, . . . , Hk)‖ ≤ σ
k
‖H1‖ . . . ‖Hk‖ ‖f ‖L∞(R).

For x1 = · · · = xk = 0, this yields

‖Dkf (A)(H1, . . . , Hk)‖ ≤ σ
k
‖H1‖ . . . ‖Hk‖ ‖f ‖L∞(R),

implying the claim of the lemma. ut
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Lemma 5. Let f ∈ Eσ ∩ L∞(R). Then, for all k ≥ 1 and all A,H1, . . . , Hk, H ∈

Bsa(H),

‖Dkf (A+H ;H1, . . . , Hk)−D
kf (A;H1, . . . , Hk)‖

≤ σ k+1
‖f ‖L∞(R)‖H1‖ . . . ‖Hk‖ ‖H‖ (2.22)

and

‖SDkf (·;H1,...,Hk)
(A;H)‖ ≤

σ k+2

2
‖f ‖L∞(R)‖H1‖ . . . ‖Hk‖ ‖H‖

2. (2.23)

Proof. The bound (2.22) easily follows from (2.21) (applied to the derivative Dk+1f ).
The proof of (2.23) relies on the Bernstein inequality (2.1) and on a slight modification
of the proof of (2.5). ut

Lemma 6. Suppose f ∈ Bk
∞,1(R). Then the function Bsa(H) 3 A 7→ f (A) ∈ Bsa(H) is

k times Fréchet differentiable and

‖Djf (A)‖ ≤ 2j‖f ‖
B
j

∞,1
, A ∈ Bsa(H), j = 1, . . . , k. (2.24)

Moreover, if f ∈ Bs
∞,1(R) for some s ∈ (k, k + 1], then

‖Dkf (A+H)−Dkf (A)‖ ≤ 2k+1
‖f ‖Bs

∞,1
‖H‖s−k, A,H ∈ Bsa(H). (2.25)

Proof. As in the proof of Lemma 3, we use Littlewood–Paley decomposition of f . Since,
by (2.21), for all j = 1, . . . , k,∑

n≥0

‖Djfn(A;H1, . . . , Hj )‖ ≤
∑
n≥0

2(n+1)j
‖fn‖L∞(R)‖H1‖ . . . ‖Hj‖

≤ 2j‖f ‖
B
j

∞,1
‖H1‖ . . . ‖Hj‖ <∞, (2.26)

the series
∑
n≥0D

jfn(A;H1, . . . , Hj ) converges in operator norm and we can define
symmetric j -linear forms

Djf (A;H1, . . . , Hj ) :=
∑
n≥0

Djfn(A;H1, . . . , Hj ), j = 1, . . . , k.

By the same argument as in the proof of claim (2.4) of Lemma 3 and using the
bounds (2.22) and (2.23), we can now prove by induction that Djf (A;H1, . . . , Hj ),
j = 1, . . . , k, are the consecutive derivatives of f (A). Indeed, for j = 1, this was already
proved in Lemma 3. Assume that it is true for some j < k; to prove that it is also true for
j + 1 note that

‖Djf (A+H ;H1, . . . , Hj )−D
jf (A;H1, . . . , Hj )−D

j+1f (A;H1, . . . , Hj , H)‖

≤

∑
n≤N

‖SDjfn(·;H1,...,Hj )
(A;H)‖

+

∑
n>N

‖Djfn(A+H ;H1, . . . , Hj )−D
jfn(A;H1, . . . , Hj )‖

+

∑
n>N

‖Dj+1fn(A;H1, . . . , Hj , H)‖
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≤

∑
n≤N

2(j+2)(n+1)

2
‖fn‖L∞(R)‖H1‖ . . . ‖Hj‖ ‖H‖

2

+ 2
∑
n>N

2(j+1)(n+1)
‖fn‖L∞(R)‖H1‖ . . . ‖Hj‖ ‖H‖.

Given ε > 0, take N such that
∑
n>N 2(j+1)(n+1)

‖fn‖L∞ ≤ ε/4, which is possible for
f ∈ B

j+1
∞,1(R), and suppose ‖H‖ ≤ ε∑

n≤N 2(j+2)(n+1)‖fn‖L∞(R)
. Then

‖Djf (A+H ;H1, . . . , Hj )−D
jf (A;H1, . . . , Hj )−D

j+1f (A;H1, . . . , Hj , H)‖

≤ ε‖H1‖ . . . ‖Hk‖ ‖H‖.

Therefore, the function A 7→ Djf (A;H1, . . . , Hj ) is Fréchet differentiable with deriva-
tive Dj+1f (A;H1, . . . , Hj , H).

The bounds (2.24) now follow from (2.26).
To prove (2.25), note that

‖Dkf (A+H)(H1, . . . , Hk)−D
kf (A)(H1, . . . , Hk)‖

≤

∑
n≥0

‖Dkfn(A+H)(H1, . . . , Hk)−D
kfn(A)(H1, . . . , Hk)‖.

Using (2.21) and (2.22), we get

‖Dkf (A+H)(H1, . . . , Hk)−D
kf (A)(H1, . . . , Hk)‖

≤

∑
2n≤1/‖H‖

2(n+1)(k+1)
‖fn‖L∞(R)‖H‖ ‖H1‖ . . . ‖Hk‖

+ 2
∑

2n>1/‖H‖

2(n+1)k
‖fn‖L∞(R)‖H1‖ . . . ‖Hk‖

≤ 2k+1
‖H1‖ . . . ‖Hk‖

×

[ ∑
2n≤1/‖H‖

2ns‖fn‖L∞(R)2
n(k+1−s)

‖H‖ +
∑

2n>1/‖H‖

2ns‖fn‖L∞(R)2
n(k−s)

]
≤ 2k+1

‖H1‖ . . . ‖Hk‖ ‖H‖
s−k
[ ∑

2n≤1/‖H‖

2ns‖fn‖L∞(R) +
∑

2n>1/‖H‖

2ns‖fn‖L∞(R)
]

= 2k+1
‖f ‖Bs

∞,1
‖H‖s−k‖H1‖ . . . ‖Hk‖,

which implies (2.25). ut

In what follows, we use the definition of Hölder space norms of functions of bounded self-
adjoint operators. For an open set G ⊂ Bsa(H), a k times Fréchet differentiable function
g : G→ Bsa(H) and, for s = k + β, β ∈ (0, 1], define

‖g‖Cs (G) := max
0≤j≤k

sup
A∈G

‖Djg(A)‖ ∨ sup
A,A+H∈G,H 6=0

‖Dkg(A+H)−Dkg(A)‖

‖H‖β
. (2.27)
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A similar definition applies to k times Fréchet differentiable functions g : G→ R (with
‖Djg(A)‖ being the operator norm of a j -linear form). In both cases, Cs(G) denotes
the space of functions g on G (operator valued or real valued) with ‖g‖Cs (G) < ∞. In
particular, these norms apply to the operator functions Bsa(H) 3 A 7→ f (A) ∈ Bsa(H),
where f is a function on the real line. With a little abuse of notation, we write the norm
of such an operator function as ‖f ‖Cs (Bsa(H)). The next result immediately follows from
Lemma 6.

Corollary 2. Suppose that f ∈ Bs
∞,1(R) for some k ≥ 0 and s ∈ (k, k + 1]. Then

‖f ‖Cs (Bsa(H)) ≤ 2k+1
‖f ‖Bs

∞,1
.

3. Concentration bounds for the remainder of the first order Taylor expansion

Let g : Bsa(H) → R be a Fréchet differentiable function with respect to the operator
norm with derivative Dg(A;H),H ∈ Bsa(H). Note that Dg(A; ·), is a bounded linear
functional on Bsa(H) and its restriction to the subspace Csa(H) ⊂ Bsa(H) of compact self-
adjoint operators in H can be represented as Dg(A,H) = 〈Dg(A),H 〉, where Dg(A) ∈
S1 is a trace class operator in H. Let Sg(A;H) be the remainder of the first order Taylor
expansion of g:

Sg(A;H) := g(A+H)− g(A)−Dg(A;H), A,H ∈ Bsa(H).

Our goal is to obtain concentration inequalities for the random variable Sg(6; 6̂ − 6)
around its expectation. It will be done under the following assumption on the remainder
Sg(A;H):

Assumption 2. Let s ∈ [1, 2]. Assume there exists a constant Lg,s > 0 such that, for all
6 ∈ C+(H) and H,H ′ ∈ Bsa(H),

|Sg(6;H
′)− Sg(6;H)| ≤ Lg,s(‖H‖ ∨ ‖H

′
‖)s−1

‖H ′ −H‖.

Note that Assumption 2 implies (for H ′ = 0) that |Sg(6;H)| ≤ Lg,s‖H‖
s for 6 ∈

C+(H) and H ∈ Bsa(H).

Theorem 5. Suppose Assumption 2 holds for some s ∈ (1, 2]. Then there exists a con-
stant Ks > 0 such that for all t ≥ 1, with probability at least 1− e−t ,

|Sg(6; 6̂ −6)− ESg(6; 6̂ −6)|

≤ KsLg,s‖6‖
s

((
r(6)
n

)(s−1)/2

∨

(
r(6)
n

)s−1/2

∨

(
t

n

)(s−1)/2

∨

(
t

n

)s−1/2)√
t

n
.

(3.1)

Proof. Let ϕ : R → R be such that ϕ(u) = 1 for u ≤ 1, ϕ(u) = 0 for u ≥ 2 and
ϕ(u) = 2− u for u ∈ (1, 2). Denote E := 6̂ −6 and, given δ > 0, define

h(X1, . . . , Xn) := Sg(6;E)ϕ(‖E‖/δ). (3.2)
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We start by deriving a concentration bound for the function h(X1, . . . , Xn) of Gaussian
random variables X1, . . . , Xn. To this end, we will show that h(X1, . . . , Xn) satisfies a
Lipschitz condition. With a minor abuse of notation, we will assume for a while that
X1, . . . , Xn are nonrandom points of H and let X′1, . . . , X

′
n be another set of such points.

Denote by 6̂′ := n−1∑n
j=1X

′

j ⊗X
′

j the sample covariance based on X′1, . . . , X
′
n and let

E′ := 6̂′ −6.
The following lemma establishes a Lipschitz condition for h.

Lemma 7. Suppose Assumption 2 holds with some s ∈ (1, 2]. Then, for all δ > 0
and h defined by (3.2), the following bound holds with some constant Cs > 0 for all
X1, . . . , Xn, X

′

1, . . . , X
′
n ∈ H:

|h(X1, . . . , Xn)− h(X
′

1, . . . , X
′
n)|

≤
CsLg,s(‖6‖

1/2
+
√
δ)δs−1

√
n

( n∑
j=1

‖Xj −X
′

j‖
2
)1/2

. (3.3)

Proof. Using the fact that ϕ takes values in [0, 1] and it is a Lipschitz function with
constant 1, and taking into account Assumption 2, we get

|h(X1, . . . , Xn)| ≤ |Sg(6;E)|I (‖E‖ ≤ 2δ) ≤ Lg,s‖E‖sI (‖E‖ ≤ 2δ)
≤ 2sLg,sδs (3.4)

and similarly
|h(X′1, . . . , X

′
n)| ≤ 2sLg,sδs . (3.5)

We also have

|h(X1, . . . , Xn)− h(X
′

1, . . . , X
′
n)| ≤ |Sg(6,E)− Sg(6,E

′)| +
1
δ
|Sg(6,E

′)|‖E −E′‖

≤ Lg,s(‖E‖ ∨ ‖E
′
‖)s−1

‖E′ − E‖ + Lg,s
1
δ
‖E′‖s‖E′ − E‖. (3.6)

If both ‖E‖ ≤ 2δ and ‖E′‖ ≤ 2δ, then (3.6) implies

|h(X1, . . . , Xn)− h(X
′

1, . . . , X
′
n)| ≤ (2

s−1
+ 2s)Lg,sδs−1

‖E′ − E‖. (3.7)

If both ‖E‖ > 2δ and ‖E′‖ > 2δ, then ϕ(‖E‖/δ) = ϕ(‖E′‖/δ) = 0, implying that
h(X1, . . . , Xn) = h(X

′

1, . . . , X
′
n) = 0. If ‖E‖ ≤ 2δ, ‖E′‖ > 2δ and ‖E′ − E‖ > δ, then

|h(X1, . . . , Xn)− h(X
′

1, . . . , X
′
n)| = |h(X1, . . . , Xn)| ≤ 2sLg,sδs

≤ 2sLg,sδs−1
‖E′ − E‖.

If ‖E‖ ≤ 2δ, ‖E′‖ > 2δ and ‖E′ − E‖ ≤ δ, then ‖E′‖ ≤ 3δ and, similarly to (3.7), we
get

|h(X1, . . . , Xn)− h(X
′

1, . . . , X
′
n)| ≤ (3

s−1
+ 3s)Lg,sδs−1

‖E′ − E‖. (3.8)
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By these simple considerations, the bound (3.8) holds in all possible cases. This fact along
with (3.4) and (3.5) yields

|h(X1, . . . , Xn)− h(X
′

1, . . . , X
′
n)| ≤ (3

s−1
+ 3s)Lg,sδs−1(‖E′ − E‖ ∧ δ). (3.9)

We now obtain an upper bound on ‖E′ − E‖. We have

‖E′ − E‖ =

∥∥∥n−1
n∑
j=1

Xj ⊗Xj − n
−1

n∑
j=1

X′j ⊗X
′

j

∥∥∥
≤

∥∥∥n−1
n∑
j=1

(Xj −X
′

j )⊗Xj

∥∥∥+ ∥∥∥n−1
n∑
j=1

X′j ⊗ (Xj −X
′

j )

∥∥∥
= sup
‖u‖,‖v‖≤1

∣∣∣n−1
n∑
j=1

〈Xj −X
′

j , u〉〈Xj , v〉

∣∣∣+ sup
‖u‖,‖v‖≤1

∣∣∣n−1
n∑
j=1

〈X′j , u〉〈Xj −X
′

j , v〉

∣∣∣
≤ sup
‖u‖≤1

(
n−1

n∑
j=1

〈Xj −X
′

j , u〉
2
)1/2

sup
‖v‖≤1

(
n−1

n∑
j=1

〈Xj , v〉
2
)1/2

+ sup
‖u‖≤1

(
n−1

n∑
j=1

〈X′j , u〉
2
)1/2

sup
‖v‖≤1

(
n−1

n∑
j=1

〈Xj −X
′

j , v〉
2
)1/2

≤
‖6̂‖1/2 + ‖6̂′‖1/2

√
n

( n∑
j=1

‖Xj −X
′

j‖
2
)1/2
≤ (2‖6‖1/2 + ‖E‖1/2 + ‖E′‖1/2)1,

where1 := n−1/2(
∑n
j=1 ‖Xj −X

′

j‖
2)1/2.Without loss of generality, assume that ‖E‖ ≤

2δ (again, if both ‖E‖ > 2δ and ‖E′‖ > 2δ, then h(X1, . . . , Xn) = h(X
′

1, . . . , X
′
n) = 0

and inequality (3.3) holds trivially). Then

‖E′ − E‖ ≤ (2‖6‖1/2 + 2
√

2δ + ‖E′ − E‖1/2)1.

If ‖E′ − E‖ ≤ δ, the last bound implies that

‖E′ − E‖ ≤ (2‖6‖1/2 + (2
√

2+ 1)
√
δ)1 ≤ 4‖6‖1/21 ∨ (4

√
2+ 2)

√
δ 1.

Otherwise, if ‖E′ − E‖ > δ, we get

‖E′ − E‖ ≤ 4‖6‖1/21 ∨ (4
√

2+ 2)1‖E′ − E‖1/2,

which yields
‖E′ − E‖ ≤ 4‖6‖1/21 ∨ (4

√
2+ 2)212.

Thus, either ‖E′ −E‖ ≤ 4‖6‖1/21, or ‖E′ −E‖ ≤ (4
√

2+ 2)212. In the last case, we
also have (since δ < ‖E′ − E‖)

δ <
√
δ ‖E′ − E‖1/2 ≤ (4

√
2+ 2)

√
δ 1.

This shows that

‖E′ − E‖ ∧ δ ≤ 4‖6‖1/21 ∨ (4
√

2+ 2)
√
δ 1 (3.10)

both when ‖E′ − E‖ ≤ δ and when ‖E′ − E‖ > δ.
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Substituting (3.10) in (3.9) yields

|h(X1, . . . , Xn)− h(X
′

1, . . . , X
′
n)|

≤
(3s−1

+ 3s)Lg,s(4‖6‖1/2 + (4
√

2+ 2)
√
δ)δs−1

√
n

( n∑
j=1

‖Xj −X
′

j‖
2
)1/2

,

which implies (3.3). ut

In what follows, we set, for a given t > 0,

δ = δn(t) := E‖6̂ −6‖ + C‖6‖
[(√

r(6)
n
∨ 1

)√
t

n
∨
t

n

]
.

It follows from (1.3) that there exists an absolute constant C > 0 such that

P{‖6̂ −6‖ ≥ δn(t)} ≤ e−t , t ≥ 1. (3.11)

Assuming that t ≥ log(4), we get P{‖E‖ ≥ δ} ≤ 1/4. Let M := Med(Sg(6;E)) be a
median of random variable Sg(6;E). Then

P{h(X1, . . . , Xn) ≥ M} ≥ P{h(X1, . . . , Xn) ≥ M, ‖E‖ < δ}

≥ P{Sg(6;E) ≥ M, ‖E‖ < δ} ≥ 1/2− P{‖E‖ ≥ δ} ≥ 1/4.

Similarly, P{h(X1, . . . , Xn) ≤ M} ≥ 1/4. In view of the Lipschitz property of h
(Lemma 7), we now use a relatively standard argument (see [KL2, Lemma 2 and its ap-
plications in Section 3]) based on a Gaussian isoperimetric inequality (see Ledoux [Led,
Theorem 2.5 and (2.9)]) to conclude that with probability at least 1− e−t ,

|h(X1, . . . , Xn)−M| .s Lg,sδ
s−1(‖6‖1/2 + δ1/2)‖6‖1/2

√
t/n.

