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Abstract. Let X be a centered Gaussian random variable in a separable Hilbert space H with
covariance operator . We study the problem of estimation of a smooth functional of ¥ based on
a sample X1, ..., X, of n independent observations of X. More specifically, we are interested in
functionals of the form (f(X), B), where f : R — R is a smooth function and B is a nuclear
operator in H. We prove concentration and normal approximation bounds for the plug-in estimator
(f(f)), B), $i=n! Z}-’Zl X; ®X; being the sample covariance based on X1, ..., X;. These

bounds show that ( f (f:), B) is an asymptotically normal estimator of its expectation Ey, ( f (f)), B)
(rather than of the parameter of interest (f(X), B)) with parametric convergence rate O(nfl/ 2)
provided that the effective rank r(X) := tr(X)/|| 2| (tr(X) the trace and || X || the operator norm of
¥) satisfies the assumption r(X) = o(n). At the same time, we show that the bias of this estimator
is typically as large as r(X)/n (which is larger than n~1/2if r($) > n'/2). When H is a finite-
dimensional space of dimension d = o(n), we develop a method of bias reduction and construct an
estimator (h(f)), B) of (f(X), B) that is asymptotically normal with convergence rate O(n_l/z).
Moreover, we study the asymptotic properties of the risk of this estimator and prove asymptotic
minimax lower bounds for arbitrary estimators showing the asymptotic efficiency of (h(2), B) in
a semiparametric sense.

Keywords. Asymptotic efficiency, sample covariance, bootstrap, effective rank, concentration in-
equalities, normal approximation, perturbation theory

1. Introduction

Let X be a random variable in a separable Hilbert space H sampled from a Gaussian
distribution with mean 0 and covariance operator ¥ := E(X ® X) (denoted N(0; X)).
The purpose of this paper is to study the problem of estimation of smooth functionals
of unknown covariance ¥ based on a sample Xy, ..., X, of i.i.d. observations of X.
Specifically, we deal with the functionals of the form ( f(X), B), where f : R — Risa
smooth function! and B is a nuclear operator. The estimation of bilinear forms of spectral
projection operators of X, which is of importance in the principal component analysis,
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I More precisely, the “smoothness” in this paper means that the function belongs to the Besov
space Bgo 1(IR) for a certain value of s > 0 (see Subsection 1.2).
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can be easily reduced to this basic problem. Moreover, the estimation of {f(X), B) is
a major building block in the development of methods of statistical estimation of more
general functionals of covariance like { f1(X), By) ... (fx(¥), Bx) and their linear com-
binations.

Throughout the paper, we use the following notations. Given A, B > 0, A < B
means that A < C B for a numerical (most often, unspecified) constant C > 0; A = B is
equivalentto B < A; A < Bisequivalentto A < B and B < A. Sometimes, constants
in the above relationships might depend on some parameter(s). In such cases, the signs <,
2 and x are provided with subscripts: say, A <, B means that A < C, B for a constant
C, > 0 that depends on y.

Let B(H) denote the space of all bounded linear operators in a separable Hilbert space
H equipped with the operator norm and let Bg, (H) denote the subspace of all self-adjoint
operators.2 In what follows, A* denotes the adjoint of A € B(H), tr(A) denotes its trace
(provided that A is trace class) and ||A|| denotes its operator norm. We use the notation
|All, for the Schatten p-norm of A: [|A]lL := tr(JA|P), |A] = (A*A)V2, p € [1, ccl.
In particular, ||A|; is the nuclear norm of A, ||Al; is its Hilbert—Schmidt norm and
lAllcc = |lA]l is its operator norm. We denote the space of self-adjoint operators A
with ||A]|, < oo (p-th Schatten class operators) by S, = S,(H),1 < p < oco. The
space of compact self-adjoint operators in H is denoted by Cs,(H). The inner product
notation (-, -) is used both for inner products in the underlying Hilbert space H and for
the Hilbert—Schmidt inner product between operators. Moreover, it is also used to denote
bounded linear functionals on spaces of operators (for instance, (A, B), where A is a
bounded operator and B is a nuclear operator, is a value of such a linear functional on the
space of bounded operators). For 4, v € H, u ® v denotes the tensor product of vectors
uand v: (u @ v)x := u(v, x) for x € H. The operator # ® v is of rank 1 and finite linear
combinations of rank 1 operators are operators of finite rank. The rank of A is denoted
by rank(A). Finally, C (H) denotes the cone of self-adjoint positive semidefinite nuclear
operators in H (covariance operators).

In what follows, we often use exponential bounds for random variables of the follow-
ing form: for all # > 1, with probability at least 1 — e~" we have & < Ct. Sometimes, our
derivation would yield a slightly different probability bound, for instance: for all # > 1
with probability at least 1 — 3¢’ we have & < Ct. Such bounds could be easily rewrit-
ten again as 1 — ¢! by adjusting the value of C: for r > 1 with probability at least
l—e ' =1-3e"7120) we have &£ < C(t +10og(3)) < 2log(3)Ct. Such an adjustment
of constants will be used in many proofs without further notice.

2 The main results of the paper are proved in the case when H is a real Hilbert space. However,
on a couple of occasions, especially in auxiliary statements, its complexification HC = {u+iv:
u,v € H} with a standard extension of the inner product and complexification of the operators
acting in H is needed. With some abuse of notation, we keep in such cases the notation H for the
complex Hilbert space.
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1.1. Sample covariance and effective rank

Let ¥ denote the sample covariance based on the data X1, ..., X,:
R n
S=n"'>"X;®X,.
j=1

It is well known that 3 is a complete sufficient statistic and equals the maximum likeli-
hood estimator in the problem of estimation of the unknown covariance of i.i.d. observa-
tions X1, ..., X, sampled from N (0; X).

In what follows, we often use the so called effective rank of the covariance X as a
complexity parameter of the covariance estimation problem. It is defined as

tr(X)
) = .
rE =g

Note that r(¥X) < rank(X) < dim(H). The following result of Koltchinskii and Lounici
[KL2] shows that, in the Gaussian case, the size of the random variable || POy /1]
(which is a relative operator norm error of the estimator 3 of ) is completely character-
ized by the ratio r(X)/n.

Theorem 1. The following bound holds:

(1.1

~ ) >
Enz—znxnzn( r(n) ul )).

Vv
n
Moreover, for all t > 1, with probability at least 1 — e,

n ~ >
IS - S —EI$ - 2| < ||z||((,/—"( )y 1) Ly 5). (12)
n n n

It follows from the expectation bound (1.1) and the concentration inequality (1.2) that for
all t > 1, with probability at least 1 — e ™",

~ ) >
||2—2||5||2||<,/r(n)v"(n)v\/gv%) (13)

and, forall p > 1,

@, 12)

EVPIE - 2|7 <, ||2||( — (1.4)

n

To avoid the dependence of the constant on p, the following modification of the above
bound will be used on a couple of occasions:

IE”"ni—zu"s||z||(,/@v@v\/§v£>. (L5)
n n n n
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Since r(X) < d := dim(H), the bounds in terms of effective rank imply well known

bounds in terms of dimension. For instance, for all # > 1, with probability at least 1 —e™?,

~ d d t t
IIE—EII§IIEII<\/—V—V,/—V—) (1.6)
n n n n

(see, e.g., [Ver]). Of course, the bound (1.6) is meaningless in the infinite-dimensional
case. In the finite-dimensional case, it is sharp if X is isotropic (¥ = cl; for a constant c),
or if it is of isotropic type, that is, the spectrum of ¥ is bounded above and bounded away
from zero (by constants). In this case, r(¥) < d, which makes (1.6) sharp. This is the
case, for instance, for popular spiked covariance models introduced by Johnstone [Jo]
(see also [JoLu, Paul, BINP]). However, in the case of fast decay of eigenvalues of X,
the effective rank r(X) could be significantly smaller than d and it becomes the right
complexity parameter in covariance estimation.

In what follows, we are interested in problems in which r(¥) is allowed to be large,
but r(¥) = o(n) as n — oo. This is a necessary and sufficient condition for 3 to be an
operator norm consistent estimator of X, which also means that 3 is a small perturbation
of ¥ when n is large and methods of perturbation theory can be used to analyze the
behavior of f () for smooth functions f.

1.2. Overview of main results

In this subsection, we state and discuss the main results of the paper concerning asymptot-
ically efficient estimation of the functionals ( f (X), B) for a smooth function f : R — R
and a nuclear operator B. It turns out that the proper notion of smoothness of f in these
problems is in terms of Besov spaces and Besov norms. The relevant definitions (of the
spaces B |(R) and the corresponding norms), notations and references are provided in
Section 2.

A standard approach to asymptotic analysis of plug-in estimators (in particular, such
as (f (ﬁ)), B)) in statistics is the Delta Method based on the first order Taylor expansion
of f (3). Due to a result by Peller (see Section 2), for any f € Béo’ | (R), the mapping
A +— f(A) is Fréchet differentiable with respect to the operator norm on the space of
bounded self-adjoint operators in H. Let ¥ be a covariance operator with spectral decom-
position ¥ := ), ., (5) AP, 0(X) the spectrum of X, A an eigenvalue of ¥ and P; the
corresponding spectral projection (the orthogonal projection onto the eigenspace of X).
Then the derivative Df(X)(H) = Df(X; H) of the operator function f(A) at A = X in
the direction H is given by

pf(ziHy= Y Yo, wPHP,
A€o (X)

where fII(x, p) = %{;‘“) for A # pand 1, 1) = f/(1) (see Section 2). More-
over, if f € Bgo’ 1 (R) for some s € (1, 2], then the following first order Taylor expansion
holds:

fE) = f(£) =Df(5; £ = )+ 5¢(£; £~ £)
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with the linear term Df (X; ) ) =n"! Z;'Zl Df(Z; X; ® X; — X) and the remainder
Sr(X; ¥ — X) satisfying the bound

1S7(Z5 8 = I S I fllas, 15— S

(see (2.15)). Since the linear term D f (X; I Y)) is the sum of i.i.d. random variables, it is
easy to check (for instance, using the Berry—Esseen bound) that /n (Df(Z; X — X), B)
is asymptotically normal with limit mean zero and limit variance

o (Z: B) :=2|='2Df(Z: BYE'?|]3.

Using the exponential bound (1.3) on ||fl — X||, one can easily conclude that the re-
mainder (S (X; s — ¥), B) is asymptotically negligible (that is, of order o(n~'/?)) if
(x(2)/n)*? = o(n~1/?), or equivalently r(X) = o(n'~!/%). In the case when s = 2,
this means that r(Z) = o(n!/ 2). This implies that ( f (f]), B) is an asymptotically nor-
mal estimator of (f(X), B) with convergence rate n~!/ 2 and limit normal distribution
N(0; afz-(E; B)) (under the assumption that r(¥) = o(n'=1/%)). The above perturbation

analysis is essentially the same as for spectral projections of 3 in the case of fixed finite
dimension (see Anderson [A]), or in the infinite-dimensional case when the “complexity”
of the problem (characterized by tr(X) or r(X)) is fixed (see Dauxois, Pousse and Romain
[DPR]). Note also that the bias of the estimator { f (f]), B),

(Ex f(2) - £(2), B) = (ExS;(%; £ — %), B),

is < ”f”Bio 1 | Bll1(r(X)/n)*/?, so it is of order o(n=1/?) (asymptotically negligible)
under the same condition r(X) = o(n!~1/). Moreover, it is easy to see that this bound

on the bias is sharp for generic smooth functions f. For instance, if f(x) = x? and
B = u ® u, then one can check by a straightforward computation that

. T+ %2 =
sup |(Es £(5) — F(2),u@u)| = WEEFE 52T

lul<1 n
This means that, as long as r(¥) > n'/2, one can choose a vector u from the unit ball
(for which the supremum is “nearly attained”) such that both the bias and the remainder
are not asymptotically negligible, and moreover it turns out that if r(X)/n'/? — oo, then
(f (f)), B) is not even a /n-consistent estimator of ( f(X), B). If in addition the operator
norm || X || is bounded by a constant R > 0, one can find a function in the space Bgo,l (R)
that coincides with f(x) = x? in a neighborhood of the interval [0, R], and the above
claims hold for this function, too (see also Remark 2 below).

Our first goal is to show that ( f (), B) is an asymptotically normal estimator of its
own expectation (Eyx f(2), B) with convergence rate n /2 and limit variance 0]3(2; B)
in the class of covariances with effective rank of order o(n). Given r > 1 and a > 0,
define G(r;a) :={X:r(X) <r, |2 <a}.
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Theorem 2. Suppose f € Bgo’l(R) for some s € (1,2]. Let a, o0 > 0. Suppose that
rpn > landr, = o(n)asn — oc. Then

. {n1/2<f(i) —Es /(). B) < x} — ®(x)
s or(Z: B) -

-0

sup sup
2eG(rn;a), |Bl1=1, 07 (Z;B)>00 x€R

(1.7)
asn — 0o, where ®(x) 1= «/%71 [ e 12 dt, x e R.

This result is a consequence of Corollary 4 proved in Section 4 that provides an explicit
bound on the accuracy of normal approximation. Its proof is based on a concentration
bound for the remainder (Sy(%; Py %), B) of the first order Taylor expansion developed
in Section 3. This bound essentially shows that the centered remainder

(S/(2; £ - %), B) —E(Sp(Z; £ — %), B)

is of order (r(£)/n)“~Y/2/T/n, which is o(n~'/?) as long as r(L) = o(n).
Theorem 2 shows that the naive plug-in estimator ( f(X), B) “concentrates” around
its expectation with approximately standard normal distribution of the random variables

n'2(f(£) —Ex (%), B)
o7 (Z; B) '

At the same time, as discussed above, the plug-in estimator has a large bias when the
effective rank of ¥ is sufficiently large (say, r(X) > n'/? for functions f of smoothness
s = 2). In the case when £ € G(ry; a) with r, = o(n'/?) and or(X; B) = oo, the bias
is negligible and ( f (fl), B) becomes an asymptotically normal estimator of { f(X), B).
Moreover, we will also derive the asymptotics of the risk of the plug-in estimator for loss
functions satisfying the following assumption:

Assumption 1. Let £ : R — R, be a loss function such that £(0) = 0, £(u) = £(—u)
for u € R, ¢ is nondecreasing and convex on R and, for some constants ¢y, c2 > 0,
L(u) < cre? foru > 0.

Corollary 1. Suppose f € By, |(R) for some s € (1,2]. Let a, 59 > 0. Suppose that

rp > landr, = o(n'=%) as n — oo. Then
2((£(2), B) — (f(Z), B
- w Pz{n (f (5, E)'B<f( ), >)§x}_¢(x) o
2eG(raa), 1 BI1 <1, 07(5; B)>0p xR of(%; B)
(1.8)

as n — 00. Moreover, under the same assumptions on f and ry, and for any loss func-
tion £ satisfying Assumption 1,

sup
2eG(rm;a), |Bl1=1, 07 (Z;B)=0g

E £<n”2((f(ﬁ), B) — (f(%), B))
= of(Z; B)

) - IEK(Z)‘ -0
(1.9)

asn — 0o, where Z is a standard normal random variable.
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The main difficulty in asymptotically efficient estimation of ( f(X), B) is related to the
development of bias reduction methods. We will now discuss an approach to this problem
in the case when Hi is finite-dimensional of dimension d = d,, = o(n) and the covariance
operator X is of isotropic type (the spectrum of X is bounded from above and bounded
away from zero by constants that do not depend on n). In this case, the effective rank
r(X) is of the same order as the dimension d, so d will be used as a complexity parameter.
Developing a similar approach in a more general setting (when the effective rank r(X) is
a relevant complexity parameter) remains an open problem.
Consider the integral operator

Tg() :=Exg(X) = / gSP(2;dS), X eCi(H),
Cy(H)

where C1 (H) is the cone of positive semidefinite self-adjoint operators in H (covariance
operators) and P(X; -) is the distribution of the sample covariance 3 based on 7 i.i.d.
observations sampled from N (0; X) (which is a rescaled Wishart distribution). In what
follows, T will be called the Wishart operator. We will view it as an operator acting on
bounded measurable functions on C4(H) taking values either in the real line, or in the
space of self-adjoint operators. Such operators play an important role in the theory of
Wishart matrices (see, e.g., James [James, James1, James2], Graczyk, Letac and Massam
[GLM, GLM1], Letac and Massam [LetMas]). Their properties will be discussed in detail
in Section 5. To find an unbiased estimator g(ﬁ)) of f(X), one has to solve the integral
equation 7g(X) = f(X), ¥ € Cy(H) (the Wishart equation). Let B := T — Z, T being
the identity operator. Then the solution of the Wishart equation can be formally written
as the Neumann series

g =T+B ) =T —-B+B - )f(2) =) (/B f(2).
j=0

We do not use this representation in what follows and do not need any facts about the
convergence of the series. Instead, we will define an approximate solution of the Wishart
equation in terms of a partial sum of the Neumann series,

k
() =) (DB (D), T eCp(.

j=0
With this definition, we have
Es fit(2) — f(2) = (=D'B f(2), T eCi(H).

It remains to show that (BXt! £(%), B) is small for smooth enough functions f, which
would imply that the bias (Ex, fk(f))—f(E), B) of the estimator (fk(fl), B) of (f (%), B)
is also small. [Very recently, a similar approach was considered by Jiao, Han and Weiss-
man [JHW] in the case of estimation of a function f(6) of the parameter 6 of binomial
model B(n;0),0 € [0, 1]. In this case, T f is the Bernstein polynomial of degree n ap-
proximating f, and some results of classical approximation theory ([GonZ], [Tot]) were
used in [JHW] to control B¥ 11
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Note that P(-; -) is a Markov kernel and it could be viewed as the transition kernel
of a Markov chain f)(t),t =0,1,..., in the cone C4 (H), where 30 — %, s = fi
and, in general, for any t > 1, 3@ i the sample covariance based on n i.i.d. obser-
vations sampled from the distribution N (0; LY -b) (conditionally on Ly —1). In other
words, the Markov chain {fl(t)} is based on iterative applications of bootstrap, and it will
be called the bootstrap chain. As a consequence of (1.6), with a high probability (condi-
tionally on £(=D), |=® — £C=Dy < | 20D /d/n, so when d = o(n), the Markov
chain {£} moves in “small steps” of order =< +/d/n. Clearly, with the above definitions,

TEF(Z) =Ex f(E£W).

Note that, by Newton’s binomial formula,
k Kk ) k (k o
B () = (T-DFf() = (~ 1) (j)Tff(E) =Eg ) (—D*J (j>f(2<f>>.
j=0 j=0

The expression Z;'(:o(_ k=i (1;) f () can be viewed as the k-th order difference of f

along the Markov chain { Y. It is well known that, for a k times continuously differen-
tiable function f on the real line, the k-th order difference Aﬁ f(x) (where Ay f(x) :=
f(x +h) — f(x))is of order O (h¥) for a small increment /4. Thus, at least heuristically,
one can expect that BF £ () would be of order O ((d/n)*/?) (since \/d/n is the size of
the “steps” of the Markov chain {fl(’)}). This means that, for d much smaller than n,
one can achieve a significant bias reduction in a relatively small number of steps k. The
justification of this heuristic is rather involved. It is based on a representation of the op-
erator function f(X) in the form Dg(X) := X/2Dg(T)=1/2, where g is a real valued
function on C4 (H) invariant with respect to the orthogonal group. The properties of or-
thogonally invariant functions are then used to derive an integral representation for the
function BX f () = B*¥Dg (%) = DBFg(T), which implies, for a sufficiently smooth f,
bounds on B* f(X) of order O((d/ n)*/2) and, as a consequence, bounds on the bias of
the estimator (fk(fl), B) of (f(X), B) of order o(n_l/z), provided that d = o(n) and k
is sufficiently large (see (5.15), and Theorem 8 and Corollary 5 in Section 6).

The next step in the analysis of the estimator ( fx (%), B) is to derive normal approx-
imation bounds for (f¢(2), B) — Ex(f«(2), B). To this end, in Section 7 we study
smoothness properties of the functions DB¥g(%) for a smooth orthogonally invariant
function g that are later used to prove proper smoothness of ( fy(X), B) and derive con-
centration bounds on the remainder (S, (X; I ¥), B) of the first order Taylor expansion
of (fx (), B), which is the main step in showing that the centered remainder is asymp-
totically negligible and proving the normal approximation. In addition, we show that the
limit variance in the normal approximation of ( fk(f)), B)—Ex( fk(f]), B) coincides with
ofz.(E; B) (which is exactly the same as the limit variance in the normal approximation
of (f (2), B) —Ex(f (f)), B)). This finally yields normal approximation bounds of The-
orems 10 and 11 in Section 8.

