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Abstract: We study a problem of estimation of smooth functionals of
parameter θ of Gaussian shift model

X = θ + ξ, θ ∈ E,

where E is a separable Banach space and X is an observation of unknown
vector θ in Gaussian noise ξ with zero mean and known covariance oper-
ator Σ. In particular, we develop estimators T (X) of f(θ) for functionals
f : E 7→ R of Hölder smoothness s > 0 such that

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 .
(
‖Σ‖ ∨ (E‖ξ‖2)s

)
∧ 1,

where ‖Σ‖ is the operator norm of Σ, and show that this mean squared
error rate is minimax optimal at least in the case of standard finite-
dimensional Gaussian shift model (E = Rd equipped with the canonical
Euclidean norm, ξ = σZ, Z ∼ N (0; Id)). Moreover, we determine a sharp
threshold on the smoothness s of functional f such that, for all s above
the threshold, f(θ) can be estimated efficiently with a mean squared er-
ror rate of the order ‖Σ‖ in a “small noise” setting (that is, when E‖ξ‖2
is small). The construction of efficient estimators is crucially based on
a “bootstrap chain” method of bias reduction. The results could be ap-
plied to a variety of special high-dimensional and infinite-dimensional
Gaussian models (for vector, matrix and functional data).

Résumé: Dans cet article, nous étudions le problème d’estimation de
fonctionnelles lisses d’un paramètre θ dans un modèle gaussien suivant:

X = θ + ξ, θ ∈ E,

où E est un espace de Banach séparable, X est une observation du
vecteur θ inconnu et le bruit ξ est gaussien de moyenne nulle et d’opérateur
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de covariance Σ connu. En particulier, nous développons des estima-
teurs T (X) de f(θ) pour les fonctionnelles f : E 7→ R du paramètre de

régularité Höldérienne s > 0 tels que

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 .
(
‖Σ‖ ∨ (E‖ξ‖2)s

)
∧ 1,

où ‖Σ‖ est la norme d’opérateur de Σ, et nous montrons que cette esti-
mation de l’erreur quadratique moyenne est minimax optimale au moins
dans le cas du modèle gaussien de dimension finie avec une matrice de
covariance identité (E = Rd est muni de la norme euclidienne canonique
ξ = σZ, Z ∼ N (0; Id)). De plus, nous déterminons le seuil exact sur
la régularité s de la fonctionnelle f tel que, pour tout s au-dessus de
ce seuil, f(θ) peut-être estimé efficacement avec un erreur quadratique
moyen de l’ordre ‖Σ‖ dans le régime de “bruit petit” (i.e. E‖ξ‖2 est pe-
tit). La construction des estimateurs efficaces est basée essentiellement
sur une méthode de “châıne bootstrap” pour la réduction du biais. Les
résultats peuvent être appliqués à un grand choix des modèles gaussiens
de grande dimension voire même infini-dimensionnels (pour les données
vectorielles, matricielles et fonctionnelles).

AMS 2000 subject classifications: Primary 62H12; secondary 62G20,
62H25, 60B20.

Keywords and phrases: Efficiency, Smooth functionals, Gaussian shift
model, Bootstrap, Effective rank, Concentration inequalities, Normal
approximation.
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1. Introduction

The problem of estimation of functionals of “high complexity” parameters
of statistical models often occurs both in high-dimensional and in nonpara-
metric statistics, where it is of importance to identify some features of a
complex parameter that could be estimated efficiently with a fast (some-
times, parametric) convergence rates. Such problems are very important in
the case of vector, matrix or functional parameters in a variety of applica-
tions including functional data analysis and kernel machine learning ([34],
[5]). In this paper, we study a very basic version of this problem in the
case of rather general Gaussian models with unknown mean. Consider the
following Gaussian shift model

X = θ + ξ, θ ∈ E, (1.1)

where E is a separable Banach space, θ is an unknown parameter and ξ is a
mean zero Gaussian random variable in E (the noise) with known covariance
operator Σ. In other words, an observation X ∼ N (θ; Σ) in Gaussian shift
model (1.1) is a Gaussian vector in E with unknown mean θ and known
covariance Σ. Recall that Σ is an operator from the dual space E∗ into E
such that Σu := E〈ξ, u〉ξ, u ∈ E∗. Here and in what follows, 〈x, u〉 denotes
the value of a linear functional u ∈ E∗ on a vector x ∈ E (although, in
some parts of the paper, with a little abuse of notation, 〈·, ·〉 will also denote
the inner product of Euclidean spaces). It is well known that the covariance
operator Σ of a Gaussian vector in E is bounded and, moreover, it is nuclear.

Our goal is to study the problem of estimation of f(θ) for smooth function-
als f : E 7→ R. The problem of estimation of smooth functionals of parame-
ters of infinite-dimensional (nonparametric) models has been studied for sev-
eral decades. It is considerably harder than in the classical finite-dimensional
parametric i.i.d. models, where under standard regularity assumptions, f(θ̂)
(θ̂ being the maximum likelihood estimator) is an asymptotically efficient (in
the sense of Hàjek-LeCam) estimator of f(θ) with

√
n-rate for continuously

differentiable functions f. In the nonparametric case, classical convergence
rates do not necessarily hold in functional estimation problems and minimax
optimal convergence rates have to be determined. Moreover, even when the
classical convergence rates do hold, the construction of efficient estimator is
often a challenging problem. Such problems have been often studied for spe-
cial models (Gaussian white noise model, nonparametric density estimation
model, etc) and for special functionals (with a number of nontrivial results
even in the case of linear and quadratic functionals). Early results in this
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direction are due to Levit [28, 29] and Ibragimov and Khasminskii [15]. Fur-
ther important references include Ibragimov, Nemirovski and Khasminskii
[16], Donoho and Liu [9, 10], Bickel and Ritov [2], Donoho and Nussbaum
[11], Nemirovski [31, 32], Birgé and Massart [4], Laurent [26], Lepski, Ne-
mirovski and Spokoiny [30], Cai and Low [6, 7], Klemelä [19] as well as a vast
literature on semiparametric efficiency (see, e.g., [3] and references therein).
Early results on consistent and asymptotically normal estimation of smooth
functionals of high-dimensional parameters are due to Girko [13, 14]. More
recently, there has been a lot of interest in efficient and minimax optimal
estimation of functionals of parameters of high-dimensional models includ-
ing a variety of problems related to semiparametric efficiency of regularized
estimators (see [36], [17], [37]), on minimax optimal rates of estimation of
special functionals (see [8]), on efficient estimation of smooth functionals of
covariance in Gaussian models [23, 20].