Moreover, since Sg(6;E) = h(X1, . . . , Xn) on the event {‖E‖ < δ} of probability at
least 1− e−t , we find that with probability 1− 2e−t ,

|Sg(6;E)−M| .s Lg,sδ
s−1(‖6‖1/2 + δ1/2)‖6‖1/2

√
t/n. (3.12)

It follows from (1.1) that

δ = δn(t) . ‖6‖

(√
r(6)
n
∨

r(6)
n
∨

√
t

n
∨
t

n

)
. (3.13)

Substituting (3.13) into (3.12) easily yields, with probability at least 1− 2e−t ,

|Sg(6;E)−M|

.s Lg,s‖6‖
s

((
r(6)
n

)(s−1)/2

∨

(
r(6)
n

)s−1/2

∨

(
t

n

)(s−1)/2

∨

(
t

n

)s−1/2)√
t

n
,

(3.14)
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and moreover by adjusting the value of the constant in (3.14) the probability bound can
be replaced by 1− e−t . By integrating out the tails of (3.14) one can get

|ESg(6;E)−M| ≤ E|Sg(6;E)−M|

.s Lg,s‖6‖
s

((
r(6)
n

)(s−1)/2

∨

(
r(6)
n

)s−1/2

∨

(
1
n

)(s−1)/2)√1
n
. (3.15)

Combining (3.14) and (3.15) implies that for all t ≥ 1, with probability at least 1− e−t ,

|Sg(6;E)− ESg(6;E)|

.s Lg,s‖6‖
s

((
r(6)
n

)(s−1)/2

∨

(
r(6)
n

)s−1/2

∨

(
t

n

)(s−1)/2

∨

(
t

n

)s−1/2)√
t

n
,

(3.16)

which completes the proof. ut

Example 1. Consider the functional

g(A) := 〈f (A), B〉 = tr(f (A)B∗), A ∈ Bsa(H),

where f is a given smooth function and B ∈ S1 is a given nuclear operator.

Corollary 3. If f ∈ Bs
∞,1(R) for some s ∈ (1, 2], then with probability at least 1− e−t

the following concentration inequality holds for the functional g:

|Sg(6; 6̂ −6)− ESg(6; 6̂ −6)| .s

‖f ‖Bs
∞,1
‖B‖1‖6‖

s

((
r(6)
n

)(s−1)/2

∨

(
r(6)
n

)s−1/2

∨

(
t

n

)(s−1)/2

∨

(
t

n

)s−1/2)√
t

n
.

(3.17)

Proof. It easily follows from Lemma 3 that Assumption 2 is satisfied for s ∈ [1, 2] with
Lg,s = 2s+1

‖f ‖Bs
∞,1
‖B‖1. Therefore, Theorem 5 implies (3.17). ut

In what follows, we need a more general version of the bound of Theorem 5 (under
somewhat more general conditions than in Assumption 2).

Assumption 3. Assume that, for all 6 ∈ C+(H) and H,H ′ ∈ Bsa(H),

|Sg(6;H
′)− Sg(6;H)| ≤ η(6; ‖H‖ ∨ ‖H

′
‖)‖H ′ −H‖,

where 0 < δ 7→ η(6; δ) is a nondecreasing function of the following form:

η(6; δ) := η1(6)δ
α1 ∨ · · · ∨ ηm(6)δ

αm

for given nonnegative functions η1, . . . , ηm on C+(H) and positive numbers α1, . . . , αm.

The proof of the following result is a simple modification of the proof of Theorem 5.
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Theorem 6. Suppose Assumption 3 holds. Then for all t ≥ 1, with probability at least
1− e−t ,

|Sg(6; 6̂ −6)− ESg(6; 6̂ −6)|

.η η(6; δn(6; t))(
√
‖6‖ +

√
δn(6; t))

√
‖6‖

√
t/n, (3.18)

where

δn(6; t) := ‖6‖

(√
r(6)
n
∨

r(6)
n
∨

√
t

n
∨
t

n

)
. (3.19)

4. Normal approximation bounds for plug-in estimators

Let g : Bsa(H) → R be a Fréchet differentiable function with respect to the operator
norm with derivative Dg(A;H), H ∈ Bsa(H). Recall that for H ∈ Csa(H) we have
Dg(A;H) = 〈Dg(A),H 〉, where Dg(A) ∈ S1. Denote

Dg(6) := 61/2Dg(6)61/2.

The following theorem is the main result of this section.

Theorem 7. Suppose Assumption 2 holds for some s ∈ (1, 2] and also that r(6) ≤ n.
Define

γs(g;6) := log
(
Lg,s‖6‖

s

‖Dg(6)‖2

)
, tn,s(g;6) :=

[
−γs(g;6)+

s−1
2

log
(

n

r(6)

)]
∨1.

Then

sup
x∈R

∣∣∣∣P{n1/2(g(6̂)− Eg(6̂))
√

2‖Dg(6)‖2
≤ x

}
−8(x)

∣∣∣∣ .s (‖Dg(6)‖3‖Dg(6)‖2

)3 1
√
n

+
Lg,s‖6‖

s

‖Dg(6)‖2

((
r(6)
n

)(s−1)/2

∨

(
tn,s(g;6)

n

)(s−1)/2

∨

(
tn,s(g;6)

n

)s−1/2)√
tn,s(g;6).

(4.1)

Proof. Note that

g(6̂)− g(6) = 〈Dg(6), 6̂ −6〉 + Sg(6; 6̂ −6),

and since E〈Dg(6), 6̂ −6〉 = 0, we have

Eg(6̂)− g(6) = Sg(6; 6̂ −6)− ESg(6; 6̂ −6),

implying that

g(6̂)− Eg(6̂) = 〈Dg(6), 6̂ −6〉 + Sg(6; 6̂ −6)− ESg(6; 6̂ −6). (4.2)
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The linear term

〈Dg(6), 6̂ −6〉 = n−1
n∑
j=1

〈Dg(6)Xj , Xj 〉 − E〈Dg(6)X,X〉 (4.3)

is the sum of i.i.d. random variables and it will be approximated by a normal distribution.
We will need the following simple lemma.

Lemma 8. Let A ∈ S1 be a self-adjoint trace class operator. Denote by λj , j ≥ 1,
the eigenvalues of the operator 61/2A61/2 (repeated with their multiplicities and, to be
specific, such that their absolute values are arranged in nonincreasing order). Then

〈AX,X〉
d
=

∑
k≥1

λkZ
2
k ,

where Z1, Z2, . . . are i.i.d. standard normal random variables.

Proof. First assume that 6 is a finite rank operator, or equivalently that X takes values
in a finite-dimensional subspace L of H. In this case, X = 61/2Z, where Z is a standard
normal vector in L. Therefore,

〈AX,X〉 = 〈A61/2Z,61/2Z〉 = 〈61/2A61/2Z,Z〉 =
∑
k≥1

λkZ
2
k ,

where {Zk} are the coordinates of Z in the basis of eigenvectors of 61/2A61/2.
In the infinite-dimensional case the result follows by standard finite-dimensional ap-

proximation. ut

Note that E〈AX,X〉 =
∑
k≥1 λk = tr(61/2A61/2) and

Var(〈AX,X〉) =
∑
k≥1

λ2
kE(Z

2
k − 1)2 = 2

∑
k≥1

λ2
k = 2‖61/2A61/2

‖
2
2.

The following result immediately follows from the Berry–Esseen bound (see [Pet,
Chapter 5, Theorem 3]; an extension of the inequality to infinite sums of independent r.v.
is based on a straightforward approximation argument).

Lemma 9. The following bound holds:

sup
x∈R

∣∣∣∣P{n1/2
〈Dg(6), 6̂ −6〉
√

2‖Dg(6)‖2
≤ x

}
−8(x)

∣∣∣∣ . (
‖Dg(6)‖3
‖Dg(6)‖2

)3 1
√
n
.

Proof. Indeed, by (4.3) and Lemma 8 with A = Dg(6),

n1/2
〈Dg(6), 6̂ −6〉
√

2 ‖Dg(6)‖2
d
=

∑n
j=1

∑
k≥1 λk(Z

2
k,j − 1)

Var1/2(
∑n
j=1

∑
k≥1 λk(Z

2
k,j − 1))

, (4.4)
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where {Zk,j } are i.i.d. standard normal random variables. By the Berry–Esseen bound,

sup
x∈R

∣∣∣∣P{
∑n
j=1

∑
k≥1 λk(Z

2
k,j − 1)

Var1/2(
∑n
j=1

∑
k≥1 λk(Z

2
k,j − 1))

}
−8(x)

∣∣∣∣
.

∑n
j=1

∑
k≥1 |λk|

3E|Z2
k,j − 1|3

(
∑n
j=1

∑
k≥1 λ

2
kE(Z

2
k,j − 1)2)3/2

.

∑
k≥1 |λk|

3

(
∑
k≥1 λ

2
k)

3/2

1
√
n
.

(
‖Dg(6)‖3
‖Dg(6)‖2

)3 1
√
n
. ut

Finally, the following lemma will be used.

Lemma 10. For random variables ξ, η, denote

1(ξ, η) := sup
x∈R
|P{ξ ≤ x} − P{η ≤ x}|, δ(ξ, η) := inf

δ>0
[P{|ξ − η| ≥ δ} + δ].

Then, for a standard normal random variable Z, 1(ξ, Z) ≤ 1(η,Z)+ δ(ξ, η).

Proof. For all x ∈ R and δ > 0,

P{ξ ≤ x} ≤ P{ξ ≤ x, |ξ − η| < δ} + P{|ξ − η| ≥ δ}
≤ P{η ≤ x + δ} + P{|ξ − η| ≥ δ}
≤ P{Z ≤ x + δ} +1(η,Z)+ P{|ξ − η| ≥ δ}
≤ P{Z ≤ x} + δ +1(η,Z)+ P{|ξ − η| ≥ δ},

where we use the trivial bound P{Z ≤ x + δ} − P{Z ≤ x} ≤ δ. Thus,

P{ξ ≤ x} − P{Z ≤ x} ≤ 1(η,Z)+ P{|ξ − η| ≥ δ} + δ.

Similarly,
P{ξ ≤ x} − P{Z ≤ x} ≥ −1(η,Z)− P{|ξ − η| ≥ δ} − δ,

implying that1(ξ, Z) ≤ 1(η,Z)+P{|ξ −η| ≥ δ}+ δ for all δ > 0. Taking the infimum
over δ > 0 yields the claim of the lemma. ut

We apply the last lemma to the random variables

ξ :=
n1/2(g(6̂)− Eg(6̂))
√

2 ‖Dg(6)‖2
and η :=

n1/2
〈Dg(6), 6̂ −6〉
√

2 ‖Dg(6)‖2
.

By (4.2),

ξ − η =
n1/2(Sg(6; 6̂ −6)− ESg(6; 6̂ −6))

√
2 ‖Dg(6)‖2

.

Recall that Assumption 2 holds and r(6) ≤ n, and denote

δn,s(g;6; t) := KsLg,s
‖6‖s

√
2 ‖Dg(6)‖2

((
r(6)
n

)(s−1)/2

∨

(
t

n

)(s−1)/2

∨

(
t

n

)s−1/2)√
t .

It immediately follows from Theorem 5 that P{|ξ − η| ≥ δn,s(g;6; t)} ≤ e−t for t ≥ 1,
and

δ(ξ, η) ≤ inf
t≥1
[δn,s(g;6; t)+ e

−t
].
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It follows from Lemmas 9 and 10 that, for some C > 0,

sup
x∈R

∣∣∣∣P{n1/2(g(6̂)− Eg(6̂))
√

2 ‖Dg(6)‖2
≤ x

}
−8(x)

∣∣∣∣
≤ C

(
‖Dg(6)‖3
‖Dg(6)‖2

)3 1
√
n
+ inf
t≥1
[δn,s(g;6; t)+ e

−t
]. (4.5)

Recall that γs(g;6) = log
( Lg,s‖6‖s
‖Dg(6)‖2

)
and

tn,s(g;6) =

[
−γs(g;6)+

s − 1
2

log
(

n

r(6)

)]
∨ 1.

Let t̄ := tn,s(g;6). Then

e−t̄ ≤ Lg,s
‖6‖s

√
t̄

√
2 ‖Dg(6)‖2

(
r(6)
n

)(s−1)/2

.s δn,s(g;6; t̄ ).

Therefore,

inf
t≥1
[δn,s(g;6; t)+ e

−t
] .s δn,s(g;6; t̄ ) .s

Lg,s‖6‖
s

‖Dg(6)‖2

((
r(6)
n

)(s−1)/2

∨

(
tn,s(g;6)

n

)(s−1)/2

∨

(
tn,s(g;6)

n

)s−1/2)√
tn,s(g;6).

Substituting this into (4.5) completes the proof of Theorem 7. ut

Our main example of interest is the functional g(A) := 〈f (A), B〉 for A ∈ Bsa(H),
where f is a smooth function and B ∈ S1(H) is a nuclear operator. If f ∈ B1

∞,1(R),
then the function A 7→ f (A) is operator differentiable, implying the differentiability
of the functional A 7→ g(A) with derivative Dg(A;H) = 〈Df (A;H),B〉 for A,H ∈
Bsa(H). Moreover, for A = 6 with spectral decomposition 6 =

∑
λ∈σ(6) λPλ, formula

(2.20) holds, implying that Csa(H) 3 H 7→ Df (6;H) = Df (6)H ∈ Bsa(H) is a
symmetric operator: 〈Df (6)H1, H2〉 = 〈H1,Df (6)H2〉 for H1 ∈ Csa(H) and H2 ∈

S1(H). Therefore,

Dg(6;H) = 〈Df (6;B),H 〉, H ∈ Csa(H),

or, in other words, Dg(6) = Df (6;B). Denote

σf (6;B) :=
√

2 ‖61/2Df (6;B)61/2
‖2, µ

(3)
f (6;B) = ‖61/2Df (6;B)61/2

‖3.

The following result is a simple consequence of Theorem 7 and Corollary 3.
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Corollary 4. Let f ∈ Bs
∞,1(R) for some s ∈ (1, 2]. Define

γs(f ;6) := log
(2s+3/2

‖f ‖Bs
∞,1
‖B‖1‖6‖

s

σf (6;B)

)
,

tn,s(f ;6) :=

[
−γs(f ;6)+

s − 1
2

log
(

n

r(6)

)]
∨ 1.

Then

sup
x∈R

∣∣∣∣P{n1/2
〈f (6̂)− Ef (6̂)), B〉

σf (6,B)
≤ x

}
−8(x)

∣∣∣∣
.s 1

(s)
n (f ;6;B) :=

(
µ
(3)
f (6;B)

σf (6;B)

)3 1
√
n

+

‖f ‖Bs
∞,1
‖B‖1‖6‖

s

σf (6;B)

((
r(6)
n

)(s−1)/2

∨

(
tn,s(f ;6)

n

)(s−1)/2

∨

(
tn,s(f ;6)

n

)s−1/2)
×
√
tn,s(f ;6). (4.6)

We will now prove Theorem 2 and Corollary 1 from Section 1.

Proof of Theorem 2 and Corollary 1. The proof of (1.7) immediately follows from (4.6).
It is also easy to prove (1.8) using (1.7), the bound on the bias

‖E6f (6̂)− f (6)‖ = ‖E6Sf (6; 6̂ −6)‖ . ‖f ‖Bs
∞,1

E‖6̂ −6‖s

. ‖f ‖Bs
∞,1
‖6‖s(r(6)/n)s/2, (4.7)

and Lemma 10.
The proof of (1.9) is a bit more involved and requires a few more lemmas. The fol-

lowing fact is well known (it follows, e.g., from [Ver, Proposition 5.16]).

Lemma 11. Let {ξi} be i.i.d. standard normal random variables and let {γi} be real num-
bers. Then for all t ≥ 0, with probability at least 1− e−t ,∣∣∣∑

i≥1

γi(ξ
2
i − 1)

∣∣∣ . (∑
i≥1

γ 2
i

)1/2√
t ∨ sup

i≥1
|γi |t.

Lemma 12. If f ∈ Bs
∞,1(R) for some s ∈ (1, 2] and r(6) ≤ n, then for all t ≥ 1, with

probability at least 1− e−t ,∣∣∣∣n1/2
〈f (6̂)− f (6), B〉

σf (6;B)

∣∣∣∣
.s

(
‖f ‖Bs

∞,1
‖B‖1‖6‖

s

σf (6;B)
∨
‖f ‖L∞‖B‖1

σf (6;B)
∨ 1

)(
√
t ∨

(r(6))s/2

n(s−1)/2

)
. (4.8)

Proof. Recall that

〈f (6̂)− Ef (6̂), B〉 = 〈Df (6; 6̂ −6),B〉 + 〈Sf (6; 6̂ −6)− ESf (6; 6̂ −6),B〉.
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It follows from (4.4) that

n1/2
〈Df (6; 6̂ −6),B〉

σf (6;B)

d
=

∑n
j=1

∑
k≥1 λk(Z

2
k,j − 1)

Var1/2(
∑n
j=1

∑
k≥1 λk(Z

2
k,j − 1))

, (4.9)

where the Zk,j are i.i.d. standard normal r.v.’s and the λk are the eigenvalues (repeated
with their multiplicities) of 61/2Df (6;B)61/2. Using Lemma 11, we easily see that for
all t ≥ 1, with probability at least 1− e−t ,∣∣∣∣n1/2

〈Df (6; 6̂ −6),B〉

σf (6;B)

∣∣∣∣ . √t ∨ t
√
n
. (4.10)

To control 〈Sf (6; 6̂−6)−ESf (6; 6̂−6),B〉, we use the bound (3.17) to deduce that
for all t ≥ 1, with probability at least 1− e−t ,

|〈Sf (6; 6̂ −6)− ESf (6; 6̂ −6),B〉|

.s ‖f ‖Bs
∞,1
‖B‖1‖6‖

s

((
r(6)
n

)(s−1)/2

∨

(
r(6)
n

)s−1/2

∨

(
t

n

)(s−1)/2

∨

(
t

n

)s−1/2)√
t

n
.

(4.11)

If r(6) ≤ n and t ≤ n, the bounds (4.10), (4.11) and (4.7) easily imply that with proba-
bility at least 1− e−t ,∣∣∣∣n1/2

〈f (6̂)− f (6), B〉

σf (6;B)

∣∣∣∣ .s (‖f ‖Bs∞,1‖B‖1‖6‖sσf (6;B)
∨ 1

)(
√
t ∨

(r(6))s/2

n(s−1)/2

)
. (4.12)

Note also that, for all t > n,∣∣∣∣n1/2
〈f (6̂)− f (6), B〉

σf (6;B)

∣∣∣∣ ≤ 2‖f ‖L∞‖B‖1
σf (6;B)

√
t . (4.13)

The result immediately follows from (4.12) and (4.13). ut

Lemma 13. Let ` be a loss function satisfying Assumption 1. For any random variables
ξ, η and for all A > 0,

|E`(ξ)− E`(η)| ≤ 4`(A)1(ξ ; η)+ E`(ξ)I (|ξ | ≥ A)+ E`(η)I (|η| ≥ A).