Givend > 1 and a > 1, denote by S(d; a) the set of all covariance operators in a d-
dimensional space H such that || Z||, || 1) < a. The following result on uniform normal
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approximation of the estimator ( fi ( f]), B) of (f(X), B) is an immediate consequence of
Theorem 11.

Theorem 3. Leta > 1 and o¢ > 0. Suppose that, for some a € (0,1), 1 < d, < n® for

n > 1. Suppose also that f € B} |(R) for some s > 1+ Let k be an integer such that

=
1% <k+1+4 B <sforsomep € (0,1]. Then

o

sup sup
2eS(dy;a), IIBl1<1, 07 (Z;B)>0p xR

. {n1/2<<fk<i>, B) — (f(%). B))
® o (%; B)

< x} — d(x)

—~0 (1.10)

as n — 00. Moreover, if £ is a loss function satisfying Assumption 1, then

sup
TeS(dn;a), |Blli <1, op(2;B) =00

E e(nm((fk(fl), B) - (f (%), B)
= of(Z; B)

>—W@4+O
(1.11)

asn — oQ.

Remark 1. Note that for « € (0,1/2) and s > ﬁ, one can choose k = 0, implying
that fk(fl) =f (f]) in Theorem 3 is a usual plug-in estimator (cf. Corollary 1). However,
for « = 1/2, we have to assume that s > 2 and choose k = 1 to satisfy the condition
k+14+8 > ﬁ = 2. Thus, in this case, the bias correction is already nontrivial. For
larger values of «, even more smoothness of f is required and more iterations k in our

bias reduction method are needed.

Remark 2. It easily follows from well known embedding theorems for Besov spaces
(see, e.g., [Tr, Section 2.3.2]) that, for s’ > s > 0, the Holder space C* (R) is con-
tained in Bgo,l (R). Moreover, it is easy to see that any C* function defined locally in a

neighborhood of the spectrum of ¥ could be extended to a function from C'(R). These
observations show that Theorem 3 could be applied to all C* functions defined in a neigh-
borhood of the spectrum of X for all s > ﬁ
To show the asymptotic efficiency of ( fx(2), B), it remains to prove a minimax lower
bound on the risk of an arbitrary estimator 7,,(Xy, ..., X;) of (f(X), B) that would
imply the optimality of the variance af(E; B) in normal approximation (1.10), (1.11).
Let f € Bgo’l(R) forsome s € (1, 2]. Givena > 1, let §(d; a) be the set of all covariance
operators in a Hilbert space H of dimension d such that || 2|, |Z~'|| < a. Given og > 0,
denote
So'f,B(d; a; og) 1= gSo'(d; a) N {Z :0p(Z; B) > oo}

Note that the set Saf, g(d; a; op) is open in the operator norm topology, which easily
follows from the continuity of the functions ¥ +— ||Z|, £ +— [|Z~|| (on the set
of nonsingular operators) and ¥ +— of2(2; B) (see Lemma 26 in Section 9) with re-
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spect to the operator norm. This set could be empty. For instance, since 0]3(2; B) <
20113 _IZIPIBII3. we have Sf,5(d; a; 00) = #if o > 2|13 _[Z?[|BI|3. Denote
By(d; a:00) == {B: |Bl1 <1, Sf.5(d: a; 00) # 0}.

The following theorem provides an asymptotic minimax lower bound on the mean
squared error of estimation of the functionals ( f(X)B) for || B||; < 1. By convention, it
will be assumed that inf ) = +o0.

Theorem 4. Leta > 1, og > 0 and let {d,} be an arbitrary sequence of integers d, > 2.
Then, for all a’ € (1, a) and o > 0y,

nEs (T, — (f(2), B))?

liminf inf inf sup 3 >1, (1.12)
100 T BEB(dnia'i) 5ed(dyia). o (2:B)>00 o7 (%: B)
where the first infimum is taken over all statistics T, = T,(X1, ..., X,) based on i.i.d.

observations X1, ..., X, sampled from N (0; X).
The proof is given in Section 9.

Remark 3. If C C o(X) is a “component” of the spectrum of ¥ such that the dis-
tance dist(C, o (X) \ C) from C to the rest of the spectrum is bounded away from zero
by a sufficiently large gap and Pc is the orthogonal projection on the direct sum of the
eigenspaces of X corresponding to the eigenvalues from C, then it is easy to represent Pc
as f(X) for a smooth function f that is equal to 1 on C and vanishes outside of a neigh-
borhood of C that does not contain other eigenvalues. The problem of efficient estimation
of linear functionals of Pc (such as its matrix entries in a given basis or general bilinear
forms) is of importance in principal component analysis. A related problem of estimation
of linear functionals of principal components was recently studied in [KLN] in the case
of one-dimensional spectral projections. The methods of efficient estimation developed
in [KLN] are rather specialized and they could not be easily extended even to spectral
projections of rank higher than 1. This, in part, was our motivation to study the problem
for more general smooth functionals and to develop a more general approach. Similarly,
one can represent the operator Pc X Pc as a smooth function of £ and use the approach
of the current paper to develop efficient estimators of bilinear forms or matrix entries of
such operators. This could be of interest in the case of covariance matrices of the form
> = X + 021y, where 3 is a low rank covariance matrix (say, the covariance matrix
whose eigenvectors are “spikes” of a spiked covariance model). If C is the set of top
eigenvalues of X that correspond to its “spikes”, then estimation of ¥ could be reduced
to estimation of Pc X Pc.

Remark 4. The results of this paper could not be directly applied to estimation of func-
tionals of the form tr( /(X)) since in this case B is the identity operator and its nuclear
norm is not bounded by a constant. In such cases, /n-consistent estimators do not al-
ways exist in high-dimensional problems, minimax optimal convergence rates are lower
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than n~!/2 and they do depend on the dimension (see, for instance, [CLZ] for an example
of estimation of the log-determinant log det(¥) = tr(log(X))). Although some elements
of our approach (in particular, the bias reduction method) could be useful in this case, a
comprehensive theory of estimation of the functionals (f(X), B) in the case of B with
unbounded nuclear norm remains an open problem and it is beyond the scope of this

paper.

Remark 5. In this paper, the problem was studied only in the case of Gaussian mod-
els with known mean (without loss of generality, set to be zero) and unknown covariance
operators. In [KZh], a similar problem of efficient estimation of smooth functionals of un-
known mean in Gaussian shift models with known covariance was studied. The problem
becomes more complicated when both mean and covariance are unknown (in particular,
it would require a more difficult analysis of the operators 7 and B involved in the bias
reduction method).

Remark 6. The computation of estimators fk(fl) could be based on Monte Carlo sim-
ulation of the bootstrap chain. To this end, one has to simulate a segment of this chain
of length k 4 1 starting at the sample covariance 3. This would allow us to compute the
sum fzo(—l)k’j (l;) F(ZUHD). Averaging such sums over a sufficiently large number
N of independent copies of the bootstrap chain provides a Monte Carlo approximation of
BF f (f]), which allows us to approximate f (f)). A total of (k+ 1) N computations of the
function f of covariance operators (each of them based on a singular value decomposi-
tion) would be required to implement this procedure.

1.3. Related results

To the best of our knowledge, the problem of efficient estimation for general classes of
smooth functionals of covariance operators in the setting of the current paper has not been
studied before. However, many results in the literature on nonparametric, semiparamet-
ric and high-dimensional statistics as well as some results in random matrix theory are
relevant in our context. Below we provide a brief discussion of some of these results.
Asymptotically efficient estimation of smooth functionals of infinite-dimensional pa-
rameters has been an important topic in nonparametric statistics for a number of years; it
also has deep connections to efficiency in semiparametric estimation (see, e.g., [BKRW],
[GN] and references therein). The early references include Levit [Levl, Lev2] and the
book of Ibragimov and Khasminskii [IKh]. In the paper by Ibragimov, Nemirovski and
Khasminskii [IKhN] and later in the paper [Nem1] and in the Saint-Flour lectures [Nem2]
by Nemirovski, sharp results on efficient estimation of general smooth functionals of pa-
rameters of Gaussian white noise models were obtained, precisely describing the depen-
dence between the rate of decay of Kolmogorov’s diameters of parameter space (used as
a measure of its complexity) and the degree of smoothness of functionals for which effi-
cient estimation is possible. A general approach to construction of efficient estimators of
smooth functionals in Gaussian white noise models was also developed in those papers.
The result of Theorem 3 is in the same spirit, with the growth rate « of the dimension of
the space being the complexity parameter instead of the rate of decay of Kolmogorov’s
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diameters. At this point, we do not know whether the smoothness threshold s > ﬁ for
efficient estimation obtained in this theorem is sharp (although the sharpness of the same
smoothness threshold was proved in [KZh] in the case of the Gaussian shift model).

More recently, there has been a lot of interest in semiparametric efficiency prop-
erties of regularization-based estimators (such as LASSO) in various models of high-
dimensional statistics (see, e.g., [GBRD], [JaMont], [ZZ], [JG]) as well as in minimax
optimal rates of estimation of the special functionals (in particular, linear and quadratic)
in such models [CL1], [CL2], [CCT].

In a series of pioneering papers in the 80s—90s, Girko obtained a number of results
on asymptotically normal estimation of many special functionals of covariance matrices
in high-dimensional setting, in particular, on estimation of the Stieltjes transform of the
spectral function tr((/ + tZ)’l) (see [Gir] and also [Girl] and references therein). His
estimators were typically functions of a sample covariance 3 defined in terms of certain
equations (so called G-estimators) and the proofs of their asymptotic normality were
largely based on martingale CLT. The centering and normalizing parameters in the limit
theorems in those papers are often hard to interpret and the estimators were not proved to
be asymptotically efficient.

Asymptotic normality of so called linear spectral statistics tr( f (2)) centered either
by their own expectations, or by the integral of f with respect to a Marchenko—Pastur
type law has been an active subject of research in random matrix theory both in the case
of high-dimensional sample covariance (or Wishart matrices) and in other random ma-
trix models such as Wigner matrices (see, e.g., Bai and Silverstein [BaiS], Lytova and
Pastur [LP], Sosoe and Wong [SW]). Although these results do not have direct statistical
implications since tr( f (%)) does not “concentrate’ around the corresponding population
parameter, probabilistic and analytic techniques developed in those papers are highly rel-
evant.

There are many results in the literature on special cases of the above problem, such
as asymptotic normality of the statistic log det(f)) = tr(log(fl)) (the log-determinant). If
d = d, < n, then it was shown that the sequence

log det(f]) — ap,q — logdet(%)
bn,d

converges in distribution to a standard normal random variable for explicitly given se-
quences a4, by 4 that depend only on the sample size n and on the dimension d. This
means that log det(f)) is an asymptotically normal estimator of log det(¥) = tr(log(X))
subject to a simple bias correction (see, e.g., Girko [Gir] and more recent paper by
Cai, Liang and Zhou [CLZ]). The convergence rate of this estimator is typically lower
than n~Y2: for instance, if d = n® for « € (0, 1), then the convergence rate is
= p—(1-a)/2 (and, for « = 1, the estimator is not consistent). In this case, the prob-
lem is relatively simple since log det(f)) — logdet(¥X) = logdet(W), where W is the
sample covariance based on a sample of n i.i.d. standard normal random vectors.

In a recent paper by Koltchinskii and Lounici [KL1] (see also [KL3, KL4]), the prob-
lem of estimation of bilinear forms of spectral projections of covariance operators was
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studied in the setting when r(X) = o(n) asn — 00.3 Normal approximation and con-
centration results for bilinear forms centered by their expectations were proved using
first order perturbation expansions for empirical spectral projections and concentration
inequalities for their remainder terms (which is similar to the approach of the current pa-
per). Special properties of the bias of these estimators were studied that, in the case of
one-dimensional spectral projections, led to the development of a bias reduction method
based on sample splitting that resulted in a construction of /n-consistent and asymptot-
ically normal estimators of linear forms of eigenvectors of the true covariance (principal
components) in the case when r(X) = o(n) as n — oo. This approach has been further
developed in a very recent paper by Koltchinskii, Loeffler and Nickl [KLN] in which
asymptotically efficient estimators of linear forms of eigenvectors of X were studied.

Other recent references on estimation of functionals of covariance include Fan, Rigol-
let and Wang [FRW] (optimal rates of estimation of special functionals of covariance
under sparsity assumptions), Gao and Zhou [GaoZ] (Bernstein—von Mises theorems
for functionals of covariance), Kong and Valiant [KoVa] (estimation of “spectral mo-
ments” tr(ZX)).

2. Analysis and operator theory preliminaries

In this section, we discuss several results in operator theory concerning perturbations
of smooth functions of self-adjoint operators in Hilbert spaces. They are simple modifi-
cations of known results due to several authors (see recent survey by Aleksandrov and
Peller [AP2]).

2.1. Entire functions of exponential type and Besov spaces

Let f : C — C be an entire function and let o > 0. We say that f is of exponential
type o (more precisely, < o) if for any ¢ > 0 there exists C = C(e, o, ) > 0 such that

If(2)] < Ce TRl 7 ecC.

In what follows, & = &,(C) denotes the space of all entire functions of exponential
type o. It is straightforward to see (and well known) that f € & if and only if
log SUPyc[0,27] |f(Rei“’)| _

lim sup =:0(f) <o.
R—o0 R

With a little abuse of notation, the restriction fjr of f to R will also be denoted by f;
F f will denote the Fourier transform of f: F f(t) = fR e~ f(x) dx (if f is not square
integrable, its Fourier transform is understood in the sense of tempered distributions).
According to the Paley—Wiener theorem,

Es NLo(R) ={f € Loc(R) : supp(F f) C [—o, o]}.

3 For other recent results on covariance estimation under assumptions on its effective rank see
[NSU, RW].
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It is also well known that f € & N Lo(R) if and only if | £(z)| < || £l L, ®)e® ™! for
zeC.

We will use the Bernstein inequality || f'|| .. ®) < 0|l fllL(®) that holds for all f
& N Loo(R). Moreover, since f € & implies [/ € &, we also have || f/|lL ®) <
e Nal Lo (R), and similar bounds hold for all the derivatives of f.

The next elementary lemma is a corollary of the Bernstein inequality. It provides
bounds on the remainder of the first order Taylor expansion of f € £; N Lo (R).

Lemma 1. Let f € £ N Loo(R). Denote
Se(x;h) == f(x+h)— f(x)— f'(x)h, x,heR.

Then
2

o
1Sy (x; h)| < 7||f||Lm<R)h2, x, heR,

and
1S£ e 1Y) — Sp(xs )| < 021 fll L@ 8(h, KW — kI, x,h, b € R.

where §(h, ') := (|h| A |R']) + |B' — hl/2.

We also need an extension of the Bernstein inequality to functions of several complex
variables. Let f : Ck — C be an entire function and let o := (©1,...,0%), 05 > 0.
The function f is of exponential type ¢ = (o4, ..., o) if for any ¢ > 0 there exists
C =C(e,0, f) > 0such that

Yk 0+l
[ f(z1,. ., 2] < Ce=i=1™" oz, e e C

Let &,,....5; be the set of all such functions. The following extension of the Bernstein
inequality can be found in the paper by Nikol’skii [Nik], who actually proved it for an
arbitrary Lj,-norm, 1 < p < 00.If f € &, 5 N Loo(R), then for any m > 0 and any
my, ..., myg > 0such that Zl,'(:lmj =m,

amf

m m
axy ...0x;

<o oMl ey @1
Loo (RK)

Let w > 0 be a C* function on the real line with supp(w) C [—2, 2] such that
w(t) = 1fort € [—1, 1] and w(—1) = w(¢) for t € R. Define wo(t) := w(t/2) — w(t)
for ¢t € R, which implies that supp(wo) C {t : 1 < |t] < 4}. Let w;(¢) := wo(27/1)
for t € R with supp(w;) C {tr : 2/ < |t| < 2/%2}, j = 0, 1,.... These definitions
immediately imply that

wt) + Y wi)=1, teR.

j=0

Finally, define functions W, W; € S(R) (the Schwartz space of functions in R) by their
Fourier transforms as follows:

w(t) = (FW)(1), w;j®)=FW)(@), tekR,j>0.
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For a tempered distribution f € S’(R), one can define its Littlewood—Paley dyadic

decomposition as the family of functions fy = f« W, f, = f* W,_1,n > 1

with compactly supported Fourier transforms. Note that, by the Paley—Wiener theorem,

fn € 1 N Loo(R). It is well known that ), f» = f with convergence in S'(R).
We use the Besov norms -

£, =D 2" I faullLwm, s €R,

n>0
and the corresponding Besov spaces
Bl ((R) == {f € S'R): || fllps,, < ool

We do not use the whole scale of Besov spaces. Note that Besov norms are equivalent
for different choices of the function w and the corresponding Besov spaces coincide. If
f e Bgo’l(R) for some s > 0, then the series ano fn converges uniformly to f in R,
which easily implies that f € C, (R), where C,, (R) is the space of all bounded uniformly
continuous functions in R and || f]l.,, < ”f”Béo . Thus, for s > 0, the space Béo,l(R)
is continuously embedded in C,(R). Moreover, if ¢S (R) denotes the Holder space of
smoothness s > 0, then, for all s > s > 0, C¥ R) C Béo,l R) c C*(R) (see [Tr,
Sections 2.3.2, 2.5.7]). Further details on Besov spaces can also be found in [Tr].

2.2. Taylor expansions for operator functions

For a continuous (and even for a Borel measurable) function f in R and A € B, (H),
the operator f(A) is well defined and self-adjoint (for instance, by the spectral theo-
rem). By standard holomorphic functional calculus, the operator f(A) is well defined for
A € B(H) and for any function f : C D G — C holomorphic in a neighborhood G of
the spectrum o (A) of A. It is given by the Cauchy formula

1
fA) = —2—% f(@RA(z)dz,
7i J,

where R4 (z) := (A — z1)~ ! for z ¢ o (A) is the resolvent of A and y C G is a contour
surrounding o (A) with counterclockwise orientation. In particular, this holds for all entire
functions f and the mapping B(H) > A — f(A) € B(H) is Fréchet differentiable with
derivative

1
Df(A; H) = %yg f(2)RA()HRA(2)dz, H € B(H). 2.2)
Y

The last formula easily follows from the perturbation series for the resolvent

Rarn(@ =) (=D"(Ra@H)*Ra(z), z€C\o(A),
k=0

1

. . 1 .
which converges in the operator norm as long as || H|| < o] = Tieo @)
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We need to extend the bounds of Lemma 1 to functions of operators, establishing
similar properties for the remainder of the first order Taylor expansion

Sf(AsH) := f(A+ H) — f(A) — Df(A; H), A, H € Bs(H),

where f is an entire function of exponential type o. This is related to a circle of problems
studied in operator theory literature concerning operator Lipschitz and operator differen-
tiable functions (see, in particular, the survey by Aleksandrov and Peller [AP2]).

We will need the following lemma.

Lemma 2. Let f € E; N Loo(R). Then, forall A, H, H' € Bs,(H),

If(A+H) = f(Al <ol flleemHI (2.3)

IDf(A; DIl < oll fll Lo I H, 2.4
2

IS¢ (A; H)Il = %IIfIILoo@)IIHIIZ, 2.5

I1S7(A: H') = Sp(As )| < 02| fllLogy8(H. H)|H' — H], (2.6)

where §(H, H') := (IH|| A H']) + |H' — H]|/2.

The bounds (2.3) and (2.4) are well known [AP2] (in fact, (2.3) means that, for f €
Es N Loo(R), Bu(H) 2 A — f(A) € Bs(H) is operator Lipschitz with respect to
the operator norm). The proof of (2.5) and (2.6) is also based on a nice approach by
Aleksandrov and Peller [AP1, AP2] developed to prove the operator Lipschitz property.
We give the proof of the lemma for completeness.

Proof of Lemma 2. Let E be a complex Banach space and let &, (E) be the space of entire
functions F : C — E of exponential type o, that is, entire functions F such that for any
e > 0 there exists a constant C = C(g, o, F) > 0 for which || F(z)|| < Ce@t®kl 7 e C.
If F e & (E) and sup, g || F(x)|| < oo, then the Bernstein inequality holds for F:

sup || F'(x)|| < o sup [|F(x)]. 2.7

xeR xeR

Indeed, for any [ € E*, [(F(-)) € & N Loo(R), which implies that
sup | F'(x)|| = sup sup |[(F'(x))| <o sup sup |[(F(x))| = o sup || F(x)|

xeR I7]|<1 xeR <1 xeR xeR
and
| F(x+h)— F(x)|l <osup|[Fx)| Al (2.8)
xeR

A similar simple argument (now based on Lemma 1) shows that for Sg(x; k) := F(x+h)
— F(x) — F'(x)h, we have
2

o
1SFCes ) < - sup IF)Ih®,  x,h eR, (2.9)
xeR

and
W —hl?