Throughout the paper, given nonnegative A,B, A . B means that A ≤
CB for a numerical constant C, A & B is equivalent to B . A and A � B
is equivalent to A . B <∼ A. Sometimes signs of relationships <∼ ,& and
� will be provided with subscripts (say, A .γ B or A �γ B), indicating
possible dependence of the constants on the corresponding parameters.

In what follows, exponential bounds on random variables (say, on ζ) are
often stated in the following form: there exists a constant C > 0 such that,
for all t ≥ 1 with probability at least 1− e−t, ζ ≤ Ct. The proof could often
result in a slightly different bound, for instance, ζ ≤ Ct with probability
1 − 5e−t. However, replacing constant C with C ′ = 2 log(5)C, it is easy to
obtain the probability bound in the initial form 1−e−t. In such cases, we say
that ,“adjusting the constants” allows us to write the probability as 1− e−t
(without providing further details).

We will now briefly discuss the results of Ibragimov, Nemirovski and Khas-
minskii [16] and follow up results of Nemirovski [31, 32] that are especially
close to our approach to the problem. In [16], the following model was stud-
ied

dX(n)(t) = θ(t)dt+
1√
n
dw(t), t ∈ [0, 1], (1.2)

in which a “signal” θ ∈ Θ ⊂ L2([0, 1]) is observed in a Gaussian white
noise (w being a standard Brownian motion on [0, 1]). The complexity of
the parameter space Θ was characterized by Kolmogorov widths:

dm(Θ) := inf
L⊂L2([0,1]),dim(L)≤m

sup
θ∈Θ
‖θ − PLθ‖2,
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where PL denotes the orthogonal projection onto subspace L. Assuming that
Θ ⊂ U := {θ ∈ L2([0, 1]) : ‖θ‖ ≤ 1} and, for some β > 0,

dm(Θ) . m−β ,m ≥ 1,

the goal of the authors was to determine a “smoothness threshold” s(β) > 0
such that, for all s > s(β) and for all functionals f on L2([0, 1]) of smoothness
s, f(θ) could be estimated efficiently with rate n−1/2 based on observation
X(n) (whereas for s < s(β) there exist functionals f of smoothness s such
that f(θ) could not be estimated with parametric rate n−1/2). It turned
out that the main difficulties in this problem are related to a proper defini-
tion of the smoothness of the functional f. In particular, even such simple
functional as f(θ) = ‖θ‖2 could not be estimated efficiently on some sets Θ
with β ≤ 1/4. The smoothness of functionals on Hilbert space L2([0, 1]) is
usually defined in terms of their Hölder type norms that, in turn, depend on
a way in which the norm of Fréchet derivatives f (k)(θ) is defined. The k-th
order Fréchet derivative is a symmetric k-linear form on L2([0, 1]). The most
common definition of the norm of such a form M(h1, . . . , hk), h1, . . . , hk ∈
L2([0, 1]) is the operator norm: ‖M‖ := suph1,...,hk∈U |M(h1, . . . , hk)|. Other
possibilities include Hilbert–Schmidt norm ‖M‖HS and “hybrid” norms
‖M‖(j) := suph1,...,hj∈U ‖M(h1, . . . , hj , ·, . . . , ·)‖HS , 0 ≤ j ≤ k. The Hölder
classes in [16] were defined in terms of the following norms: for s = k + γ,
k ≥ 0, γ ∈ (0, 1],

‖f‖C̃s := max
0≤j≤k−1

sup
x∈2U

‖f (j)(x)‖HS
∨

sup
x∈2U

‖f (k)(x)‖(1)∨
sup

x,x′∈2U,θ 6=θ′

‖f (k)(x)− f (k)(x′)‖
‖x− x′‖γ

.

With this somewhat complicated definition, it was proved that, if ‖f‖C̃s <∞
and either 1

2β + 1 < s ≤ 3, or s > 3∨ 1
2β , then there exists an asymptotically

efficient estimator of f(θ) with convergence rate n−1/2. The construction
of such estimators was based on the development of a method of unbiased
estimation of Hilbert–Schmidt polynomials on L2([0, 1]) and on Taylor ex-
pansion of f(θ) in a neighborhood of an estimator θ̂ of θ with an optimal
nonparametric error rate. It was later shown in [31, 32] that the smoothness
thresholds described above are optimal.

We will study similar problems for Gaussian shift model (1.1) trying to
determine smoothness thresholds for efficient estimation in terms of proper
complexity characteristics for this model.
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Among the simplest smooth functionals on E are bounded linear func-
tionals E 3 θ 7→ 〈θ, u〉, u ∈ E∗. For a straightforward estimator 〈X,u〉 of
such a functional,

Eθ(〈X,u〉 − 〈θ, u〉)2 = E〈ξ, u〉2 = 〈Σu, u〉, u ∈ E∗,

and, for functionals u from the unit ball of E∗ the largest possible mean
squared error is equal to the operator norm of Σ :

‖Σ‖ = sup
u,v∈E∗,‖u‖,‖v‖≤1

E〈ξ, u〉〈ξ, v〉 = sup
u∈E∗,‖u‖≤1

E〈ξ, u〉2.

It is also not hard to prove the following proposition.

Proposition 1.1. Let

T̂ (X) :=

{
〈X,u〉 for ‖Σ‖ ≤ 1

0 for ‖Σ‖ > 1.

Then
sup
‖u‖≤1

sup
‖θ‖≤1

Eθ(T̂ (X)− 〈θ, u〉)2 ≤ ‖Σ‖ ∧ 1

and
sup
‖u‖≤1

inf
T

sup
‖θ‖≤1

Eθ(T (X)− 〈θ, u〉)2 & ‖Σ‖ ∧ 1. (1.3)

In what follows, the complexity of estimation problem will be character-
ized by two parameters of the noise ξ. One is the operator norm ‖Σ‖, which
is involved in the minimax mean squared error for estimation of linear func-
tionals. It will be convenient to view ‖Σ‖ as the weak variance of ξ. Another
complexity parameter is the strong variance of ξ defined as

E‖ξ‖2 = E sup
u,v∈E∗,‖u‖,‖v‖≤1

〈ξ, u〉〈ξ, v〉 = E sup
u∈E∗,‖u‖≤1

〈ξ, u〉2.