Proof. Clearly,

|E`(ξ)− E`(η)| ≤ |E`(ξ)I (|ξ | < A)− E`(η)I (|η| < A)|

+ E`(ξ)I (|ξ | ≥ A)+ E`(η)I (|η| ≥ A). (4.14)
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Denoting by Fξ , Fη the distribution functions of ξ, η, assuming that A is a continuity
point of both Fξ and Fη and using integration by parts, we get

|E`(ξ)I (|ξ | < A)− E`(η)I (|η| < A)| =

∣∣∣∣∫ A

−A

`(x) d(Fξ − Fη)(x)

∣∣∣∣
=

∣∣∣∣`(A)(Fξ − Fη)(A)− `(−A)(Fξ − Fη)(−A)− ∫ A

−A

(Fξ − Fη)(x)`
′(x) dx

∣∣∣∣.
Using the properties of ` (in particular, that ` is an even function and `′ is nonnegative
and nondecreasing on R+), we get

|E`(ξ)I (|ξ | < A)− E`(η)I (|η| < A)| ≤ 2`(A)1(ξ ; η)+ 2
∫ A

0
`′(u) du1(ξ, η)

= 4`(A)1(ξ, η),

which together with (4.14) implies the claim. If A is not a continuity point of Fξ or Fη,
one can easily obtain the result by a limiting argument. ut

The following lemma is elementary.

Lemma 14. Let ξ be a random variable such that for some τ > 0 and for all t ≥ 1, with
probability at least 1− e−t ,

|ξ | ≤ τ
√
t . (4.15)

Let ` be a loss function satisfying Assumption 1. Then

E`2(ξ) ≤ 2e
√

2π c2
1e

2c2
2τ

2
. (4.16)

We now apply Lemmas 13 and 14 to the r.v.’s

ξ := ξ(6) :=

√
n(〈f (6̂), B〉 − 〈f (6), B〉)

σf (6;B)

and η := Z. The bound (4.8) and Lemma 14 along with the fact that under the conditions

of the theorem (r(6))s/2
n(s−1)/2 ≤

r
s/2
n

n(s−1)/2 ≤ 1 (for large enough n) imply that (4.15) and (4.16)
hold with

τ :=
‖f ‖Bs

∞,1
‖B‖1‖6‖

s

σf (6;B)
∨

2‖f ‖L∞‖B‖1
σf (6;B)

∨ 1.

It follows from the bound of Lemma 13 that

|E`(ξ)− E`(Z)| ≤ 4`(A)1(ξ ;Z)+ E1/2`2(ξ)P1/2
{|ξ | ≥ A}

+ E1/2`2(Z)P1/2
{|Z| ≥ A}. (4.17)
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Using (4.16), standard bounds on E`2(Z), P{|Z| ≥ A} and the bound of Corollary 4, we
get

|E`(ξ)− E`(Z)|

.s 4c2
1e

2c2A
2
1(s)n (f ;6;B)+

√
2e (2π)1/4c1e

c2
2τ

2
e−A

2/(2τ 2)
+ c1e

c2
2e−A

2/4.

To complete the proof of (1.9), it remains to take the supremum over the class of covari-
ances G(rn; a) ∩ {6 : σf (6;B) ≥ σ0} and over all the operators B with ‖B‖1 ≤ 1, and
to pass to the limit first as n→∞ and then as A→∞. ut

5. Wishart operators, bootstrap chains, invariant functions and bias reduction

In what follows, we assume that H is a finite-dimensional inner product space of dimen-
sion d . Recall that C+(H) ⊂ Bsa(H) denotes the cone of covariance operators in H and
let L∞(C+(H)) be the space of uniformly bounded Borel measurable functions on C+(H)
equipped with the uniform norm. Define an operator T : L∞(C+(H))→ L∞(C+(H)):

T g(6) = E6g(6̂), 6 ∈ C+(H), (5.1)

where 6̂ = 6̂n := n−1∑n
j=1Xj ⊗ Xj is the sample covariance operator based on i.i.d.

observations X1, . . . , Xn sampled from N(0;6). Let P(6; ·) denote the probability dis-
tribution of 6̂ in the space C+(H) (equipped with its Borel σ -algebra B(C+(H))). Note
that P(6; n−1A) for A ∈ B(C+(H)) is a Wishart distribution Wd(6; n). Clearly, P is a
Markov kernel,

T g(6) =
∫
C+(H)

g(V )P (6; dV ), g ∈ L∞(C+(H)),

and T is a contraction: ‖T g‖L∞ ≤ ‖g‖L∞ .
Let 6̂0

:= 6, 6̂(1) := 6̂ and, more generally, given 6̂(k), define 6̂(k+1) as the sample
covariance based on n i.i.d. observations X(k)1 , . . . , X

(k)
n sampled from N(0; 6̂(k)). Then

6̂(k), k ≥ 0, is a homogeneous Markov chain with values in C+(H), with 6̂(0) = 6 and
with transition probability kernel P . The operator T k can be represented as

T kg(6) = E6g(6̂(k))

=

∫
C+(H)
· · ·

∫
C+(H)

g(Vk)P (Vk−1; dVk)P (Vk−2; dVk−1) . . . P (V1; dV2)P (6; dV1)

for 6 ∈ C+(H). We will be interested in the operator B = T − I, which can be called
the bias operator since Bg(6) represents the bias of the plug-in estimator g(6̂) of g(6):

Bg(6) = E6g(6̂)− g(6), 6 ∈ C+(H).
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Note that, by Newton’s binomial formula, Bkg(6) can be represented as

Bkg(6) = (T − I)kg(6) =
k∑

j=0

(−1)k−j
(
k

j

)
T jg(6)

= E6
k∑

j=0

(−1)k−j
(
k

j

)
g(6̂(j)), (5.2)

which could be viewed as the expectation of the k-th order difference of g along the
sample path of the Markov chain 6̂(t), t = 0, 1, . . . .

Denote

gk(6) :=

k∑
j=0

(−1)jBjg(6), 6 ∈ C+(H). (5.3)

Proposition 1. The bias of the estimator gk(6̂) of g(6) is

E6gk(6̂)− g(6) = (−1)kBk+1g(6).

Proof. Indeed,

E6gk(6̂)− g(6) = T gk(6)− g(6) = (I + B)gk(6)− g(6)

=

k∑
j=0

(−1)jBjg(6)−
k+1∑
j=1

(−1)jBjg(6)− g(6) = (−1)kBk+1g(6). ut

Let now L∞(C+(H);Bsa(H)) be the space of uniformly bounded Borel measurable func-
tions g : C+(H)→ Bsa(H). We will need a version of the linear operator defined by (5.1)
acting from L∞(C+(H);Bsa(H)) into itself. With a little abuse of notation, we still denote
it by T and also set B := T − I. These operators have all the properties stated above.
This allows one to define by (5.3) an operator valued function gk for which Proposition 1
still holds. In what follows, it should be clear from the context whether T and B act on
real valued or on operator valued functions.

Given a smooth function f on the real line, we would like to find an estimator of
f (6) with a small bias. To this end, we consider an estimator fk(6̂) and, in view of
Proposition 1, we need to show that, for a proper choice of k (depending on α such that
d = dim(H) ≤ nα),

‖E6fk(6̂)− f (6)‖ = ‖Bk+1f (6)‖ = o(n−1/2).

At the same time, we need to show that fk satisfies certain smoothness properties
such as Assumption 3. As a consequence, the (properly normalized) random variables
n1/2(〈fk(6̂), B〉−E6〈fk(6̂), B〉)would be close in distribution to a standard normal r.v..
Since, in addition, the bias E6〈fk(6̂), B〉 − 〈f (6), B〉 is of order o(n−1/2), we would
be able to conclude that 〈fk(6̂), B〉 is an asymptotically normal estimator of 〈f (6), B〉
with the classical convergence rate n−1/2.
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Our approach is based on representing the operator valued function fk(6) as fk(6) =
Dgk(6), where g : C+(H)→ R is a real valued orthogonally invariant function and D is
a differential operator defined below and called the lifting operator. This approach allows
us to derive certain integral representations for functions Bkf (6) = DBkg(6) that are
then used to obtain proper bounds on Bkf (6) and to study smoothness properties of
Bkf (6) and fk(6).

A function g ∈ L∞(C+(H)) is orthogonally invariant iff for all orthogonal transfor-
mations U of H, g(U6U−1) = g(6) for 6 ∈ C+(H). Note that any such g could be rep-
resented as g(6) = ϕ(λ1(6), . . . , λd(6)), where λ1(6) ≥ · · · λd(6) are the eigenvalues
of6 and ϕ is a symmetric function of d variables. A typical example is g(6) = tr(ψ(6))
for a function ψ of a real variable. Let LO∞(C+(H)) be the space of all orthogonally in-
variant functions from L∞(C+(H)). Clearly, the orthogonally invariant functions form an
algebra. We will need several facts concerning the properties of the operators T ,B as
well as the lifting operator D on the space of orthogonally invariant functions. In the case
of orthogonally invariant polynomials, similar properties can be found in the literature on
Wishart distribution (see, e.g., [FK, LetMas]).

Proposition 2. If g ∈ LO∞(C+(H)), then T g ∈ LO∞(C+(H)) and Bg ∈ LO∞(C+(H)).
Proof. Indeed, the transformation 6 7→ U6U−1 is a bijection of C+(H),

T g(U6U−1) = EU6U−1g(6̂) = E6g(U6̂U−1) = E6g(6̂) = T g(6),

and the function T g is uniformly bounded. ut

An operator valued function g : C+(H) → Bsa(H) is called orthogonally equivariant if
for all orthogonal transformations U , g(U6U−1) = Ug(6)U−1 for 6 ∈ C+(H).

We say that g : C+(H)→ Bsa(H) is differentiable (resp., continuously differentiable,
k times continuously differentiable, etc.) on C+(H) if there exists a uniformly bounded,
Lipschitz (with respect to the operator norm) and differentiable (resp., continuously dif-
ferentiable, k times continuously differentiable, etc.) extension of g to an open setG with
C+(H) ⊂ G ⊂ Bsa(H). Note that g could be further extended from G to a uniformly
bounded Lipschitz (with respect to the operator norm) function on Bsa(H), which will be
still denoted by g.

Proposition 3. If g : C+(H) → R is orthogonally invariant and continuously differen-
tiable on C+(H) with derivative Dg, then Dg is orthogonally equivariant.
Proof. First suppose that 6 is positive definite. Then, given H ∈ Bsa(H), 6 + tH is a
covariance operator for all small enough t . Thus, for all H ∈ Bsa(H),

〈Dg(U6U−1),H 〉 = lim
t→0

g(U6U−1
+ tH)− g(U6U−1)

t

= lim
t→0

g(U(6 + tU−1HU)U−1)− g(U6U−1)

t
= lim
t→0

g(6 + tU−1HU)− g(6)

t

= 〈Dg(6),U−1HU〉 = 〈UDg(6)U−1, H 〉,

implying
Dg(U6U−1) = UDg(6)U−1. (5.4)
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It remains to observe that the positive definite covariance operators are dense in C+(H)
and to extend (5.4) to C+(H) by continuity. ut

We now define the differential operator

Dg(6) := 61/2Dg(6)61/2

acting on continuously differentiable functions on C+(H). It will be called the lifting
operator. We will show that the operators T and D commute (and, as a consequence, B
and D also commute).

Proposition 4. Suppose d <
∼
n. For all functions g ∈ LO∞(C+(H)) that are continuously

differentiable on C+(H) with a uniformly bounded derivative Dg and for all 6 ∈ C+(H),

DT g(6) = T Dg(6) and DBg(6) = BDg(6).

Proof. Note that 6̂ d
= 61/2W61/2, where W is the sample covariance based on i.i.d.

standard normal random variables Z1, . . . , Zn in H (which is a rescaled Wishart matrix).
Let 61/2W 1/2

= RU be the polar decomposition of 61/2W 1/2 with positive semidefi-
nite R and orthogonal U . Then

6̂ = 61/2W61/2
= 61/2W 1/2W 1/261/2

= RUU−1R = R2

and

W 1/26W 1/2
= W 1/261/261/2W 1/2

= U−1RRU = U−1R2U = U−161/2W61/2U

= U−16̂U.

Since g is orthogonally invariant, we have

T g(6) = E6g(6̂) = Eg(61/2W61/2) = Eg(W 1/26W 1/2), 6 ∈ C+(H). (5.5)

Since we extended g to a uniformly bounded function on Bsa(H), the right hand side of
(5.5) is well defined for all 6 ∈ Bsa(H), and it will be used to extend T g(6) to Bsa(H).
Moreover, since g is Lipschitz with respect to the operator norm, and for d . n, E‖W‖ ≤
1+E‖W − I‖ ≤ 1+C

√
d/n . 1 (see (1.6)), it is easy to check that T g(6) is Lipschitz

with respect to the operator norm on Bsa(H).
Let H ∈ Bsa(H) and 6t := 6 + tH for t > 0. Note that

T g(6t )− T g(6)
t

=
Eg(W 1/26tW

1/2)− Eg(W 1/26W 1/2)

t

= E
g(W 1/26tW

1/2)− g(W 1/26W 1/2)

t
I (‖W‖ ≤ 1/

√
t)

+ E
g(W 1/26tW

1/2)− g(W 1/26W 1/2)

t
I (‖W‖ > 1/

√
t). (5.6)

Recall that g is continuously differentiable on the open setG⊃C+(H). Also,W 1/26W 1/2

∈ C+(H) ⊂ G and W 1/26tW
1/2
∈ G for all small enough t > 0. The last fact follows
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from the bound ‖W 1/2(6t − 6)W
1/2
‖ ≤ ‖W‖t‖H‖ ≤

√
t ‖H‖, which holds for all

t ≤ 1/‖W‖2 (or ‖W‖ ≤ 1/
√
t). Therefore, we easily get

lim
t→0

g(W 1/26tW
1/2)− g(W 1/26W 1/2)

t
I (‖W‖ ≤ 1/

√
t)

= 〈Dg(W 1/26W 1/2),W 1/2HW 1/2
〉 = 〈W 1/2Dg(W 1/26W 1/2)W 1/2, H 〉.

Also, since g is Lipschitz with respect to the operator norm,∣∣∣∣g(W 1/26tW
1/2)− g(W 1/26W 1/2)

t
I (‖W‖ ≤ 1/

√
t)

∣∣∣∣
.g
‖W 1/2(6t −6)W

1/2
‖

t
≤
‖W‖ ‖6t −6‖

t
≤ ‖W‖ ‖H‖.

Since E‖W‖ . 1, we can use Lebesgue’s dominated convergence theorem to prove that

lim
t→0

E
g(W 1/26tW

1/2)− g(W 1/26W 1/2)

t
I (‖W‖ ≤ 1/

√
t)

= E〈W 1/2Dg(W 1/26W 1/2)W 1/2, H 〉 = 〈EW 1/2Dg(W 1/26W 1/2)W 1/2, H 〉. (5.7)

On the other hand, since g is uniformly bounded, we can use the bound (1.6) to prove that
for some constant C > 0 and for all t ≤ 1/C2,

E
∣∣∣∣g(W 1/26tW

1/2)− g(W 1/26W 1/2)

t
I (‖W‖ > 1/

√
t)

∣∣∣∣
.g

1
t
P{‖W‖ ≥ 1/

√
t} ≤

1
t

exp
{
−

n

C
√
t

}
→ 0 as t → 0. (5.8)

It follows from (5.6)–(5.8) that

〈DT g(6),H 〉 = 〈EW 1/2Dg(W 1/26W 1/2)W 1/2, H 〉.

It is also easy to check that EW 1/2Dg(W 1/26W 1/2)W 1/2 is a continuous function on G,
implying that T g is continuously differentiable on G with Fréchet derivative

DT g(6) = EW 1/2Dg(W 1/26W 1/2)W 1/2.

Since W 1/26W 1/2
= U−16̂U and Dg is an orthogonally equivariant function (see

Proposition 3), we get Dg(W 1/26W 1/2) = U−1Dg(6̂)U. Therefore,

DT g(6)
= 61/2DT g(6)61/2

= 61/2E(W 1/2Dg(W 1/26W 1/2)W 1/2)61/2

= E(61/2W 1/2Dg(W 1/26W 1/2)W 1/261/2) = E(61/2W 1/2U−1Dg(6̂)UW 1/261/2)

= E(RUU−1Dg(6̂)UU−1R) = E(RDg(6̂)R) = E6(6̂1/2Dg(6̂)6̂1/2)

= E6Dg(6̂) = T Dg(6).

A similar relationship for B and D follows easily. ut
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We will now derive useful representations of the operators T k and Bk and prove that they
also commute with the differential operator D.

Proposition 5. Suppose d . n. Let W1, . . . ,Wk, . . . be i.i.d. copies of W.5 Then, for all
g ∈ LO∞(C+(H)) and for all k ≥ 1,

T kg(6) = Eg(W 1/2
k . . .W

1/2
1 6W

1/2
1 . . .W

1/2
k ) (5.9)

and
Bkg(6) = E

∑
I⊂{1,...,k}

(−1)k−|I |g(A∗I6AI ), (5.10)

where AI :=
∏
i∈I W

1/2
i . Suppose, in addition, that g is continuously differentiable on

C+(H) with a uniformly bounded derivative Dg. Then

DBkg(6) = E
∑

I⊂{1,...,k}

(−1)k−|I |AIDg(A∗I6AI )A
∗

I , (5.11)

and, for all 6 ∈ C+(H),

DT kg(6) = T kDg(6) and DBkg(6) = BkDg(6). (5.12)

Finally,

BkDg(6) = DBkg(6) = E
( ∑
I⊂{1,...,k}

(−1)k−|I |61/2AIDg(A
∗

I6AI )A
∗

I6
1/2
)
. (5.13)

Proof. Since 6̂ d
= 61/2W61/2, W 1/26W 1/2

= U−161/2W61/2U , where U is an or-
thogonal operator, and g is orthogonally invariant, we have

T g(6) = E6g(6̂) = Eg(W 1/26W 1/2) (5.14)

(which has already been used in the proof of Proposition 4).
By Proposition 2, orthogonal invariance of g implies the same property of T g and, by

induction, of T kg for all k ≥ 1. Then, also by induction, it follows from (5.14) that

T kg(6) = Eg(W 1/2
k . . .W

1/2
1 6W

1/2
1 . . .W

1/2
k ).

If I ⊂ {1, . . . , k} with |I | = card(I ) = j and AI =
∏
i∈I W

1/2
i , this clearly implies that

T jg(6) = Eg(A∗I6AI ).

In view of (5.2), we easily see that (5.10) holds. If g is continuously differentiable on
C+(H) with a uniformly bounded derivative Dg, it follows from (5.10) that Bkg(6) is
continuously differentiable on C+(H) with Fréchet derivative given by (5.11). To prove
this, it is enough to justify differentiation under the expectation sign, which is done exactly

5 Recall that W is the sample covariance based on i.i.d. standard normal random variables
Z1, . . . , Zn in H.
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as in the proof of Proposition 4. Finally, it follows from (5.11) that the derivatives DBkg,
k ≥ 1, are uniformly bounded in C+(H). Similarly, as a consequence of (5.9) and the
properties of g, T kg(6) is continuously differentiable on C+(H) with uniformly bounded
derivativeDT kg for all k ≥ 1. Therefore, (5.12) follows from Proposition 4 by induction.
Formula (5.13) follows from (5.12) and (5.11). ut

Define the following functions providing the linear interpolation between the identity
operator I and the operators W 1/2

1 , . . . ,W
1/2
k :

Vj (tj ) := I + tj (W
1/2
j − I ), tj ∈ [0, 1], 1 ≤ j ≤ k.