IS (x; ') — Sp(x; h)|| < o sup || F(x)]| [Ihl |h" — h| + >
xeR

i|, x,h,h eR.
(2.10)
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Next, for A, H € By, (H) and f € &, N Ly (R), define F(z) := f(A+zH) forz € C.
Then F € &g (B(H)). Indeed, F is complex-differentiable at any point z € C with
derivative F'(z) = Df (A +zH; H), so it is an entire function with values in E = B(H).
In addition, by the von Neumann theorem (see, e.g., [Dav, Theorem 9.5.3]),

IF@)Il = Il f(A+zH)| < sup L] < 1f Il e 1Al Hliz 7 e C,
[CI<IAllI+]z] 1H ||

implying that F is of exponential type o || H||. Note also that

sup [ F(x)|| = sup || f(A +xH)| < sup|f ()] = | f | Loo(®)-
R xeR xeR

X€E

Hence, (2.7) and (2.8) imply that

If(A+H) = f(Dl = IIF(1) = FO) < sup [F'(0)]

xeR

<allH|sup [F) <ol flleam I HI

xeR

and
IDf(A; )|l = 1F' Ol <ol flloe@ I H I,

which proves (2.3) and (2.4). Similarly, using (2.9), we get
ISr(A; H)| = |l f(A+ H) — f(A) = Df(A; H)|| = [|F(1) = F(0) — F'(0)(1 - 0)]

o?||H|? o? 5
sup | FO Il < I L I H I,

xeR

= ISF (0, DIl <

proving (2.5).
To prove (2.6), define

F(z):=f(A+H+z(H —H) - f(A+z(H — H)), zeC.
As in the previous case, F is an entire function with values in B(H). The bound
IF@ < 1l (e 1ATH 4 oo 1AT) o IH = HIE

implies that F' € & g/ — g (B(H)). Clearly, also sup, g | F ()]l < 2| fllLo®)-
Note that
St(A; H') — S¢(A; H)
=Df(A+H;H —H)—-Df(A;H —H)+ S;(A+ H;H — H) (2.11)
and (2.5) implies

2
o
ISf(A+H; H' — H)|| < 7||f||Loo(R)||H’ — HJ”.
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On the other hand, we have (by the Bernstein inequality)
IDf(A+H; H — H) — Df(A; H' — H)|| = | F'(0)|| < o|[H" = H|| sup || F(x)]|
xeR

and (2.3) implies that

sup IF)| = sup If(A+H+x(H —H) — f(A+x(H = )| <ol flr.mlH].

Now, it follows from (2.11) that

ISy (A; H') — Sp(A; H)|| < Ozllfllem)(IIHll + IIH/T_H”)IIH' — HJ,
which implies (2.6). ]
Remark 7. In addition to (2.6), the following bound follows from (2.3) and (2.4):

ISy (A; H') — Sp(A; )| < 20| fll ooy | H — HII. (2.12)

Note also that §(H, H') < ||H|| + || H'|| for H, H' € Bg,(H).

Following Aleksandrov and Peller [AP2], we use Littlewood—Paley dyadic decomposi-
tion and the corresponding family of Besov norms to extend the bounds of Lemma 2 to
functions in Besov classes. It would be more convenient for our purposes to use inhomo-
geneous Besov norms instead of homogeneous norms used in [AP2]. Peller [Pel] proved
that any function f € B 010 1 (R) 4 is operator Lipschitz and operator differentiable on the
space of self-adjoint operators with respect to the operator norm (in [AP2], these facts
were proved using Littlewood—Paley theory and extensions of the Bernstein inequality
for operator functions; see also the earlier paper [AP1]). We will state Peller’s results in
the next lemma in a convenient form along with some additional bounds on the remainder
of the first order Taylor expansion Sy(A; H) = f(A+ H) — f(A) — Df(A; H) for f in
suitable Besov spaces.

Lemma 3. If f € B! |(R), then forall A, H € B, (H),
If(A+H) = f(AI <201l @ IHI- (2.13)

Moreover, the function Ba(H) 2 A — f(A) € Bg(H) is Fréchet differentiable with
respect to the operator norm with derivative given by the following series (that converges
in the operator norm):

Df(A;H):ZDfn(A; H). (2.14)

n>0

If f e Bgo’l(R)for some s € [1,2), then, forall A, H, H' € Bg,(H),
1Sr(A;s H)|l < 23_SIIfIIB;QI IH]|° (2.15)

and

ISy (As H') — Sp(A; H)I| < 41l f s, , (8(H, HO M H - H|. (2.16)

4 In fact, Peller used modified homogeneous Besov classes instead of inhomogeneous Besov
spaces we use in this paper.
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Proof. Recall that, for f € B;O’l(R), the series ), fu converges to f uniformly in R.
Since A, A + H, A + H’ are bounded self-adjoint operators, we also get

Y R =FA), D HA+H) =fA+H), Y fi(A+H)=f(A+H),

n>0 n>0 n>0
(2.17)
with all series converging in the operator norm.
To prove (2.13), observe that
1£CA+H) = ) = |3 UA+ ) = fu(a)]
n>0
<Y A+ H) = iD= 32 fullw IHI =21 F il IHI,
n>0 n>0 -
where we use (2.3).
By (2.4),
Y IDfuAs DI < Y 2 fallLwm I HI =21l IHI < oo,
n>0 n>0 o
implying the convergence of ) .o Df,(A; H) in the operator norm. We define
Df(A; H) :=2Dfn(A;H). (2.18)

n>0

We will prove that this yields the Fréchet derivative of f(A). To this end, note that (2.17)
and (2.18) imply that

Sf(As H) =) [fu(A+ H) — fu(A) — Dfu(A; H)l =Y S (A H).  (2.19)

n>0 n>0

Asa consequence,

ISp(A DI < Y1185, (As DI+ Y (A + H) = fu(A) + D IDfu(A: B

n<N n>N n>N

< Y 22 full @ IHIP +2 ) 2" full ooy I HIL
n<N n>N

where we use (2.3)-(2.5). Given ¢ > 0, take N such that ), _ 2’”‘1||fn||Loc < e/4
and suppose || H|| < D 22(”i”||fn|\Loo<R)' This implies that ||Sy(A; H)|| < e/ H| and

Fréchet differentiability of f(A) with derivative Df (A; H) follows.
To prove (2.16), use (2.6) and (2.12) to get

IS¢, (A; H') — Sr, (A; H) ||
< 22 D) fll LS (H, HYIH — HI| A 2" fullLo® | H — H|
=22 full L) (2"8(H, H') A 1)||H' — H]|.
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It follows that

ISr(A: H') — Sp(A; H)|| < Z ISy, (A H') — Sp, (As H) ||
n>0

<Y 2" fallLa@ Q"S(H, HYAD | H' = H|

n>0

=4( Y UWfala@SH HYE Y 2l IH — H
on<1/8(H,H') > 1/8(H,H')

1 2—s
< 4( Z 2Wl||fn||Loo(]R)<W> S(H, H')

2 <1/5(H,H')

+ ) 2“'”||fn||Lw(R)(6<H,H’))s1)||H’—H||

21 <§(H,H')

=4 X Mhlemt Y 2l )OH, )Y T IH — H]

2"<1/6(H,H") 2n>1/8(H,H')
=4Il fllgs, , SCH, H)YHIH —HI|,

which yields (2.16). The bound (2.15) follows from (2.16) when H' = 0. O

Suppose A € Bg,(H) is a compact operator with spectral representation A =
era( A) APy, where P, denotes the spectral projection corresponding to the eigen-
value . The following formula for the derivative Df (A; H) with f € B;o’] (R) is well
known (see [Bh, Theorem V.3.3] for a finite-dimensional version):

pfA;H) =Yy fUNo,wPHP, (2.20)
r,ueo(A)

A—
the operator Df (A; H) can be represented in the basis of eigenvectors of A as a Schur

product of the Loewner matrix (f U, w) 1,ueo(A) and the matrix of the operator H in
this basis. We will need this formula only in the case of discrete spectrum, but there are
also extensions to more general operators A with continuous spectrum (with the sums re-
placed by double operator integrals): see Aleksandrov and Peller [AP2, Theorems 3.5.11
and 1.6.4].

Finally, we need some extensions of the results stated above to higher order derivatives
(see [Skr], [ACDS], [KS] and references therein for a number of subtle results in this
direction). If g : Bsoa(H) — B, (H) is a k times Fréchet differentiable function, its k-th
derivative D* g(A) for A € Bg(H) can be viewed as a symmetric multilinear operator
valued form

Drg(A)(Hy, ..., Hy) = D*g(A; Hy, ..., Hy), Hi,..., H € Bs(H).

where fU(x, n) = LW for A # wand fIA, 1) := f/(A). In other words,

Given such a form M : By, (H) X - - - x Bsa(H) — Bg,(H), define its operator norm as

IM]| = sup  [|M(Hy, ..., Holl.
(AR ARS
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The derivatives D¥g(A) are defined iteratively:
D*g(A)(Hy, ..., Hi—1, H) = DD g(A)(H. ... Hi—1)(Hy).
For f € & N Loo(R), the k-th derivative D* f(A) is given by the formula
D*f(A; Hy, ..., Hy)

-1 k+1
- 2711' Z f F@RA()Hr(1)Ra(2)Hr(2) - - - Ra(2) Hr (k) Ra(2) dz
meSk 14

for Hy, ..., Hy € Bs(H), where y C C is a contour surrounding o (A) with counter-
clockwise orientation.
The following lemmas hold.
Lemmad4. Let f € &, N Loo(R). Then, forall k > 1,
ID* (A < oXl fllLom), A € Ba(H). (2.21)
Proof. Given A, Hy, ... H; € Bg,(H), denote
F@i,..vz) = f(A+ziHy + -+ zeHo),  (z1,...,2) € CL.

Then f is an entire operator valued function of exponential type (o ||H{||, ..., o || Hkl):

1F(zi,...,z0ll < sup [f (&)
[CI=I|A+z1 Hy -z Hi |l

< ellexplo | Hll lz1] + - - - + o | Hill 121}

By the Bernstein inequality (2.1) (extended to Banach space valued functions as at the
beginning of the proof of Lemma 2), we get

IDXF(A+x1Hy + -+ xc HO(Hy, o HO < o [ Hill Tl oo ®)-

8kF(x1,...,xk)

<oNIH ... IHel  sup | F(x1, ..., x0)ll.
0Xx1...0x%

Xlyeens xR

Therefore,

For x; = --- = x; = 0, this yields

IDXf(AY(HY, ..., HOIl < o* I Hill .. | Hill | f 1L ()

implying the claim of the lemma. O
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Lemmas5. Let f € & N Loo(R). Then, for all k > 1 and all A, Hy, ..., Hy, H €

By (H),
ID*f(A+H; Hy, ..., H) — D'f(A; Hy, ..., Hy)l
< "N Flea@llHill .. IH NHI (2.22)
and
ok+2 )
0S¢ oo i (A3 D < ==L F Ny |V L . (2.23)

Proof. The bound (2.22) easily follows from (2.21) (applied to the derivative D¥*! f).
The proof of (2.23) relies on the Bernstein inequality (2.1) and on a slight modification
of the proof of (2.5). O

Lemma 6. Suppose [ € B§O,1(R)- Then the function Bg,(H) > A — f(A) € B, (H) is
k times Fréchet differentiable and

IDIFAI<2Iflly . AcBa@). j=1.....k (2.24)
Moreover; if f € Bgoyl(R)for some s € (k, k 4 1], then

ID*f(A+ H) = DX f(A < 2 fllgs IHIFY,  AVH € Bo@).  (2.25)

Proof. As in the proof of Lemma 3, we use Littlewood—Paley decomposition of f. Since,
by (2.21),forall j =1,...,k,

Y D! fulAs Hy, . H) < 20T fl I HLL - L H

n>0 n>0
<2/l i 1||H1 .. I1H; ]l < oo, (2.26)
the series ano D/ fu(A; Hy, ..., Hj) converges in operator norm and we can define

symmetric j-linear forms
DIf(A:Hy, ..., H)) =Y D/ fy(AiHy.....Hp), j=1,..k
n>0

By the same argument as in the proof of claim (2.4) of Lemma 3 and using the
bounds (2.22) and (2.23), we can now prove by induction that D’ f(A; Hy, ..., H}),
j =1,...,k, are the consecutive derivatives of f(A). Indeed, for j = 1, this was already
proved in Lemma 3. Assume that it is true for some j < k; to prove that it is also true for
j + 1 note that

ID)f(A+H; Hy,...,H))— D/ f(A; Hy,...,H) — D/ f(A Hy, ..., H, H)|
=< Z ||SDjf”(.;H1,__,,Hj)(A§ H)||
n<N

+ Y D/ fu(A+ H: Hy, ... Hy) — D/ fy(As Hy, ..., Hp)|

n>N

+ Y DI £ (A Hy, L H H)|
n>N
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2(j+2)(n+1) 5
<) 5 Walea@ il IH; L IH]
n<N
+2) 20D e I Hl L H I HL
n>N
Given ¢ > 0, take N such that }°,_ 2U+DGED £ 11 < e/4, which is possible for
f e Bg:ll (R), and suppose || H|| < > . Then

&
wen 200D 1

ID/ f(A+H; Hy, ..., H) — D/ f(A; Hy, ..., H)) = D/* f(A; Hy, ... H, HD|

<elHll ... IHell 1H]-
Therefore, the function A > D/ f(A; Hy, ..., Hj) is Fréchet differentiable with deriva-
tive D/ f(A; Hy, ..., Hy, H).

The bounds (2.24) now follow from (2.26).
To prove (2.25), note that

ID* f(A+ H)(Hy, ..., H) — D* f(A)(Hi, ..., Ho)l
< Y ID* fu(A+ H)(H, ..., Hy) = DX f(A)(H,, ..., Hy).

n>0

Using (2.21) and (2.22), we get

IDX f(A+ H)(H,, ..., H) — DX f(A)Y(H, ..., HYl

< Y 2ED Ll @l HINH ... || Hyl

2'<1/IH|l

+20 ) 2N Ll @ HL 1 Hi
2'>1/I1H]||

< 2T H| .. || Hy

[ X 2l Y 2 2]
2'<1/I1H| 2">1/1H||

< 2" Hy || Hyl ||H||S—"[ > 2Ifalle® + Y 2"f||fn||Lw<R)]

2r<1/IIH| 2">1/|1H||
=2 fllgs NHIP T IH - | Hll,
which implies (2.25). ]

In what follows, we use the definition of Holder space norms of functions of bounded self-
adjoint operators. For an open set G C Bg, (H), a k times Fréchet differentiable function
g: G — Bg(H) and, fors = k + B, B € (0, 1], define

; IDkg(A+H)—D*g(A)]
lgllcs(o) = max sup [D/g(A)] v~ sup (2.27)
AeG

0<j< A, A+HeG, H#0 |H|#
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A similar definition applies to k times Fréchet differentiable functions g : G — R (with
||D-/ g(A)| being the operator norm of a j-linear form). In both cases, C*(G) denotes
the space of functions g on G (operator valued or real valued) with [Igllcs(g) < oo. In
particular, these norms apply to the operator functions Bg,(H) 3 A — f(A) € B (H),
where f is a function on the real line. With a little abuse of notation, we write the norm
of such an operator function as || f || cs (B, ). The next result immediately follows from
Lemma 6.

Corollary 2. Suppose that f € B} |(R) for some k > 0 and s € (k,k + 1]. Then
| fllcs By < 2k+1||f||3govl~

3. Concentration bounds for the remainder of the first order Taylor expansion

Let g : Baa(H) — R be a Fréchet differentiable function with respect to the operator
norm with derivative Dg(A; H), H € B, (H). Note that Dg(A; -), is a bounded linear
functional on Bg, (H) and its restriction to the subspace Csy (H) C B, (H) of compact self-
adjoint operators in H can be represented as Dg(A, H) = (Dg(A), H), where Dg(A) €
S is a trace class operator in H. Let Sg(A; H) be the remainder of the first order Taylor
expansion of g:

Sg(A; H) :=g(A+ H)—g(A) — Dg(A; H), A, H e B (H).

Our goal is to obtain concentration inequalities for the random variable S, (X; IR 5))
around its expectation. It will be done under the following assumption on the remainder
Se(A; H):

Assumption 2. Lets € [1, 2]. Assume there exists a constant L, ¢ > 0 such that, for all
Y € C4(H) and H, H' € Bs,(H),

1S¢(; H') = Sg(Z; H)| < Lo s(IH| v IIH' )~ I H = HI|.

Note that Assumption 2 implies (for H' = 0) that [S,(2; H)| < Ly|H|* for ¥ €
C+(H) and H € By, (H).

Theorem 5. Suppose Assumption 2 holds for some s € (1, 2]. Then there exists a con-
stant K > 0 such that for all t > 1, with probability at least 1 — e,

1S4(2; £ — ) —ESg(T; £ — 2)

r(3)\ 672 r(2)\* 12 £\ 6=D/2 NS [
= Kng,s”Z”S Vv A A —.
n n n n n

3.1

Proof. Let ¢ : R — R be such that ¢(u) = 1 foru < I, ¢(u) = 0 foru > 2 and
o) =2 —uforu € (1,2). Denote E := ¥ — ¥ and, given § > 0, define

h(X1, ..., Xn) = Sg(Z; E)e(|ENl/S). (3.2
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We start by deriving a concentration bound for the function 4 (X1, ..., X;) of Gaussian
random variables X1, ..., X,. To this end, we will show that #(X1, ..., X;) satisfies a
Lipschitz condition. With a minor abuse of notation, we will assume for a while that
X1, ..., X, are nonrandom points of H and let X/, ..., X ;Z be another set of such points.
Denote by &/ :=n~! doi-i Xj’ ® X]/. the sample covariance based on X7, ..., X/, and let
E =% -7%.

The following lemma establishes a Lipschitz condition for /.

Lemma 7. Suppose Assumption 2 holds with some s € (1,2]. Then, for all § > 0
and h defined by (3.2), the following bound holds with some constant C; > 0 for all
Xi,..., Xn, X, ..., X, e H:

|h(Xls ---,Xn) _h(X/a "'9X;1)|

CsLg s(I1ZN1V? 4+ V/8)85 71 /& 2\ 2
< : IX; = X17) . (33)
Jn (/Z:; 1 J )

Proof. Using the fact that ¢ takes values in [0, 1] and it is a Lipschitz function with
constant 1, and taking into account Assumption 2, we get

[R(X1, ooy X))l < [Sg(Z5 E)IT(ENl < 28) < LgsIEIPIIE] < 28)
< 2L, 8 (3.4)

and similarly
|h(X], ..., X;)| <2°Lg 8" (3.5)

We also have
1
|h(X1,.... Xn) —h(X], ..., X)) S |84(2, E) — Sg(2, EN| + g|Sg(E, ENE - E'|
riys—1 / 1 ms /
< LgsUNENVINETDIIE — E +Lg,sg||E I"lE"— Ell.  (3.6)

If both ||E|| <26 and || E’|| < 28, then (3.6) implies
(X1, Xn) = h(XY, o, XD < QT 429 L, 8 NE - ENl. (37

If both |E|| > 28 and ||E’|| > 28, then ¢(||E||/8) = @(||E’||/8) = 0, implying that
h(X1, ..., X)) =h(X}|,....,X,)=0.If |E|| <26, |E'|| > 25 and |[E' — E| > &, then
(X1, ..., Xp) — h(Xi» ceey X;,)| = |h(X1, ..., Xp)| = 2SLg,S(SS

<2L¢ 8V E' — E||.
If |E|| <268, |E'|| > 28 and |E' — E| < 4, then ||E’|| < 38 and, similarly to (3.7), we

get
(X1, .o Xn) — (X, X)) < (3 435 L, 8 HIE — E|. (3.8)
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By these simple considerations, the bound (3.8) holds in all possible cases. This fact along
with (3.4) and (3.5) yields

(X1, Xn) = h(X], o X < BT 435 Ly o8N (IE = E AS). (39)

We now obtain an upper bound on |E’ — E||. We have

n n
—1 —1
||E’—E||:Hn Y xex-n' Y X ©X
j= =
n n
< |- xpe x|+ [ Y X e o - x)
=1 j=1

n n
= swp 'Y = XX+ sup YOG w0 - X )
lull, v <1 i=1 el Nvll<1 j=1

< sup (rfl i(Xj — Xj/ u)2>1/2 sup (n71 i(Xj, v)z)

(T [ A

1/2

1/2

n n
+ sup (n_1 Z(X]'», u)2) sup (n_l Z(Xj - X, v)z)
Jj=1 j=1

lull <1 lvl<1

1/2

> e 2
< N
where A = n’l/z(z;;l I1X;— X; [>)1/2. Without loss of generality, assume that || E|| <

28 (again, if both ||E| > 28 and IE'| > 28, then h(X1, ..., X») = h(X/, ..., X)=0
and inequality (3.3) holds trivially). Then

IE'— E| < QIZI"*+2V25 + | E' — E|'/H)A.
If |E' — E|| <34, the last bound implies that
IE'—E|| < QIZN"? + @V2+ DVHA <4|Z)'2A v @vV2 +2)V5 A.
Otherwise, if |[E' — E|| > 8, we get
IE'— E|| < 4I12)'*A v V2 +2)A|E' — E|'V2,

< 12
=1

which yields

IE — E|| <4 Z||'2A v (4v2 + 2)2A2.
Thus, either |E' — E|| < 4||Z||Y/2A, or |E' — E|| < (4/2 + 2)2A2. In the last case, we
also have (since § < ||[E' — E||)

8§ <VSIE —E|V? < @V2+2)V5A.
This shows that
IE —E| A8 <4|D2A vV @V2+2)V5 A (3.10)
both when |E’ — E|| < § and when ||E’ — E|| > 6.
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Substituting (3.10) in (3.9) yields

h(X1, ..., Xn) — (X}, ..., X))
G 3L @I + @V2+ 288 & ;2\ /2
< O —xp12)
NG =

which implies (3.3). O

In what follows, we set, for a given ¢ > 0,

5= 8,(t) :=E||I5 — 3| +cn2n[<,/? v 1) %v :7]

It follows from (1.3) that there exists an absolute constant C > 0 such that
PIS -2 =8, (D) <e”’, t>1 (.11

Assuming that > log(4), we get P{||E|| > &} < 1/4. Let M := Med(S,(XZ; E)) be a
median of random variable Sg(X; E). Then

]P){h(Xla""X)’l) 2 M} ZP{h(le"'aXn) Z M’ ||E|| < 8}
> P{Sg(X E) = M, |[E|| <8} = 1/2-P{IE|l = 8} = 1/4.