Clearly, E‖ξ‖2 ≥ ‖Σ‖. The ratio of these two parameters,

r(Σ) :=
E‖ξ‖2

‖Σ‖
,

is called the effective rank of Σ and it was used earlier in concentration
bounds for sample covariance operators and their spectral projections [22,
21]. The following properties of r(Σ) are obvious:

r(Σ) ≥ 1 and r(λΣ) = r(Σ), λ > 0.
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Thus, the effective rank is invariant with respect to rescaling of Σ (or rescal-
ing of the noise). In this sense, ‖Σ‖ and r(Σ) can be viewed as complemen-
tary parameters of the noise. It is easy to check that, if E is a Hilbert space,
then r(Σ) = tr(Σ)

‖Σ‖ , which implies that r(Σ) ≤ rank(Σ) ≤ dim(E). Clearly,

r(Σ) could be viewed as a way to measure the dimensionality of the noise.
In particular, for the maximum likelihood estimator X of θ in the Gaussian
shift model (1.1), we have Eθ‖X − θ‖2 = E‖ξ‖2 = ‖Σ‖r(Σ), resembling a
standard formula σ2d for the risk of estimation of a vector in Rd observed
in a “white noise” with variance σ2.

We discuss below several simple examples of the general Gaussian shift
model (1.1).

Example 1.1. Standard finite-dimensional Gaussian shift model.
Let E = Rd be equipped with the canonical Euclidean inner product and the
corresponding norm (the `2-norm), and let ξ = σZ, where σ > 0 is a known
constant and Z ∼ N (0; Id). In this case, Σ = σ2Id, ‖Σ‖ = σ2, E‖ξ‖2 = σ2d
and r(Σ) = d. Note that the size of effective rank r(Σ) crucially depends on
the choice of underlying norm of the linear space. For instance, if instead of
the canonical Euclidean inner product used in the case of standard Gaussian
shift model, the space E = Rd is equipped with the `∞-norm, then we still
have ‖Σ‖ = σ2, but

E‖ξ‖2`∞ � σ
2 log d,

implying that r(Σ) � log d.

Example 1.2. Matrix Gaussian shift models. Let E be the space of all
symmetric d× d matrices equipped with the operator norm and let ξ = σZ
with known parameter σ > 0 and Z sampled from the Gaussian orthogonal
ensemble (that is, Z = (Zij)

d
i,j=1 is a symmetric random matrix, Zij , i ≤ j

are independent r.v., Zij ∼ N (0, 1), i < j, Zii ∼ N (0; 2)). In this case,
‖Σ‖ � σ2 and

E‖ξ‖2 = σ2E‖Z‖2 � σ2d,

implying that r(Σ) � d. As before, the effective rank would be different for
a different choice of norm on E. For instance, if E is equipped with the
Hilbert–Schmidt norm, then r(Σ) � d2 (compare this with Example 1). One
can similarly consider other matrix Gaussian shift models (for instance, for
rectangular matrices).

Example 1.3. Gaussian functional data model. Let E = C([0, 1]d), d ≥
1 be equipped with the sup-norm ‖ · ‖∞. Suppose that ξ := σZ, where σ > 0
is a known parameter and Z is a mean zero Gaussian process on [0, 1]d with
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the sample paths continuous a.s. (and with known distribution). Without
loss of generality, assume that supt∈[0,1]d EZ2(t) = 1. Suppose that, for some
β > 0,

τ2(t, s) := E|Z(t)− Z(s)|2 . |t− s|β , t, s ∈ [0, 1]d.

Then, it is easy to see that the following bound holds for the metric entropy
Hτ ([0, 1]d; ε) of [0, 1]d with respect to metric τ :

Hτ ([0, 1]d; ε) .β d log
1

ε
.

It follows from Dudley’s entropy bound that

E‖Z‖2∞ .β
(∫ 1

0
H1/2
τ ([0, 1]d; ε)dε

)2
. d.

Therefore, it is easy to conclude that ‖Σ‖ � σ2 and E‖ξ‖2∞ . σ2d, implying
that r(Σ) . d.

In the following sections, we develop estimators T (X) of f(θ) in Gaussian
shift model with mean squared error of the order

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 .
(
‖Σ‖ ∨ (E‖ξ‖2)s

)
∧ 1,

where s is the degree of smoothness of functional f. In this bound, ‖Σ‖ is the
weak variance of the noise and it will be shown later that the term (E‖ξ‖2)s

provides an upper bound on the bias of estimator T (X). If E‖ξ‖2 < 1, the
bias term becomes smaller than the weak variance ‖Σ‖ for a sufficiently large
degree of smoothness s. We show that this error rate is minimax optimal
(at least in the case of standard finite dimensional Gaussian shift model).
Moreover, we determine a sharp threshold on smoothness s such that, for
all s above this threshold and all functionals f of smoothness s, the mean
squared error rate of estimation of f(θ) is of the order ‖Σ‖∧ 1 (as for linear
functionals), and, for all s strictly above the threshold, we prove the effi-
ciency of our estimators in the “small noise” case (when the strong variance
E‖ξ‖2 is small). The key ingredient in the development of such estimators
is a bootstrap chain bias reduction method introduced in [20] in the problem
of estimation of smooth functionals of covariance operators. We will outline
this approach in Section 2 and develop it in detail in Section 3 for Gaussian
shift models.
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2. Overview of Main Results

We will study how the optimal error rate of estimation of f(θ) for parameter
θ of Gaussian shift model (1.1) depends on the smoothness of the functional
f : E 7→ R as well as on the weak and strong variances, ‖Σ‖ and EΣ‖ξ‖2,
of the noise ξ (or, equivalently, on the parameters ‖Σ‖ and r(Σ)). To this
end, we define below a Banach space Cs,γ(E) of functionals f : E 7→ R of
smoothness s > 0 such that f and its derivatives grow as ‖θ‖ → ∞ not
faster than ‖θ‖γ for some γ ≥ 0.

2.1. Differentiability

For Banach spaces E,F, let Mk(E;F ) be the Banach space of symmetric
k-linear forms M : E × · · · × E 7→ F with bounded operator norm

‖M‖ := sup
‖h1‖≤1,...,‖hk‖≤1

‖M(h1, . . . , hk)‖ <∞.