Clearly, Vj (tj ) ∈ C+(H) for all j = 1, . . . , k and tj ∈ [0, 1]. Let

R = R(t1, . . . , tk) = V1(t1) . . . Vk(tk), L = L(t1, . . . , tk) = Vk(tk) . . . V1(t1) = R
∗.

Define

S = S(t1, . . . , tk) = L(t1, . . . , tk)6R(t1, . . . , tk), (t1, . . . , tk) ∈ [0, 1]k.

Finally, let

ϕ(t1, . . . , tk)

:= 61/2R(t1, . . . , tk)Dg(S(t1, . . . , tk))L(t1, . . . , tk)6
1/2, (t1, . . . , tk) ∈ [0, 1]k.

The following representation will play a crucial role in our further analysis.

Proposition 6. Suppose g ∈ LO∞(C+(H)) is k + 1 times continuously differentiable with
uniformly bounded derivatives Djg, j = 1, . . . , k + 1. Then the function ϕ is k times
continuously differentiable on [0, 1]k and

BkDg(6) = E
∫ 1

0
· · ·

∫ 1

0

∂kϕ(t1, . . . , tk)

∂t1 . . . ∂tk
dt1 . . . dtk, 6 ∈ C+(H). (5.15)

Proof. Given a function φ : [0, 1]k → R, define for 1 ≤ i ≤ k finite difference operators

Diφ(t1, . . . , tk) := φ(t1, . . . , ti−1, 1, ti+1, . . . , tk)− φ(t1, . . . , ti−1, 0, ti+1, . . . , tk)

(with obvious modifications for i = 1, k). Then D1 . . .Dkφ does not depend on t1, . . . , tk
and is given by the formula

D1 . . .Dkφ =
∑

(t1,...,tk)∈{0,1}k
(−1)k−(t1+···+tk)φ(t1, . . . , tk). (5.16)

It is well known and easy to check that if φ is k times continuously differentiable on
[0, 1]k , then

D1 . . .Dkφ =

∫ 1

0
· · ·

∫ 1

0

∂kφ(t1, . . . , tk)

∂t1 . . . ∂tk
dt1 . . . dtk. (5.17)

Similar definitions and formula (5.17) also hold for vector valued and operator valued
functions φ.
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It immediately follows from (5.13) and (5.16) that

BkDg(6) = ED1 . . .Dkϕ. (5.18)

Since Dg is k times continuously differentiable and the functions S(t1, . . . , tk) and
R(t1, . . . , tk) are polynomials with respect to t1, . . . , tk , the function ϕ is k times contin-
uously differentiable on [0, 1]k . The representation (5.15) follows from (5.18) and (5.17).

ut

6. Bounds on the iterated bias operator

Our goal in this section is to prove the following bound on the iterated bias operator
BkDg(6).
Theorem 8. Suppose g ∈ LO∞(C+(H)) is k + 1 times continuously differentiable with
uniformly bounded derivatives Djg, j = 1, . . . , k + 1. Suppose also that d ≤ n and
k ≤ n. Then for some constant C > 0 and for all 6 ∈ C+(H),

‖BkDg(6)‖ ≤ Ck
2

max
1≤j≤k+1

‖Djg‖L∞(‖6‖
k+1
∨ ‖6‖)

(
d

n
∨
k

n

)k/2
. (6.1)

It follows from the commutation relation (5.12) that

Dgk(6) = (Dg)k(6), 6 ∈ C+(H),
where gk is defined by (5.3) and

(Dg)k(6) :=
k∑

j=0

(−1)jBjDg(6), 6 ∈ C+(H).

Clearly, we have (see Proposition 1)

E6Dgk(6̂)−Dg(6) = (−1)kBk+1Dg(6). (6.2)

The bound (6.1) is needed, in particular, to control the bias of the estimator Dgk(6̂)
of Dg(6). Namely, we have the following corollary.

Corollary 5. Suppose that g ∈ LO∞(C+(H)) is k + 2 times continuously differentiable
with uniformly bounded derivatives Djg, j = 1, . . . , k + 2, and also d ≤ n, k + 1 ≤ n.
Then

‖E6Dgk(6̂)−Dg(6)‖

≤ C(k+1)2 max
1≤j≤k+2

‖Djg‖L∞(‖6‖
k+2
∨ ‖6‖)

(
d

n
∨
k + 1
n

)(k+1)/2

. (6.3)

If, in addition, k + 1 ≤ d ≤ n and, for some δ > 0,

k ≥
log d

log(n/d)
+ δ

(
1+

log d
log(n/d)

)
, (6.4)

then

‖E6Dgk(6̂)−Dg(6)‖≤C(k+1)2 max
1≤j≤k+2

‖Djg‖L∞(‖6‖
k+2
∨‖6‖)n−(1+δ)/2. (6.5)
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The proof of this corollary immediately follows from (6.2) and (6.1). If d = nα for some
α ∈ (0, 1), condition (6.4) becomes k ≥ α+δ

1−α . Thus, if

k(α, δ) := min
{
k ≥

α + δ

1− α

}
,

then the bound (6.5) holds with k = k(α, δ).

Remark 8. In Section 7, we will obtain a sharper bound on the bias of the estimator
Dgk(6̂) (under stronger smoothness assumptions, see Corollary 7).

The first step towards the proof of Theorem 8 is to compute the partial derivative ∂kϕ
∂t1...∂tk

,
which will allow us to use representation (5.15). To this end, we first derive formulas
for partial derivatives of the operator valued function h(S(t1, . . . , tk)), where h = Dg.
To simplify the notations, given T = {ti1 , . . . , tim} ⊂ {t1, . . . , tk}, we will write ∂T S
instead of ∂mS(t1,...,tk)

∂ti1 ...∂tim
(similarly, we use the notation ∂T h(S) for a partial derivative of a

function h(S)).
Let Dj,T be the set of all partitions (11, . . . ,1j ) of T ⊂ {t1, . . . , tk} with nonempty

sets 1i , i = 1, . . . , j (partitions with different order of 11, . . . ,1j are considered iden-
tical). For 1 = (11, . . . ,1j ) ∈ Dj,T , set ∂1S = (∂11S, . . . , ∂1j S). Denote DT :=⋃|T |
j=1 Dj,T . For 1 = (11, . . . ,1j ) ∈ DT , set j1 := j .

Lemma 15. Suppose, for some m ≤ k, h = Dg ∈ L∞(C+(H);Bsa(H)) is m times
continuously differentiable with derivatives Djh, j ≤ m.6 Then the function [0, 1]k 3
(t1, . . . , tk) 7→ h(S(t1, . . . , tk)) is m times continuously differentiable and for any T ⊂
{t1, . . . , tk} with |T | = m,

∂T h(S) =
∑
1∈DT

Dj1h(S)(∂1S) =

m∑
j=1

∑
1∈Dj,T

Djh(S)(∂1S). (6.6)

Proof. Since [0, 1]k 3 (t1, . . . , tk) 7→ S(t1, . . . , tk) is an operator valued polynomial
and h is m times continuously differentiable, the function [0, 1]k 3 (t1, . . . , tk) 7→

h(S(t1, . . . , tk)) is also m times continuously differentiable. We will now prove (6.6) by
induction on m. For m = 1, it reduces to

∂{ti }h(S) =
∂h(S)

∂ti
= Dh(S)

(
∂S

∂ti

)
,

which is true by the chain rule. Assume that (6.6) holds for some m < k and for any
T ⊂ {t1, . . . , tk} with |T | = m. Let T ′ = T ∪ {tl} for some tl 6∈ T . Then

∂T ′h(S) = ∂{tl}∂T h(S) =

m∑
j=1

∑
1∈Dj,T

∂{tl}D
jh(S)(∂1S). (6.7)

6 Recall that Djh is an operator valued symmetric j -linear form on the space Bsa(H).
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Given 1 = (11, . . . ,1j ) ∈ Dj,T , define partitions 1(i) ∈ Dj,T ′ , i = 1, . . . , j , as
follows:

1(1) := (11 ∪ {tl},12, . . . ,1j ), 1(2) := (11,12 ∪ {tl}, . . . ,1j ), . . . ,

1(j) := (11, . . . ,1j−1,1j ∪ {tl}).

Also define a partition 1̃ ∈ Dj+1,T ′ by 1̃ := (11, . . . ,1j , {tl}). It is easy to see that
any partition 1′ ∈ DT ′ is the image of a unique partition 1 ∈ DT under one of the
transformations 1 7→ 1(i), i = 1, . . . , j1, and 1 7→ 1̃. This implies that

DT ′ =
⋃
1∈DT

{1(1), . . . ,1(j1), 1̃}.

It easily follows from the chain rule and the product rule that

∂{tl}D
jh(S)(∂1S) =

j∑
i=1

Djh(S)(∂1(i)S)+D
j+1h(S)(∂1̃S).

Substituting this into (6.7) easily yields

∂T ′h(S) =

m+1∑
j=1

∑
1∈Dj,T ′

Djh(S)(∂1S). ut

Next we derive upper bounds on ‖∂T S‖, ‖∂TR‖ and ‖∂TL‖ for T ⊂ {t1, . . . , tk}. Denote
δi := ‖Wi − I‖, i = 1, . . . , k.

Lemma 16. For all T ⊂ {t1, . . . , tk},

‖∂TR‖ ≤
∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi), (6.8)

‖∂TL‖ ≤
∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi), (6.9)

‖∂T S‖ ≤ 2k‖6‖
∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2. (6.10)

Remark 9. The bounds of the lemma hold for T = ∅ with an obvious convention that in
this case

∏
ti∈T

ai = 1.

Proof of Lemma 16. Observe that ∂
∂ti
Vi(ti) = W

1/2
i − I. Let B0

i := Vi(ti) and B1
i :=

W
1/2
i − I . For R = V1(t1) . . . Vk(tk), we have ∂TR =

∏k
i=1 B

IT (ti )
i and

‖∂TR‖ ≤
∏
ti∈T

‖W
1/2
i − I‖

∏
ti 6∈T

‖Vi(ti)‖.
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Due to the elementary inequality |
√
x − 1| ≤ |x − 1|, x ≥ 0, we have ‖W 1/2

i − I‖ ≤

‖Wi − I‖ = δi and ‖Vi(ti)‖ ≤ 1+ ‖W 1/2
i − I‖ ≤ 1+ ‖Wi − I‖ = 1+ δi . Therefore,

‖∂TR‖ ≤
∏
ti∈T

δi
∏
ti 6∈T

(1+ δi) =
∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi),

which proves (6.8). Similarly, we have (6.9).
Note that, by the product rule,

∂T S = ∂T (L6R) =
∑
T ′⊂T

(∂T ′L)6(∂T \T ′R).

Therefore,

‖∂T S‖ ≤ ‖6‖
∑
T ′⊂T

‖∂T ′L‖‖∂T \T ′R‖

≤ ‖6‖
∑
T ′⊂T

∏
ti∈T

′

δi

1+ δi

∏
ti∈T \T

′

δi

1+ δi

k∏
i=1

(1+ δi)2 = 2k‖6‖
∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2,

proving (6.10). ut

Lemma 17. Suppose that, for some 0 ≤ m ≤ k, h = Dg ∈ L∞(C+(H);Bsa(H)) is m
times differentiable with uniformly bounded continuous derivatives Djh, j = 1, . . . , m.
Then for all T ⊂ {t1, . . . , tk} with |T | = m,

‖∂T h(S)‖ ≤ 2m(k+m+1) max
0≤j≤m

‖Djh‖L∞(‖6‖
m
∨1)

k∏
i=1

(1+δi)2m
∏
ti∈T

δi

1+ δi
. (6.11)

Proof. Assume that m ≥ 1 (for m = 0, the bound of the lemma is trivial). Let 1 =
(11, . . . ,1j ) ∈ Dj,T , j ≤ m. Note that

‖Djh(S)(∂11S, . . . , ∂1j S)‖ ≤ ‖D
jh(S)‖ ‖∂11S‖ . . . ‖∂1j S‖

≤ ‖Djh(S)‖2kj‖6‖j
j∏
l=1

∏
ti∈1l

δi

1+ δi

k∏
i=1

(1+ δi)2j

= ‖Djh(S)‖2kj‖6‖j
∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2j .

Using Lemma 15, we get

‖∂T h(S)‖ ≤

m∑
j=1

∑
1∈Dj,T

‖Djh(S)(∂1S)‖

≤

m∑
j=1

card(Dj,T )‖Djh(S)‖2kj‖6‖j
k∏
i=1

(1+ δi)2j
∏
ti∈T

δi

1+ δi
.
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Note that the number of all functions on T with values in {1, . . . , j} is equal to jm, and
clearly card(Dj,T ) ≤ jm. Therefore,

‖∂T h(S)‖ ≤

m∑
j=1

jm‖Djh(S)‖2kj‖6‖j
k∏
i=1

(1+ δi)2j
∏
ti∈T

δi

1+ δi

≤ mm+12km max
1≤j≤m

‖Djh‖L∞(‖6‖ ∨ ‖6‖
m)

k∏
i=1

(1+ δi)2m
∏
ti∈T

δi

1+ δi

≤ 2m(k+m+1) max
1≤j≤m

‖Djh‖L∞(‖6‖ ∨ ‖6‖
m)

k∏
i=1

(1+ δi)2m
∏
ti∈T

δi

1+ δi
, (6.12)

which easily implies (6.11). ut

Next we bound partial derivatives of the function 61/2Lh(S)R61/2 (with S =

S(t1, . . . , tk), L = L(t1, . . . , tk), R = R(t1, . . . , tk) and h = Dg).

Lemma 18. Assume that d ≤ n and k ≤ n. Suppose h = Dg ∈ L∞(C+(H);Bsa(H)) is
k times differentiable with uniformly bounded continuous derivatives Djh, j = 1, . . . , k.
Then

‖∂{t1,...,tk}6
1/2Rh(S)L61/2

‖

≤ 3k2k(2k+1) max
0≤j≤k

‖Djh‖L∞(‖6‖
k+1
∨ ‖6‖)

k∏
i=1

(1+ δi)2k+1δi . (6.13)

Proof. Note that

∂{t1,...,tk}6
1/2Rh(S)L61/2

=

∑
T1,T2,T3

(
61/2(∂T1R)(∂T2h(S))(∂T3L)6

1/2), (6.14)

where the sum is over all the partitions of the set {t1, . . . , tk} into disjoint subsets
T1, T2, T3. The number of such partitions is equal to 3k . We have

‖61/2(∂T1R)(∂T2h(S))(∂T3L)6
1/2
‖ ≤ ‖6‖ ‖∂T1L‖ ‖∂T2h(S)‖ ‖∂T3R‖. (6.15)

Assume |T1| = m1, |T2| = m2, |T3| = m3. It follows from Lemma 17 that

‖∂T2h(S)‖ ≤ 2m2(k+m2+1) max
0≤j≤m2

‖Djh‖L∞(‖6‖
m2 ∨ 1)

k∏
i=1

(1+ δi)2m2
∏
ti∈T2

δi

1+ δi
.

On the other hand, by (6.8) and (6.9), we have

‖∂T3R‖ ≤
∏
ti∈T3

δi

1+ δi

k∏
i=1

(1+ δi), ‖∂T1L‖ ≤
∏
ti∈T1

δi

1+ δi

k∏
i=1

(1+ δi).
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It follows from these bounds and (6.15) that

‖61/2(∂T1R)(∂T2h(S))(∂T3L)6
1/2
‖

≤ ‖6‖2m2(k+m2+1) max
0≤j≤m2

‖Djh‖L∞(‖6‖
m2 ∨ 1)

k∏
i=1

(1+ δi)2m2+2
∏

ti∈T1∪T2∪T3

δi

1+ δi

≤ 2k(2k+1) max
0≤j≤k

‖Djh‖L∞(‖6‖
k+1
∨ ‖6‖)

k∏
i=1

(1+ δi)2k+2
k∏
i=1

δi

1+ δi

= 2k(2k+1) max
0≤j≤k

‖Djh‖L∞(‖6‖
k+1
∨ ‖6‖)

k∏
i=1

(1+ δi)2k+1δi .

Since the number of terms in the sum on the right hand side of (6.14) is equal to 3k , we
easily see that (6.13) holds. ut

Proof of Theorem 8. We use the representation (5.15) to get

‖BkDg(6)‖ ≤
∫ 1

0
· · ·

∫ 1

0
E‖∂{t1,...,tk}6

1/2Rh(S)L61/2
‖ dt1 . . . dtk. (6.16)

Using the bounds (6.13) yields

‖BkDg(6)‖ ≤ 3k2k(2k+1) max
0≤j≤k

‖Djh‖L∞(‖6‖
k+1
∨‖6‖)E

k∏
i=1

(1+δi)2k+1δi . (6.17)

Note that

E
k∏
i=1

(1+ δi)2k+1δi =

k∏
i=1

E(1+ δi)2k+1δi =
(
E(1+ ‖W − I‖)2k+1

‖W − I‖
)k

and

E(1+ ‖W − I‖)2k+1
‖W − I‖ = 22k+1E

(
1+ ‖W − I‖

2

)2k+1

‖W − I‖

≤ 22k+1E
1+ ‖W − I‖2k+1

2
‖W − I‖ = 22k(E‖W − I‖ + E‖W − I‖2k+2).

Using the bound (1.5), we find that with some constant C1 ≥ 1,

E‖W − I‖ ≤ E1/(2k+2)
‖W − I‖2k+2

≤ C1

(√
d

n
∨

√
k

n

)
,

which implies that

E(1+ ‖W − I‖)2k+1
‖W − I‖ ≤ 22k

[
C1

(√
d

n
∨

√
k

n

)
+ C2k+2

1

(
d

n
∨
k

n

)k+1]
≤ 22kC2k+2

1

(√
d

n
∨

√
k

n

)
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and

E
k∏
i=1

(1+ δi)2k+1δi ≤ 22k2
C2k2

+2k
1

(
d

n
∨
k

n

)k/2
. (6.18)

We substitute this bound into (6.17) to get

‖BkDg(6)‖ ≤ 3k24k2
+kC2k2

+2k
1 max

0≤j≤k
‖Djh‖L∞(‖6‖

k+1
∨‖6‖)

(
d

n
∨
k

n

)k/2
, (6.19)

which implies the result. ut

7. Smoothness properties of Dgk(6)

Our goal in this section is to show that, for a smooth orthogonally invariant function g,
the function Dgk(6) satisfies Assumption 3. This result will be used in the next section to
prove normal approximation bounds for Dgk(6̂). We will assume in what follows that g
is defined and properly smooth on the whole space Bsa(H) of self-adjoint operators in H.

