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Abstract— Position tracking control in three spatial dimen-
sions in the presence of unknown or uncertain dynamics, is
applicable to unmanned aerial, ground, (under)water and space
vehicles. This work gives a new approach to model-free position
tracking control by designing an extended state observer to
estimate the states and the uncertain dynamics, with guaranteed
accuracy of estimates. The estimated states and uncertainties
can be used in a control scheme in real-time for position
tracking control. The uncertainty (disturbance input) estimate
is provided by an extended state observer (ESO) that is finite-
time stable (FTS), to provide accuracy and robustness. The
ideas of homogeneous vector fields and real-valued functions
are utilized for the ESO design and to prove FTS. The estimated
disturbance is then utilized for compensation of this uncertainty
in real-time, and to enhance the stability and robustness of the
feedback tracking control scheme.

I. INTRODUCTION

The majority of linear and nonlinear control approaches
are model-based, for which a model of the dynamics of
the system being controlled is necessary. However, as the
complexities of control systems continue to increase, uncer-
tainties and difficulties in modeling these systems become
increasingly important. This has led to increased research
interest and advancement in data-driven control schemes that
do not require accurate dynamics models for the systems
being controlled. But guaranteed stability and robustness of
data-driven control schemes require stable and robust state
and uncertainty observers. This work develops an extended
state observer for estimating the states and uncertainties of a
system that can be used for data-driven control of the system.

The idea of obtaining an estimate of an unknown dis-
turbance, and then utilizing it in the control scheme to
compensate such a disturbance, can be traced back to the
work [1] in 1956. In the last 15 years, data-driven control
for uncertain systems has been used in different senses and
settings in the published literature following this paradigm of
“learning” the unknown dynamics. These settings are quite
varied, and range from “classic” PIDs to feedback control
using techniques from, e.g., neural nets, fuzzy logic, and soft
computing to learn the uncertainties in the dynamics [2]–
[6]. A data-driven output tracking control framework based
on classical control techniques, termed the “intelligent PID”
(or “iPID”) scheme, was proposed by Fliess and Join in [7],
[8]. This ”iPID” scheme has already been successfully im-
plemented onto different control practical scenarios, such
as exoskeletons and micro-aircraft [9], [10]. In addition, if
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the output (measurement) model is known and the system
is differentially flat [11], then a state trajectory can also
be tracked and uncertainties in the input-state dynamics
can be estimated over time using classical filtering tech-
niques [7], [12]. Some applications where similar model-
free control techniques have been considered are given in,
e.g., [13]–[16]. More recently, a data-enabled predictive
control (“DeePC”) method was formulated for data-driven
control of unmodeled/uncertain systems that is analogous
to the classical model-predictive control (MPC) technique
for model-based control of linear systems in [17]. Data-
driven control algorithms that use disturbance or uncertainty
observers and maintain input constraints have also been
treated, e.g., in [18], [19]. Other recent data-driven control
schemes based on linear systems theory include [20], [21].
However, the weak link in most data-driven control schemes
is lack of guaranteed stability of the overall feedback com-
pensation loop for the unknown/uncertain dynamics. Note
that ensuring stability of this compensation, is critical to
ensuring the stability and reliability of the entire data-driven
control system.

To address this shortfall, a set of prior work focuses
on applying the “disturbance/uncertainty observer” idea to
ensure the stability and robustness of disturbance estimation,
and then utilize the estimated disturbance in the control
law. In recent years, the methodology of Extended State
Observers (ESO) has been used to estimate disturbance
inputs or uncertainties in a dynamical system. In an ESO, the
state estimation process is augmented so that the disturbances
or uncertainties that cannot be measured directly, are made
part of the estimation scheme. Furthermore, the convergence
rate of estimation error of the measured states can contribute
to the convergence of the disturbance estimation errors for
inputs that cannot be measured directly. Prior literature
on this topic has obtained disturbance observers and ESO
that are finite-time stable or exponentially stable [22]–
[25], by applying sliding mode techniques and the signum
function sgn(·) to the estimation process. However, if such
estimated disturbances are directly utilized as the term for
compensation of the external disturbance, there might arise
performance issues due to the slide-mode structure, which
can cause harmful chattering (oscillations) in the feedback
loop.