For k = 0,M0(E;F ) is the space of constants (vectors of F ). A function P :
E 7→ F defined by P (x) := M(x, . . . , x), x ∈ E, whereM ∈Mk(E;F ), k ≥ 0
is called a bounded homogeneous k-polynomial on E with values in F. It is
known that P uniquely defines M ∈Mk(E;F ). A bounded polynomial on E
with values in F is an arbitrary function P : E 7→ F represented as a finite
sum P (x) :=

∑
j∈I Pj(x), x ∈ E, I ⊂ Z+, where Pj is a non-zero bounded

homogeneous j-polynomial. For I = ∅, we set P := 0. Polynomials Pj , j ∈ I
are uniquely defined by P. The degree of P is defined as deg(P ) := max(I)
(with deg(0) = 0). If Pj(x) = Mj(x, . . . , x) for Mj ∈Mj(E;F ), define

‖P‖op :=
∑
j∈I
‖Mj‖.

Recall that a function f : E 7→ F is called Fréchet differentiable at a point
x ∈ E iff there exists a bounded linear operator f ′(x) from E to F (Fréchet
derivative) such that

f(x+ h)− f(x) = f ′(x)h+ o(‖h‖) as h→ 0.

Higher order Fréchet derivatives could be defined by induction. The k-th
order Fréchet derivative f (k)(x) at point x is defined as the Fréchet derivative
of the mapping E 3 x 7→ f (k−1)(x) ∈ Mk−1(E;F ) (assuming its Fréchet
differentiability). It is a bounded linear operator from E toMk−1(E;F ) that
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could be also viewed as a bounded symmetric k-linear form from the space
Mk(E;F ). As always, we call f k-times (Fréchet) continuously differentiable
if its k-th order derivative exists and it is a continuous function on E. Clearly,
polynomials are k times Fréchet differentiable for any k. If P is a polynomial
and deg(P ) = k, then P (k) is a constant (a k-linear symmetric form that
does not depend on x) and P (k+1) = 0.

We will be interested in what follows in classes of smooth functionals
f : E 7→ R with at most polynomial (with respect to ‖x‖) growth of their
derivatives. To this end, we describe below several useful norms.

First, let g : E 7→ F. For γ ≥ 0, let

‖g‖L∞,γ := sup
x∈E

‖g(x)‖
(1 ∨ ‖x‖)γ

and for γ ≥ 0, ρ ∈ (0, 1], let

‖g‖Lipρ,γ := sup
x′ 6=x′′

‖g(x′)− g(x′′)‖
(1 ∨ ‖x′‖ ∨ ‖x′′‖)γ‖x′ − x′′‖ρ

.

Assuming that spaces E,F are equipped with their Borel σ-algebras, we
define L∞,γ(E;F ) as the space of measurable functions g : E 7→ F with
‖g‖L∞,γ <∞. We also define

Lipρ,γ(E;F ) := {g : ‖g‖Lipρ,γ <∞}.

In the case of F = R, we will write simply L∞,γ(E) and Lipρ,γ(E); for γ = 0,
we write L∞,Lipρ instead of L∞,0,Lipρ,0.

For k ≥ 0, we will define the norm

‖g‖Ck,γ := max
0≤j≤k

‖g(j)‖L∞,γ

and the space Ck,γ(E;F ) := {g : ‖g‖Ck,γ < ∞} of k times differentiable
functions (with the growth rate of derivatives characterized by γ). Finally,
for s = k + ρ with k ≥ 0 and ρ ∈ (0, 1), define

‖g‖Cs,γ := max
0≤j≤k

‖g(j)‖L∞,γ ∨ ‖g(k)‖Lipρ,γ

and the space Cs,γ(E;F ) := {g : ‖g‖Cs,γ < ∞}. Note that, in the above
definitions, the derivatives g(j) are viewed as functions E 3 x 7→ g(j)(x) ∈
Mj(E;F ) from the space E into the space Mj(E;F ) of symmetric j-linear
forms equipped with the operator norm. This norm is used in the definitions
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of ‖g(j)‖L∞,γ , ‖g(k)‖Lipρ,γ . As before, we set Cs := Cs,0. It is easy to see that

for any polynomial P such that deg(P ) = k and for all s > 0, P ∈ Cs,k(E).

In what follows, we frequently use bounds on the remainder of the first
order Taylor expansion

Sg(x;h) := g(x+ h)− g(x)− g′(x)(h), x, h ∈ E

of Fréchet differentiable function g : E 7→ R. We will skip the proof of the
following simple lemma.

Lemma 2.1. Assume that g : E 7→ R is Fréchet differentiable in E with
g′ ∈ Lipρ,γ(E;M1(E;F )). Then

|Sg(x;h)| . ‖g′‖Lipρ,γ (1 ∨ ‖x‖ ∨ ‖h‖)γ‖h‖1+ρ, x, h ∈ E

and

|Sg(x;h′)−Sg(x;h)| . ‖g′‖Lipρ,γ (1∨‖x‖∨‖h‖∨‖h′‖)γ(‖h‖∨‖h′‖)ρ‖h′−h‖, x, h, h′ ∈ E.

Remark 2.1. Throughout the paper, the generic notation ‖ · ‖ is used for
the norms of the Banach space E as well as other Banach spaces, such as the
dual space E∗, the space of bounded operators from E∗ to E (such as covari-
ance operators) and the spaces of symmetric multilinear forms Mk(E;F ).
In the last two examples, ‖ · ‖ is the operator norm (by default). We are
not providing these norms with any subscripts (to avoid overcomplicated
notations). In most of the cases, it should be clear to the reader from the
context to which object the norm is applied and which specific norm is used
(in more ambiguous cases, we are providing additional clarifications). The
subscripts will be used only for the norms of function spaces (such as L∞,γ ,
Lipρ,γ , C

s,γ , etc).

2.2. Definition of estimators and risk bounds

The crucial step in construction of estimator Tk is a bias reduction method
developed in detail in Section 3 and briefly outlined here. Consider the fol-
lowing linear operator

(T g)(θ) := Eθg(X) = Eg(θ + ξ), θ ∈ E

that is well defined on the spaces L∞,γ(E) for γ ≥ 0. Given a smooth
functional f : E 7→ R, we would like to find a functional g on E such that the
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bias of estimator g(X) of f(θ) is small enough. In other words, we would like
to find an approximate solution of operator equation (T g)(θ) = f(θ), θ ∈ E.
Under the assumption that the strong variance E‖ξ‖2 of the noise ξ is small,
the operator T is close to the identity operator I. Define B := T −I. Then,
at least formally, the solution of the equation T g = f could be written as a
Neumann series:

g = (I + B)−1f = (I − B + B2 − B3 + . . . )f.