Recall that, by (5.15),

BkDg(6) = E
∫ 1

0
· · ·

∫ 1

0

∂kϕ(t1, . . . , tk)

∂t1 . . . ∂tk
dt1 . . . dtk,

where

ϕ(t1, . . . , tk) := 6
1/2R(t1, . . . , tk)Dg(S(t1, . . . , tk))L(t1, . . . , tk)6

1/2

for (t1, . . . , tk) ∈ [0, 1]k .
Let δ ∈ (0, 1/2) and let γ : R→ R be a C∞ function such that

0 ≤ γ (u) ≤
√
u, u ≥ 0, γ (u) =

√
u, u ∈ [δ, 1/δ],

supp(γ ) ⊂ [δ/2, 2/δ], ‖γ ‖B1
∞,1

.
log(2/δ)
√
δ

.

For instance, one can take γ (u) := λ(u/δ)
√
u(1 − λ(δu/2)), where λ is a C∞ non-

decreasing function with values in [0, 1] such that λ(u) = 0 for u ≤ 1/2 and λ(u) = 1
for u ≥ 1. The bound on the norm ‖γ ‖B1

∞,1
can be proved using the equivalent definition

of Besov norms in terms of difference operators (see [Tr, Section 2.5.12]). Clearly, for all
6 ∈ C+(H) we have ‖γ (6)‖ ≤ ‖6‖1/2, and for all 6 ∈ C+(H) with σ(6) ⊂ [δ, 1/δ]
we have γ (6) = 61/2.

Since we need further differentiation of BkDg(6) with respect to 6, it will be conve-
nient to introduce (for given H,H ′ ∈ Bsa(H)) the following function:

φ(t1, . . . , tk; s1, s2) := γ (6̄(s1, s2))R(t1, . . . , tk)

×Dg
(
L(t1, . . . , tk)6̄(s1, s2)R(t1, . . . , tk)

)
L(t1, . . . , tk)γ (6̄(s1, s2)),

where 6̄(s1, s2) = 6 + s1H + s2(H
′
− H) for s1, s2 ∈ R. Note that ϕ(t1, . . . , tk) =

φ(t1, . . . , tk, 0, 0). By the argument already used at the beginning of the proof of Lemma
15, if h := Dg is k times continuously differentiable, then so is φ.
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For simplicity, we write Bk(6) := BkDg(6) and Dk(6) := Dgk(6). Clearly,
Dk(6) :=

∑k
j=0(−1)jBj (6)

Bk(6) := E
∫ 1

0
· · ·

∫ 1

0

∂kφ(t1, . . . , tk, 0, 0)
∂t1 . . . ∂tk

dt1 . . . dtk, k ≥ 1.

For k = 0, we have B0(6) := Dg(6).
Denote

γβ,k(6; u) := (‖6‖ ∨ u ∨ 1)k+1/2(u ∨ uβ), u > 0, β ∈ [0, 1], k ≥ 1.

Recall definition (2.27) of Cs-norms of smooth operator valued functions defined in an
open set G ⊂ Bsa(H). It is assumed in this section that G = Bsa(H) and we will write
‖ · ‖Cs instead of ‖ · ‖Cs (Bsa(H)).

Theorem 9. Suppose that, for some k ≤ d , g is k + 2 times continuously differen-
tiable on Bsa(H) and, for some β ∈ (0, 1], ‖Dg‖Ck+1+β < ∞. In addition, suppose
that g ∈ LO∞(C+(H)) and σ(6) ⊂ [δ, 1/δ]. Then, for some constant C ≥ 1 and for all
H,H ′ ∈ Bsa(H),

‖SBk (6;H
′)− SBk (6;H)‖

≤ Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+β

(
d

n

)k/2
γβ,k(6; ‖H‖ ∨ ‖H

′
‖)‖H ′ −H‖. (7.1)

Corollary 6. Suppose that, for some k ≤ d , g is k + 2 times continuously differentiable
and, for some β ∈ (0, 1], ‖Dg‖Ck+1+β <∞. Suppose also that g ∈ LO∞(C+(H)), d ≤ n/2
and σ(6) ⊂ [δ, 1/δ]. Then, for some constant C ≥ 1 and for all H,H ′ ∈ Bsa(H),

‖SDk (6;H
′)− SDk (6;H)‖

≤ Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+βγβ,k(6; ‖H‖ ∨ ‖H

′
‖)‖H ′ −H‖. (7.2)

Proof. Indeed,

‖SDk (6;H
′)− SDk (6;H)‖ ≤

k∑
j=0

‖SBj (6;H
′)− SBj (6;H)‖

≤ Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+β

k∑
j=0

(
d

n

)j/2
γβ,k(6; ‖H‖ ∨ ‖H

′
‖)‖H ′ −H‖

≤ 2Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+βγβ,k(6; ‖H‖ ∨ ‖H

′
‖)‖H ′ −H‖,

implying the bound of the corollary (after proper adjustment of the value of C). ut
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Proof of Theorem 9. Note that

SBk (6;H
′)− SBk (6;H)

= DBk(6 +H ;H
′
−H)−DBk(6;H

′
−H)+ SBk (6 +H ;H

′
−H),

so we need to bound

‖DBk(6 +H ;H
′
−H)−DBk(6;H

′
−H)‖ and ‖SBk (6 +H ;H

′
−H)‖

separately. To this end, note that

Bk(6 + s1H) = E
∫ 1

0
· · ·

∫ 1

0

∂kφ(t1, . . . , tk, s1, 0)
∂t1 . . . ∂tk

dt1 . . . dtk,

DBk(6;H) = E
∫ 1

0
· · ·

∫ 1

0

∂k+1φ(t1, . . . , tk, 0, 0)
∂t1 . . . ∂tk∂s1

dt1 . . . dtk,

DBk(6 + s1H ;H
′
−H) = E

∫ 1

0
· · ·

∫ 1

0

∂k+1φ(t1, . . . , tk, s1, 0)
∂t1 . . . ∂tk∂s2

dt1 . . . dtk.

The last two formulas hold provided that g is k+2 times continuously differentiable with
uniformly bounded derivativesDjg, j = 0, . . . , k+2, and, as a consequence, the function
φ(t1, . . . , tk, s1, s2) is k + 1 times continuously differentiable (the proof of this fact is
similar to the proof of differentiability of φ(t1, . . . , tk), see the proofs of Proposition 4
and Lemma 15).

As a consequence,

DBk(6 +H ;H
′
−H)−DBk(6;H

′
−H)

= E
∫ 1

0
· · ·

∫ 1

0

[
∂k+1φ(t1, . . . , tk, 1, 0)

∂t1 . . . ∂tk∂s2
−
∂k+1φ(t1, . . . , tk, 0, 0)

∂t1 . . . ∂tk∂s2

]
dt1 . . . dtk (7.3)

and

SBk (6 +H ;H
′
−H)

= E
∫ 1

0
· · ·

∫ 1

0

[
∂kφ(t1, . . . , tk, 1, 1)

∂t1 . . . ∂tk
−
∂kφ(t1, . . . , tk, 1, 0)

∂t1 . . . ∂tk
−
∂k+1φ(t1, . . . , tk, 1, 0)

∂t1 . . . ∂tk∂s2

]
× dt1 . . . dtk

= E
∫ 1

0
· · ·

∫ 1

0

∫ 1

0

[
∂k+1φ(t1, . . . , tk, 1, s2)

∂t1 . . . ∂tk∂s2
−
∂k+1φ(t1, . . . , tk, 1, 0)

∂t1 . . . ∂tk∂s2

]
ds2 dt1 . . . dtk.

(7.4)

The next two lemmas provide upper bounds on

‖DBk(6 +H ;H
′
−H)−DBk(6;H

′
−H)‖ and ‖SBk (6 +H ;H

′
−H)‖.
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Lemma 19. Suppose that, for some k ≤ d , g ∈ LO∞(C+(H)) is k + 2 times continuously
differentiable and, for some β ∈ (0, 1], ‖Dg‖Ck+1+β < ∞. In addition, suppose that
σ(6) ⊂ [δ, 1/δ]. Then, for some constant C > 0 and for all H,H ′ ∈ Bsa(H),

‖DBk(6 +H ;H
′
−H)−DBk(6;H

′
−H)‖

≤ Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+β ((‖6‖ + ‖H‖)

k+1/2
∨ 1)

(
d

n

)k/2
× (‖H‖ ∨ ‖H‖β)‖H ′ −H‖. (7.5)

Lemma 20. Suppose that, for some k ≤ d , g ∈ LO∞(C+(H)) is k + 2 times continuously
differentiable and, for some β ∈ (0, 1], ‖Dg‖Ck+1+β < ∞. In addition, suppose that
σ(6) ⊂ [δ, 1/δ]. Then, for some constant C > 0 and for all H,H ′ ∈ Bsa(H),

‖SBk (6 +H ;H
′
−H)‖

≤ Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+β ((‖6‖ + ‖H‖ + ‖H

′
‖)k+1/2

∨ 1)
(
d

n

)k/2
× (‖H ′ −H‖1+β ∨ ‖H ′ −H‖2). (7.6)

In the next section, we will also need the following lemma.

Lemma 21. Suppose that, for some k ≤ d , g ∈ LO∞(C+(H)) is k + 2 times differentiable
with uniformly bounded continuous derivatives Djg, j = 0, . . . , k + 2. In addition,
suppose that σ(6) ⊂ [δ, 1/δ]. Then, for some constant C > 0 and for all H ∈ Bsa(H),

‖DBk(6;H)‖ ≤ C
k2 log2(2/δ)

δ
‖Dg‖Ck+1(‖6‖

k+1/2
∨ 1)

(
d

n

)k/2
‖H‖. (7.7)

We give a proof of Lemma 19 below. The proofs of Lemmas 20 and 21 are based on a
similar approach.

Proof of Lemma 19. First, we derive an upper bound on the difference

∂k+1φ(t1, . . . , tk, 1, 0)
∂t1 . . . ∂tk∂s2

−
∂k+1φ(t1, . . . , tk, 0, 0)

∂t1 . . . ∂tk∂s2

in the right hand side of (7.3). To this end, note that by the product rule,

∂k+1φ(t1, . . . , tk, s1, s2)

∂t1 . . . ∂tk∂s2
=

∂

∂s2

∑
T1,T2,T3

γ (6̄)(∂T1R)(∂T2h(L6̄R))(∂T3L)γ (6̄),
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where h = Dg and the sum extends over all partitions T1, T2, T3 of the set of variables
{t1, . . . , tk}. We can further write

∂k+1φ(t1, . . . , tk, s1, s2)

∂t1 . . . ∂tk∂s2

=

∑
T1,T2,T3

[
(∂{s2}γ (6̄))(∂T1R)(∂T2h(L6̄R))(∂T3L)γ (6̄)

+ γ (6̄)(∂T1R)(∂T2∪{s2}h(L6̄R))(∂T3L)γ (6̄)

+ γ (6̄)(∂T1R)(∂T2h(L6̄R))(∂T3L)(∂{s2}γ (6̄))
]
. (7.8)

Observe that ∂{s2}γ (6̄) = Dγ (6̄;H
′
−H) and deduce from (7.8) that

∂k+1φ(t1, . . . , tk, 1, 0)
∂t1 . . . ∂tk∂s2

−
∂k+1φ(t1, . . . , tk, 0, 0)

∂t1 . . . ∂tk∂s2
=

∑
T1,T2,T3

[A1 + · · · + A9], (7.9)

where

A1 := [Dγ (6+H ;H
′
−H)−Dγ (6;H ′−H)](∂T1R)(∂T2h(L6̄1,0R))(∂T3L)γ (6̄1,0),

A2 := Dγ (6;H
′
−H)(∂T1R)

(
∂T2h(L(6+H)R)−∂T2h(L6R)

)
(∂T3L)γ (6̄1,0),

A3 := Dγ (6;H
′
−H)(∂T1R)(∂T2h(L6R))(∂T3L)(γ (6+H)−γ (6)),

A4 := (γ (6+H)−γ (6))(∂T1R)(∂T2∪{s2}h(L6̄1,0R))(∂T3L)γ (6̄1,0),

A5 := γ (6)(∂T1R)(∂T2∪{s2}h(L(6+H)R)−∂T2∪{s2}h(L6R))(∂T3L)γ (6̄1,0),

A6 := γ (6)(∂T1R)(∂T2∪{s2}h(L6R))(∂T3L)(γ (6+H)−γ (6)),

A7 := (γ (6+H)−γ (6))(∂T1R)(∂T2h(L6̄1,0R))(∂T3L)Dγ (6̄1,0;H
′
−H),

A8 := γ (6)(∂T1R)(∂T2h(L(6+H)R)−∂T2h(L6R))(∂T3L)Dγ (6̄1,0;H
′
−H),

A9 := γ (6)(∂T1R)(∂T2h(L6R))(∂T3L)
(
Dγ (6+H ;H ′−H)−Dγ (6;H ′−H)

)
.

To bound the norms of A1, . . . , A9, we need several lemmas. We introduce some
notation to be used in their proofs. Recall that for a partition1 = (11, . . . ,1j ) of the set
{t1, . . . , tk},

∂1(L6R) = (∂11(L6R), . . . , ∂1j (L6R)).

We will need some transformations of ∂1(L6R). In particular, for i = 1, . . . , j and
H ∈ Bsa(H), denote

∂1(L6R)[i : 6→ H ]

:= (∂11(L6R), . . . , ∂1i−1(L6R), ∂1i (LHR), ∂1i+1(L6R), . . . , ∂1j (L6R)).

We will also write

∂1(L6R)[i : 6→ H ; i + 1, . . . , j : 6→ 6 +H ]

:= (∂11(L6R), . . . , ∂1i−1(L6R), ∂1i (LHR), ∂1i+1(L(6 +H)R), . . . ,

∂1j (L(6 +H)R)).
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In addition, the following notation will be used:

∂1(L6R) t B := (∂11(L6R), . . . , ∂1j (L6R), B).

The meaning of other similar notation should be clear from the context. Finally, recall
that δi = ‖Wi − I‖, i ≥ 1.

Lemma 22. Suppose that, for some 0 ≤ m ≤ k, h ∈ L∞(C+(H);Bsa(H)) is m+ 1 times
differentiable with uniformly bounded continuous derivatives Djh, j = 1, . . . , m + 1.
For all T ⊂ {t1, . . . , tk} with |T | = m,

‖∂T h(L(6 +H)R)− ∂T h(L6R)‖

≤ 2m(k+m+2)+1 max
1≤j≤m+1

‖Djh‖L∞((‖6‖+‖H‖)
m
∨1)

∏
ti∈T

δi

1+ δi

k∏
i=1

(1+δi)2m+2
‖H‖.

(7.10)

Proof. By Lemma 15,

∂T h(L(6 +H)R)− ∂T h(L6R)

=

m∑
j=1

∑
1∈Dj,T

[
Djh(L(6 +H)R)(∂1(L(6 +H)R))−D

jh(L6R)(∂1(L6R))
]
.

(7.11)

Obviously,

Djh(L(6 +H)R)(∂1(L(6 +H)R))−D
jh(L6R)(∂1(L6R))

=

j∑
i=1

Djh(L(6 +H)R)(∂1(L6R)[i : 6→ H ; i + 1, . . . , j : 6→ 6 +H ])

+ (Djh(L(6 +H)R)−Djh(L6R))(∂1(L6R)).

The following bounds hold for all 1 ≤ i ≤ j :

‖Djh(L(6 +H)R)(∂1(L6R)[i : 6→ H ; i + 1, . . . , j : 6→ 6 +H ])‖

≤ ‖Djh(L(6 +H)R)‖
∏

1≤l<i

‖∂1l (L6R)‖
∏
i<l≤j

‖∂1l (L(6 +H)R)‖ ‖∂1i (LHR)‖.

As in the proof of Lemma 17, we get

‖Djh(L(6 +H)R)(∂1(L6R)[i : 6→ H ; i + 1, . . . , j : 6→ 6 +H ])‖

≤ ‖Djh‖L∞2kj‖6‖i−1
‖6 +H‖j−i

∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2j‖H‖

≤ 2kj‖Djh‖L∞(‖6‖ + ‖H‖)
j−1

∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2j‖H‖.
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In addition,

‖(Djh(L(6 +H)R)−Djh(L6R))(∂1(L6R))‖

≤ ‖Dj+1h‖L∞‖L‖ ‖R‖ ‖H‖

j∏
i=1

‖∂1i (L6R)‖

≤ 2kj‖Dj+1h‖L∞‖6‖
j
∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2j+2
‖H‖.

Therefore,

‖Djh(L(6 +H)R)(∂1(L(6 +H)R))−D
jh(L6R)(∂1(L6R))‖

≤ 2kj
(
j‖Djh‖L∞(‖6‖ + ‖H‖)

j−1
+ ‖Dj+1h‖L∞‖6‖

j
)

×

∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2j+2
‖H‖.

Substituting the last bound into (7.11) and recalling that card(Dj,T ) ≤ jm, it is easy to
conclude the proof of (7.10). ut

Lemma 23. Suppose that, for some 0 ≤ m ≤ k, h ∈ L∞(C+(H);Bsa(H)) is m+ 1 times
differentiable with uniformly bounded continuous derivatives Djh, j = 1, . . . , m + 1.
Then for some constant C > 0 and for all T ⊂ {t1, . . . , tk} with |T | = m and all
s1 ∈ [0, 1],

‖∂T∪{s2}h(L6̄s1,0R)‖

≤ 2m(k+m+2)+1 max
1≤j≤m+1

‖Djh‖L∞((‖6‖ + ‖H‖)
m
∨ 1)

∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2m+2

× ‖H ′ −H‖.

Proof. By Lemma 15,

∂T∪{s2}h(L6̄R) =

m∑
j=1

∑
1∈Dj,T

∂{s2}D
jh(L6̄R)(∂1(L6̄R)). (7.13)

Next, we have

∂{s2}D
jh(L6̄R)(∂1(L6̄R)) = D

j+1h(L6̄R)(∂1(L6̄R) t ∂{s2}(L6̄R))

+

j∑
i=1

Djh(L6̄R)(∂1((L6̄R)[i : ∂1i (L6̄R)→ ∂1i∪{s2}(L6̄R)]).

Note that ∂{s2}(L6̄R) = L(H
′
−H)R and ∂1i∪{s2}(L6̄R) = ∂1i (L(H

′
−H)R), implying

∂{s2}D
jh(L6̄R)(∂1(L6̄R)) = D

j+1h(L6̄R)(∂1(L6̄R) t L(H
′
−H)R)

+

j∑
i=1

Djh(L6̄R)(∂1(L6̄R)[i : 6̄→ H ′ −H ]). (7.14)
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The following bounds hold:

‖Dj+1h(L6̄R)(∂1(L6̄R) t L(H
′
−H)R)‖

≤ ‖Dj+1h‖L∞

j∏
i=1

‖∂1i (L6̄R)‖ ‖L‖ ‖R‖ ‖H
′
−H‖

and

‖Djh(L6̄R)(∂1(L6̄R)[i : 6̄→ H ′ −H ])‖

≤ ‖Djh‖L∞

∏
l 6=i

‖∂1l (L6̄R)‖ ‖∂1i (L(H
′
−H)R)‖.