Similarly, P{h(Xy, ..., X,;) < M} > 1/4. In view of the Lipschitz property of h
(Lemma 7), we now use a relatively standard argument (see [KL2, Lemma 2 and its ap-
plications in Section 3]) based on a Gaussian isoperimetric inequality (see Ledoux [Led,
Theorem 2.5 and (2.9)]) to conclude that with probability at least 1 — e/,

(X1, ... Xn) — M| Sy Lo 581DV 4+ 821212/t /n.

Moreover, since Sg(X; E) = h(Xy,..., X,) on the event {||E|| < 8} of probability at
least 1 — e, we find that with probability 1 — 2™,

IS¢ (25 E) — M| S5 L 58 HUIZNY2 + 8D 12112t /. (3.12)

It follows from (1.1) that

5:5,1(;)5||z||<‘/r(f)vrf)v\/§v£>. (3.13)

Substituting (3.13) into (3.12) easily yields, with probability at least 1 — 2¢~7,

|S¢(25 E) — M|

)\ 6—D/2 )\ 5172 £\ 6=D/2 ANNr
seoer((B7) V() G G W
n n n n n
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and moreover by adjusting the value of the constant in (3.14) the probability bound can
be replaced by 1 — e¢~'. By integrating out the tails of (3.14) one can get

[ESy (X5 E) — M| < E[Sg(X; E) — M|

)\ 6=D/2 s\ S 172 1\ 6=D/2\ ]
s Lg,snzn“((r(n—)) v(r(n)> v(;) >\/; (3.15)

Combining (3.14) and (3.15) implies that for all ¢ > 1, with probability at least 1 — e,

1Sg(%; E) — ESg (X5 E)|

s\ 6-1D/2 s\ $—1/2 £\ 6=D/2 AU 7
oo (12 () ()
n n n n n

(3.16)

which completes the proof. O
Example 1. Consider the functional

g(A) = (f(A), B) =u(f(A)B"), A e Bu(H),
where f is a given smooth function and B € & is a given nuclear operator.

Corollary 3. If f € B:_ |(R) for some s € (1, 2], then with probability at least 1 — e!
the following concentration inequality holds for the functional g:

S¢(Z; £ — ) —ESg(Z: £ — B)| S5

)\ 6-D/2 Y\ 5172 (s—1)/2 s—1/2
||f||3;ol||B||1||z||‘((ﬁ) v(r( )> v(i) v(i) ) L
4 n n n n n

(3.17)

Proof. Tt easily follows from Lemma 3 that Assumption 2 is satisfied for s € [1, 2] with
Les= 25+l If1lgs,  IIBll1. Therefore, Theorem 5 implies (3.17). O

In what follows, we need a more general version of the bound of Theorem 5 (under
somewhat more general conditions than in Assumption 2).

Assumption 3. Assume that, for all ¥ € C, (H) and H, H' € B, (H),
1Sg(Z: H') — Sg(S: H) < n(S: | HIl v [H'DIH' — HI\
where 0 < 6 — n(Z; ) is a nondecreasing function of the following form:
N(Z;8) = ni(E) V-V (2)8%"
for given nonnegative functions 7y, .. ., 1, on C4(H) and positive numbers o1, ..., a;,.

The proof of the following result is a simple modification of the proof of Theorem 5.
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Theorem 6. Suppose Assumption 3 holds. Then for all t > 1, with probability at least

—t
1—e,

1S¢(2; 8 — 2) —ES,(T; S — )
S (25 8 (2 NI+ Vo (B NVIISIVE /., (3.18)

where

(3.19)

50(5: 1) 1= ||z||( "(f) v r(f) v |ty i).

4. Normal approximation bounds for plug-in estimators

Let g : Ba(H) — R be a Fréchet differentiable function with respect to the operator
norm with derivative Dg(A; H), H € Bs(H). Recall that for H € Cs,(H) we have
Dg(A; H) = (Dg(A), H), where Dg(A) € S;. Denote

Dg(x) :=x'?Dg(z)x!/?.
The following theorem is the main result of this section.

Theorem 7. Suppose Assumption 2 holds for some s € (1, 2] and also that r(X) < n.
Define

ys(g; ) :=10g(M>, ths(g; 2) :=[ vs(g; E)+—110g< )] 28
IDg(2)l2 ’ r(X)

Then

n'2(g(5) — Eg(%)) } ‘ <||Dg<2)||3>3 1
P C )| < (2T
reb { e T Umee) v
LesIZI* <<r(2)>“—”/2 (t,,,s(g; 2))“‘”/2 ( ))‘ 1/2>
"D\ n \ T Vins (83 5).
@.1)

Proof. Note that

g() —g(8) = (Dg(), £ — ) + S(5; £ — %),
and since E(Dg (%), Py ¥) = 0, we have

Eg(S) — g(T) = Sg(2: £ — ) —ES(5; £ — %),
implying that

g(X) —Eg(2) = (Dg(X), L — )+ S(Z; £ - ) —ES(Z; £ - %), (4.2)
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The linear term

(Dg(£), s —%)=n"" Z(Dg(x)xj, X;) —E(Dg(2)X, X) 4.3)
j=1

is the sum of i.i.d. random variables and it will be approximated by a normal distribution.
We will need the following simple lemma.

Lemma 8. Let A € S| be a self-adjoint trace class operator. Denote by \;, j > 1,
the eigenvalues of the operator £'/2 AL V2 (repeated with their multiplicities and, to be
specific, such that their absolute values are arranged in nonincreasing order). Then

(AX, X) £ 3 nzd,
k>1

where Z1, Z>, ... are i.i.d. standard normal random variables.

Proof. First assume that X is a finite rank operator, or equivalently that X takes values
in a finite-dimensional subspace L of H. In this case, X = X 127 , where Z is a standard
normal vector in L. Therefore,

(AX,X) = (Ax'?Z,2'22) = (2124577, 2) = Y " mz;,
k>1

where {Z} are the coordinates of Z in the basis of eigenvectors of X 1245172,
In the infinite-dimensional case the result follows by standard finite-dimensional ap-

proximation. O

Note that E(AX, X) = Y | Ak = tr(2'/2A%"/2) and

Var((AX, X)) = inﬂﬂ(zg -1’ = 2ZA§ =2|=12Ax12)3.
k>1 k>1

The following result immediately follows from the Berry—Esseen bound (see [Pet,
Chapter 5, Theorem 3]; an extension of the inequality to infinite sums of independent r.v.
is based on a straightforward approximation argument).

Lemma 9. The following bound holds:

1/2 S
up ]P{n (Dg(T), % — %) Sx}_q)(x)‘ (IIDg(E)Hs) v

xeR V2IIDg() 2 IDg (D)2
Proof. Indeed, by (4.3) and Lemma 8 with A = Dg(%),

n'2Dg(£).5-%) 4 Lj=i Lz M(ZE; =D

) , “4.4)
V2 Dg() Varl2(30_ S (22— 1)
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where {Z ;} are i.i.d. standard normal random variables. By the Berry—Esseen bound,
}P’{ Yot D1 MA(ZE ;= D)
Varl2 (30 ey Me(Z3 ;= 1)

Yot it MPEIZE — 1P S MP 1 <(||Dg<2)||3)3L .
IDgDln) Vi

sup
xeR

} — d(x)

< —
T et REZE ;= DT (e 27

Finally, the following lemma will be used.

Lemma 10. For random variables &, n, denote

A@w%=w$M$§ﬂ—Pmsxw 5@m%=£ﬁﬂ§—ﬂz&+ﬂ.

Then, for a standard normal random variable Z, A(§,Z) < A(n, Z) + (&, n).
Proof. Forallx e Rand § > 0,
P{§ <x} =P{§ <x, [§ —n| <8} +P{I§ —nl = 5}
=Pln=x+38}+P{I§ —nl =4}
=P{Z <x+8}+ A, 2) + P{I§ —n| = 6}
=PZ =x}+6+ A 2) +P{l§ —nl = &},
where we use the trivial bound P{Z < x + §} — P{Z < x} < §. Thus,
P{§ <x} —P{Z <x} < A(n. 2) + P{I§ — nl = 6} +6.
Similarly,
Pl =x}-P{Z=x}=—-AMm, 2) —P{I§ —nl =8} — 4,

implying that A(§, Z) < A(n, Z) +P{|€ —n| = 6} + 6 for all § > 0. Taking the infimum
over § > 0 yields the claim of the lemma. O

We apply the last lemma to the random variables
() —Be(®) n'2(Dg(%), £ — %)
= and 7 := .
V2IDg(D)l V2| Dg ()2

By (4.2),
n12(8,(2; S — £) —ESy(T; £ — %))

V2 Dg(D)ll2
Recall that Assumption 2 holds and r(X) < n, and denote

”E”s I‘(Z) (s—1)/2 t (s—1)/2 ¢ s—1/2
Sns(g; 2:t) ;= KsLy g V| - v — t.
sl 20 ¢ ﬁnbg(z)uz« n ) n n Ve

It immediately follows from Theorem 5 that P{|§ — n| > 8, 5(g; X; 1)} < e tfort > 1,
and

§—n=

8@,m:£gﬂ%3@;2ﬂ)+eﬁl
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It follows from Lemmas 9 and 10 that, for some C > 0,

sup |P
xeR

n'2(g($) —Eg(%)) }
<xp—®x)
{ VARG

3
< C(”Dg(—z)'b> L + ing[SnJ(g; ) +e']l. @45)
1=

IDg(D)ll2/) /n
. _ LgslIZ]*
Recall that y5(g; X) = log(m) and
s—1 n
tn,s(g; Y)=|-ys(g: X))+ ) lOg o) v L

Letf := 1, 5(g; ). Then

oo TPV <r<z>

(s—1)/2
<L, Ss Sns(es Z51).
D) ) s onsi8

n

Therefore,

in{[én,s(g; i) e Ss dns(g B3 1) Sy
t=

s (s=1)/2 . (s=1)/2 . s=1/2
Lg,s”E” <<I‘(E)> v (tn,s(gv E)) v <tn,s(gv E)) )m

IDg (%) 2 n n n

Substituting this into (4.5) completes the proof of Theorem 7. O

Our main example of interest is the functional g(A) := (f(A), B) for A € Bg(H),
where f is a smooth function and B € S;(H) is a nuclear operator. If f € B;O’I(R),
then the function A +— f(A) is operator differentiable, implying the differentiability
of the functional A — g(A) with derivative Dg(A; H) = (Df(A; H), B) for A, H €
By (H). Moreover, for A = ¥ with spectral decomposition ¥ = er o (T) APy, formula
(2.20) holds, implying that Csa(H) > H — Df(X; H) = Df(X)H € Bsx(H) is a
symmetric operator: (Df(X)Hy, Hy) = (Hy, Df(X)H>) for Hy € Cyz(H) and Hp €
S (H). Therefore,

Dg(T: H) = (Df(T: B). H), H € Cu(H),
or, in other words, Dg(X) = Df(X; B). Denote
of (21 B) = V2IE2Df (8 BBy, 1P (21 B) = [212Df (2 B)S2s.

The following result is a simple consequence of Theorem 7 and Corollary 3.
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Corollary 4. Let f € B |(R) for some s € (1, 2]. Define

23-"_3/2”]‘”320,1 1Bl IIZ]®
of(X; B) ’

vs(fi ) = 10g<

—1
ts(f; D) i= [—Vs(f; Z) 4+ 2 10g<r(”2)>} v

Then
127 705y &
sup P{n (f(Z) —Ef(%)), B) } o)
xeR of(%, B)
3)
(%; B) 1
< AW (2 B) = (—) —

N £ ss, I BILIZN <<r(z)>“ D72 Y <tn,s(f; z))“‘”/z y (z,,,s(f; 2))~“1/2>
or(X; B) n n n

X Vins(35). (4.6)

We will now prove Theorem 2 and Corollary 1 from Section 1.
Proof of Theorem 2 and Corollary 1. The proof of (1.7) immediately follows from (4.6).
It is also easy to prove (1.8) using (1.7), the bound on the bias
IEs f(2) = (D) = IEsS; (55 5 = DI S 1 fllg, EIZ - ZI°
SUf N, 1 () /n)*72, (4.7)

and Lemma 10.
The proof of (1.9) is a bit more involved and requires a few more lemmas. The fol-
lowing fact is well known (it follows, e.g., from [Ver, Proposition 5.16]).

Lemma 11. Let {§;} be i.i.d. standard normal random variables and let {y;} be real num-
bers. Then for all t > 0, with probability at least 1 — e,

1/2
> on@@ -] s (Xn) Vivswlnl.
i>1 i>1

i>1

Lemma12. If f € B;o,l(R)for some s € (1,2] and vr(¥) < n, then for all t > 1, with

probability at least 1 — e,

n'2(f(2) - f(2), B>{
or(X; B)

1A sy, NBIIEI £, 1B (r(2))*/?
5x< o (51 B) v (5 B) v1><\/2v—n(s_l)/2). (4.8)

Proof. Recall that
(f(E) —Ef(X), B) = (Df(Z; £ — ), B) + (5;(; £ — £) —ES;(T; £ — ), B).
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It follows from (4.4) that

n2Df(E;E -5, B) ¢ Ljot L1 M(ZE; = 1) o)
o7 (Z; B) Va2 Y (22— 1) '

where the Z; ; are i.i.d. standard normal r.v.’s and the A, are the eigenvalues (repeated
with their multiplicities) of £'/2Df(X; B)X!/2. Using Lemma 11, we easily see that for
all # > 1, with probability at least 1 — e~/

n'2(Df(2; S - %), B)
or(X; B)

t
< I
<Vtv 7 (4.10)

To control (S (X; o X)) -ESp(%; P 3), B), we use the bound (3.17) to deduce that

for all + > 1, with probability at least 1 — e ™7,

(SF(Z; % — %) —ESp(Z; £ — %), B)|

D (s—1)/2 D s—1/2 ¢ (s—1)/2 ¢ s—1/2 P
<o Il ||B||1||E||S<<Q) v(ﬁ> v(—) v (_) > ‘
00,1 n n n n n

.11

Ifr(¥) < nandt < n, the bounds (4.10), (4.11) and (4.7) easily imply that with proba-

bility at least 1 — e,

n'2(f(2) = f(2), B) £ s, IBILIIZ (r(x))%/?
o/ (X; B) '53( or(X; B) ”)(ﬁv nG—1/2 ) (4.12)

Note also that, for all ¢ > n,

12 705y
n/=(f(x) — f(%), B) < 2| fllzoo I Blly i 4.13)
or(X; B) or(X; B)
The result immediately follows from (4.12) and (4.13). |

Lemma 13. Let £ be a loss function satisfying Assumption 1. For any random variables
&, nandforall A > 0,

IEC(E) —EL(n)| < 4L(A)AE: n) + ELE)I(IE] = A) + ELI(In] = A).
Proof. Clearly,

|EL(E) — Eem| < [ELE) (5] < A) —ELmI(Inl < Al
+ELE) (&l = A) + EL(mI(In] = A). (4.14)
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Denoting by Fg, F), the distribution functions of &, n, assuming that A is a continuity
point of both F¢ and F}, and using integration by parts, we get

A
IELE)I(1E] < A) —EemI(nl < A)| = ‘/AE(X)d(Fg — Fp) )

A
A(Fg — Fp)(x)¢(x)dx

= [L(A)(F; — Fy)(A) = 6(=A)(F; — Fy)(=A) —/

Using the properties of £ (in particular, that £ is an even function and £’ is nonnegative
and nondecreasing on R ), we get

A
[EEE)I(1E] < A) —EemI(In| < A)| < 2L(A)AGE; n) +2/0 ¢ (u) du AE, )

=4L(A)AE, ),

which together with (4.14) implies the claim. If A is not a continuity point of Fg or Fy,
one can easily obtain the result by a limiting argument. O

The following lemma is elementary.

Lemma 14. Let & be a random variable such that for some t > 0 and for all t > 1, with

probability at least 1 — e,

& < TVi. (4.15)
Let £ be a loss function satisfying Assumption 1. Then
B2 () < 2ex/27 2e¥37. (4.16)

We now apply Lemmas 13 and 14 to the r.v.’s

JA((f(£), B) — (f(Z), B))

§:=8(2) = o/ (x: B)

and n := Z. The bound (4.8) and Lemma 14 along with the fact that under the conditions

s s/2
of the theorem (rrl((gz_),)) /;2 < n(:’l n7z < 1 (for large enough n) imply that (4.15) and (4.16)

hold with

1A s, IBIIZEN 21 £l 1Bl
= - Vv
or(X; B) or(X; B)

T

It follows from the bound of Lemma 13 that

IE€(E) — EL(Z)| < 4L(A)A(E; Z) + EV202(E)P/2{|g] > A)
+EV22(2)P'%{|1Z| > A). 4.17)



800 Vladimir Koltchinskii

Using (4.16), standard bounds on E¢*(Z), P{|Z| > A} and the bound of Corollary 4, we
get

[EL(E) — EL(Z)]
<s 46%62“2A2Aff)(f; ¥; B) + V2e (2n)l/4cleC%T2e7A2/(2T2) + cle‘%e*Az/‘l.