Inspired by the work [24], this research gives an FTS
ESO design to estimate the disturbance during flight of a
multirotor aircraft in translational dimensions. The idea of
homogeneous function is utilized in the ESO design. The
signum function is not used in the ESO design to avoid harm-



ful chattering and oscillations due to measurement noise,
which is always present. Moreover, a control scheme using
the estimated disturbance for compensation, is proposed here.
A simulation work is carried out to show validity of the ESO
design and the proposed control scheme.

The remainder of this paper is organized as follows.
Section II outlines the problem formulation. The position
kinematics and dynamics model of a vehicle moving in
three spatial dimensions is provided. The rigid body tracking
control and disturbance observer problem on R3 are set up
separately based on the kinematics and dynamics. Section III
finds the observer law for the disturbance observer. Lyapunov
stability analysis for the disturbance observer is carried out in
Section III. A tracking control scheme based on this observer
is presented in Section IV. Numerical simulation results
of this Hölder-continuous control law obtained by using
Matlab/Simulink, are presented in Section V. The concluding
section VI provides a summary of results presented, and
mentions related research directions to be pursued in the near
future.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

We start with a few preliminary results and definitions
given in this subsection.

Definition 1: [26] [27] A real-valued function V : Rn 7→
R is called homogeneous of degree d with respect to weights
{ri>0}ni=1, if for all λ > 0 and for all (x1, x2, ..., xn)T ∈
Rn, there is :

V (λr1x1, λ
r2x2, ..., λ

rnxn) = λdV (x1, x2, ..., xn) (1)

Definition 2: [26] [27] A vector F : Rn 7→ Rn is called
homogeneous of degree d with respect to weights {ri>0}ni=1,
if for all λ > 0 and for all (x1, x2, ..., xn)T ∈ Rn, there is :

Fi(λ
r1x1, λ

r2x2, ..., λ
rixi, ..., λ

rnxn)

= λd+riFi(x1, x2, ..., xi, ..., xn)
(2)

If V : Rn 7→ R satisfies (1) and is differentiable with respect
to xi, then the partial derivative of V in xi satisfies

λri
∂

∂xi
V (λr1x1, λ

r2x2, ..., λ
rixi, ..., λ

rnxn)

= λd
∂

∂xi
V (x1, x2, ..., xi, ..., xn)

(3)

With the knowledge that V is homogeneous, eq. (3) can
be conveniently used to check the homogeneity of ∂V

∂xi
.

Theorem 1: [27] Suppose V1 and V2 are continuous real-
valued functions on Rn, homogeneous with respect to ν of
degrees l1 > 0 and l2 > 0, respectively, and V1 is positive
definite. Then for every x ∈ Rn, it holds that:

[ min
z:V1(z)=1

V2(z)][V1(x)]
l2
l1 ≤ V2(x)

≤ [ max
z:V1(z)=1

V2(z)][V1(x)]
l2
l1 .

(4)

Theorem 2: [28] Let f be a vector field satisfying f ∈
C(Rn,Rn), f(0) = 0, f is homogeneous:

∀λ > 0, fi(λ
r1x1, λ

r2x2, ..., λ
rixi, ..., λ

rnxn)

= λτ+rifi(x1, x2, ...xi, ..., xn)
(5)

and the trivial solution x = 0 of system ẋ = f(x) is locally
asymptotically stable. Then let p be positive integer, and k
be a real number larger than p ·max1≤i≤nri. There exists a
function V : Rn 7→ R such that:
(i) V ∈ Cp(Rn,R) ∩ C∞(Rn\{0},R);
(ii) V (0) = 0, V (x) > 0 for all x 6= 0 and V (x) 7→ +∞ as
||x|| 7→ +∞;
(iii) V is homogeneous: ∀λ > 0,

V (λr1x1, λ
r2x2, ..., λ

rnxn) = V kfi(x1, x2, ..., xn)

(iv) ∀x 6= 0,∇V (x) · f(x) < 0.
These results are used in the FTS ESO design in Section III.