The rest of the proof is based on the bounds almost identical to the ones in the proof of
Lemma 22. ut

Lemma 24. Suppose that, for some 0 ≤ m ≤ k, h ∈ L∞(C+(H);Bsa(H)) is m+ 2 times
differentiable with uniformly bounded continuous derivatives Djh, j = 1, . . . , m + 2.
For some constant C > 0 and for all T ⊂ {t1, . . . , tk} with |T | = m,

‖∂T∪{s2}h(L(6 +H)R)− ∂T∪{s2}h(L6R)‖

≤ Ck(m+1) max
1≤j≤m+2

‖Djh‖L∞((‖6‖ + ‖H‖)
m
∨ 1)

∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2m+4

× ‖H‖ ‖H ′ −H‖. (7.15)

Moreover, if for some 0 ≤ m ≤ k, h ∈ L∞(C+(H);Bsa(H)) is m+ 1 times continuously
differentiable and, for some β ∈ (0, 1], ‖h‖Cm+1+β <∞, then

‖∂T∪{s2}h(L(6 +H)R)− ∂T∪{s2}h(L6R)‖

≤ Ck(m+1)
‖h‖Cm+1+β ((‖6‖ + ‖H‖)

m
∨ 1)

∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2m+4

× (‖H‖ ∨ ‖H‖β)‖H ′ −H‖. (7.16)

Proof. By (7.13),

∂T∪{s2}h(L(6 +H)R)− ∂T∪{s2}h(L6R)

=

m∑
j=1

∑
1∈Dj,T

[
∂{s2}D

jh(L6̄1,0R)(∂1(L6̄1,0R))− ∂{s2}D
jh(L6̄0,0R)(∂1(L6̄0,0R))

]
,

(7.17)
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and by (7.14),

∂{s2}D
jh(L6̄1,0R)(∂1(L6̄1,0R))− ∂{s2}D

jh(L6̄0,0R)(∂1(L6̄0,0R))

=

j∑
i=1

Dj+1h(L(6+H)R)(∂1(L6R)[i :6→H ; i+1, . . . , j :6→6+H ]tL(H ′−H)R)

+[Dj+1h(L(6+H)R)−Dj+1h(L6R)](∂1(L6R)tL(H
′
−H)R)

+

j∑
i=1

∑
i′ 6=i

Djh(L(6+H)R)(∂1(L6R)[i :6→H ′−H ; i′ :6→H ; l > i′, l 6= i :6→6+H ])

+

j∑
i=1
[Djh(L(6+H)R)−Djh(L6R)](∂1(L6R)[i :6→H ′−H ]). (7.18)

Similarly to the bounds in the proof of Lemma 22, we get

‖Dj+1h(L(6+H)R)(∂1(L6R)[i :6→H ; i+1, . . . , j :6→6+H ]tL(H ′−H)R)‖

≤ 2kj‖Dj+1h‖L∞(‖6‖+‖H‖)
j−1

∏
ti∈T

δi

1+δi

k∏
i=1

(1+δi)2j+2
‖H‖ ‖H ′−H‖,

‖[Dj+1h(L(6+H)R)−Dj+1h(L6R)](∂1(L6R)tL(H
′
−H)R)‖

≤ 2kj‖Dj+2h‖L∞‖6‖
j
∏
ti∈T

δi

1+δi

k∏
i=1

(1+δi)2j+4
‖H‖ ‖H ′−H‖,

‖Djh(L(6+H)R)(∂1(L6R)[i :6→H ′−H ; i′ :6→H ; l > i′, l 6= i :6→6+H ])‖

≤ 2kj‖Djh‖L∞(‖6‖+‖H‖)
j−2

∏
ti∈T

δi

1+δi

k∏
i=1

(1+δi)2j‖H‖ ‖H ′−H‖

and

‖[Djh(L(6 +H)R)−Djh(L6R)](∂1(L6R)[i : 6→ H ′ −H ])‖

≤ 2kj‖Dj+1h‖L∞‖6‖
j−1

∏
ti∈T

δi

1+ δi

k∏
i=1

(1+ δi)2j‖H‖ ‖H ′ −H‖.

These bounds along with formulas (7.17), (7.18) imply that (7.15) holds. The proof of
(7.16) is similar. ut

We now get back to bounding the operators A1, . . . , A9 on the right hand side of (7.9). It
easily follows from Lemmas 16, 17, 22, 23 and 24 as well as from the bounds

‖γ (6)‖ ≤ ‖6‖1/2,

‖γ (6 +H)− γ (6)‖ ≤ 2‖γ ‖B1
∞,1
‖H‖ .

log(2/δ)
√
δ
‖H‖,

‖Dγ (6;H)‖ ≤ 2‖γ ‖B1
∞,1
‖H‖ .

log(2/δ)
√
δ
‖H‖
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and

‖Dγ (6 +H ;H ′ −H)−Dγ (6;H ′ −H)‖ . ‖γ ‖B2
∞,1
‖H‖ ‖H ′ −H‖

.
log2(2/δ)

δ
‖H‖ ‖H ′ −H‖

that for some constant C1 > 0 and for all l = 1, . . . , 9,

|Al | ≤ C
k2

1
log2(2/δ)

δ
‖Dg‖Ck+1+β ((‖6‖ + ‖H‖)

k+1/2
∨ 1)

k∏
i=1

δi(1+ δi)2k+5

× (‖H‖ ∨ ‖H‖β)‖H ′ −H‖.

It then follows from (7.9) that

∥∥∥∥∂k+1φ(t1, . . . , tk, 1, 0)
∂t1 . . . ∂tk∂s2

−
∂k+1φ(t1, . . . , tk, 0, 0)

∂t1 . . . ∂tk∂s2

∥∥∥∥
≤ Ck

2 log2(2/δ)
δ

‖Dg‖Ck+1+β ((‖6‖ + ‖H‖)
k+1/2

∨ 1)
k∏
i=1

δi(1+ δi)2k+5

× (‖H‖ ∨ ‖H‖β)‖H ′ −H‖ (7.19)

with some constant C > 0. Similarly to (6.18), we have that for k ≤ d with some constant
C2 ≥ 1,

E
k∏
i=1

δi(1+ δi)2k+5
≤ Ck

2

2 (d/n)
k/2.

Using this together with (7.19) to bound the expectation in (7.3) yields (7.5). ut

Theorem 9 immediately follows from Lemmas 19 and 20. ut

We will now derive a bound on the bias of the estimator Dgk(6̂) that improves the bounds
of Section 6 under stronger smoothness assumptions on g.

Corollary 7. Suppose g ∈ LO∞(C+(H)) is k + 2 times continuously differentiable for
some k ≤ d ≤ n and, for some β ∈ (0, 1], ‖Dg‖Ck+1+β < ∞. In addition, suppose that
for some δ > 0, σ(6) ⊂ [δ, 1/δ]. Then, for some constant C > 0,

‖E6Dgk(6̂)−Dg(6)‖

≤ Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+β (‖6‖ ∨ 1)k+3/2

‖6‖

(
d

n

)(k+1+β)/2

. (7.20)
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Proof. First note that

Bk+1Dg(6) = E6Bk(6̂)− Bk(6)

= E6DBk(6; 6̂ −6)+ E6SBk (6; 6̂ −6) = E6SBk (6; 6̂ −6).

It follows from (7.1) (with H ′ = 6̂ −6 and H = 0) that

‖SBk (6; 6̂ −6)‖

≤ Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+β

(
d

n

)k/2
γβ,k(6; ‖6̂ −6‖)‖6̂ −6‖. (7.21)

Since

γβ,k(6; ‖6̂ −6‖)‖6̂ −6‖

≤ (‖6‖ ∨ 1)k+1/2(‖6̂ −6‖1+β + ‖6̂ −6‖2)+ ‖6̂ −6‖k+β+3/2
+ ‖6̂ −6‖k+5/2,

we can use the bound E1/p
‖6̂ − 6‖p . ‖6‖(

√
d/n ∨

√
p/n) to deduce that for some

constant C1 > 0 and for k ≤ d ≤ n,

Eγβ,k(6; ‖6̂ −6‖)‖6̂ −6‖ ≤ Ck1 (‖6‖ ∨ 1)k+3/2
‖6‖

(
d

n

)(1+β)/2
.

Therefore, for some constant C > 0,

‖Bk+1Dg(6)‖ ≤ E‖SBk (6; 6̂ −6)‖

≤ Ck
2 log2(2/δ)

δ
‖Dg‖Ck+1+β (‖6‖ ∨ 1)k+3/2

‖6‖

(
d

n

)(k+1+β)/2

.

Since E6Dgk(6̂)−Dg(6) = (−1)kBk+1Dg(6), the result follows. ut

8. Normal approximation bounds for estimators with reduced bias

In this section, our goal is to prove bounds showing that, for sufficiently smooth orthog-
onally invariant functions g, for large enough k and for an operator B with nuclear norm
bounded by a constant, the distribution of the random variables

√
n (〈Dgk(6̂), B〉 − 〈Dg(6), B〉)

σg(6;B)
(8.1)

is close to the standard normal distribution as n → ∞ and d = o(n). It will be shown
that this holds true with

σ 2
g (6;B) = 2‖61/2(DDg(6))∗B61/2

‖
2
2, (8.2)

where (DDg(6))∗ is the adjoint operator of DDg(6):

〈DDg(6)H1, H2〉 = 〈H1, (DDg(6))∗H2〉.

We will prove the following result.
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Theorem 10. Suppose that, for some s > 0, g ∈ Cs+1(Bsa(H)) ∩ LO∞(C+(H)) is an
orthogonally invariant function. Suppose that d ≥ 3 log n and, for some α ∈ (0, 1),
d ≤ nα . Suppose also that 6 is nonsingular and, for a small enough constant c > 0,

d ≤
cn

(‖6‖ ∨ ‖6−1‖)4
. (8.3)

Finally, suppose that s > 1
1−α and let k be an integer such that 1

1−α < k + 1+ β ≤ s for
some β ∈ (0, 1]. Then there exists a constant C such that

sup
x∈R

∣∣∣∣P{√n (〈Dgk(6̂), B〉 − 〈Dg(6), B〉)σg(6;B)
≤ x

}
−8(x)

∣∣∣∣
≤ Ck

2
Lg(B;6)

[
n−

k+β−α(k+1+β)
2 + n−(1−α)β/2

√
log n

]
+ C/

√
n, (8.4)

where

Lg(B;6) :=
‖B‖1‖Dg‖Cs

σg(6;B)
(‖6‖∨‖6−1

‖) log2(2(‖6‖∨‖6−1
‖))‖6‖(‖6‖∨ 1)k+3/2.

We will also need the following exponential upper bound on the r.v. (8.1).

Proposition 7. Under the assumptions of Theorem 10, there exists a constant C such
that for all t ≥ 1, with probability at least 1− e−t ,∣∣∣∣√n (〈Dgk(6̂), B〉 − 〈Dg(6), B〉)σg(6;B)

∣∣∣∣ ≤ Ck2
(Lg(B;6) ∨ 1)

√
t . (8.5)

Our main application is to the problem of estimation of the functional 〈f (6), B〉 for a
given smooth function f and a given operator B. We will use 〈fk(6̂), B〉 as its estimator,
where fk(6) :=

∑k
j=0(−1)jBjf (6). Denote

σ 2
f (6;B) = 2‖61/2Df (6;B)61/2

‖
2
2.

Theorem 11. Suppose that f ∈ Bs
∞,1(R) for some s > 0. Suppose that d ≥ 3 log n and

d ≤ nα for some α ∈ (0, 1). Suppose also that 6 is nonsingular and, for a small enough
constant c = cs > 0,

d ≤
cn

(‖6‖ ∨ ‖6−1‖)4
. (8.6)

Finally, suppose that s > 1
1−α and let k be an integer such that 1

1−α < k + 1+ β ≤ s for
some β ∈ (0, 1]. Then there exists a constant C such that

sup
x∈R

∣∣∣∣P{√n (〈fk(6̂), B〉 − 〈f (6), B〉)σf (6;B)
≤ x

}
−8(x)

∣∣∣∣
≤ Ck

2
Mf (B;6)

[
n−

k+β−α(k+1+β)
2 + n−(1−α)β/2

√
log n

]
+ C/

√
n, (8.7)



Estimation of functionals of covariance operators 825

where

Mf (B;6)

:=

‖B‖1‖f ‖Bs
∞,1

σf (6;B)
(‖6‖ ∨ ‖6−1

‖)2+s log2(2(‖6‖ ∨ ‖6−1
‖))‖6‖(‖6‖ ∨ 1)k+3/2.

Proposition 8. Under the assumptions of Theorem 11, there exists a constant C such
that for all t ≥ 1, with probability at least 1− e−t ,∣∣∣∣√n (〈fk(6̂), B〉 − 〈f (6), B〉)σf (6;B)

∣∣∣∣ ≤ Ck2
(Mf (B;6) ∨ 1)

√
t . (8.8)

Proof of Theorem 10 and Proposition 7. Recall the notation Dk(6) := Dgk(6). For a
given operator B, define dk(6) := 〈Dk(6), B〉, recall that

dk(6̂)− Edk(6̂) = 〈Ddk(6), 6̂ −6〉 + Sdk (6; 6̂ −6)− ESdk (6; 6̂ −6),

and consider the following representation:

√
n (〈Dgk(6̂), B〉 − 〈Dg(6), B〉)

σg(6;B)
=

√
n 〈Ddk(6), 6̂ −6〉
√

2 ‖Ddk(6)‖2
+ ζ, (8.9)

with the remainder ζ := ζ1 + ζ2 + ζ3, where

ζ1 :=

√
n (〈EDgk(6̂)−Dg(6), B〉)

σg(6;B)
,

ζ2 :=

√
n (Sdk (6; 6̂ −6)− ESdk (6; 6̂ −6))

σg(6;B)
,

ζ3 :=

√
n 〈Ddk(6), 6̂ −6〉
√

2 ‖Ddk(6)‖2

√
2 ‖Ddk(6)‖2 − σg(6;B)

σg(6;B)
.

Step 1. By Lemma 9,

sup
x∈R

∣∣∣∣P{√n 〈Ddk(6), 6̂ −6〉
√

2 ‖Ddk(6)‖2
≤ x

}
−8(x)

∣∣∣∣
.

(
‖Ddk(6)‖3

‖Ddk(6)‖2

)3 1
√
n
.
‖Ddk(6)‖

‖Ddk(6)‖2

1
√
n
.

1
√
n
. (8.10)

Note also that

√
n 〈Ddk(6), 6̂ −6〉
√

2 ‖Ddk(6)‖2

d
=

∑n
j=1

∑
i≥1 λi(Z

2
i,j − 1)

√
2n (

∑
i≥1 λ

2
i )

1/2
,
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where {Zi,j } are i.i.d. standard normal random variables and {λi} are the eigenvalues of
Ddk(6) (see the proof of Lemma 9). To provide an upper bound on the right hand side,
we use Lemma 11 to infer that with probability at least 1− e−t ,∣∣∣∣√n 〈Ddk(6), 6̂ −6〉

√
2 ‖Ddk(6)‖2

∣∣∣∣ . √t ∨ t
√
n
. (8.11)

We will now control each of the random variables ζ1, ζ2, ζ3 separately.

Step 2. To bound ζ1, we observe that, for δ = 1
‖6‖∨‖6−1‖

, we have σ(6) ⊂ [δ, 1/δ] and
use inequality (7.20) that yields

|ζ1| ≤

√
n ‖EDgk(6̂)−Dg(6)‖ ‖B‖1

σg(6;B)

≤ Ck
2
3k,β(g;6;B)(‖6‖ ∨ 1)k+3/2

‖6‖
√
n (d/n)(k+1+β)/2, (8.12)

where

3k,β(g;6;B) :=
‖B‖1‖Dg‖Ck+1+β

σg(6;B)
(‖6‖ ∨ ‖6−1

‖) log2(2(‖6‖ ∨ ‖6−1
‖)).

Since d ≤ nα for some α ∈ (0, 1), the last bound implies that

|ζ1| ≤ C
k2
3k,β(g;6;B)(‖6‖ ∨ 1)k+3/2

‖6‖n−
k+β−α(k+1+β)

2 , (8.13)

which tends to 0 for k + 1+ β > 1
1−α .

Step 3. To bound ζ2, recall Theorem 6 and Corollary 6. It follows from these statements
that, under the assumptions ‖g‖Ck+2+β < ∞ and d ≤ n/2, for all t ≥ 1 with probability
at least 1− e−t ,

|ζ2| ≤

√
n |Sdk (6; 6̂ −6)− ESdk (6; 6̂ −6)|

σg(6;B)

≤ Ck
2
3k,β(g;6;B)γβ,k(6; δn(6; t))(

√
‖6‖ +

√
δn(6; t))

√
‖6‖
√
t, (8.14)

where

δn(6; t) := ‖6‖

(√
r(6)
n
∨

r(6)
n
∨

√
t

n
∨
t

n

)
≤ ‖6‖

(√
d

n
∨

√
t

n
∨
t

n

)
=: δ̄n(6; t).

Recall that γβ,k(6; u) = (‖6‖ ∨ u ∨ 1)k+1/2(u ∨ uβ) for u > 0. For d ≤ n and t ≤ n,
we have δn(6; t) ≤ ‖6‖ and γβ,k(6; δn(6; t)) ≤ (‖6‖ ∨ 1)k+3/2, which implies that,
for some C > 1 and for all t ∈ [1, n], with probability at least 1− e−t ,

|ζ2| ≤ C
k2
3k,β(g;6;B)‖6‖(‖6‖ ∨ 1)k+3/2√t . (8.15)
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Let now t = 3 log n. For d ≥ 3 log n, d ≤ n, we have δ̄n(6; t) ≤ ‖6‖
√
d/n ≤ ‖6‖

and
γβ,k(6; δn(6; t)) ≤ γβ,k(6; δ̄n(6; t)) ≤ (‖6‖ ∨ 1)k+3/2(d/n)β/2.

In addition,
(
√
‖6‖ +

√
δn(6; t))

√
‖6‖
√
t . ‖6‖

√
log n.