To complete the proof of (1.9), it remains to take the supremum over the class of covari-
ances G(rp; a) N{X : 07(X; B) > op} and over all the operators B with || B|; < 1, and
to pass to the limit first as n — oo and then as A — oo. O

5. Wishart operators, bootstrap chains, invariant functions and bias reduction

In what follows, we assume that H is a finite-dimensional inner product space of dimen-
sion d. Recall that C (H) C Bg,(H) denotes the cone of covariance operators in H and
let Loo(C4(H)) be the space of uniformly bounded Borel measurable functions on C (H)
equipped with the uniform norm. Define an operator T : Loo(C4(H)) — Loo(C4(H)):

Tg(2) =Exg(), T eCy(H), (5.1)

where £ = 3, :=n~! Z?:l X; ® X; is the sample covariance operator based on i.i.d.
observations X1, ..., X, sampled from N (0; X). Let P(X; -) denote the probability dis-
tribution of 3 in the space C4(H) (equipped with its Borel o -algebra 5 (C4 (H))). Note
that P(X; n~lA) for A e B(C4(H)) is a Wishart distribution W, (XZ; n). Clearly, P is a
Markov kernel,

Tg(X) = / g(V)P(2;dV), g€ Lo(Cy(H)),
C(H)

and 7 is a contraction: |7 gl < llgllL-
Let 0 := %, &M := ¥ and, more generally, given &%), define 3**1 as the sample
covariance based on 7 i.i.d. observations X ik), X ,(,k) sampled from N (0; fl(k)). Then

>® k > 0, is a homogeneous Markov chain with values in C (H), with £ = % and
with transition probability kernel P. The operator 7% can be represented as

T*g(2) =Esg(E®)
=/ / W) P(Vi—1;dVi)P(Vik—2;dVi—1) ... P(V1; dV2) P(2;d V1)
C(H) C4 (H)

for ¥ € C4(H). We will be interested in the operator B = 7 — Z, which can be called
the bias operator since Bg(X) represents the bias of the plug-in estimator g(X) of g(X):

Bg(2) =Exg(2) —g(¥), T eCy(H).
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Note that, by Newton’s binomial formula, Bk g(X) can be represented as

k R\
B'¢(2) = (T —D'g(x) =) (=D (}.)ngo:)
j=0

k
=Eg ) (D' (lj‘.)g@(”), (52)
j=0

which could be viewed as the expectation of the k-th order difference of g along the
sample path of the Markov chain SO r=0,1,....
Denote

k
g(E) =) (~D/Bg(E). T eCy). (5.3)
j=0

Proposition 1. The bias of the estimator gi(X) of g() is

Esgi(2) — g(T) = (- )i BHg(D).
Proof. Indeed,

Exgi(2) — g(2) = Ta(E) — g(2) = T + Bar(T) — g(2)

k k+1
=Y (—1)/B/g(2) =) (-1)/B/g(®) —g(z) = (-1'Bg(x). o
=0 j=1

Let now Lo (C4 (H); Bg,(H)) be the space of uniformly bounded Borel measurable func-
tions g : C4(H) — Bg,(H). We will need a version of the linear operator defined by (5.1)
acting from L (C+ (H); B (H)) into itself. With a little abuse of notation, we still denote
it by 7 and also set B := T — Z. These operators have all the properties stated above.
This allows one to define by (5.3) an operator valued function g for which Proposition 1
still holds. In what follows, it should be clear from the context whether 7 and B act on
real valued or on operator valued functions.

Given a smooth function f on the real line, we would like to find an estimator of
f(X) with a small bias. To this end, we consider an estimator fk(f]) and, in view of
Proposition 1, we need to show that, for a proper choice of k (depending on « such that
d = dim(H) < n%),

IEx fi(2) = FED) = 1B (D) = 0a™ 7).

At the same time, we need to show that f; satisfies certain smoothness properties
such as Assumption 3. As a consequence, the (properly normalized) random variables
n'2(( fi (2), B)—Ey (fk(fl), B)) would be close in distribution to a standard normal r.v..
Since, in addition, the bias Ex ( fx(2), B) — (f(Z), B) is of order o(n~'/2), we would
be able to conclude that ( fk(ﬁ), B) is an asymptotically normal estimator of ( f(X), B)
with the classical convergence rate n~!/2
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Our approach is based on representing the operator valued function f; (X) as fx(X) =
Dgi(X), where g : C4 (H) — R is areal valued orthogonally invariant function and D is
a differential operator defined below and called the lifting operator. This approach allows
us to derive certain integral representations for functions Bff(2) = DBkg(X) that are
then used to obtain proper bounds on B¥ () and to study smoothness properties of
BYf(2) and fi(2).

A function g € Loo(C4(H)) is orthogonally invariant iff for all orthogonal transfor-
mations U of H, g(UZU ") = g(X) for © e C, (H). Note that any such g could be rep-
resented as g(X) = ¢(A1(X), ..., Ag(X)), where A1 (X) > - - - A4(X) are the eigenvalues
of X and ¢ is a symmetric function of d variables. A typical example is g(¥) = tr(¢ (X))
for a function i of a real variable. Let LOOO(C+ (H)) be the space of all orthogonally in-
variant functions from L, (C+ (H)). Clearly, the orthogonally invariant functions form an
algebra. We will need several facts concerning the properties of the operators 7, B as
well as the lifting operator D on the space of orthogonally invariant functions. In the case
of orthogonally invariant polynomials, similar properties can be found in the literature on
Wishart distribution (see, e.g., [FK, LetMas]).

Proposition 2. If g € Lgo((Lr (H)), then T g € LgO(C+(H)) and Bg € LgO(C+(H)).
Proof. Indeed, the transformation X — UXU “lisa bijection of C (H),

TeUEU) =Eygy-18(3) =Esg(USU™") =Exg(E) = Tg(X).
and the function T'g is uniformly bounded. O

An operator valued function g : C4(H) — Bgy(H) is called orthogonally equivariant if
for all orthogonal transformations U, g(UEU_l) = Ug(E)U_1 for ¥ € C4 (H).

We say that g : C (H) — B, (H) is differentiable (vesp., continuously differentiable,
k times continuously differentiable, etc.) on Co (H) if there exists a uniformly bounded,
Lipschitz (with respect to the operator norm) and differentiable (resp., continuously dif-
ferentiable, k times continuously differentiable, etc.) extension of g to an open set G with
C+(H) € G C Bg(H). Note that g could be further extended from G to a uniformly
bounded Lipschitz (with respect to the operator norm) function on Bg, (H), which will be
still denoted by g.

Proposition 3. If g : C..(H) — R is orthogonally invariant and continuously differen-
tiable on C (H) with derivative Dg, then Dg is orthogonally equivariant.

Proof. First suppose that X is positive definite. Then, given H € By, (H), ¥ + tH is a
covariance operator for all small enough 7. Thus, for all H € B, (H),

UsSU ' +tH) - gUzU!
(Dg(USU), H) = lim &' +1H) — 8 )

t—0 t
g UE+tUTTHOYU Y —gWU=U™Y | g(Z+tUTHU) —g(%)
= lim = lim
t—0 t t—0 t
= (Dg(2), U 'HU) = (UDg(2)U™ ', H),
implying

Dg(UsU™ Y =UDg(z)U ™. (5.4)



Estimation of functionals of covariance operators 803

It remains to observe that the positive definite covariance operators are dense in C (H)
and to extend (5.4) to C4 (H) by continuity. m]

We now define the differential operator
Dg(%) :=x'?Dg(x)x!/?

acting on continuously differentiable functions on C4 (H). It will be called the lifting
operator. We will show that the operators 7 and D commute (and, as a consequence, B
and D also commute).

Proposition 4. Suppose d = n. For all functions g € LgO(C+ (H)) that are continuously
differentiable on C4 (H) with a uniformly bounded derivative Dg and for all ¥ € C4 (H),

DTg(X)=TDg(X) and DBg(X)=BDg(X).

Proof. Note that 3 4 S12Wwx1/2 where W is the sample covariance based on i.i.d.
standard normal random variables Z, ..., Z, in H (which is a rescaled Wishart matrix).
Let =!/2W1/2 = RU be the polar decomposition of £!/2W1/2 with positive semidefi-
nite R and orthogonal U. Then

$ o wl2wsl/2 — w12l 2wl/251/2 — puU~'R = R2
and
Wi2swl/2 — w2125 12w1/2 — y=1RRU = U~'R2U = U~ 's12wx12y
=U"'Su.
Since g is orthogonally invariant, we have
Tg(X) =Exg(X) =Eg('?Wx'?) =EgW'?sw'/?), T eC.MH). (55

Since we extended g to a uniformly bounded function on B, (H), the right hand side of
(5.5) is well defined for all ¥ € Bs,(H), and it will be used to extend 7 g(Z) to Bsa (H).
Moreover, since g is Lipschitz with respect to the operator norm, and ford < n, E|W|| <
I1+E|W—1I| <1+ C/d/n <1 (see (1.6)), it is easy to check that T g(X) is Lipschitz
with respect to the operator norm on B, (H).

Let H € Bs,(H) and X, := X + tH for t > 0. Note that

Tg(Z) —Tg(®)  EgW'2E, W2 —EgW!2zw'/?)
t - t

WI/ZZ W1/2 _ (W1/22W1/2)
_g& ! )t & LW < 1/v0)

Eg(WI/ZEtW1/2) _ g(Wl/ZEWI/Z)
t

+ AWl > 1/v/D.  (5.6)

Recall that g is continuously differentiable on the open set G O C.. (H). Also, W!/2zw1/2
€ C+(H) C G and wl2s, w2 e G for all small enough ¢ > 0. The last fact follows
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from the bound |[WV2(Z, — YW/2|| < |W|t|H| < /1| H]|, which holds for all
t <1/|W|? (or |W| < 1/4/t). Therefore, we easily get

. g(Wl/ZEtwl/Z) _ g(W1/2zwl/2)
t—0 t
— (Dg(Wl/22W1/2)’ W1/2HW1/2> — (W1/2Dg(W1/22W1/2)W1/2, H).

LW < 1/v/1)

Also, since g is Lipschitz with respect to the operator norm,

g(Wl/ZEtW1/2) _ g(Wl/ZEWI/Z)

; I(IW < 1/+/1)

W2 —2)W' 2| _ WIS - X
t - t
Since E||W|| < 1, we can use Lebesgue’s dominated convergence theorem to prove that

e < WIIH].

i Eg(Wl/ZEZWI/z) _ g(Wl/ZEWI/Z)
t—0 t
=EW'2DgW'2sw'yW'2 Hy = EW'2DgW' 2w yW'2 H). (5.7)

LW < 1/v/1)

On the other hand, since g is uniformly bounded, we can use the bound (1.6) to prove that
for some constant C > 0 and for all 7 < 1/C?,

& g(W1/2E;W1/2) _ g(W1/2ZW1/2)

; 1AW > 1/v/1)

1 1 n
<, -P{W] >1/4/t} < —expj————} >0 ast— 0. 5.8
Se TPUWI = 1/V1) < < p{ Cﬁ} (5.8)

It follows from (5.6)—(5.8) that
(DTg(2), H) = EW'?Dg(W'2sWw/H W'/, H).

It is also easy to check that IEWI/ZDg(Wl/ZE W1/2yw /2 is a continuous function on G,
implying that 7 g is continuously differentiable on G with Fréchet derivative

DTg(2) =EW!'2DgW'2swl/Zyw!/2,

Since W/2gsW!/2 = U~!'SU and Dg is an orthogonally equivariant function (see
Proposition 3), we get Dg(W!/2xW1/?) = U~ Dg()U. Therefore,
DTg(%)

— 212DpTe()sV? = SV2RW!2Dg(W 2E W2y w!/2)51/2

— B(E2PWI2DgW s W w2s1/2) — R(S2WI2U— Dg (S uwl/2s!/?)

=E(RUU'Dg()UU'R) = E(RDg(2)R) = Ex(2'/*Dg(£)21/?)

= ExDg(3) = TDg(S).

A similar relationship for B and D follows easily. O
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We will now derive useful representations of the operators 7% and B* and prove that they
also commute with the differential operator D.

Proposition 5. Suppose d < n. Let Wy, ..., W, ... be i.i.d. copies of W.> Then, for all
g € LO(Cy(H)) and for all k > 1,
Tre(x) =EgW.* ... w/*sw/? . w!/? (5.9)
and
Bg(z)=E > (-D)"Vlgajzay, (5.10)

where A; = [];¢; Wil/ 2, Suppose, in addition, that g is continuously differentiable on
C+ (H) with a uniformly bounded derivative Dg. Then

DB'g(2)=E > (=D A;Dg(A;zA)A], (5.11)

and, for all ¥ € Cy(H),
DT g(2) = T*Dg(T) and DB*g(T) = BDg(®). (5.12)
Finally,

BkDg(E)zDBkg(E)=E< Z (-1)"""21/2A,Dg(A72A,)A721/2>. (5.13)
I1c{l,...,k}

Proof. Since & £ £12ws12, w2gwl/2 = y='s12Wws/2U, where U is an or-
thogonal operator, and g is orthogonally invariant, we have

Tg(Z) =Esg(2) =Eg(W'/>zw!/?) (5.14)

(which has already been used in the proof of Proposition 4).
By Proposition 2, orthogonal invariance of g implies the same property of 7 g and, by
induction, of Tkg for all k£ > 1. Then, also by induction, it follows from (5.14) that

1/2 1/2 1/2 1/2
The(S) =EgW.> ... w/Psw/? . w/).

If I C{l,...,k}with [I| =card(]) = jand A; =[], Wil/z, this clearly implies that
Tig(T) = Eg(ATSA)).

In view of (5.2), we easily see that (5.10) holds. If g is continuously differentiable on
C4+(H) with a uniformly bounded derivative Dg, it follows from (5.10) that BFg(T) is
continuously differentiable on C4 (H) with Fréchet derivative given by (5.11). To prove
this, it is enough to justify differentiation under the expectation sign, which is done exactly

5 Recall that W is the sample covariance based on i.i.d. standard normal random variables
Zl,...,Zn in H.
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as in the proof of Proposition 4. Finally, it follows from (5.11) that the derivatives DB g,
k > 1, are uniformly bounded in C4 (H). Similarly, as a consequence of (5.9) and the
properties of g, T¥g(Z) is continuously differentiable on C, (H) with uniformly bounded
derivative DT* g for all k > 1. Therefore, (5.12) follows from Proposition 4 by induction.

Formula (5.13) follows from (5.12) and (5.11). m]
Define the following functions providing the linear interpolation between the identity
operator / and the operators Wl1 /2 Wl/ 2

Vi(t)) :=I+tj(le/2—I), €011, 1<) <k
Clearly, V;(tj) e Cy(H) forall j =1,...,kand ¢ € [0, 1]. Let
R=R@,....ts) =Vi(t))...Vi(tx), L=L({t,....t) = Vi(tx)...Vi(t;) = R*.
Define
S=S8t,....)=L{1,....ts) ZR(t1, ..., 1), (t1,...,1) € [0, 1.
Finally, let

(p(t17 AR ] tk)
=3SV2R(ty, ..., ) Dg(S(t1, ..., te))L(t1, ..., t0=Y2 (n1,..., 1) €0, 115

The following representation will play a crucial role in our further analysis.

Proposition 6. Suppose g € LY (C+ (HD)) is k + 1 times continuously differentiable with
uniformly bounded derivatives D/ g, j = 1,...,k + 1. Then the function ¢ is k times
continuously differentiable on [0, 11 and

*o(r, ...,
B*Dg(%) = / / az(l W ogndn. T e C..(H). (5.15)
1
Proof. Given a function ¢ : [0, 1] — R, define for 1 < i < k finite difference operators

Dip(t,....t) =@, ... tic1, Litigr, ..., ) —d(t1, ..., 11,0, i1, ..o, 1)

(with obvious modifications fori = 1, k). Then 1 ... D¢ does notdependon tq, ..., t
and is given by the formula
Di... D = Z (=D}t ). (5.16)

(t1,....t)€{0, 1}k

It is well known and easy to check that if ¢ is k times continuously differentiable on

[0, 1]%, then
*op(t, ...,
D...Dxp = / / ‘gt(ll Yol ) 4y gy (5.17)

Similar definitions and formula (5.17) also hold for vector valued and operator valued
functions ¢.
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It immediately follows from (5.13) and (5.16) that
BDg(2) = ED; ... Dio. (5.18)
Since Dg is k times continuously differentiable and the functions S(#q, ..., ) and
R(t#1, ..., t;) are polynomials with respect to 71, .. ., t, the function ¢ is k times contin-

uously differentiable on [0, 11%. The representation (5.15) follows from (5.18) and (5.17).
m}

6. Bounds on the iterated bias operator
Our goal in this section is to prove the following bound on the iterated bias operator
BDg ().

Theorem 8. Suppose g € Lgo (C.!_ (H)) is k + 1 times continuously differentiable with
uniformly bounded derivatives D’g, j = 1,...,k + 1. Suppose also that d < n and
k < n. Then for some constant C > 0 and for all ¥ € C;(H),

k/2
2 .
IBDg(Z)| < € max |D/gllL (1T v ||2||><— v —) : (6.1)
1<j<k+1 n n
It follows from the commutation relation (5.12) that
Dgi(2) = (D (X), X e Ci (),
where gy is defined by (5.3) and

k
(D(E) =) (~1)/B'Dg(E), T eCr(H.
j=0

Clearly, we have (see Proposition 1)
EsxDgi(%) — Dg(T) = (=D B Dg(). (6.2)
The bound (6.1) is needed, in particular, to control the bias of the estimator ng(f))
of Dg(X). Namely, we have the following corollary.

Corollary 5. Suppose that g € LgO(C+ (HD)) is k + 2 times continuously differentiable
with uniformly bounded derivatives D' g, j = 1,...,k+2, andalsod < n, k+1 < n.
Then

IExDgr(2) — Dg(2)||

) d k=+1 (k+1)/2
< CFD max DIgl (IZIFE v s S v S . (63)
1<j<k+2 *© n n
If, in addition, k + 1 < d < n and, for some § > 0,
logd log d
LY i L | 6.4)
log(n/d) log(n/d)

then

A 2 H —
IExDgi(2)~Dg(DII<C max 1D7glL, BN VIED~D2 - (6.5)
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The proof of this corollary immediately follows from (6.2) and (6.1). If d = n® for some
a € (0, 1), condition (6.4) becomes k > % Thus, if

)
k(a, §) := min{k > s },
l—«

then the bound (6.5) holds with k = k(«, §).

Remark 8. In Section 7, we will obtain a sharper bound on the bias of the estimator
Dgi (%) (under stronger smoothness assumptions, see Corollary 7).

k
The first step towards the proof of Theorem 8 is to compute the partial derivative Ve

which will allow us to use representation (5.15). To this end, we first derive foartrlﬁifltgs
for partial derivatives of the operator valued function A(S(t1, ..., fx)), where h = Dg.
To simplify the notations, given T = {t;,,...,t,} C {t1,..., %}, we will write o7 S
instead of y;[‘f(tl—d[l:{) (similarly, we use the notation d7/(S) for a partial derivative of a
function 7(S)).

Let D; 1 be the set of all partitions (Ay, ..., A;) of T C {1, ..., #} with nonempty
sets A;,i =1, ..., j (partitions with different order of Ay, ..., A; are considered iden-

tical). For A = (Ay,...,Aj) € Dj 1, set 0AS = (aAlS,...,aAjS). Denote Dy :=
T . .
U]‘z‘] Djr.For A =(Ay,...,Aj) € Dy, set ja :=j.

Lemma 15. Suppose, for some m < k, h = Dg € Loo(C+(H); Bsy(H)) is m times
continuously differentiable with derivatives D'h, j < m.% Then the function [0, 1% >

(t1, ..., te) = h(S(t1,..., 1)) is m times continuously differentiable and for any T C
{t1, ..., e} with |T| = m,
arh(S)= Y DI*n($)(@a8) =" Y Dh(S)(3aS). (6.6)
AeDr j=1 AeD;r
Proof. Since [0, 17* > (t1,...,t) — S(t1,...,t) is an operator valued polynomial
and & is m times continuously differentiable, the function [0, 11* > (1, o tk)
h(S(t1, ..., 1)) is also m times continuously differentiable. We will now prove (6.6) by
induction on m. For m = 1, it reduces to
oh(S) 0S
(1;1h(S) o ( )(3ti>

which is true by the chain rule. Assume that (6.6) holds for some m < k and for any
T C{ti,...,x} with |T| =m.Let T’ = T U {1;} for some t; ¢ T. Then

m

drrh(S) = dydrh(S) =Y Y 3y DI A(S)(34S). 6.7)
Jj=1 AeD; r

6 Recall that D/ £ is an operator valued symmetric j-linear form on the space Bga (H).
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Given A = (Ay,...,Aj) € D r, define partitions AD ¢ Djr,i =1,...,j,as
follows:

AV = (AU} Ag. o A AP = (AL A UYL A,
AV = (Ay, .. Aoy, AU o).
Also define a partition A € Djt1,7 by A= (A, ..., Aj, {#}). It is easy to see that

any partition A" € Dy is the image of a unique partition A € Dr under one of the
transformations A > A® i =1, ..., ja,and A — A. This implies that

Dro= [ J(a®, ... AUV A}
AEDT

It easily follows from the chain rule and the product rule that

j
iy D' h(S)(@aS) = D DIh(S)(9p0 ) + DI T h(S) (35 5).
i=1

Substituting this into (6.7) easily yields

m+1

A h(S) = Z Z D/ h(S)(AS). O
j=1 AEDJ«.T/
Next we derive upper bounds on ||d7 S|, |07 R|| and ||or L|| for T C {¢1, ..., tx}. Denote
Si=|W,—I|,i=1,... k.