B. System Kinematics and Dynamics

The dynamics model that we use is that of a multirotor
UAV in translational motion represented in the inertial frame,
and is based on eq. (1) in [29]. In this model, actuator
dynamics (such as rotor dynamics and blade flapping), and
ground effect, are accounted for as unknown dynamics as
follows: {

η̇ = µ,
Mµ̇ = −Cµ+Mg + τd + τ,

(6)

where η ∈ R3 and µ ∈ R3 denote the position and velocity of
the vehicle in inertial frame I, M is the mass of the UAV, C
is the damping (drag) coefficient which is unknown, g ∈ R3

is the gravitational acceleration vector, τd is the unmodeled
and unknown (disturbance) dynamics, and τ is the control
force acting on the UAV.

For the disturbance observer design and the control
scheme design based on this observer, the dynamics model
is simplified from (6) as follows: η̇ = µ,

µ̇ = σ + g +M−1τ, and
σ̇ = δ.

(7)

The term τd−Cµ is replaced by the term σ, which contains
the resultant of the unknown dynamics involved in the
flight dynamics. The following assumption is made for this
unknown dynamics acting on the vehicle.

Assumption 1: The rate of σ, σ̇, is unknown but bounded,
and satisfies the inequality: ‖σ̇‖ ≤ δ. Further, δ̄ denotes a
known upperbound on δ.

With the dynamics model (11), the disturbance estimation
problem for the term σ and a tracking control problem for η
and µ are formulated. These are described next in Sections
III and IV respectively.



III. FINITE-TIME STABLE EXTENDED STATE OBSERVER
(FTSESO)

The disturbance observer design with finite-time stability
is described in details in this section, along with a stability
analysis. The disturbance observer is formed as an ESO and
the estimation errors are defined as follows:

η̃ = η − η̂, µ̃ = µ− µ̂, σ̃ = σ − σ̂,

which are the position, velocity, and unknown disturbance
estimation errors respectively.

Proposition 1: The Hölder-continuous extended state ob-
server equations for a point mass with the kinematics and
dynamics (7) and with position and velocity measurements,
is of the following form:

˙̂η = µ̂+ k1(ψTψ)
α−1
2 ψ,

˙̂µ = σ̂ + g +M−1τ + 1
κ µ̃+ k2

κ (ψTψ)
α−1
2 ψ,

˙̂σ = k3(ψTψ)α−1ψ,

(8)

where 1
2<α<1.

Note that unlike most of the FTSESO designs that are FTS
because they use the signum function and variable structure
design, the proposed FTSESO (8) is Hölder-continuous near
the origin.

With (7), (8) and the estimation errors defined earlier, the
error dynamics of the FTSESO are given by:

˙̃η = µ̃− k1(ψTψ)
α−1
2 ψ,

˙̃µ = σ̃ − 1
κ µ̃−

k2
κ (ψTψ)

α−1
2 ψ,

˙̃σ = −k3(ψTψ)α−1ψ + δ.

(9)

To reduce the difficulty of proving the stability of (9),
term δ in (9) is neglected temporarily. The following theorem
considers the stability of the auxiliary system obtained from
the above error dynamics without the term δ.

Theorem 3: The auxiliary system given below by (10) is
globally finite time stable (FTS) at (η̃T, µ̃T, σ̃T)T = 0 ∈ R9:

˙̃η = µ̃− k1(ψTψ)
α−1
2 ψ,

˙̃µ = σ̃ − 1
κ µ̃−

k2
κ (ψTψ)

α−1
2 ψ,

˙̃σ = −k3(ψTψ)α−1ψ.

(10)

Proof: The proof of this result is based on the main
results of [28] (given by Theorem 2) and [27] (given by
Theorem 1), both stated in Section II. Define the vector: z =
(ψT, σ̃T)T ∈ R6 and f(ψ, σ̃) ∈ R6, such that the stability
proof of (10) can be reduced to the stability proof of:

ż = (ψ̇T, ˙̃σT)T = f(ψ, σ̃) (11)

Carry out the linear combination of the first and second
equation in (10) with coefficients {1, κ}. Then the auxiliary
system (ψ̇T, ˙̃σT)T = f(ψ, σ̃) can be expressed in the
following form:{

ψ̇ = κσ̃ − (k1 + k2)(ψTψ)
α−1
2 ψ

˙̃σ = −k3(ψTψ)α−1ψ
(12)

Define the following Lyapunov candidate Va(ψ, σ̃) for the
stability analysis of (11):

Va(ψ, σ̃) =
1

2
[
k3

ακ
(ψTψ)α + σ̃Tσ̃] (13)