We will define an estimator fk(X) in terms of a partial sum of this series:

fk(x) :=
k∑
j=0

(−1)j(Bjf)(x), x ∈ E.

It will be proved in Section 3, that, for this estimator, the bias Eθfk(X)−f(θ)
is of the order . (E1/2‖ξ‖2)s, provided that f ∈ Cs,γ(E) for s = k + 1 + ρ,
k ≥ 0, ρ ∈ (0, 1] and ‖θ‖ is bounded by a constant.

We will prove in Section 4 the following result.

Theorem 2.1. Suppose that f ∈ Cs,γ(E) for some s > 0 and γ ≥ 0. For
s ∈ (0, 1], set k := 0 and, for s > 1, let s = k + 1 + ρ for some k ≥ 0,
ρ ∈ (0, 1]. Define

Tk(X) :=

{
fk(X) if ‖Σ‖r(Σ) ≤ 1/4

0 otherwise.

Then

Eθ(Tk(X)− f(θ))2 .γ s
γ‖f‖2Cs,γ (1 ∨ ‖θ‖)2γ

((
‖Σ‖ ∨ (E‖ξ‖2)s

)
∧ 1
)
. (2.1)

It follows from bound (2.1) that

sup
‖f‖Cs,γ≤1

sup
‖θ‖≤1

Eθ(Tk(X)− f(θ))2 .s,γ
((
‖Σ‖ ∨ (E‖ξ‖2)s

)
∧ 1
)
. (2.2)

We will show in Section 7 that, in the case of standard finite-dimensional
Gaussian shift model, the above bound is optimal in a minimax sense. More
precisely, in this case, the following result holds.

Theorem 2.2. Let E := Rd (equipped with the standard Euclidean norm)
and let X ∼ N (θ;σ2Id), θ ∈ Rd for some σ2 > 0. Then, for all s > 0,

sup
‖f‖Cs≤1

inf
T

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 &
(
‖Σ‖ ∨

(
E‖ξ‖2

)s)
∧ 1, (2.3)

where the infimum is taken over all possible estimators T (X).
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At this point, we could not extend the lower bound of Theorem 2.2 to
general Gaussian shift models in Banach spaces.

Remark 2.2. In a very recent paper [38], Zhou and Li state a similar result
(Theorem 7.2) with Besov Bs

∞,1-norm instead of the Cs-norm. There is a
mistake in the proof of this result (contrary to the claim of the authors, it
is impossible to choose function ϕ used in the proof so that ‖ϕ̃‖Bs∞,1 ≤ 1

and other required properties hold). However, if the Besov norm is replaced
by the Cs-norms used in our paper, their proof seems to be correct. The
method of the proof of Theorem 7.2 in [38] differs from ours.

2.3. Efficiency

Bound (2.2) implies that, if the smoothness s of functional f is sufficiently
large, namely if

(E‖ξ‖2)s ≤ ‖Σ‖, (2.4)

then

sup
‖f‖Cs,γ≤1

sup
‖θ‖≤1

Eθ(Tk(X)− f(θ))2 .s,γ ‖Σ‖ ∧ 1, (2.5)

which coincides with the largest minimax optimal mean squared error for lin-
ear functionals from the unit ball in E∗. Assuming that ‖Σ‖r(Σ) = E‖ξ‖2 <
1, condition (2.4) can be equivalently written as

s ≥ 1 +
log r(Σ)

log 1
‖Σ‖ − log r(Σ)

. (2.6)

If σ2 := ‖Σ‖ is a small parameter and r(Σ) ≤ σ−2α for some α ∈ (0, 1),
condition (2.6) would follow from the condition s ≥ 1

1−α . On the other hand,
it follows from bound (2.3) that, in the case of standard finite-dimensional
Gaussian shift model, the smoothness threshold 1

1−α is sharp for estimation

with mean squared error rate � σ2. Indeed, in this case, r(Σ) = d and, if
σ is small and d � σ−2α for some α ∈ (0, 1), then, for any s < 1

1−α , there
exists a functional f with ‖f‖Cs,γ ≤ 1 such that

inf
T

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 & σ2s(1−α),

which is significantly larger than σ2 as σ → 0. Moreover, if d � σ−2, then,
for any s > 0, there exists a functional f with ‖f‖Cs,γ ≤ 1 such that

inf
T

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 &s 1,
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essentially implying that even consistent estimators of f(θ) do not exist in
this case.

In the case when r(Σ) . σ−2α for some α ∈ (0, 1) and s > 1
1−α (or, more

generally, when (E‖ξ‖2)s is of a smaller order than ‖Σ‖), it is possible to
prove that fk(X)− f(θ) is close in distribution to normal and establish the
efficiency of estimator fk(X). More precisely, let

σ2
f,ξ(θ) := E(f ′(θ)(ξ))2 = 〈Σf ′(θ), f ′(θ)〉

For s ≥ 1, γ ≥ 0, denote

K(f ; Σ; θ) := Ks,γ(f ; Σ; θ) :=
‖f‖Cs,γ (1 ∨ ‖θ‖)γ‖Σ‖1/2

σf,ξ(θ)
.

It is easy to see that

σf,ξ(θ) ≤ ‖Σ‖1/2‖f ′(θ)‖ ≤ ‖f ′‖L∞,γ (1∨‖θ‖)γ‖Σ‖1/2 ≤ ‖f‖Cs,γ (1∨‖θ‖)γ‖Σ‖1/2,

implying that Ks,γ(f ; Σ; θ) ≥ 1. We also have that

Ks,γ(f ;λΣ; θ) = Ks,γ(f ; Σ; θ), λ > 0,

which means that Ks,γ(f ; Σ; θ) does not depend on the noise level ‖Σ‖1/2. In
what follows, it will be assumed that the functional Ks,γ(f ; Σ; θ) is bounded
from above by a constant, implying that σf,ξ(θ) is within a constant from its
upper bound ‖f‖Cs,γ (1 ∨ ‖θ‖)γ‖Σ‖1/2. This is the case, for instance, when
θ is in a bounded set and σf,ξ(θ) & ‖Σ‖1/2 (in other words, the standard
deviation σf,ξ(θ) is not too small comparing with the noise level ‖Σ‖1/2).
If we write the noise of the model in the form ξ = σξ0, where σ > 0 is
a small scaling parameter characterizing the noise level and ξ0 is a mean
zero Gaussian random vector in E with covariance operator Σ0 such that
‖Σ0‖ = 1, then ‖Σ‖1/2 = σ and

σf,ξ(θ) = σf,ξ0(θ)σ =
〈

Σ0f
′(θ), f ′(θ)

〉1/2
σ.