Lemma 16. Forall T C {t1, ..., ¢},
1or RI| < ]"[ H(l +8), (6.8)

t,eT
lorL|l < H — H(l +8). (6.9)

t,eT
1971 < 2412 H H(l + 8. (6.10)

t,eT

Remark 9. The bounds of the lemma hold for 7 = ¢ with an obvious convention that in
this case [ [, crai = 1.

Proof of Lemma 16. Observe that - V () = — 1. Let BO = Vi(t;) and B1 =
W!? —IL.ForR=V,(1)).. Vk(tk),we have BTR =115, B{T(" nd

1/2
lor Rl < [T 0w,”? =11 TT 1viceol.

teT LT
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Due to the elementary inequality |/x — 1| < |x — 1], x > 0, we have ||Wl.1/2 —1I| <
IW; — 1] =& and [|Vi(t)| < 1+ |W,/> = I|| < 1+ |W; — I|| = 1 + ;. Therefore,

lorrI < [To [T+ = 1‘[—]‘[<1+5>

tieT 4;¢T

which proves (6.8). Similarly, we have (6.9).
Note that, by the product rule,

0rS =09r(LXR) = Y _ I L)Z(dn7R).

T'cT
Therefore,
1orSI < IS Y 10 LIldr 7 Rl
T'CcT
2 k 2
< ||E||TZ ]"[/ +5 ]"[/1 ]"[<1+8> =2 ||2||]"[—1'[(1+5)
'CT t;eT teT\T t;eT

proving (6.10). O

Lemma 17. Suppose that, for some 0 < m < k, h = Dg € Lo(C+ (H); Ba(H)) is m
times differentiable with uniformly bounded continuous derivatives D'h, j = 1, ..., m.
Then forall T C {t1, ..., t} with |T| = m,

k
h(S)|| < 2m&+m+ED max |D/h " vl 148;)>" —. A1
a7 (S)I| = 0<ja<m I o NNV )l |( i) | | =5 (6.11)

i=1 tieT !
Proof. Assume that m > 1 (for m = 0, the bound of the lemma is trivial). Let A =
(Ar,...,Aj) € Dj 7, j <m. Note that

ID7h(S)(@a,S, .., da; ) < IDTA(S)| 10a,SII-... [10a, S|

< ID/h(S)12Y 21 H I1 T]‘[a + 802

I=1tel l

= | D7h(S)|12Y |||/ H — H(l +8:)%.
tieT +
Using Lemma 15, we get

m

19rhS)I <D D" IDI(S)(3aS)]
j=1 AED]T

m

< Y card(D; 1) I D/h(S) 12V | 2| H(l +07 [T+

Jj=1 i=l1 tieT

1+8
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Note that the number of all functions on 7 with values in {1, ..., j} is equal to j™, and
clearly card(Dj 7) < j™. Therefore,

19rh(S)II < ZJ 1D R(S)II2Y ||V H(l +0)7 [ +—=

j=1 t,eT1+8

'"*‘2"'" max v 1D R (I v 2] )]‘[(1+8>2m1"[

i=1 tieT I+ 8
8.
= 28D max DAL (2] IZ)" )H(l +6)" [[ —. (612
<js< 146
i=1 tieT
which easily implies (6.11). O

Next we bound partial derivatives of the function S12Lh(S)RTY? (with § =
S(ty,....,tx), L=L(t1,...,tx), R=R(t1,...,tr) and h = Dg).

Lemma 18. Assume that d < n and k < n. Suppose h = Dg € Loo(c_'l,_ (H); Bso(H)) is
k times differentiable with uniformly bounded continuous derivatives D’h, j =1, ..., k.
Then

10(y.....) V2 RI(S)LE?|

k
< 3K CHD max DAL (IS VISID ] 480 s (6.13)
0<j<k i
Proof. Note that

Uiy oy B PRISLEE = N (21207, R)(01,h(8)) (31, L)E'/?),  (6.14)
11,72, T3

where the sum is over all the partitions of the set {71, ..., #} into disjoint subsets
T\, T», T3. The number of such partitions is equal to 3X. We have

11237, R) (37,1 () @, LYE 2| < IS 137, LI 137, A (S) || 11375 Rl (6.15)
Assume |T1| = my, |T»| = my, |T3| = m3. It follows from Lemma 17 that

8.
lar,h(S)] < 272D max ||D/h||Lm(||z||'"2 v H<1 +80" [| 105
<j=< i

i=1 tieT

On the other hand, by (6.8) and (6.9), we have

o, Rl < —1‘[(1+8> lor Ll < ] —]‘[( +8).

tieTs €Ty
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It follows from these bounds and (6.15) that

I=1/2(37, R) (97, (S)) (37, L) =/

k
< 12122 max DI (121 v D][a+6022 []  —
Oijimz i=l t;eTIUTLUT3 1 + 8i

k k
< k(2K D max |D/h I v Iz ||1+8<2k2||—l
= 0<j<k ” ”Loo(” ” ” ”)l 1( l) 1 1 8,‘

k
= 28K max D7)l (1219 v s [+ 60% s
O=j=<k i=1
Since the number of terms in the sum on the right hand side of (6.14) is equal to 3%, we
easily see that (6.13) holds. O
Proof of Theorem 8. We use the representation (5.15) to get

,,,,,

1 1
IB*Dg ()|l 5[0 /0 Elldy,....q) S PRR(SLEV? | dry . . . duy. (6.16)

Using the bounds (6.13) yields

k
IB*Dg (D) < 3°2¢**Y max DAL, (IS VIS DE] Ja+60)* s, (6.17)
0<j<k el
Note that

k k
E[Ta+60% s = [TEQ +8)% s = (BQ + 1w — 1> jw — 17)*

i=1 i=1

and

1 W — [ 2k+1
E(L+ W —IID* T w — 1| = 22"“E<M> W — 1|

2
14+ |W — )2+
2
Using the bound (1.5), we find that with some constant C1 > 1,

d k
E[W — 1| < EYCH2D 1w — 122 < ¢, (,/— v ,/—),
n n

which implies that

d [k d k\*"!
E<1+||W—I||>2k+1||w—1||szzk[a(,/—v,/—)+c§k+2<_v_> }
n n n n
S221<C12k+2< /4, /f)
n n

<2*'E IW — 1) = 225(E[W — 1]| + E[|W — []**2).
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and
k 2 2 d k\*?
E[Ja+ 60 < 2% ¢t +2’<<; v Z) . (6.18)
i=1

We substitute this bound into (6.17) to get
2 2 . d k/2
IB*Dg(2)|| < 3* 2% T +2k max ||th||Loo<||2||k+1v||2||>(—v—) . (6.19)
0<j<k n n

which implies the result. O

7. Smoothness properties of Dg;(X)

Our goal in this section is to show that, for a smooth orthogonally invariant function g,

the function Dgy (¥) satisfies Assumption 3. This result will be used in the next section to

prove normal approximation bounds for ng(fl). We will assume in what follows that g

is defined and properly smooth on the whole space Bg, (H) of self-adjoint operators in H.
Recall that, by (5.15),

o, ...,
B*Dg(3) = / / af” W gt dn,
1

where
o1, ..., 1) = ZV2R(t, ..., t)Dg(S(t1, ..., ) L(t1, ..., 5) 2>

for (11, ..., 1) € [0, 1]%.
Letd € (0,1/2) and let y : R — R be a C* function such that

0=y =Vu,u=0, yu=u,uels 1/,
log(2/5)
upp(7) € 18/2.2/01 Wyl S =

For instance, one can take y(u) := A(u/8)s/u(1 — A(8u/2)), where A is a C* non-
decreasing function with values in [0, 1] such that A(#) = O foru < 1/2 and A(u) = 1
for u > 1. The bound on the norm ||y || Bl can be proved using the equivalent definition
of Besov norms in terms of difference operators (see [Tr, Section 2.5.12]). Clearly, for all
¥ € Co(H) we have ||y ()| < [IZ'/2, and for all £ € C4(H) with o (Z) C [8, 1/5]
we have y(X) = X

Since we need further differentiation of B¥Dg (%) with respect to X, it will be conve-
nient to introduce (for given H, H' € B, (H)) the following function:

Ptr, ... 1k s1,52) =y (Z(s1, 2)R(t1, ..., 1)
x D(L(t1, ..., t)Z(s1, )R (t1, ..., 1)) L(t1, ..., 1)y (Z(s1, 52)),

where £(s1,52) = ¥ + s1H + s2(H' — H) for 51,50 € R. Note that ¢(t1, ..., 1) =
o(t1, ..., 1%, 0,0). By the argument already used at the beginning of the proof of Lemma
15,if h := Dg is k times continuously differentiable, then so is ¢.
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For simplicity, we write Bi(X) := BDg(X) and Di(X) = Dgi(%). Clearly,
Di(Z) := Y {_o(— 1)/ B;(%)

1 1 qk
*od(ty,...,1,0,0
Bk(E):zlE/~~/ Al k )dn...dzk, k> 1.
0 0 dafy ... 0t

For k = 0, we have By(X) := Dg(X).
Denote

Yeu(Siuw) == (IS vu v D 2@ v uby, u>0 Bel0,1], k> 1.

Recall definition (2.27) of C*-norms of smooth operator valued functions defined in an
open set G C By, (H). It is assumed in this section that G = B, (H) and we will write

| - llcs instead of || - [|cs (B, (H))-

Theorem 9. Suppose that, for some k < d, g is k + 2 times continuously differen-
tiable on Bs,(H) and, for some B € (0, 1], |Dgllck+1+8 < oo. In addition, suppose
that g € LOOO(C+(H)) and o (X) C [8, 1/68]. Then, for some constant C > 1 and for all
H, H' € Bg,(H),

ISB, (X5 H') — Sp, (X5 H)||

2 log(2/9)

<C
= 5

A\ K2
I Dgll cr+i+s (;) veu (S IHIVIIH'IDIH = H|.  (7.1)

Corollary 6. Suppose that, for some k < d, g is k + 2 times continuously differentiable
and, for some B € (0, 1], [|Dg|l ck+1+p < 00. Suppose also that g € L2 S(Cyr(M)),d <n/2
and o (X) C [8, 1/8]. Then, for some constant C > 1 and for all H, H' € B, (H),

IS, (25 H) — Sp (Z5 H)|

2
_ e log2/®)
- )
Proof. Indeed,

IDgllcksrenyp i (S5 IHI vV IIH' DIH = HI. (7.2)

k
1S, (S H') = Sp, (S: H)ll < Y 1185, (5 H') — S, (Z; H)|
=0

2log?(2/8) (2/3) d\'"?
< CY —=—"2|IDgl| cs1+5 Z vex(Z: [HIVIH'DIH — H|

2log?(2/8)
<2ck TIIDgIICHHm,k(E; IH| Vv IIH'IDIH — HJ,

implying the bound of the corollary (after proper adjustment of the value of C). O
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Proof of Theorem 9. Note that

Sp (25 H') — Sp (%5 H)
=DB(X+H;H — H)— DB(X; H — H) + Sp, (X + H; H — H),

so we need to bound
IDB (X + H; H — H) — DBy(X; H — H)|| and |Sp (X + H; H — H)|

separately. To this end, note that

1 1 qk
*¢(ty, ..., 1, 51,0
Bk(2+s1H)=]E/~-~/ d’(l LSL0)

.. 0ty
*tlp(r, ..., 1,0,0
DB(Z: H) = / / ¢(‘ 0.0 o dn,
.. 0t OS]
8"“ My tr, 51,0
DBk(z+s1H;H/—H)=1E/-.-f ¢(1 LSO L .
0 ot ...01;0s2
The last two formulas hold provided that g is k + 2 times continuously differentiable with
uniformly bounded derivatives D/ g, j = 0, ..., k+2, and, as a consequence, the function
o(t1, ..., 1%, 51,52) is k + 1 times continuously differentiable (the proof of this fact is

similar to the proof of differentiability of ¢ (71, ..., #x), see the proofs of Proposition 4
and Lemma 15).
As a consequence,

DB(X + H; H — H) — DBy(X; H — H)

_E/1 /1 F o, ..., 0, 1,00 8" 1p(@, ..., 15,0,0)
o 0t] ...0t sy 0ty ...0tds2

:| dty...dy,  (71.3)
and

Sp (X + H;H — H)
_E/ /[ak¢(z1,.. e, 1, 1) 8"¢(r1,.. e, 1,0) ak+1¢(n,.. tk,IO)}

oty ... 01 oty ... 01 0ty ...010s2
x dty...dt
*lpty, ... 1, 1, * oy, ..., 1, 1,0
—E/ // ¢>(1 K 1s2) ¢ (1 k )dszdtl...dtk.
.. 0l 087 0f1 ...0t 08
(7.4)

The next two lemmas provide upper bounds on

IDBx(X + H; H — H) — DBy(X; H — H)| and |Sp (X + H; H — H)|.
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Lemma 19. Suppose that, for some k < d, g € Lgo(c+ (H)) is k + 2 times continuously
differentiable and, for some B € (0, 1], | Dgllck+14p < 00. In addition, suppose that
o(X) C [8, 1/8). Then, for some constant C > 0 and for all H, H' € B, (H),

IDB (X + H; H — H) — DBi(X; H — H)||
gy log®(2/8)

- s
x (IHI v IHIP)IH — H]. (7.5)

d\*/?
I Dgllcisrea (NN + 1H D2 v 1)(;)

Lemma 20. Suppose that, for some k < d, g € Lgo(C+ (H)) is k + 2 times continuously
differentiable and, for some B € (0, 1], | Dgllck+1+s < 00. In addition, suppose that
o (X) C [68, 1/8]. Then, for some constant C > 0 and for all H, H' € B, (H),

IS (2 + H; H' — H)|

- oo /%)
- )
x (|H' — H|'""P v |H — H|?). (7.6)

d\K/?
IDgllciries (NN + NH | + 1 H Y2 1)(;)

In the next section, we will also need the following lemma.

Lemma 21. Suppose that, for some k < d, g € LgO(C+ (H)) is k + 2 times differentiable
with uniformly bounded continuous derivatives D’g, j = 0,...,k 4+ 2. In addition,
suppose that o (X) C [8, 1/8]. Then, for some constant C > 0 and for all H € Bg, (H),

x21og*(2/5)

IDBk(X; H)|| = C 5

4\ k2
||Dg||ck+1(||2||k+1/2\/1)<;> IH|. (1.7)

We give a proof of Lemma 19 below. The proofs of Lemmas 20 and 21 are based on a
similar approach.
Proof of Lemma 19. First, we derive an upper bound on the difference

I, ... 0, 1,00 *p(ty, ..., 1,0,0)
0ty ...0t sy 0ty ...0tdsy

in the right hand side of (7.3). To this end, note that by the product rule,

I, 051,50 9
Aty ... 0108 T sy

3 v (E)On R @nh(LER)(Br,L)y (S),
T, 1,13
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where & = Dg and the sum extends over all partitions 77, T>, T3 of the set of variables
{t1, ..., tx}. We can further write

8k+]¢(t17 .. ‘7tk7sl1s2)
0t ...010s)

= " [y )@ RO LER)Or L)y (5)
Ty )@ R Oros MLER) G Ly ()
+ 7 ()0 R) O AL ER) GO, L) Py (BD]- - (7:8)

Observe that 95,17 (£) = Dy (Z; H' — H) and deduce from (7.8) that

Fer, ..., 01,00 *Hg(,....5,0,0)
oty ... 01087 oty ... 0108, N

> (A4 + Al (79)
N, 1,13

where

Ay == [Dy(S+H; H —H)—Dy(S; H — H)|(d7, R) (31, h(LE1 o R)) (07, L)y (£1,0).
Az = Dy (Z; H' — H) (31, R) (3, A(L(S + H)R) — 31, /(LT R)) (37, L)y (1,0),

A3 :=Dy(Z; H' — H)(07,R) 3, h(LER)) 01, L) (y (£ + H) — y (%)),

Ag = (Yy(Z+H)—y ()01, R) Onuis,)h (L1 0R) (3, L)y (Z1,0),

As ==y ()37, R) (31,0152} h (L(Z + H)R) — 37,0457} h (LE R)) (315 L) y (Z1,0)

A == y(2)(0r, R)(On,uis}h (LER)) Oy L) (v (E+ H) —y (X)),

A7 := (y(Z+H)—y ()0, R) O, h(LZ10R)) (37, L) Dy (E1,0; H' — H),

Ag := y(2)(07, R) 01, h(L(E 4+ H)R) — 97, h(LER)) (37, L) Dy (£1,0: H' — H),

Ag 1=y ()01, R)(3,A(LER)) (37, L)(Dy(S+H:; H' —H)— Dy(%: H' — H)).

To bound the norms of Ay, ..., Ag, we need several lemmas. We introduce some
notation to be used in their proofs. Recall that for a partition A = (A, ..., A;) of the set
{tr, ..., ),

IA(LER) = (3a,(LER), ..., 95;(LXR)).

We will need some transformations of da(LXR). In particular, fori = 1,...,j and
H e B, (H), denote

INLZR)i : T — H]

= (95, (LZR), ..., da,_,(LTR), 3a,(LHR), 35,,,(LZR), ..., da,(LTR)).

i+1
We will also write
ANLER)i: X —> H;i+1,...,j: X —> X+ H]

:= (0a,(LER), ..., 35, (LZR), 3, (LHR), 3a,,,(L(Z + H)R), ...,
85, (L(S + H)R)).
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In addition, the following notation will be used:
IA(LER)U B := (0a,(LER), ..., 9x;(LER), B).

The meaning of other similar notation should be clear from the context. Finally, recall
that §; = |W; — I||,i > 1.

Lemma 22. Suppose that, for some 0 <m <k, h € Loo(C4(H); 'Bsa(H)) ism+ 1 times
differentiable with uniformly bounded continuous derivatives D’h, j = 1,...,m + 1.
ForallT C{t1,...,ty} with |T| = m,

[drh(L(X + H)R) — drh(LXR)||

<2 DT DD [T 1 1‘[(1+5 I
tieT

(7.10)
Proof. By Lemma 15,

orh(L(X 4+ H)R) — 0rh(LXR)

- Z Z [D/h(L(Z + H)R)(Ia(L(E + H)R)) — D' h(LER)(3s(LZR))].
j=1 AEDj_T
(7.11)

Obviously,

D/W(L(Z 4 H)R)(Aa(L(Z + H)R)) — D/ R(LER)(IA(LER))

J
=Y D/h(L(E + H)R)@ALER)i : X — Hii+1,....j: % > T+ H])
i=1
+ (D'h(L(Z + H)R) — D'W(LER))(3(LER)).

The following bounds hold for all 1 <i < j:

ID/h(L(E + HYR)Y@ALER)[i : X — Hii+1,...,j: X — T+ H)|
< IDRL(S +ER) [] 19aCSRI [T 19a,LE + HR) 13, (LHR).