Thus, for d ≥ 3 log n, d ≤ nα , it follows from (8.14) that with some constant C ≥ 1 and
with probability at least 1− n−3,

|ζ2| ≤ C
k2
3k,β(g;6;B)‖6‖(‖6‖ ∨ 1)k+3/2(d/n)β/2

√
log n

≤ Ck
2
3k,β(g;6;B)‖6‖(‖6‖ ∨ 1)k+3/2n−(1−α)β/2

√
log n. (8.16)

Step 4. Finally, we need to bound ζ3. To this end, denote bk(6) := 〈Bk(6), B〉. Then
b0(6) = 〈Dg(6), B〉 and dk(6) =

∑k
j=0(−1)jbj (6). Observe that

〈Dbj (6),H 〉 = Dbj (6;H) = 〈DBj (6)H,B〉 = 〈H, (DBj (6))
∗B〉,

implying Dbj (6) = (DBj (6))
∗B. Therefore, we have

‖Dbj (6)‖2 = sup
‖H‖2≤1

|〈DBj (6)H,B〉| ≤ sup
‖H‖≤1

|〈DBj (6)H,B〉|

≤ ‖B‖1 sup
‖H‖≤1

‖DBj (6)H‖.

To bound the right hand side we use Lemma 21 that yields

sup
‖H‖≤1

‖DBj (6)H‖ ≤ C
j2

max
1≤j≤j+2

‖Djg‖L∞(‖6‖
j+1/2

∨ 1)(d/n)j/2.

Therefore, for all j = 1, . . . , k,

‖Dbj (6)‖2 ≤ C
k2
‖B‖1 max

1≤j≤k+2
‖Djg‖L∞(‖6‖

k+1/2
∨ 1)(d/n)j/2

and

‖Dbj (6)‖2 = ‖6
1/2Dbj (6)6

1/2
‖2 ≤ ‖6‖ ‖Dbj (6)‖2

≤ Ck
2
‖B‖1 max

1≤j≤k+2
‖Djg‖L∞(‖6‖

k+3/2
∨ ‖6‖)(d/n)j/2.

Since also
√

2 ‖Db0(6)‖2 =
√

2 ‖61/2(DDg(6))∗B61/2
‖2 = σg(6;B),

we get

|
√

2 ‖Ddk(6)‖2 − σg(6;B)| ≤
√

2
k∑

j=1

‖Dbj (6)‖2

≤
√

2Ck
2
‖B‖1 max

1≤j≤k+2
‖Djg‖L∞(‖6‖

k+3/2
∨ ‖6‖)

k∑
j=1

(d/n)j/2,



828 Vladimir Koltchinskii

implying that, under the assumption d ≤ n/4,∣∣∣∣
√

2 ‖Ddk(6)‖2 − σg(6;B)

σg(6;B)

∣∣∣∣
≤

2
√

2Ck
2
‖B‖1

σg(6;B)
max

1≤j≤k+2
‖Djg‖L∞(‖6‖

k+3/2
∨ ‖6‖)

√
d/n. (8.17)

It follows from (8.17) and (8.11) that with some C > 1 and with probability at least
1− e−t ,

|ζ3| ≤
Ck

2
‖B‖1

σg(6;B)
max

1≤j≤k+2
‖Djg‖L∞‖6‖(‖6‖ ∨ 1)k+1/2

√
d

n

(
√
t ∨

t
√
n

)
. (8.18)

For d ≥ 3 log n, d ≤ nα and t = 3 log n, this yields

|ζ3| ≤
Ck

2

σg(6;B)
max

1≤j≤k+2
‖Djg‖L∞‖6‖(‖6‖ ∨ 1)k+1/2n−(1−α)/2

√
log n (8.19)

for some C ≥ 1 with probability at least 1− n−3.

Step 5. It follows from (8.13), (8.16) and (8.19) that for some C ≥ 1, with probability at
least 1− 2n−3,

|ζ | ≤ Ck
2
3k,β(g;6;B)‖6‖(‖6‖ ∨ 1)k+3/2

×
[
n−

k+β−α(k+1+β)
2 + n−(1−α)β/2

√
log n+ n−(1−α)/2

√
log n

]
,

which implies that with the same probability and with a possibly different C ≥ 1,

|ζ | ≤ Ck
2
Lg(B;6)

[
n−

k+β−α(k+1+β)
2 + n−(1−α)β/2

√
log n

]
.

It follows from the last bound that

δ(ξ, η) ≤ 2n−3
+ Ck

2
Lg(B;6)

[
n−

k+β−α(k+1+β)
2 + n−(1−α)β/2

√
log n

]
,

where

ξ :=

√
n (〈Dgk(6̂), B〉 − 〈Dg(6), B〉)

σg(6;B)
, η :=

√
n 〈Ddk(6), 6̂ −6〉
√

2 ‖Ddk(6)‖2
,

ξ −η = ζ and δ(ξ, η) is defined in Lemma 10. It follows from (8.10) and Lemma 10 that,
for some C ≥ 1, the bound (8.4) holds.

Step 6. It remains to prove Proposition 7. When t ∈ [1, n], the bound (8.5) immediately
follows from (8.9), (8.11), (8.13), (8.15) and (8.18). To prove it for t > n, first observe
that

|〈Dg(6), B〉| ≤ ‖61/2Dg(6)61/2
‖ ‖B‖1 ≤ ‖Dg‖L∞‖6‖ ‖B‖1. (8.20)
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We will also prove that for some constant C > 1,

|〈Dgk(6), B〉| ≤ Ck‖Dg‖L∞‖6‖ ‖B‖1. (8.21)

To this end, note that, by (5.13),

‖DBkg(6)‖ ≤ E
∑

I⊂{1,...,k}

‖61/2AIDg(A
∗

I6AI )A
∗

I6
1/2
‖

≤

∑
I⊂{1,...,k}

‖6‖ ‖Dg‖L∞E‖AI‖
2
≤ ‖6‖ ‖Dg‖L∞

∑
I⊂{1,...,k}

E
∏
i∈I

‖Wi‖

≤ ‖6‖ ‖Dg‖L∞

k∑
j=0

(
k

j

)
(E‖W‖)j = ‖6‖ ‖Dg‖L∞(1+ E‖W‖)k. (8.22)

For d ≤ n, we have E‖W − I‖ .
√
d/n ≤ C′ for some C′ > 0. Thus,

1+ E‖W‖ ≤ 2+ E‖W − I‖ ≤ 2+ C′ =: C.

Therefore, ‖DBkg(6)‖ ≤ Ck‖Dg‖L∞‖6‖. In view of the definition of gk , this implies
that (8.21) holds with someC > 1. It follows from (8.20) and (8.21) that, for someC > 1,∣∣∣∣√n (〈Dgk(6̂), B〉 − 〈Dg(6), B〉)σg(6;B)

∣∣∣∣ ≤ Ck‖B‖1‖Dg‖L∞‖6‖√nσg(6;B)
. (8.23)

For t > n, the right hand side of (8.23) is smaller than the right hand side of (8.5). Thus,
(8.5) holds for all t ≥ 1. ut

Proof of Theorem 11 and Proposition 8. First suppose that, for some δ > 0, σ(6) ⊂
[2δ,∞). Let γδ(x) = γ (x/δ), where γ : R → [0, 1] is a nondecreasing C∞ function,
γ (x) = 0 for x ≤ 1/2 and γ (x) = 1 for x ≥ 1. Define fδ(x) = f (x)γδ(x) for x ∈ R.
Then f (6) = fδ(6), which also implies that, for all 6 with σ(6) ⊂ [2δ,∞),Df (6) =
Dfδ(6) and σf (6;B) = σfδ (6;B).

Let ϕ(x) :=
∫ x

0
fδ(t)
t
dt for x ≥ 0 and ϕ(x) = 0 for x < 0. Clearly, fδ(x) = xϕ′(x)

for x ∈ R. Let g(C) := tr(ϕ(C)) for C ∈ Bsa(H). Then g is clearly an orthogonally
invariant function, Dg(C) = ϕ′(C) for C ∈ Bsa(H) and

Dg(C) = C1/2ϕ′(C)C1/2
= fδ(C), C ∈ C+(H).

It is also easy to see that Dgk(C) = (fδ)k(C) for C ∈ C+(H). Using Corollary 2 of
Section 2, standard bounds for pointwise multipliers of functions in Besov spaces [Tr,
Section 2.8.3] and the characterization of Besov norms in terms of difference operators
[Tr, Section 2.5.12], it is easy to check that

‖Dg‖Cs ≤ 2k+1
‖ϕ′‖Bs

∞,1
= 2k+1

∥∥∥∥f (x)γδ(x)x

∥∥∥∥
Bs
∞,1

. 2k+1
∥∥∥∥γδ(x)x

∥∥∥∥
Bs
∞,1

‖f ‖Bs
∞,1

. 2k+1 1
δ

∥∥∥∥γ (x/δ)x/δ

∥∥∥∥
Bs
∞,1

‖f ‖Bs
∞,1

. 2k+1(δ−1−s
∨ δ−1)‖f ‖Bs

∞,1
.
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Denote

η :=

√
n (〈(fδ)k(6̂), B〉 − 〈f (6), B〉)

σf (6;B)
.

It follows from Theorem 10 that

1(η;Z) ≤ Ck
2
Mfδ (B;6)

[
n−

k+β−α(k+1+β)
2 + n−(1−α)β/2

√
log n

]
+ C/

√
n (8.24)

with Mfδ (B;6) . 2k+1Mf,δ(B;6) and

Mf,δ(B;6) :=
‖B‖1(δ

−1−s
∨ δ−1)‖f ‖Bs

∞,1

σf (6;B)

× (‖6‖ ∨ ‖6−1
‖) log2(2(‖6‖ ∨ ‖6−1

‖))‖6‖(‖6‖ ∨ 1)k+3/2.

It will be shown that, under the assumption σ(6) ⊂ [2δ,∞), the estimator (fδ)k(6̂)
= Dgk(6̂) can be replaced by the estimator fk(6̂). To this end, the following lemma will
be proved.

Lemma 25. Suppose that σ(6) ⊂ [2δ,∞) for some δ > 0, and for a sufficiently large
constant C1 > 1,

d ≤
log2(1+ δ/‖6‖)
C2

1(k + 1)2
n =: d̄. (8.25)

Then, with probability at least 1− e−d̄ ,

‖fk(6̂)− (fδ)k(6̂)‖ ≤ (k
22k+1

+ 2)e−d̄‖f ‖L∞ . (8.26)

Proof. Recall that, by (5.2),

Bkf (6) = E6
k∑

j=0

(−1)k−j
(
k

j

)
f (6̂(j)),

implying that

Bkf (6̂)− Bkfδ(6̂) = E
6̂

k∑
j=0

(−1)k−j
(
k

j

)
[f (6̂(j+1))− fδ(6̂

(j+1))].

Note also that f (6̂(j+1)) = fδ(6̂
(j+1)) provided that σ(6̂(j+1)) ⊂ [δ,∞) (since f (x) =

fδ(x) for x ≥ δ). This easily implies

‖Bkf (6̂)− Bkfδ(6̂)‖ ≤ 2k+1
‖f ‖L∞P6̂{∃j = 1, . . . , k + 1 : σ(6̂(j)) 6⊂ [δ,∞)}.

(8.27)

To control the probability of the event G := {∃j = 1, . . . , k + 1 : σ(6̂(j)) 6⊂ [δ,∞)},
consider the following event:

E := {‖6̂(j+1)
− 6̂(j)‖ < C1‖6̂

(j)
‖
√
d/n, j = 1, . . . , k}.
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It follows from (1.6) (applied conditionally on 6̂(j)) that, for a proper choice of C1 > 0,

P
6̂
(Ec) ≤ E

6̂

k∑
j=1

P
6̂(j)
{‖6̂(j+1)

− 6̂(j)‖ ≥ C1‖6̂
(j)
‖
√
d/n} ≤ ke−d . (8.28)

Note that, on the eventE, ‖6̂(j+1)
‖ ≤ ‖6̂(j)‖(1+C1

√
d/n),which implies by induction

that
‖6̂(j)‖ ≤ ‖6̂‖(1+ C1

√
d/n)j−1, j = 1, . . . , k + 1.

This also shows that, on the event E,

‖6̂(j) − 6̂‖ ≤

j−1∑
i=1

‖6̂(i+1)
− 6̂(i)‖ ≤

j−1∑
i=1

‖6̂(i)‖C1
√
d/n

≤ ‖6̂‖C1
√
d/n

j−1∑
i=1

(1+ C1
√
d/n)i−1

≤ ‖6̂‖[(1+ C1
√
d/n)j−1

− 1], j = 1, . . . , k + 1.

Consider also the event F := {‖6̂ − 6‖ ≤ C1‖6‖
√
d/n}, which holds with probability

at least 1 − e−d for a proper choice of C1. On this event, ‖6̂‖ ≤ ‖6‖(1 + C1
√
d/n).

Therefore, on the event E ∩ F ,

‖6̂(j) −6‖ ≤ ‖6‖(1+ C1
√
d/n)[(1+ C1

√
d/n)j−1

− 1] + ‖6‖C1
√
d/n

= ‖6‖[(1+ C1
√
d/n)j − 1], j = 1, . . . , k + 1.

Note that

‖6‖[(1+ C1
√
d/n)k+1

− 1] ≤ ‖6‖(exp{C1(k + 1)
√
d/n} − 1) ≤ δ

provided that condition (8.25) holds. Therefore, on the event E ∩ F , ‖6̂(j) − 6‖ ≤ δ,
j = 1, . . . , k + 1. Since σ(6) ⊂ [2δ,∞), this implies that σ(6̂(j)) ⊂ [δ,∞), j =
1, . . . , k + 1. In other words, E ∩ F ⊂ Gc. The bound (8.27) implies that

‖Bkf (6̂)− Bkfδ(6̂)‖IF ≤ 2k+1
‖f ‖L∞IFE6̂IG

≤ 2k+1
‖f ‖L∞IFE6̂IF c∪Ec ≤ 2k+1

‖f ‖L∞IF (IF c + E
6̂
IEc )

= 2k+1
‖f ‖L∞IFP6̂(E

c) ≤ k2k+1e−d‖f ‖L∞IF .

This proves that on the event F of probability at least 1− e−d ,

‖Bkf (6̂)− Bkfδ(6̂)‖ ≤ k2k+1e−d‖f ‖L∞ .

Moreover, the same bound also holds for ‖Bjf (6̂)−Bjfδ(6̂)‖ for all j = 1, . . . , k, and
the dimension d in the above argument can be replaced by an arbitrary upper bound d ′
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satisfying condition (8.25) (in particular, by d ′ = d̄). Thus, under condition (8.25), with
probability at least 1− e−d̄ ,

‖Bjf (6̂)− Bjfδ(6̂)‖ ≤ j2j+1e−d̄‖f ‖L∞ , j = 1, . . . , k,

and also ‖f (6̂) − fδ(6̂)‖ ≤ 2e−d̄‖f ‖L∞ . This immediately implies that, under the
assumption σ(6) ⊂ [2δ,∞) and condition (8.25), with probability at least 1 − e−d̄ , the
bound (8.26) holds. ut

Define

ξ :=

√
n (〈fk(6̂), B〉 − 〈f (6), B〉)

σf (6;B)
.

It follows from (8.26) that with probability at least 1− e−d̄ ,

|ξ − η| ≤
(k22k+1

+ 2)‖f ‖L∞‖B‖1
σf (6;B)

√
n e−d̄ ,

and we can conclude that, under the conditions d ≥ 3 log n and (8.25), for some C > 1,

δ(ξ, η) ≤
(k22k+1

+ 2)‖f ‖L∞‖B‖1
σf (6;B)

√
n e−d + e−d ≤ Ck

‖f ‖L∞‖B‖1

σf (6;B)
n−2
+ n−3.

Combining this with (8.24) and using Lemma 10 shows, with some C > 1,

1(ξ, Z) ≤ Ck
2
Mf,δ(B;6)[n

−
k+β−α(k+1+β)

2 + n−(1−α)β/2
√

log n]

+
C
√
n
+ Ck

‖f ‖L∞‖B‖1

σf (6;B)
n−2. (8.29)

It remains to choose δ := 1
2‖6−1‖

(which implies that σ(6) ⊂ [2δ,∞)). Since

log2(1+ δ/‖6‖)
C2

1(k + 1)2
≥

log2(1+ 1/(2(‖6‖ ∨ ‖6−1
‖)2))

C2
1s

2
≥

c1,s

(‖6‖ ∨ ‖6−1‖)4
(8.30)

for a sufficiently small constant c1,s , condition (8.25) follows from assumption (8.6) on d.
The bound of Theorem 11 immediately follows from (8.29).

It remains to prove Proposition 8. It follows from (8.26) that, for t ∈ [1, d̄] and
3 log n ≤ d ≤ d̄ , with probability at least 1− e−t ,

‖fk(6̂)− (fδ)k(6̂)‖ ≤ (k
22k+1

+ 2)n−3
‖f ‖L∞ ≤ (k

22k+1
+ 2)‖f ‖L∞

√
t/n. (8.31)

Due to the trivial bound ‖fk(6̂)−(fδ)k(6̂)‖ ≤ 2k+1
‖f ‖L∞ and (8.30), we get, for t ≥ d̄,

‖fk(6̂)− (fδ)k(6̂)‖ ≤
2k+1
‖f ‖L∞
√

d̄

√
t ≤

2k+1
‖f ‖L∞(‖6‖ ∨ ‖6‖

−1)2

√
c1,s

√
t

n
. (8.32)
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It follows from (8.31) and (8.32) that there exists a constant C > 1 such that for all t ≥ 1,
with probability at least 1− e−t ,

‖fk(6̂)− (fδ)k(6̂)‖ ≤ C
k
‖f ‖L∞(‖6‖ ∨ ‖6‖

−1)2
√
t/n.

This implies that for some C > 1, with the same probability,

|ξ − η| ≤ Ck
‖B‖1‖f ‖L∞(‖6‖ ∨ ‖6‖

−1)2

σf (6;B)

√
t . (8.33)

Applying the bound of Proposition 7 to Dgk = (fδ)k , we find that for some constant
C > 1 and all t ≥ 1, with probability at least 1− e−t we have |η| ≤ Ck

2
Mf,δ(B;6)

√
t .

Combining this with (8.33) shows that for some C > 1 and all t ≥ 1, with probability
at least 1 − e−t we have |ξ | ≤ Ck

2
Mf,δ(B;6)

√
t, which, taking into account that δ =

1
2‖6−1‖

, completes the proof of Proposition 8. ut

Proof of Theorem 3. If d < 3 log n, the claims of Theorem 3 easily follow from Corol-
lary 1. For d ≥ 3 log n, (1.10) immediately follows from the bound of Theorem 11 (take
the supremum over the class of covariances S(dn; a) ∩ {σf (6;B) ≥ σ0} and over all the
operators B with ‖B‖1 ≤ 1, and pass to the limit as n→∞).