In this case, the condition σf,ξ(θ) & ‖Σ‖1/2 just means that σf,ξ0(θ) =〈
Σ0f

′(θ), f ′(θ)
〉1/2

is bounded away from 0 (see also Remark 2.4 below).

The following result will be proved in Section 5.
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Theorem 2.3. Suppose f ∈ Cs,γ(E) for some s > 1 and γ ≥ 0. Let s =
k + 1 + ρ for k ≥ 0, ρ ∈ (0, 1]. Suppose also that E1/2‖ξ‖2 ≤ 1/2. Then

sup
y∈R

∣∣∣∣Pθ{fk(X)− f(θ)

σf,ξ(θ)
≤ y
}
− P{Z ≤ y}

∣∣∣∣ .γ sγ/2Ks,γ(f ; Σ; θ)

(
(E1/2‖ξ‖2)ρ

√
log

(
1

‖Σ‖

)∨
‖Σ‖ρ/2 log(1+ρ)/2

(
1

‖Σ‖

)∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
,

(2.7)

where Z is a standard normal r.v. Moreover,∥∥∥∥fk(X)− f(θ)

σf,ξ(θ)
− Z

∥∥∥∥
L2(P)

.γ s
γ/2Ks,γ(f ; Σ; θ)

(
(E1/2‖ξ‖2)ρ

∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
. (2.8)

It follows from bound (2.8) that

E1/2
θ (fk(X)− f(θ))2

σf,ξ(θ)

≤ 1 + cγs
γ/2Ks,γ(f ; Σ; θ)

(
(E1/2‖ξ‖2)ρ

∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
. (2.9)

Assume that θ is in a set Θ ⊂ E of parameters where Ks,γ(f ; Σ; θ) is upper

bounded by a constant. Then,
E1/2
θ (fk(X)−f(θ))2

σf,ξ(θ)
is close to 1 uniformly in Θ

provided that E‖ξ‖2 is small and (E‖ξ‖2)s is much smaller than ‖Σ‖ (say, if
r(Σ) . σ−2α and s > 1

1−α).

Finally, in Section 6, we will prove the following minimax lower bound.

Theorem 2.4. Suppose f ∈ Cs,γ(E) for some s ∈ (1, 2] and γ ≥ 0. Let
θ0 ∈ Im(Σ).1 Then, there exists a constant Dγ > 0 such that for all c > 0
and all covariance operators Σ satisfying the condition c‖Σ‖1/2 ≤ 1, the
following bound holds

inf
T

sup
‖θ−θ0‖≤c‖Σ‖1/2

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ)

≥ 1−DγK
2
s,γ(f ; Σ; θ0)

(
cs−1‖Σ‖(s−1)/2 +

1

c2

)
,

where the infimum is taken over all possible estimators T (X).

1Im(Σ) denotes the closure of the range of operator Σ.
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The bound of Theorem 2.4 shows that, when the noise level ‖Σ‖1/2 is small
and Ks,γ(f ; Σ; θ0) is upper bounded by a constant, the following asymptotic
minimax result (in spirit of Hàjek and Le Cam) holds

lim
c→∞

lim inf
‖Σ‖1/2→0

inf
T

sup
‖θ−θ0‖≤c‖Σ‖1/2

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ)

≥ 1

locally in a neighborhood of parameter θ0 of size commensurate with the
noise level. This shows the optimality of the variance σ2

f,ξ(θ) of normal ap-
proximation and the efficiency of estimator fk(X).

Remark 2.3. In the case of matrix Gaussian shift model of Example 1.2
(that is, when E is the space of symmetric d × d matrices equipped with
operator norm and ξ = σZ, Z being a random matrix from Gaussian or-
thogonal ensemble), the results of the paper could be applied to bilinear
forms of smooth functions of d × d symmetric matrices: f(θ) := 〈h(θ)u, v〉,
where h is a smooth function in real line and u, v ∈ Rd. The value h(θ) of
a function h on a matrix (operator) θ is defined via the standard functional
calculus. It was shown in [20], Corollary 2 (based on the results of [33], [1])
that the Cs-norms of operator functions θ 7→ h(θ) (on the space E of sym-
metric matrices equipped with the operator norm) could be controlled in
terms of Besov Bs

∞,1-norm of the underlying function of real variable h :
‖h‖Cs(E) .s ‖h‖Bs∞,1 , s > 0. This allows one to apply all the results stated

above to the functional f(θ) provided that h is in a proper Besov space.
Note that spectral projections of θ that correspond to subsets of its spec-
trum separated by a positive gap from the rest of the spectrum could be
represented as h(θ) for a sufficiently smooth functions h (namely, a smooth
function h taking value 1 on the subset of interest and value 0 on the rest
of the spectrum). This allows one to apply the results to bilinear forms of
spectral projections (see also [24]). In [20], similar results were obtained for
smooth functionals of covariance operators.

Remark 2.4. Obviously, the results of the paper can be applied to the
model of i.i.d. observations X1, . . . , Xn ∼ N (θ; Σ), θ ∈ E. If X̄ := X1+···+Xn

n ,
then one can define functions fk for the Gaussian shift model X̄ = θ + ξ̄,
where ξ̄ := ξ1+···+ξn

n , ξ1, . . . , ξn i.i.d. N (0; Σ). It follows from Theorem 2.1
that

Eθ(Tk(X̄)− f(θ))2 .γ s
γ‖f‖2Cs,γ (1 ∨ ‖θ‖)2γ

((‖Σ‖
n

∨(‖Σ‖r(Σ)

n

)s∧
1
)
,

(2.10)
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where Tk(X̄) = fk(X̄) if ‖Σ‖r(Σ)
n ≤ 1

4 and Tk(X̄) = 0 otherwise. Uniformly in
the class of covariances with ‖Σ‖ . 1 and r(Σ) . nα for some α ∈ (0, 1), this
yields a bound on the mean squared error of the order O( 1

n) provided that
s ≥ 1

1−α . Moreover, if s > 1
1−α , estimator fk(X̄) is asymptotically normal

and asymptotically efficient with convergence rate
√
n and limit variance

σ2
f,ξ(θ). Asymptotic efficiency holds in bounded subsets of parameters where
Ks,γ(f ; Σ; θ) is uniformly bounded (which essentially means that σf,ξ(θ) is
bounded away from zero).