1<i<i i<l<j

As in the proof of Lemma 17, we get

IDh(L(E + H)RYOA(LER)[i : X — Hyi+1,...,j: X — X+ H])||

i
< ID RN 29I S + HITTT ] T]‘[(1+6)2J||H||

tieT

<MD n L A+ IHD T ] —

tieT

1+5 1"[<1+6)2f||H||
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In addition,

I(D/h(L(E 4+ H)R) — D/ h(LER))(da(LER))||

J
<D/ Rl ILIIRIIH] l_[ 92, (LER)||
i=1

kj j+1 2j+2
< 2D hy sl T m]‘[a + M2 H].
teT
Therefore,
ID/R(L(E + H)R)(Ia(L(EZ + H)R)) — D/h(LER)(A(LER))|

< 2"f(j||Df'h||Lw<||2|| +IHD T+ 1D R 121

< 1] —1‘[<1+5>21+2||H||

tieT
Substituting the last bound into (7.11) and recallmg that card(D; r) < j™, it is easy to
conclude the proof of (7.10). ]
Lemma 23. Suppose that, for some 0 < m <k, h € Loo(C+(H); 'Bsa(H)) ism+ 1 times
differentiable with uniformly bounded continuous derivatives D'h, j = 1,...,m + 1.
Then for some constant C > 0 and for all T C {t1,...,t%} with |T| = m and all
s1 € [0, 1],

197Ugs h (L s, 0 R) |

<2m(k+m+2)+1 D]h S+ 1H m.,q 1+(S 2m—+2
(max 1Dl (I + I1H1) )11 1+5 1"[( )
x ||H — HJ.
Proof. By Lemma 15,
m
BTU{SZ}h(LER):Z Z di5) D' H(LE R)(0a(LER)). (7.13)
j=l1 AGIDJ‘,T

Next, we have

di5) D' R(LER)(0A(LER)) = DI T h(LER)(IA(LER) U 35y, (LER))

J
+ Z D/R(LER)DA(LER)[i : a,(LER) — ;0459 (LER)]).

i=1

Note that d(,) (LER) = L(H'—H)R and da,u(5,) (LER) = 9, (L(H'— H)R), implying

d(5,) D' H(LER)(Ia(LER)) = D' 'h(LER)(IA(LEZR) U L(H' — H)R)

J
+ Zth(LiR)(aA(LiR)[i 'Y > H' —H]). (.14

i=1
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The following bounds hold:
ID/MR(LER)(AA(LTR)UL(H' — H)R)||

J
<D/ Rl [T10a, WERIILIIRINH - H]|

i=1

and

ID/h(LER)Y(OA(LER)i : £ — H' — H)||

< ID7hllLy, [T 196 LER)I 19, (L(H — H)R)].
i

The rest of the proof is based on the bounds almost identical to the ones in the proof of
Lemma 22. O

Lemma 24. Suppose that, for some 0 <m <k, h € Lo (C+(H); 'Bsa(H)) is m+ 2 times
differentiable with uniformly bounded continuous derivatives D’h, j = 1,...,m + 2.
For some constant C > 0 and forall T C {t1, ..., 1t} with |T| = m,

10702} R (L(E + H)R) — 07u(sp) A (LER) ||

. 5. K
< Ck(m-H) max D/h b)) H m v T 1 S 2m—+4
< e 10z 1o [T =TT+

x |H||H — H]. (7.15)

Moreover, if for some 0 <m <k, h € Loo(C+(H); Bso(H)) is m + 1 times continuously
differentiable and, for some B € (0, 1], ||hl|cm+1+p < 00, then

lo7uis A (L(2 4+ H)R) — d1uis,)h (LER)||

8
< CHM D e (U2 + THID" v 1 [T o [+ 0+
tieT Li=1

< (IHII vV IHIP)IH - H]. (7.16)
Proof. By (7.13),
rU(sy) h(L(E + H)R) — d70(sh(LER)
m
=3 > [Bisy D R(LE1 0R)(a(LE1 0R)) — 15y} D/ A(L 0,0 R) (A (LE0 0R))].

j=1 AeD;
(7.17)
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and by (7.14),
dis;) D h(LE1 gR)(Da(LE1 0R)) — dis5,) D' h(LE 0 R)(3a(LE0 0R))

~.

=Y DI h(LE+H)R)OALER)i X — Hii+1,....j: T — T+HJUL(H —H)R)

DI R(L(E+H)R) ~ DI (LSRG (LER)UL(H'~ H)R)

‘] .
+Z Z D/R(L(E+H)R)OA(LER)i: X > H —H;i": S > H;l>i',l#i:X - X+H))
i=1i'i
J . .
-I—Z[Djh(L(Z+H)R)—D/h(LER)](aA(LZR)[i 1% — H'—H)). (7.18)
i=1
Similarly to the bounds in the proof of Lemma 22, we get

ID/ M h(L(E+H)R)(OA(LER)[i: = — H;i+1,...,j: ¥ — S+H|ULH —H)R)|

29D L I +HIHD T ] 15
t;eT

||[Dj“h(L(E+H)R)—Dj“h(LER)](aA(LZR)uL(H/—H)R)||

M ]‘[<1+a YT H| | H —HII,

<IDIPhIL W [ ]
tieT

ID/h(L(E+H)R)YOA(LER)[i : X — H' —H;i": X > H;l>i',|#i:%— X+H)|

1+5 ]‘[<1+a YHH|H —HII,

<2YID/ Rl AEN+IHD 7 ] —

teT

M 1‘[<1+a Y IHIIH —H|
1

and

I[D/h(L(Z + H)R) — Djh(LZR)](aA(LER)[i 'Y — H — H)||

2kf||Df+1h||Lm||z||“]"[ 0 1'[(1+5)2f||H||||H H].

tieT

These bounds along with formulas (7.17), (7.18) imply that (7.15) holds. The proof of
(7.16) is similar. ]

We now get back to bounding the operators Ay, ..., Ag on the right hand side of (7.9). It
easily follows from Lemmas 16, 17, 22, 23 and 24 as well as from the bounds

ly ()1 < 1272,
log(2/6)
NG

I Hl

Iy (S + H) =y (D = 2lyllp IH] S

log(2/8)
NG

A1l

1Dy (S5 DI <21yl IHI S
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and
IDy(2+H; H' — H) - Dy(Z; H — H)|| S Iy ligz NH] IH — H|
S 10gz%IIHII IH — H|
that for some constant C; > Oand forall/ =1, ...,9,

2log?(2/8) k
< CF =N Dgllcirres (BN + NHI 2V D81 + 8%+

i=1

| A
< (IHII v [HIP)|H — H]|.

It then follows from (7.9) that

oy, ... 1, 1,0) ak+1¢(n,...,rk,o,0>H

0ty ...01 082 0ty ...01 082
21log?(2/8) k
< CF = Dgllcesrn (AT + NHI2 v 1 [T 81+ 0%
i=1
< (HIV IHIP)IH = H| (7.19)

with some constant C > 0. Similarly to (6.18), we have that for k < d with some constant
Cr>1,

k
ET 81+ 6% < X (a/ny*/2.
i=1
Using this together with (7.19) to bound the expectation in (7.3) yields (7.5). O
Theorem 9 immediately follows from Lemmas 19 and 20. O

‘We will now derive a bound on the bias of the estimator ng(fl) that improves the bounds
of Section 6 under stronger smoothness assumptions on g.

Corollary 7. Suppose g € L (C4(H)) is k + 2 times continuously differentiable for
some k < d < n and, for some B € (0, 1], ||[Dgllck+1+s < oo. In addition, suppose that
for some § > 0, 0(X) C [6, 1/8]. Then, for some constant C > 0,

IExDgi(3) — Dg(D)]

2
_ el @)

(k+1+p8)/2
; )

IDgll crsrs (IS Vv 1)"”/2”2”( (7.20)

n
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Proof. First note that
B Dg(2) = Ex By (%) — Bi(T)
=EsDBi(Z; 5 — £) 4+ ExSp,(; % — £) =ExSp,(; £ — %),
It follows from (7.1) (with H' = ¥ — ¥ and H = 0) that
1S5, (2; £ — D)

2 log(2/9)

<C
= P

k/2
I Dgll chrive (;) vek(Z IE—ZDIE - 2. (721
Since
vek(Z 1E —ZDIE - 2
< ISV DS = )P 4 12 - D) + 18 = D2 48 - 32,
we can use the bound EI/PHﬁ = 2|? S 1ZI1(W/d/n v /p/n) to deduce that for some
constant C; > O and fork <d <n,

. . 4\ (1+8)/2
Eypc(Z; 1E —ZDIE - 2| < CFAZ) v 1)’<+3/2||2||<;) :

Therefore, for some constant C > 0,
1B Dg(2)]| < E|ISp, (2; £ — D)

2
< ¥ log(2/6)

4\ H1HB)/2
; )

IDgllcrrvs (IZ N v D23 (;

Since ExDgi () — Dg(T) = (— B Dg(2), the result follows. o

8. Normal approximation bounds for estimators with reduced bias

In this section, our goal is to prove bounds showing that, for sufficiently smooth orthog-
onally invariant functions g, for large enough k and for an operator B with nuclear norm
bounded by a constant, the distribution of the random variables

Vi ((Dgi(2), B) — (Dg(2), B))
0g(Z; B)

is close to the standard normal distribution as n — oo and d = o(n). It will be shown
that this holds true with

og(; B) =2||='*(DDg(2))*BZ' |3, (82)
where (DDg(X))* is the adjoint operator of DDg(X):
(DDg(X)Hy, Hy) = (Hy, (DDg(X))" Ha).

8.1

We will prove the following result.
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Theorem 10. Suppose that, for some s > 0, g € CST1(Bs,(H)) N LOOO(C+(H)) is an
orthogonally invariant function. Suppose that d > 3logn and, for some o € (0, 1),
d < n®. Suppose also that X is nonsingular and, for a small enough constant ¢ > 0,

cn

d<— 8.3
= U=V =T (83

Finally, suppose that s > ﬁ and let k be an integer such that ﬁ <k+ 14 <sfor
some 3 € (0, 1]. Then there exists a constant C such that

sup
xeR

P{ Vi (Dgi($). B) ~ (Dg(%). B)) _ x} — o)
0g(%; B)

SCk2Lg(B;E)[n7k+ﬁ_a(2k+l+ﬁ) +n7(1—a)/3/2 /logn]—i-C/\/ﬁ, (8.4)

where

I1Bl111Dglict - -
Ly(B; %) := =Sl VIET D log U VIET IDISIAE] v D!/,
Ug(EaB)

We will also need the following exponential upper bound on the r.v. (8.1).

Proposition 7. Under the assumptions of Theorem 10, there exists a constant C such
that for all t > 1, with probability at least 1 — e™",

V1 ((Dgk(%), B) — (Dg(%), B))

k? .

Our main application is to the problem of estimation of the functional (f (%), B) for a
given smooth function f and a given operator B. We will use { fx(X), B) as its estimator,
where f;(X) := Z}‘:O(—l)/Bff(E). Denote

o7 (Z; B) =2|='2Df (2; B)T'2|3.

Theorem 11. Suppose that f € B |(R) for some s > 0. Suppose that d > 3logn and
d < n” for some o € (0, 1). Suppose also that X is nonsingular and, for a small enough

constant ¢ = ¢g > 0,
cn

d< ——mM8M. 8.6
= UsIv s (8.0

Finally, suppose that s > ﬁ and let k be an integer such that ﬁ <k+ 14+ <sfor
some B € (0, 1]. Then there exists a constant C such that

sup
xeR

{\/—( fi(£). B) = (f(2). B))
of(X; B)

< Ck Mf(B, E)[n_k+ﬂfa(2k+l+ﬁ) +n—(1—a)/3/2 /logn] +C/«/ﬁ, (8.7)

} ®(x)
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where
My(B: %)
IBIIF s,
=g UEIVIZTI g @UEIV IZTHIDISIAE v D,

Proposition 8. Under the assumptions of Theorem 11, there exists a constant C such
that for all t > 1, with probability at least 1 — ™",

Vi (fi(2), B) — (f(2), B))

k2 .
o/ (2: B) < CM(M;(B; 2) v DV (8.8)

Proof of Theorem 10 and Proposition 7. Recall the notation Dy (X) := Dgr(X). For a
given operator B, define 0x(X) := (Dy(X), B), recall that

%(E) — Bop(E) = (D0 (T), £ = X) + 55, (T; £ = T) — ESp (T: £ — %),
and consider the following representation:

Vi ((Dgk(2), B) — (Dg(2), B))  /n (D% (%), % — %)

04(Z; B) V2D (D)ll2 ‘ 9
with the remainder ¢ := ¢ + ¢ + &3, where
_ /n((EDgi(%) — Dg(%), B))
b 0g(Z: B) ’
o= VI (S5, (25 — %) —ESp (5 5 — =)
2 0¢(Z; B)
3w YADUE). B = B) V2DV ll2 — 0 (E: B)
' V2D (D)ll2 0g(X; B)
Step 1. By Lemma 9,
V1 (Dy(2), £ — %) }
P < -
rep { NI R
3
<<||Dok<2>||s) 1 ||Dak(2)||irsi' 8.10)
Do (2)ll2 f 1D (D)2 /0 ~ /n

Note also that

Vi (DO(E), 8 — %) ¢ Lji Lizi M(Z7; — 1)
V2 D% (D)2 Vo (L 2D
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where {Z; ;} are i.i.d. standard normal random variables and {A;} are the eigenvalues of
Doy (%) (see the proof of Lemma 9). To provide an upper bound on the right hand side,

we use Lemma 11 to infer that with probability at least 1 — ™",

Vi (Do(%), X — ) <Jiv . (8.11)

V2D (D)l ~ NG

We will now control each of the random variables {1, {2, {3 separately.

Step 2. To bound ¢, we observe that, for § = m we have o (X) C [§, 1/6] and
use inequality (7.20) that yields
1] < YIEDg() — Dg(D)I 1B

- 04(Z; B)

< C¥ Arp(e: = BYIZ | v D25 |/ (d/n) P2, (8.12)
where

I Bl [ Dgllcrsrse _ _
Akpg; T B) = ———2C8 (g v =T D Tog2UIS V IETHD).
0g(X; B)

Since d < n® for some « € (0, 1), the last bound implies that

k+B—atk+1+p)
2

2 _ TP
161] < CK Ak p(g: 5 BY(IZN Vv D212 0 , (8.13)

which tendstoOfork+ 1+ 8 > 4.

l—o
Step 3. To bound ¢», recall Theorem 6 and Corollary 6. It follows from these statements

that, under the assumptions ||g||cx+2+p < 00 and d < n/2, for all t > 1 with probability

atleast 1 — e,

VIS0, (Z; % — 2) —ESp, (; 5 — )|
0g(Z; B)

< CF App(g: 2 BYypa(Z: 80 VIS + Vou (B )VIZIVE - (8.14)

5 (5: 1) = ||z||<‘/r(f) v r(nE) v \/gv %)
d t ot _
< ||2||<\/;v\/;v ;) (S,

Recall that yg x (Z;u) = (|Z]| Vu Vv D12 v uP) foru > 0. Ford < nandt < n,
we have 8,(2; 1) < |2 and ypx(Z; 8,(2; 1)) < (IZ] v 1)¥+3/2, which implies that,

for some C > 1 and for all 7 € [1, n], with probability at least 1 — e~/

4] <

where

2
162 < CF Arp(g: 5 B)IZNAIZ) v D328 (8.15)
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Let now t = 3logn. Ford > 3logn,d < n, we have §,(X; 1) < |Z|V/d/n < ||
and
Yok (D5 8,(25 1) < ypa(E: 8u(Z: 1)) < (1T v DF2(d/m)PI2.

In addition,
WIZI+ V8,(Z; DVIIZIVE S I1Z 1y logn.

Thus, for d > 3logn,d < n“, it follows from (8.14) that with some constant C > 1 and

with probability at least 1 — n=3,

2
162l < CF Ay (g s BIIZIASI Y D32 /)P logn
2
< CF Ak p(g: 5 B)IZNAIZ | v DEF3/2p=0=0B2 floep. (8.16)

Step 4. Finally, we need to bound ¢3. To this qnd, denote bi(X) := (Bx(X), B). Then
bo(X) = (Dg(%2), B) and 04 (X) = Z;-‘:O(—l)f b;(X). Observe that

(Dbj(X), H) = Dbj(X; H) = (DBj(X)H, B) = (H, (DB]-(Z))*B),
implying Db; (%) = (D B;(X))* B. Therefore, we have

IDb;(E)ll2 = sup [(DB;(¥)H, B)| < sup [(DB;(X)H, B)|
I1Hl2<1 <1

<|Bllx sup [DB;(X)H].
IH<1

To bound the right hand side we use Lemma 21 that yields

sup IDB;(S)H| < C° max [DIgllL (IZI7H72 v 1)(d/n)i/>.
IH|I<1 1<j<j+2

Therefore, forall j =1,...,k,

2 . .
IDb;(Z)2 < CK Bl max 1D/ gllr (ISIFTY2 v 1)(d/n)/?
1<j<k+2

and
IDb; (D)2 = 1212 Db; ()22, < |2 1Db; (D)l

2 . .
<CHBI max ID/gl (IZIFP2 v I @/n)//2.
1<j<k+2

Since also
V2Dbo() 2 = V2IS2(DDg(£)*BE?||2 = 0,(Z; B),

we get

k
V2 [D0(D) 2 — 05 (Z: B) < V2 ) Db (D)2

=1

k
2 : .
= V2CH Bl max IDTglL (B2 VIED ) @/m)",
<j= =
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implying that, under the assumption d < n/4,

V2 Dor(E)ll2 — 04 (%; B)
og(X%; B)

2/2C¥ 1813 ‘
< - D/ ) k+3/2v D d/n. 817
(T B) 1K, 1078l (I IZIyd/n.  (8.17)

It follows from (8.17) and (8.11) that with some C > 1 and with probability at least

—t
1—e™F,

c* Bl . d t
< - 0 D/ SISy DF2 2 Vv — ). 8.18
|cs|_og(2;3) \max ID7glL. TNV D . Vi 7 (8.18)
Ford > 3logn,d < n® and t = 3logn, this yields
ck
1G] < —=— max _[D/gll JJIZIAZ) v D2~ 0=072 flogn  (8.19)

0g(X; B) 1=j<k+2
for some C > 1 with probability at least 1 — n 3.

Step 5. 1t follows from (8.13), (8.16) and (8.19) that for some C > 1, with probability at
least 1 — 2173,

2
2] < CK A ple; Z; B)ISI(IZ] v DFF32
« [n_k+ﬂ—m(2k+l+ﬁ> +n—(1—a)ﬂ/2 logn +n—(1—a)/2 /logn],

which implies that with the same probability and with a possibly different C > 1,

1] < CF Ly(B: =)[n~ = 4 y=0-872 flog ],
It follows from the last bound that
5. m) < 273 4 CF Ly(By ) [~ 4 n= (=082 flogn],
where

£ V1 ((Dgk(%), B) — (Dg(%), B)) A (DY(2), % — %)
' 0g(Z; B) V2 Dok (D)ll2

& —n =<¢and §(&, n) is defined in Lemma 10. It follows from (8.10) and Lemma 10 that,
for some C > 1, the bound (8.4) holds.

)

Step 6. It remains to prove Proposition 7. When ¢ € [1, n], the bound (8.5) immediately
follows from (8.9), (8.11), (8.13), (8.15) and (8.18). To prove it for r > n, first observe
that

(Dg(D), B)| < I1Z'2Dg(Z)=Y2|[ 1Bl < I Dgli IZI 1Bl (8.20)
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We will also prove that for some constant C > 1,
|(Dgi(2), B)| < C*|IDgllL,. I =1 | Bll1. (8.21)
To this end, note that, by (5.13),

IDB () <E Y 224, Dg(A;ANATE

1c{1,....k}
< > IZIIDeILEIAN < 1T IDgl., >, EJJIWiI
I1c{1,...,k} Ic{l,..,k} iel
<=l gl Y (J.)(Enwn)f = |21 DgllL., (1 +E[W )~ (8.22)
j=0

Ford < n,wehave E|W — I|| < 4/d/n < C’ for some C’' > 0. Thus,
1+E|W| <24+E|W-I|<24+C =:C.

Therefore, | DB g(Z)|| < C¥||Dg|lL|IZ]l. In view of the definition of g, this implies
that (8.21) holds with some C > 1. It follows from (8.20) and (8.21) that, for some C > 1,

Vi ((Dgi(2), B) — (Dg(2), B)) - CHIBI1IDgllL IZ VA

< (8.23)

0g(Z; B) 04(Z; B)
For ¢t > n, the right hand side of (8.23) is smaller than the right hand side of (8.5). Thus,
(8.5) holds forall t > 1. m]

Proof of Theorem 11 and Proposition 8. First suppose that, for some § > 0, 0(X) C
[28, 00). Let ys5(x) = y(x/§), where y : R — [0, 1] is a nondecreasing C*° function,
y(x) =0forx < 1/2and y(x) = 1 forx > 1. Define f5(x) = f(x)ys(x) forx € R.
Then f(X) = f5(X), which also implies that, for all ¥ with o (%) C [28, 00), Df(X) =
Dfs(¥) and o7 (X; B) = 0f;,(2; B).

Let p(x) := f(f @ dt for x > 0 and ¢(x) = 0 for x < 0. Clearly, f5(x) = x¢'(x)
for x € R. Let g(C) := tr(p(C)) for C € B (H). Then g is clearly an orthogonally
invariant function, Dg(C) = ¢'(C) for C € Bs,(H) and

Dg(C) = C2p/(C)C'? = f5(C), € e CL(H).

It is also easy to see that Dgr(C) = (fs)r(C) for C € C4(H). Using Corollary 2 of
Section 2, standard bounds for pointwise multipliers of functions in Besov spaces [Tr,
Section 2.8.3] and the characterization of Besov norms in terms of difference operators
[Tr, Section 2.5.12], it is easy to check that

J@®)ys(x)

k+1, ./ k+1
IDgllcs < 2 l¢/llps, | = 2°F
: X

5 2k+1

vs(x)
B *

s
Bl '
< 2k+1l y(x/8)
~ S| x/6

Il S 2™ Ve DI fllgs, -
B ' '

00,1
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Denote R
_ n(((f5)i(X), B) = (f(2), B))
- o7(2; B) ’

It follows from Theorem 10 that
—a(k
A: Z) < C¥My B, ) [~ 0P flogn] + €/ (8.24)
with My, (B; £) < 2M'Mf5(B; £) and

1B~ v &8I fllgg,
of(Z: B)
x (121 v =T D log? UZN v IETHIDIZIAZ] v D2,

Mf’(;(B; Y) =

It wﬂl be shown that, under the assumption G(E) C [26, 00), the estimator ( fs) k(Z)
= Dgi (E) can be replaced by the estimator fj (E) To this end, the following lemma will
be proved.