The Lie derivative of Va(ψ, σ̃) along the vector field f(ψ, σ̃),
LfVa, is obtained as follows:

V̇a(ψ, σ̃) = LfVa =
k3

ακ
α(ψTψ)α−1ψTψ̇ + σ̃T ˙̃σ

=
k3

ακ
ακ(ψTψ)α−1ψTσ̃ − k3

κ
(k1 + k2)(ψTψ)

α+1
2

− k3(ψTψ)α−1σ̃Tψ

= −k3

κ
(k1 + k2)(ψTψ)

α+1
2 ≤ 0. (14)

From eq. (14) and the invariance principle, we see that the
auxiliary system (11) is asymptotically stable. According to
Definition 2, it can also be verified that f(ψ, σ̃) is a homoge-
neous vector field of degree α− 1 with respect to the vector
of weights {1, α}. According to Theorem 2, there exists a
homogeneous Lyapunov function Vb(ψ, σ̃) of degree γ ∈ N
such that LfVb = ∇Vb(ψ, σ̃) · f(ψ, σ̃) < 0. Although Vb is
not given explicitly by this theorem, through Proposition 2
in [28], Vb can be obtained from Va. According to Definition
1, the real-valued function LfVb = ∇Vb(ψ, σ̃) · f(ψ, σ̃) is
homogeneous of degree γ + α− 1.

V̇b(ψ, σ̃) =
∂Vb
∂ψ

[κσ̃ − (k1 + k2)(ψTψ)
α−1
2 ψ]

+
∂Vb
∂σ̃

[−k3(ψTψ)α−1ψ]

< −c1V
γ+α−1
γ

b .

(15)

Further, according to Theorem 1, we get:

c1 = − max
{ψ,σ̃:Vb(ψ,σ̃)=1}

∇Vb(ψ, σ̃) · f(ψ, σ̃). (16)

Note that ∇Vb(ψ, σ̃) · f(ψ, σ̃) is negative definite, and
therefore c1 > 0. Since 1

2 < α < 1, the auxiliary system
(11) is proved to be FTS at the origin (ψ, σ̃) = (0, 0).

Now consider the disturbance term δ, and the disturbance
observer error dynamics (9) expressed as follows:{

ψ̇ = κσ̃ − (k1 + k2)(ψTψ)
α−1
2 ψ,

˙̃σ = −k3(ψTψ)α−1ψ + δ.
(17)

Theorem 4: When Vb > ( c2δ̄c1 )
γ

2α−1 , where c1 is defined
previously in (16) and c2 is defined as:

c2 = max
{ψ,σ̃:Vb(ψ,σ̃)=1}

|∂Vb
∂σ̃
|, (18)

the error dynamics (17) is FTS.

Proof: Use the Lyapunov function Vb in Theorem 3 for
the observer error dynamics. Note that Vb is homogeneous
of degree γ with respect to {1, α}. According to Definition 1
and 2, it can be further concluded that |∂Vb∂σ̃ | is homogeneous



of degree γ − α with respect to {1, α}. Applying Theorem
1, the following inequality holds:

|∂Vb
∂σ̃
| < c2V

γ−α
γ

b , c2 > 0. (19)

Consider again the disturbance observer error dynamics (17).
The time derivative of Vb satisfies:

V̇b(ψ, σ̃) =
∂Vb
∂ψ

[κσ̃ − (k1 + k2)(ψTψ)
α−1
2 ψ]

+
∂Vb
∂σ̃

[−k3(ψTψ)α−1ψ] +
∂Vb
∂σ̃

δ

< −c1V
γ+α−1
γ

b + |∂Vb
∂σ̃
||δ|

< −c1V
γ+α−1
γ

b + c2V
γ−α
γ

b δ̄

= (−c1V
2α−1
γ

b + c2δ̄)V
γ−α
γ

b

(20)

From (20), when the Lyapunov function Vb satisfies:

−c1V
2α−1
γ

b + c2δ̄ < 0 or

Vb > (
c2δ̄

c1
)

γ
2α−1 , (21)

we conclude that the error dynamics (17) is FTS. This
concludes our proof.

It can be seen from this result that outside a neighbourhood
of the origin, the error dynamics (17) is FTS.