Remark 2.5. The results of this paper could not be directly applied to
nonparametric model (1.2) studied in [16, 31, 32]. In this model, the signal
θ ∈ L2([0, 1]) is observed in a standard Gaussian white noise, which is not
a random element in the space L2([0, 1]) (in fact, the infinite-dimensional
standard Gaussian white noise could be viewed as a mean zero Gaussian ran-
dom element with identity covariance that belongs to a space of generalized
functions). In some sense, one can view this model as a version of Gaus-
sian shift model with infinite effective rank r(Σ) = +∞ of the covariance
operator Σ = IL2([0,1]). However, the bias reduction method studied in our
paper could be, in principle, used to develop estimators with optimal error
rates for such models as (1.2). For instance, suppose that Θ ⊂ L2([0, 1]) is
the parameter space of the model and f : Θ 7→ R is a smooth functional
to be estimated based on the observation X(n). One can choose a finite di-
mensional subspace L ⊂ L2([0, 1]) that provides a good approximation of
signals θ ∈ Θ (under proper “complexity” assumptions, for instance, on the
rate of decay of Kolmogorov’s diameters of set Θ as in [16, 31, 32]). The
functional f(θ) could be now approximated by f(PLθ), where PL is the or-
thogonal projection onto L. One can then use a projection type estimator θ̂L
of PLθ based on X(n) to develop estimators fk(θ̂L) of f(PLθ) with reduced
bias. The choice of an approximating space L should be based on a trade-off
between the approximation error f(θ) − f(PLθ) and the error of estimator
fk(θ̂L) of f(PLθ). This approach could potentially lead to extensions of the
results of [16, 31, 32] to broader classes of models under various smooth-
ness assumptions on the functional f and complexity assumptions on the
parameter space Θ, but its full development poses further challenges and is
beyond the scope of this paper.

For some special functionals f, there exist explicit analytic expressions
for functions fk.

Example 2.1. For instance, consider the standard finite-dimensional Gaus-
sian shift model of Example 1.1. In this case, E = Rd is equipped with the
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canonical Euclidean norm and Σ = σ2Id for some σ2 > 0. For d = 1 and
σ2 = 1, it is well known that the unique unbiased estimator of θk, k ≥ 0
is Hk(X), Hj , j ≥ 0 being the Hermite polynomials. It easily follows that
for d = 1 and arbitrary σ2 > 0, the unique unbiased estimator of θk is

σkHk

(
X
σ

)
. If now d ≥ 1 and

f(θ) :=
∑

k1,...,kd

ck1,...,kdθ
k1
1 . . . θkdd , θ = (θ1, . . . , θd) ∈ Rd

is a polynomial of degree m+ 1, then the unique unbiased estimator of f(θ)
is g(X), where

g(θ) =
∑

k1,...,kd

ck1,...,kdσ
k1+···+kdHk1

(θ1

σ

)
. . . Hkd

(θd
σ

)
.

It will be shown (see Corollary 3.1) that fk(X) is an unbiased estimator of

f(θ) for all k ≥
[
m+1

2

]
. Due to the uniqueness of unbiased estimator for this

model, fk = g for all k ≥
[
m+1

2

]
.

Example 2.2. Let now E be an arbitrary Banach space and the covariance
Σ of the Gaussian shift model be arbitrary. It is easy to see that

T cos(〈·, u〉) = exp
{
−〈Σu, u〉/2

}
cos(〈·, u〉),

T sin(〈·, u〉) = exp
{
−〈Σu, u〉/2

}
sin(〈·, u〉), u ∈ E∗,

which follows from the fact that the same property holds for complex expo-
nentials exp{i〈·, u〉}, u ∈ E∗. Therefore,

Bj cos(〈·, u〉) =
(

exp
{
−〈Σu, u〉/2

}
− 1
)j

cos(〈·, u〉),

Bj sin(〈·, u〉) =
(

exp
{
−〈Σu, u〉/2

}
− 1
)j

sin(〈·, u〉), u ∈ E∗, j ≥ 0.

It is easy to conclude that if

f(x) =
∑
i

[
ci cos(〈x, ui〉) + di sin(〈x, ui〉)

]
, x ∈ E,

where ui ∈ E∗, ci, di ∈ R and the sum is finite, then

fk(x) =
∑
i

λk(Σ, ui)
[
ci cos(〈x, ui〉) + di sin(〈x, ui〉)

]
, x ∈ E,

where

λk(Σ, u) := exp
{
〈Σu, u〉/2

}[
1−

(
1− exp

{
−〈Σu, u〉/2

})k+1]
, u ∈ E∗.
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3. Bias Reduction

A crucial part of our approach to efficient estimation of smooth functionals of
θ is a new bias reduction method based on iterative application of parametric
bootstrap. Our goal is to construct an estimator of smooth functional f(θ)
of parameter θ ∈ E and, to this end, we construct an estimator of the form
g(X) for some functional g : E 7→ R for which the bias Eθg(X) − f(θ) is
negligible comparing with the noise level ‖Σ‖1/2. Define the following linear
operator:

(T g)(θ) := Eθg(X) = Eg(θ + ξ), θ ∈ E.

Proposition 3.1. For all γ ≥ 0, T is a bounded linear operator from the
space L∞,γ(E) into itself with

‖T ‖L∞,γ(E)7→L∞,γ(E) ≤ 2γ(1 + E‖ξ‖γ). (3.1)

proof. Indeed, by the definition of L∞,γ-norm,

|g(θ + ξ)| ≤ 2γ‖g‖L∞,γ (1 ∨ ‖θ‖ ∨ ‖ξ‖)γ .