Lemma 25. Suppose that o (X) C [28, 00) for some § > 0, and for a sufficiently large
constant C1 > 1,
log? (1 + 8/ -
< wn —d. (8.25)
Ci(k+1)2

Then, with probability at least 1 — e_d,

1 () = (I < K25 +2)e ™ L. (8.26)
Proof. Recall that, by (5.2),

k
B'f(2)=Eg ) (- (k.)foi‘”),
=0 J
implying that

ka(fl) - kas(fl) Es Z( k= j< ) (E(H'l)) _ f8(2(1+1))]

Note also that f(£UTD) = f5(2U+D) provided that o (S U+D) C [8, 00) (since f(x) =
fs(x) for x > §). This easily implies

1B £(£) — BE s < 2N flle P(3j =1,k +1:0(SY) ¢ [6, 00)).
(8.27)

To control the probability of the event G := {3j = 1,...,k+1: a(ﬁ)(j)) Z [, 00)},
consider the following event:

E:={|SUt) -S| < ISV \d/n, j=1.... k).
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It follows from (1.6) (applied conditionally on $)) that, for a proper choice of C; > 0,

=

Ps(ES) <Eg » Py (IZVTD = 3D = |59 Vd/n) <ke ™. (828

Note that, on the event E, || $U+D <l P2 |(14C1+/d/n), which implies by induction
that

ISP < IS+ Ci/d/n) ™Y, j=1,... k+1.
This also shows that, on the event E,

j—1 J=1
ISV =2 < Y IEED 2O < YISO C1a/n
i=1

i=1
j—1
<IZICVd/n ) (14 Cryd/n) !
i=1
<|ISIA+Ci/d/n)! ' =11, j=1,....k+1.

Consider also the event F := {|| I | < C1||Z]||+/d/n}, which holds with probability
at least 1 — e~ for a proper choice of Cj. On this event, ||E|| < ||IZ|I(1 + C1/d/n).
Therefore, on the event £ N F,

IED — S| < 210 + C1y/d/mI + Ciy/d/n)! ™ =11+ |IZIC1y/d/n
= IZI[(1+ Ciy/d/n)) =11,  j=1,....k+1.

Note that
IS + C1y/d/m)* T — 11 < I Sliexp{Ci(k + 1)/d/n} — 1) < 8

provided that condition (8.25) holds. Therefore, on the event £ N F ) | I ONR 5 I <6,
j=1,....,k+ 1. Since 6(X) C [28, 00), this implies that o (X)) C [§,00), j =
.,k + 1. In other words, E N F C G€. The bound (8.27) implies that
18X (8 = B 5 p < 2T fllLo IFEs TG
< 28 Fllp IFEg Ipeupe < 28PN Fllpo I (Tpe + Eg Ige)
= 2N fllL o TP (EC) < k25T e™ ) £l Ip.

This proves that on the event F of probability at least 1 — e~¢,
1B f(£) = B fs ()1l < k2 e fll .-

Moreover, the same bound also holds for ||B/f(ﬁ3) —-BJ f,g(f])” forallj =1,...,k,and
the dimension d in the above argument can be replaced by an arbitrary upper bound d’



832 Vladimir Koltchinskii

satisfying condition (8.25) (in particular, by d’ = d). Thus, under condition (8.25), with

probability at least 1 — e~?,

1B/ £(£) = B fs(E) < j2i e flloe,  j=1,....k

and also || f(2) — f5(2)| < 2e79||f||L.,. This immediately implies that, under the

assumption o (X) C [28, oo) and condition (8.25), with probability at least 1 — e , the
bound (8.26) holds. ]

Define

£ e Vi (fi(2), B) — (£(), B))
o of(Z; B) '

It follows from (8.26) that with probability at least 1 — e,

K2+ 2) [ fllL Bl

W
o7 (: B) e,

§ —nl <

and we can conclude that, under the conditions d > 3 logn and (8.25), for some C > 1,

k22k+1 2 B B
( + 2 fllall |I1ﬁe_d+e_dick||f||Looll ||1n_2+n_3_

o6 m = o7 (Z: B) or(Z: B)

Combining this with (8.24) and using Lemma 10 shows, with some C > 1,

k+B—a(k+1+B)
AEZ) < CVMpsB: D)™ 2 + 0 179F2 flogn]
C | i IFl Bl

—4C 8.29
+ﬁ+ o/ (: B) (8.29)
It remains to choose § := ﬁ (which implies that o (X) C [26, 00)). Since
log?(1 4+ 8/ log?(1 4+ 1/QUIZ| Vv [IZ~1D? ,
oL+ 3/IED | logf(+ VRUSIVIETDD) . e gy
Cik+1)2 Cis? A1V ==

for a sufficiently small constant ¢ g, condition (8.25) follows from assumption (8.6) on d.
The bound of Theorem 11 immediately follows from (8.29).

It remains to prove Proposition 8. It follows from (8.26) that, for t € [1, d] and
3logn < d < d, with probability at least 1 — e,

£ (2) — (fE) N < K25 273 Fll < RP2XTP 4 2) 1 fllvi/n.  (8.31)

Due to the trivial bound || fx (2)— (f5)x (£) || < 281 £1I .. and (8.30), we get, for ¢ > d,

R . 2k+1 2k+1 5 ) —152
LA — D) < %||Lw\/; < ”f”Loo(”c] ||' VIIET) \/; 8.32)
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It follows from (8.31) and (8.32) that there exists a constant C > 1 such that forallt > 1,

with probability at least 1 — e~/

£ (E) — U < CoIFllL  AZN v IZI™H2 e /n.

This implies that for some C > 1, with the same probability,

B v IIZ—H?
Ck” Nl f s (IZN VTN )ﬁ_

& —nl < =B

(8.33)
Applying the bound of Proposition 7 to Dgyr = (fs)k, we find that for some constant
C > 1landall t > 1, with probability at least 1 — e~ we have || < Cksz;g(B; )1
Combining this with (8.33) shows that for some C > 1 and all + > 1, with probability
at least 1 — e~ we have |§] < Cksz,s(B' ¥)4/t, which, taking into account that § =

2”2 TR , completes the proof of Proposition 8. O

Proof of Theorem 3. If d < 3logn, the claims of Theorem 3 easily follow from Corol-
lary 1. For d > 3logn, (1.10) immediately follows from the bound of Theorem 11 (take
the supremum over the class of covariances S(d,; a) N {o7(X; B) > oo} and over all the
operators B with ||B||; < 1, and pass to the limit as n — ©0).

To prove (1.11), we apply Lemmas 13 and 14 to & := £(X) := /n fk(i;(}; B)f(E) B)

and n := Z. Using (8.8) and (4.16), we get E¢%(§) < 2e+/2m c%ezcgfz, where 7 =

20k My (B; %). Using (4.17), (4.16), easy bounds on E¢2(Z),P{|Z| > A}, and the bound
of Theorem 11, we get

|[E€(E) — EL(Z)]
< 422 [Cksz(B; E)(n_w +n 170872 flogn) + %}
n
+ \/Z_e(2n)]/4clecgtzeﬂ42/(2r2) +c1 eGe= A4,

It remains to take the supremum over the class of covariances S(d,; a)N{os(XZ; B) > oo}
and over all the operators B with || B||; < 1,and to let firstn — coandthen A — co. O

9. Lower bounds

Our main goal in this section is to prove Theorem 4 stated in Subsection 1.2.

The main part of the proof is based on an application of the van Trees inequal-
ity and follows the same lines as the proof of a minimax lower bound for estimation
of linear functionals of principal components in [KLN]. We will need the following
lemma (possibly of independent interest) showing the Lipschitz property of the func-
tion ¥ +— afz( %; B). It holds for an arbitrary separable Hilbert space H (not necessarily
finite-dimensional).
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Lemma 26. Suppose f € Bgo’l(R)for some s € (1, 2]. Then
lo}(Z + H: B) — 0}(; B))|
<1 ML @IST+ THDIBIT[20 £ L I H 1| + 81 fllss, NI I .0

Proof. Note that
of(%; B) =2|='°Df (2; B)S'2|13
=2u(2"?Df(T; BYTDf(T; BYEY?) =2u(EDf (Z; BYSDf(Z; B)).

This implies that

of (£ + H: B) — 0} (%: B)
=2tu(HDf(E + H; B)(Z + H)Df(Z + H; B))
+2uw(Z(Df(E + H; B) — Df(2; B)(2 + H)Df (S + H; B))
+2uw(EDf(Z; BYHDf(E + H; B))
+2u(EDf(Z; BYS(Df(Z + H; B) — Df(Z; B)).

9.2)

Then

|2t(HDf(Z + H; B)(Z + H)Df(Z + H; B))|
<2|Df(X+H; B+ H)Df(Z+ H; B)I1lH|
S22+ H|IDf(Z+H; B)Df(X+ H; B)|1]|H]|
<2IT+H|IDf(E+H; B)I3IH|
< 2I|f’llim(||2|| +IHDIHI B3 9-3)
Similarly, it can be shown that
[2t(EDf(S: BYHDF (S + H: B))| < 2 £ I3 IS 1HI I1BI3. 9.4)
Also, we have
2u(Z(Df(E + H; B) — Df(Z; B))(E 4+ H)Df (= + H; B))

=((Df(X+ H) = Df(%))(B),C) = ((Df (2 + H) — Df(X))(C), B)
=(Df(2+ H:;C)—-Df(%:0), B),

where C := (X + H)Df(X; B)X + £Df(X; B)(¥ + H). Using (2.25), this implies

2tw(S(Df(S + H; B) — Df(Z; B)(S + H)Df (S + H; B))|
=Df(2+ H;C) = Df(E;C), B)| < IDf(2+ H; C) = Df(Z; O)| |1Blh
<4 fllss, €I IH MBI < 81 fllss,  IZNNE + HIIDSf (2 B) | IH* MBI

<8I Mool fllss,  IENCAEN + IHIDIHIP BT (CR))
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Similarly,

|2tw(EDf(Z; BYS(Df(E + H; B) — Df(Z; B))|
<8I MLl Img IZIPIHIT BT (9.6)
Substituting (9.3)—(9.6) into (9.2), we get (9.1). m]
For given a’ € (1,a) and o) > oy, assume that By (d,: a’; o)) # @ (otherwise, the

proof becomes trivial) and, for B with || B||; < 1 such that éf‘g(dn; a’; o) # ¥, consider
Yo € g/;B(dn; a'; o). For H € Bg,(H) and ¢ > 0, define

tH
Y =%+ —= and S.n(Xo, H) :={%; :t € [—c,cl}.

Jn

In what follows, H will be chosen so that
IHI < 11 f/llLoa? 9.7)

Recall that the set é%f, B(dy; a; 0p) is open in the operator norm topology, so X is its
interior point. Moreover, let § > 0 and suppose that || — Xg|| < 8. If § < a — a’, then
IZ]| <a.Ifs < “2:—1’21/ then it is easy to check that |2 ~!|| < a. Also, using the bound of
Lemma 26, it is easy to show that, for B with || B||; < 1, the condition

1 e @a + S)20F 8 + 81 £l g, a8~ < (o)) — of 9.8)

implies that o (X; B) > o9. Thus, for a small enough § = §(f,s,a,d’, 09, 0) € (0, 1)

satisfying § < ”z_a‘zl/ and (9.8), we have

B(%0;8) :={Z : | — Zoll < 8} C Sf,5(dn; a; 00).

For given c and §, for H satisfying (9.7) and for all large enough n (more specifically, for
n > cza4||f’||%oo/82), we have

clH|/v/n <38, (9.9)
implying that S, , (o, H) C B(20; 8) C Sf.5(dn; a; 00). Define
o) :=(f(Z),B), te[—ccl

Clearly, ¢ is continuously differentiable with

1
¢'(t) = —=(Df(Zr; H), B), te[~c,cl (9.10)
Jn
Consider the following parametric model:
X1,..., Xyidd. ~N@QO; 24), te[—cc] 9.11)

It is well known that the Fisher information matrix for model X ~ N(0; ¥) with non-
singular covariance X is 1 (X) = %(E_1 ® T (see, e.g., [Eat]). This implies that the
Fisher information for model X ~ N(0, %), t € [—c,cl,is I(t) = (I(Z)E}, %;) =
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L(1(z)H, H), and for (9.11) it is
L) =nl() = (I(SHH, H) = J(Z7 ' @ £7HH, H)
H)

=3 HE T ) = e HS T H) = )18,

We will now use the well known van Trees inequality (see, e.g., [GL]) that provides a
lower bound on the average risk of an arbitrary estimator 7' (X1, ..., X;;) of a smooth
function ¢(¢) of parameter ¢ of model (9.11) with respect to a smooth prior density 7. on
[—c, c] such that J, := fcc (7; ((’t))) dt < o0 and 7.(c) = m.(—c) = 0. It follows from
that inequality that

—1/2 —1/2
PH V3.

sup B (Tu(X1,..., X,) — g(0)

te[—c,c]

Cc ¢ , 2
> / (5. @' Ome(r) dt)

By (To(X1, ..., Xn) — g(0)) () dt > (9.12)

—e - f Lt dt + Jn,
A common choice of prior is nc(t) = ¢~ '7(t/c) for a smooth density 7 on [—1, 1] with
n(l)=n(—1) =0and J; := f | (”n(tt)) dt < oco. In this case, J;, = ¢ ~2J,. Next we
provide bounds on the numerator and the denominator of the right hand side of (9.12).
For the numerator, we get

p 2 ¢ 2
(/ (p/(t)nc(t)dt) =( [(p/(O)+(<p’(t)—w/(O))]ﬂ(t/C)dt/C)

> (@' (0)*+2¢'(0) | (¢'(1) — ¢ O)7(t/c)dt/c

> (@' (0)2 =219’ O)| | 1¢'(t) — ¢ O)|7(t/c) dt/c.

—C

Using (9.10) along with the bound (based on (2.25))
1
lo'(t) — ¢’ (0)] < TIIDf(Ez; H) — Df(Zo; H)| I Bll1

4
<T||f||3 12 — Soll* " IHI 1Bl < S/zllflle IH B2

we get
¢ 2 1
(/ @' ()7 (1) dl‘) > ;(Df(E(); H), B)?

2 4
— I Df (o H),B>|m||f||B;O,]||H||“||B||1L 1~ feydt fe

1 L 8Ifls IHIFIBIe ™! .
= (Df(Xo; H), B)" — gy |(Df (0; H), B)| / 11~ (1) di
n n S 1

1 81/ gs. IHI°1IB1c!

;(Df(ZO, H), B)® — 2 (Df (20; H), B)|. (9.13)
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Observing that
- -12 «-— —-1,2
(Df (Zo; H), B) = (Df (Z0; B), H) = (24 * D352, 5512 Hsg ),

where D := XoDf (Xo; B)Xo, we can rewrite (9.13) as

c 2
1 _ _
(/ q)’(t)rrc(t)dt> > —(x, ' Pp3 2 2 PES

—C
811 flls, NHIS Bl
—1/2 —1/2 «—1/2 —1/2 0,1
-KE, ""DE, T X, TTHE, ) (BTG

S

9.14)

To bound the denominator, we need to control [,,(t) = % tr(X, 'H ) 'H ) in terms of
1,(0) = S (S5 ' HE; " H). To this end, note that

= oy

—1
where C := (I + aah H) — 1. Suppose H satisfies
Az Hl 1 015
N/ '

which also implies that ||C|| < 2|z| ||EO_1H||/\/r_z < 1. Note also that
(S HE T H) = w(Sy ' HS)  H) + 20(CSy ' HEG ' H) + e(CSy ' HCE G T H).
Therefore,
L(t) < LO) + [CIIZg HEG HI + SICEg  HIRIlHE ' Clla
< L,0)+ Cll+ |IC||2/2)|IEO_1HII§ < 1,(0) + 3|¢| ||20‘1H||§/\/%

and

¢ 1= HIZ €
/I,,(t)n(t/c)dt/csI,,(O)+3—/ [t|m(t/c)dt/c
N/ -

—C

Lis=12g 71/2 [T
<z, 12 4 3em20 02 (9.16)

NG
Substituting (9.14) and (9.16) into (9.12), we get

sup nE (T, (X1,..., X,) — g(0)* =

te[—ec,c]
8l flligs  NHI*NIB1cs!
—1/2 —12 —12 —1/2 o172 —1/2 —12 B
(5, *pxg Prsy A2z sy 2 g Y ) T
—1 2 —1 2.2 1=y " HII3
LisyY 13+3¢ e 2+—f’

9.17)
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Note that

~1/2p —1/2

1/2 1/2
15, 13 = 154> Df (S0 BYSy 113 = S0 F(Z0: B).

In what follows, we use H := D, which clearly satisfies (9.7) since, for Xy €
Sy (dy; a; 0p) and || Bl < 1,

ID|| = IZ0Df (Zo; B)Soll < |Z0lI*I1Df (Zo; B
<A ML BN < @l f I 1Bl < @1 /1l - (9.18)
We also have
1= DI} = te(Df (So; BYEZDSf (S0, B))

< IS0l I1Df (Zo: B < 2ol N7 NBI5 < I f 17 IBI5 < a®llf'I17...
9.19)

implying that (9.9) and (9.15) hold for H = D provided that
n>4cta*| f'|7 /8% (9.20)
With this choice of H, (9.17) implies

1
sctpd | Al IDIPIBIe™
3 1%y "Dl + 0,

Jz
nE (T(X1, ..., Xp) — g(1))? -1 ¢ ﬁ e +Z
- 2 . = %, 1D .
te[—c,c] Uf(209 B) f(EO, B) + 3 I f "2 +
(9.21)
It follows from (9.21), (9.18) and (9.19) that for B satisfying || B||; < 1,
E (T (X1, ..., Xn) — g(1))?
nlE, (T, (X1 ) — g(1)) > 1 — yue(f: a; 00) 9.22)

te[—c,c] UJ%(EO; B)
where

2s o™ 1
3a3||f/”iooc+4a Ifllgs, 1S A
Jn n(s n/2 P
Yae(f;a; 00) == ) :

19
Denote o2(f) := U}(Et; B),t € [—c, c]. By Lemma 26,

D
162 — 52O < I1F 11 (2”20” + "'J'ﬁ ”)HBH%

|t 1D [ 20
NG + 81 s, ol — 57—

Note that assumption (9.15) on H = D implies that

x [2||f||Loo

cIDI _ el Zo%g'HIl _ el =g HIIZoll _ %]
Ji N R R
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Using bound (9.18), we get that, for all # € [—c¢, c¢] and B with ||B]; < 1,
6ca|l 113 24 NN I f sy,

2 2 A .
02(1) = 0> (O)] = —— 7= 4 i = e (3 ).
which implies that
2 .
t A ;
sup ‘72( ) 14 —”’C(]; 2y (9.23)
te[—c,c] O (0) o)
It follows from (9.22) and (9.23) that
nE (T, (X1, ..., Xp) — g(t))z (1 + )\n,c(f; a))
te[—c,c] Uz(t) O'g
. nE (T (X1, ..., X) —g@)* 02(1)
- te[—c,c) 020) te[—c,c) (72(0)
E (T, (X1, ..., X,) — g(t))?
> sup 2 - W =8O Sy o @ 00),
te[—c,c] Of (X0; B)
which implies that for all B € By (dy; a'; o(/)),
nEx(T(X1. ..., X,) — (f(2), B))?
sup Sy
£S5 (dnsa;00) Of (%; B)
_ 2 e (Fea
> nl, (T, (X1, i Xn) — g(1)) . L —ync(f;a; Go; 9.24)
te[—c,c] o=(1) 1+ )\n,c(f; a)/a()
It remains to observe that
lim limsup y,.c(f;a;00) =0 and lim limsup i, .(f;a) =0
Cc—> 00 n— 00 cC—> 00 n—00
to complete the proof. O

Remark 10. It follows from the proof that the following local version of (1.12) also
holds: for all @’ € (1, @) and o; > oy,

Es(T, — (f(2), B
lim liminfinf  inf inf nEs (T, — (f(¥), B))

2
2 > 1
§—0 n=>00 Ty BeBf(dn:a'i0)) 50eSy p(dn:a’;00) | ol <8 07 (%; B)

(9.25)
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