To prove (1.11), we apply Lemmas 13 and 14 to ξ := ξ(6) :=
√
n (〈fk(6̂),B〉−〈f (6),B〉)

σf (6;B)

and η := Z. Using (8.8) and (4.16), we get E`2(ξ) ≤ 2e
√

2π c2
1e

2c2
2τ

2
, where τ :=

2Ck
2
Mf (B;6). Using (4.17), (4.16), easy bounds on E`2(Z), P{|Z| ≥ A}, and the bound

of Theorem 11, we get

|E`(ξ)− E`(Z)|

≤ 4c2
1e

2c2A
2
[
Ck

2
Mf (B;6)

(
n−

k+β−α(k+1+β)
2 + n−(1−α)β/2

√
log n

)
+

C
√
n

]
+
√

2e (2π)1/4c1e
c2

2τ
2
e−A

2/(2τ 2)
+ c1e

c2
2e−A

2/4.

It remains to take the supremum over the class of covariances S(dn; a)∩{σf (6;B) ≥ σ0}

and over all the operators B with ‖B‖1 ≤ 1, and to let first n→∞ and thenA→∞. ut

9. Lower bounds

Our main goal in this section is to prove Theorem 4 stated in Subsection 1.2.
The main part of the proof is based on an application of the van Trees inequal-

ity and follows the same lines as the proof of a minimax lower bound for estimation
of linear functionals of principal components in [KLN]. We will need the following
lemma (possibly of independent interest) showing the Lipschitz property of the func-
tion 6 7→ σ 2

f (6;B). It holds for an arbitrary separable Hilbert space H (not necessarily
finite-dimensional).
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Lemma 26. Suppose f ∈ Bs
∞,1(R) for some s ∈ (1, 2]. Then

|σ 2
f (6 +H ;B)− σ

2
f (6;B)|

≤ ‖f ′‖L∞(2‖6‖ + ‖H‖)‖B‖
2
1
[
2‖f ′‖L∞‖H‖ + 8‖f ‖Bs

∞,1
‖6‖ ‖H‖s−1]. (9.1)

Proof. Note that

σ 2
f (6;B) = 2‖61/2Df (6;B)61/2

‖
2
2

= 2 tr
(
61/2Df (6;B)6Df (6;B)61/2)

= 2 tr
(
6Df (6;B)6Df (6;B)

)
.

This implies that

σ 2
f (6 +H ;B)− σ

2
f (6;B)

= 2 tr
(
HDf (6 +H ;B)(6 +H)Df (6 +H ;B)

)
+ 2 tr

(
6(Df (6 +H ;B)−Df (6;B))(6 +H)Df (6 +H ;B)

)
+ 2 tr

(
6Df (6;B)HDf (6 +H ;B)

)
+ 2 tr

(
6Df (6;B)6(Df (6 +H ;B)−Df (6;B)

)
.

(9.2)

Then∣∣2 tr
(
HDf (6 +H ;B)(6 +H)Df (6 +H ;B)

)∣∣
≤ 2‖Df (6 +H ;B)(6 +H)Df (6 +H ;B)‖1‖H‖
≤ 2‖6 +H‖ ‖Df (6 +H ;B)Df (6 +H ;B)‖1‖H‖

≤ 2‖6 +H‖ ‖Df (6 +H ;B)‖22‖H‖

≤ 2‖f ′‖2L∞(‖6‖ + ‖H‖)‖H‖ ‖B‖
2
2. (9.3)

Similarly, it can be shown that∣∣2 tr
(
6Df (6;B)HDf (6 +H ;B)

)∣∣ ≤ 2‖f ′‖2L∞‖6‖ ‖H‖ ‖B‖
2
2. (9.4)

Also, we have

2 tr
(
6(Df (6 +H ;B)−Df (6;B))(6 +H)Df (6 +H ;B)

)
= 〈(Df (6 +H)−Df (6))(B), C〉 = 〈(Df (6 +H)−Df (6))(C), B〉

= 〈Df (6 +H ;C)−Df (6;C), B〉,

where C := (6 +H)Df (6;B)6 +6Df (6;B)(6 +H). Using (2.25), this implies∣∣2 tr
(
6(Df (6 +H ;B)−Df (6;B))(6 +H)Df (6 +H ;B)

)∣∣
= |〈Df (6 +H ;C)−Df (6;C), B〉| ≤ ‖Df (6 +H ;C)−Df (6;C)‖ ‖B‖1

≤ 4‖f ‖Bs
∞,1
‖C‖ ‖H‖s−1

‖B‖1 ≤ 8‖f ‖Bs
∞,1
‖6‖ ‖6 +H‖ ‖Df (6;B)‖ ‖H‖s−1

‖B‖1

≤ 8‖f ′‖L∞‖f ‖Bs∞,1‖6‖(‖6‖ + ‖H‖)‖H‖
s−1
‖B‖21. (9.5)
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Similarly,∣∣2 tr
(
6Df (6;B)6(Df (6 +H ;B)−Df (6;B)

)∣∣
≤ 8‖f ′‖L∞‖f ‖Bs∞,1‖6‖

2
‖H‖s−1

‖B‖21. (9.6)

Substituting (9.3)–(9.6) into (9.2), we get (9.1). ut

For given a′ ∈ (1, a) and σ ′0 > σ0, assume that Bf (dn; a
′
; σ ′0) 6= ∅ (otherwise, the

proof becomes trivial) and, for B with ‖B‖1 ≤ 1 such that S̊f,B(dn; a′; σ ′0) 6= ∅, consider
60 ∈ S̊f,B(dn; a′; σ ′0). For H ∈ Bsa(H) and c > 0, define

6t := 60 +
tH
√
n

and Sc,n(60, H) := {6t : t ∈ [−c, c]}.

In what follows, H will be chosen so that

‖H‖ ≤ ‖f ′‖L∞a
2. (9.7)

Recall that the set S̊f,B(dn; a; σ0) is open in the operator norm topology, so 60 is its
interior point. Moreover, let δ > 0 and suppose that ‖6 − 60‖ < δ. If δ < a − a′, then
‖6‖ < a. If δ < a−a′

2a2 , then it is easy to check that ‖6−1
‖ < a. Also, using the bound of

Lemma 26, it is easy to show that, for B with ‖B‖1 ≤ 1, the condition

‖f ′‖L∞(2a + δ)[2‖f
′
‖L∞δ + 8‖f ‖Bs

∞,1
aδs−1

] ≤ (σ ′0)
2
− σ 2

0 (9.8)

implies that σ(6;B) > σ0. Thus, for a small enough δ = δ(f, s, a, a′, σ0, σ
′

0) ∈ (0, 1)
satisfying δ < a−a′

2a2 and (9.8), we have

B(60; δ) := {6 : ‖6 −60‖ < δ} ⊂ S̊f,B(dn; a; σ0).

For given c and δ, for H satisfying (9.7) and for all large enough n (more specifically, for
n > c2a4

‖f ′‖2L∞/δ
2), we have

c‖H‖/
√
n < δ, (9.9)

implying that Sc,n(60, H) ⊂ B(60; δ) ⊂ S̊f,B(dn; a; σ0). Define

ϕ(t) := 〈f (6t ), B〉, t ∈ [−c, c].

Clearly, ϕ is continuously differentiable with

ϕ′(t) =
1
√
n
〈Df (6t ;H),B〉, t ∈ [−c, c]. (9.10)

Consider the following parametric model:

X1, . . . , Xn i.i.d. ∼ N(0;6t ), t ∈ [−c, c]. (9.11)

It is well known that the Fisher information matrix for model X ∼ N(0;6) with non-
singular covariance 6 is I (6) = 1

2 (6
−1
⊗ 6−1) (see, e.g., [Eat]). This implies that the

Fisher information for model X ∼ N(0, 6t ), t ∈ [−c, c], is I (t) = 〈I (6t )6′t , 6
′
t 〉 =
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1
n
〈I (6t )H,H 〉, and for (9.11) it is

In(t) = nI (t) = 〈I (6t )H,H 〉 =
1
2 〈(6

−1
t ⊗6

−1
t )H,H 〉

=
1
2 〈6

−1
t H6−1

t , H 〉 = 1
2 tr(6−1

t H6−1
t H) = 1

2‖6
−1/2
t H6

−1/2
t ‖

2
2.

We will now use the well known van Trees inequality (see, e.g., [GL]) that provides a
lower bound on the average risk of an arbitrary estimator T (X1, . . . , Xn) of a smooth
function ϕ(t) of parameter t of model (9.11) with respect to a smooth prior density πc on

[−c, c] such that Jπc :=
∫ c
−c

(π ′c(t))
2

πc(t)
dt < ∞ and πc(c) = πc(−c) = 0. It follows from

that inequality that

sup
t∈[−c,c]

Et
(
Tn(X1, . . . , Xn)− g(t)

)2
≥

∫ c

−c

Et
(
Tn(X1, . . . , Xn)− g(t)

)2
πc(t) dt ≥

(
∫ c
−c
ϕ′(t)πc(t) dt)

2∫ c
−c
In(t)πc(t) dt + Jπc

. (9.12)

A common choice of prior is πc(t) := c−1π(t/c) for a smooth density π on [−1, 1] with
π(1) = π(−1) = 0 and Jπ :=

∫ 1
−1

(π ′(t))2

π(t)
dt < ∞. In this case, Jπc = c

−2Jπ . Next we
provide bounds on the numerator and the denominator of the right hand side of (9.12).

For the numerator, we get(∫ c

−c

ϕ′(t)πc(t) dt

)2

=

(∫ c

−c

[ϕ′(0)+ (ϕ′(t)− ϕ′(0))]π(t/c) dt/c
)2

≥ (ϕ′(0))2 + 2ϕ′(0)
∫ c

−c

(ϕ′(t)− ϕ′(0))π(t/c) dt/c

≥ (ϕ′(0))2 − 2|ϕ′(0)|
∫ c

−c

|ϕ′(t)− ϕ′(0)|π(t/c) dt/c.

Using (9.10) along with the bound (based on (2.25))

|ϕ′(t)− ϕ′(0)| ≤
1
√
n
‖Df (6t ;H)−Df (60;H)‖ ‖B‖1

≤
4
√
n
‖f ‖Bs

∞,1
‖6t −60‖

s−1
‖H‖ ‖B‖1 ≤

4
ns/2
‖f ‖Bs

∞,1
‖H‖s‖B‖1|t |

s−1,

we get(∫ c

−c

ϕ′(t)πc(t) dt

)2

≥
1
n
〈Df (60;H),B〉

2

−
2
√
n
|〈Df (60;H),B〉|

4
ns/2
‖f ‖Bs

∞,1
‖H‖s‖B‖1

∫ c

−c

|t |s−1π(t/c) dt/c

=
1
n
〈Df (60;H),B〉

2
−

8‖f ‖Bs
∞,1
‖H‖s‖B‖1c

s−1

n(1+s)/2
|〈Df (60;H),B〉|

∫ 1

−1
|t |s−1π(t) dt

≥
1
n
〈Df (60;H),B〉

2
−

8‖f ‖Bs
∞,1
‖H‖s‖B‖1c

s−1

n(1+s)/2
|〈Df (60;H),B〉|. (9.13)
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Observing that

〈Df (60;H),B〉 = 〈Df (60;B),H 〉 = 〈6
−1/2
0 D6

−1/2
0 , 6

−1/2
0 H6

−1/2
0 〉,

where D := 60Df (60;B)60, we can rewrite (9.13) as(∫ c

−c

ϕ′(t)πc(t) dt

)2

≥
1
n
〈6
−1/2
0 D6

−1/2
0 , 6

−1/2
0 H6

−1/2
0 〉

2

− |〈6
−1/2
0 D6

−1/2
0 , 6

−1/2
0 H6

−1/2
0 〉|

8‖f ‖Bs
∞,1
‖H‖s‖B‖1c

s−1

n(1+s)/2
. (9.14)

To bound the denominator, we need to control In(t) = 1
2 tr(6−1

t H6−1
t H) in terms of

In(0) = 1
2 tr(6−1

0 H6−1
0 H). To this end, note that

6−1
t = 6

−1
0 + C6

−1
0 ,

where C :=
(
I +

t6−1
0 H
√
n

)−1
− I. Suppose H satisfies

c‖6−1
0 H‖
√
n

≤
1
2
, (9.15)

which also implies that ‖C‖ ≤ 2|t | ‖6−1
0 H‖/

√
n ≤ 1. Note also that

tr(6−1
t H6−1

t H) = tr(6−1
0 H6−1

0 H)+ 2 tr(C6−1
0 H6−1

0 H)+ tr(C6−1
0 HC6−1

0 H).

Therefore,

In(t) ≤ In(0)+ ‖C‖ ‖6−1
0 H6−1

0 H‖1 +
1
2‖C6

−1
0 H‖2‖H6

−1
0 C‖2

≤ In(0)+ (‖C‖ + ‖C‖2/2)‖6−1
0 H‖22 ≤ In(0)+ 3|t | ‖6−1

0 H‖32/
√
n

and ∫ c

−c

In(t)π(t/c) dt/c ≤ In(0)+ 3
‖6−1

0 H‖32
√
n

∫ c

−c

|t |π(t/c) dt/c

≤
1
2‖6

−1/2
0 H6

−1/2
0 ‖

2
2 + 3c

‖6−1
0 H‖32
√
n

. (9.16)

Substituting (9.14) and (9.16) into (9.12), we get

sup
t∈[−c,c]

nEt (Tn(X1, . . . , Xn)− g(t))
2
≥

〈6
−1/2
0 D6

−1/2
0 , 6

−1/2
0 H6

−1/2
0 〉

2
−|〈6

−1/2
0 D6

−1/2
0 , 6

−1/2
0 H6

−1/2
0 〉|

8‖f ‖Bs
∞,1
‖H‖s‖B‖1c

s−1

n(s−1)/2

1
2‖6

−1/2
0 H6

−1/2
0 ‖

2
2+3c

‖6−1
0 H‖32√
n
+
Jπ
c2

.

(9.17)
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Note that

‖6
−1/2
0 D6

−1/2
0 ‖

2
2 = ‖6

1/2
0 Df (60;B)6

1/2
0 ‖

2
2 =

1
2σ

2
f (60;B).

In what follows, we use H := D, which clearly satisfies (9.7) since, for 60 ∈

S̊f,B(dn; a; σ0) and ‖B‖1 ≤ 1,

‖D‖ = ‖60Df (60;B)60‖ ≤ ‖60‖
2
‖Df (60;B)‖

≤ ‖f ′‖L∞‖B‖2‖6‖
2
0 ≤ a

2
‖f ′‖L∞‖B‖2 ≤ a

2
‖f ′‖L∞ . (9.18)

We also have

‖6−1
0 D‖22 = tr(Df (60;B)6

2
0Df (60, B))

≤ ‖60‖
2
‖Df (60;B)‖

2
2 ≤ ‖60‖

2
‖f ′‖2L∞‖B‖

2
2 ≤ a

2
‖f ′‖2L∞‖B‖

2
2 ≤ a

2
‖f ′‖2L∞ ,

(9.19)

implying that (9.9) and (9.15) hold for H = D provided that

n > 4c2a4
‖f ′‖2L∞/δ

2. (9.20)

With this choice of H , (9.17) implies

sup
t∈[−c,c]

nEt (Tn(X1, . . . , Xn)− g(t))
2

σ 2
f (60;B)

≥ 1−
3c ‖6

−1
0 D‖32√
n
+

4‖f ‖Bs
∞,1
‖D‖s‖B‖1c

s−1

n(s−1)/2 +
Jπ
c2

1
4σ

2
f (60;B)+ 3c ‖6

−1
0 D‖32√
n
+

Jπ
c2

.

(9.21)

It follows from (9.21), (9.18) and (9.19) that for B satisfying ‖B‖1 ≤ 1,

sup
t∈[−c,c]

nEt (Tn(X1, . . . , Xn)− g(t))
2

σ 2
f (60;B)

≥ 1− γn,c(f ; a; σ0) (9.22)

where

γn,c(f ; a; σ0) :=

3a3
‖f ′‖3L∞c√
n

+

4a2s
‖f ‖Bs

∞,1
‖f ′‖sL∞

cs−1

n(s−1)/2 +
Jπ
c2

1
4σ

2
0

.

Denote σ 2(t) := σ 2
f (6t ;B), t ∈ [−c, c]. By Lemma 26,

|σ 2(t)− σ 2(0)| ≤ ‖f ′‖L∞

(
2‖60‖ +

|t | ‖D‖
√
n

)
‖B‖21

×

[
2‖f ‖L∞

|t | ‖D‖
√
n
+ 8‖f ‖Bs

∞,1
‖60‖

|t |s−1
‖D‖s−1

n(s−1)/2

]
.

Note that assumption (9.15) on H = D implies that

c‖D‖
√
n
=
c‖606

−1
0 H‖
√
n

≤
c‖6−1

0 H‖ ‖60‖
√
n

≤
‖60‖

2
.
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Using bound (9.18), we get that, for all t ∈ [−c, c] and B with ‖B‖1 ≤ 1,

|σ 2(t)− σ 2(0)| ≤
6ca3
‖f ′‖3L∞
n1/2 +

24cs−1a2s
‖f ′‖sL∞‖f ‖B

s
∞,1

n(s−1)/2 =: λn,c(f ; a).

which implies that

sup
t∈[−c,c]

σ 2(t)

σ 2(0)
≤ 1+

λn,c(f ; a)

σ 2
0

. (9.23)

It follows from (9.22) and (9.23) that

sup
t∈[−c,c]

nEt (Tn(X1, . . . , Xn)− g(t))
2

σ 2(t)

(
1+

λn,c(f ; a)

σ 2
0

)
≥ sup
t∈[−c,c]

nEt (Tn(X1, . . . , Xn)− g(t))
2

σ 2(t)
sup

t∈[−c,c]

σ 2(t)

σ 2(0)

≥ sup
t∈[−c,c]

nEt (Tn(X1, . . . , Xn)− g(t))
2

σ 2
f (60;B)

≥ 1− γn,c(f ; a; σ0),

which implies that for all B ∈ Bf (dn; a
′
; σ ′0),

sup
6∈S̊f,B (dn;a;σ0)

nE6(Tn(X1, . . . , Xn)− 〈f (6), B〉)
2

σ 2
f (6;B)

≥ sup
t∈[−c,c]

nEt (Tn(X1, . . . , Xn)− g(t))
2

σ 2(t)
≥

1− γn,c(f ; a; σ0)

1+ λn,c(f ; a)/σ 2
0
. (9.24)

It remains to observe that

lim
c→∞

lim sup
n→∞

γn,c(f ; a; σ0) = 0 and lim
c→∞

lim sup
n→∞

λn,c(f ; a) = 0

to complete the proof. ut

Remark 10. It follows from the proof that the following local version of (1.12) also
holds: for all a′ ∈ (1, a) and σ ′0 > σ0,

lim
δ→0

lim inf
n→∞

inf
Tn

inf
B∈Bf (dn;a

′;σ ′0)
inf

60∈S̊f,B (dn;a′;σ ′0)
sup

‖6−60‖<δ

nE6(Tn − 〈f (6), B〉)2

σ 2
f (6;B)

≥ 1.

(9.25)
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