IV. FINITE-TIME TRACKING CONTROLLER BASED ON
DISTURBANCE OBSERVER

The FTS position tracking control scheme described in
[30] is reproduced here with the estimated disturbance im-
plemented inside the control scheme design for disturbance
compensation. Define ηd and µd as the desired position
and velocity and it can be derived that η̇d = µd. Define
the position tracking control error as eη = η − ηd and
eµ = µ−µd. Based on the defined tracking error, the tracking
error dynamics generated based on (7) is shown as follows:

ėη = eµ

ėµ = σ + g +M−1τ − µ̇d
(22)

Proposition 2: [30] Define Eη =
eη

(eTη eη)
1− 1

p
and consider

the feedback control law as follows:

τ = −M(σ̂ + g − µ̇d + λĖη + λeη)

− λMP (eµ + λEη)

((eµ + λEη)TP (eµ + λEη))1− 1
p

.
(23)

This stabilizes the error dynamics (22) with FTS.

The proof of FTS of the control scheme without the term
−σ̂ has already been given in [30]. Note that σ̃ = σ − σ̂ is
proved to be FTS outside a given neighbourhood of the origin
by Theorem 4 in the previous section. Therefore, it leads to
FTS of the control scheme using the disturbance observer
for compensation of the unknown (disturbance) dynamics.

V. NUMERICAL SIMULATIONS

This section presents two simulated multirotor flights for
two position tracking control schemes. One is the FTS
position tracking control scheme that is presented in Theorem
1 in [30]. The other is the control scheme of Proposition
2, which is the FTS position tracking control scheme with
the estimated disturbance obtained from the FTSESO. Given
exactly the same dynamics model, control parameters, distur-
bance and desired trajectories, other than the term containing
the estimated disturbance for compensation, the latter control
scheme is expected to show better performance compared
with the former one. This comparison is intended to show
the validity of the proposed ESO and control scheme. The
simulation is carried out using MATLAB/Simulink. The
model parameters and the external disturbance force τd are
selected as follows:

M = 2, C = diag[0.01, 0.01, 0.01], g = [0.0, 0.0, 9.8]T,

and τd = [6sin(t); 4cos(t); 8sin(t)cos(t)],

where t denotes time. Control system gain parameters are
selected as follows:

p = 1.2, P = diag[12, 12, 12], and λ = 1.8.

Finally, the FTSESO gain parameters are selected as follows:

α = 0.8, κ = 5.0, k1 = 10, k2 = 30, and k3 = 100.

The desired trajectory is generated as

ηd = [5 cos(t); 5 sin(t);−0.5 t]. (24)

From Fig. 3, it can be seen that the proposed estimation
scheme can successfully estimate the unmodeled disturbance
input with high accuracy. The disturbance estimation error
converges to a small neighbourhood near the origin.

For the comparison between the two tracking control
schemes, it can be seen that compared with the tracking
control error in Fig. 1 the tracking control error in Fig. 2
converges to a smaller neighbourhood of the origin, both for
velocity and position tracking. This confirms our expecta-
tions of the greater robustness of the model-free (data-driven)
control scheme using the FTSESO, when compared to a
control scheme that does not use such a ESO for disturbance
compensation.

VI. CONCLUSION AND FUTURE WORKS

This research proposes a new type of extended state
observer with finite time stability, to estimate unknown
(disturbance) forces affecting the translational dynamics of a
rotorcraft aircraft during the flight. The finite-time stability
of the proposed ESO is established using Theorems 2 and
1 based on the use of geometric homogeneity. With the
proposed ESO, the estimated disturbance is implemented
as a term in the control scheme to compensate for this
disturbance force during the flight. The simulation results
show the validity of the proposed ESO and its efficiency in
disturbance compensation when combined with the control
scheme design. In the near future, a finite-time stable ESO



(a) position tracking error (b) velocity tracking error

Fig. 1: Tracking control error without disturbance compensation from ESO.

(a) position tracking error (b) velocity tracking error

Fig. 2: Tracking control error with disturbance compensation from ESO.

Fig. 3: FTSESO estimation error.

for attitude kinematics and dynamics will be investigated and
used for attitude compensation. Furthermore, methods for
tuning this ESO and improving its stability abd robustness
properties will appear in future publications.
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