Therefore,

|(T g)(θ)| ≤ E|g(θ+ξ)| ≤ 2γ‖g‖L∞,γE(1∨‖θ‖∨‖ξ‖)γ ≤ 2γ [(1∨‖θ‖)γ+E‖ξ‖γ ]‖g‖L∞,γ ,

which easily implies that

‖T g‖L∞,γ ≤ 2γ(1 + E‖ξ‖γ)‖g‖L∞,γ . (3.2)

Therefore T is a bounded operator from L∞,γ(E) into itself and bound (3.1)
holds.

The following proposition could be easily proved by induction.

Proposition 3.2. Let ξ1, ξ2, . . . be i.i.d. copies of ξ and let g ∈ L∞,γ(E)
for some γ > 0. Then, for all k ≥ 1,

(T kg)(θ) = Eg
(
θ +

k∑
j=1

ξj

)
, θ ∈ E.

Note that, by a simple modification of the proof of bound (3.2), we can
derive from Proposition 3.2 that

‖T kg‖L∞,γ ≤ 2γ(1 + kγ/2E‖ξ‖γ)‖g‖L∞,γ . (3.3)
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To find an estimator g(X) of f(θ) with a small bias it suffices to solve
(approximately) the equation (T g)(θ) = f(θ), θ ∈ E. Denote B =: T − I.
For a small level of noise ξ, one can expect operator B to be “small”. The
solution of equation T g = f could be then formally written as a Neumann
series:

g = (I + B)−1f = (I − B + B2 − . . . )f.

We use a partial sum of this series as an approximate solution

fk(x) :=

k∑
j=0

(−1)j(Bjf)(x), x ∈ E

and consider in what follows the estimator fk(X) of f(θ).

Our main goal in this section is to prove the following theorem that pro-
vides an upper bound on the bias of estimator fk(X).

Theorem 3.1. Let s = k+ 1 + ρ for some ρ ∈ (0, 1] and let γ ≥ 0. Suppose
that f ∈ Cs,γ(E). Denote by (Bkf)(θ) := Eθfk(X)− f(θ), θ ∈ E the bias of
estimator fk(X). Then

‖Bkf‖L∞,γ . 2γ‖f (k+1)‖Lipρ,γ (1 + kγ/2E1/2‖ξ‖2γ)(1 + E1/2‖ξ‖2γ)(E1/2‖ξ‖2)s.

By a straightforward simple computation, the bias of estimator fk(X) is
equal to

(Bkf)(θ) = Efk(X)− f(θ) = (−1)k(Bk+1f)(θ). (3.4)

This leaves us with the problem of bounding (Bk+1f)(θ) for a sufficiently
smooth function f. By Newton’s Binomial Formula, for all k ≥ 1,

(Bkf)(θ) =
k∑
j=0

(−1)k−j
(
k

j

)
(T jf)(θ), θ ∈ E. (3.5)

It follows from representation (3.5) and bound (3.3) that

‖Bkg‖L∞,γ ≤ 2γ
k∑
j=0

(
k

j

)
(1+jγ/2E‖ξ‖γ)‖g‖L∞,γ ≤ 2k+γ‖g‖L∞,γ (1+kγ/2E‖ξ‖γ).

(3.6)

Remark 3.1. Define θ̂(k) := θ +
∑k

j=1 ξj , k ≥ 1 and θ̂(0) := θ. Then

θ̂(1) = θ̂ = X is the maximum likelihood estimator of parameter θ, θ̂(2) is
a parametric bootstrap estimator corresponding to θ̂, and θ̂(k), k ≥ 2 could
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be viewed as successive iterations of parametric bootstrap for Gaussian shift
model X ∼ N (θ,Σ), θ ∈ E. Similar sequence of bootstrap estimators (that
form a Markov chain) was studied in [20] in the case of covariance estimation
and it was called a bootstrap chain. It immediately follows from (3.5) and
Proposition 3.2 that

(Bkf)(θ) = Eθ
k∑
j=0

(−1)k−j
(
k

j

)
f(θ̂(j)), θ ∈ E, (3.7)

which means that (Bkf)(θ) is equal to the expectation of the k-th order dif-
ference of sequence f(θ̂j), j ≥ 0. This interpretation of the function (Bkf)(θ)
as an expectation could be used to compute the value of this function for
a given θ via Monte Carlo method (namely, by averaging the k-th order
differences

∑k
j=0(−1)k−j

(
k
j

)
f(θ̂(j)) for a finite number N of i.i.d. copies of

bootstrap chain {θ̂(j), j = 0, . . . , k}). As a consequence, Monte Carlo ap-
proximation could be also used to compute the estimator fk(X). The bias
reduction method studied in this section is a special case of a more gen-
eral bootstrap chain bias reduction developed in the case of estimation of
functionals of covariance in [20]. Operators similar to Bk were used also in
[18] in the problem of bias reduction in estimation of f(θ), where θ is the
parameter of binomial model. In this case, T maps function f to the corre-
sponding Bernstein polynomial and bounds on (Bkf)(θ) could be obtained
using some results in approximation theory.

For sufficiently smooth functions f, we will derive a more convenient in-
tegral representation of functions Bkf that would yield sharper bounds on
their L∞,γ norms.

Theorem 3.2. Suppose f ∈ Ck,γ(E) for some γ ≥ 0. Then

(Bkf)(θ) = Ef (k)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk), θ ∈ E,

where τ1, . . . , τk ∼ U [0, 1] are i.i.d. random variables independent of ξ1, . . . , ξk.

proof. Define

ϕ(t1, . . . , tk) := f

(
θ +

k∑
i=1

tiξi

)
, (t1, . . . , tk) ∈ [0, 1]k.
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It immediately follows from Proposition 3.2 that

(T jf)(θ) = Eϕ(t1, . . . , tk)

for all j ≤ k and for all (t1, . . . , tk) ∈ {0, 1}k with
∑k

i=1 ti = j. This allows
us to rewrite representation (3.5) as follows:

(Bkf)(θ) = E
∑

(t1,...,tk)∈{0,1}k
(−1)k−

∑k
i=1 tiϕ(t1, . . . , tk).

For functions φ : [0, 1]k 7→ R, define the first order difference operators
∆(i), i = 1, . . . , k :

∆(i)φ(t1, . . . , tk) := φ(t1, . . . , tk)
∣∣
ti=1
− φ(t1, . . . , tk)

∣∣
ti=0

.

It is easy to show by induction that

∆(1) . . .∆(k)φ =
∑

(t1,...,tk)∈{0,1}k
(−1)k−

∑k
i=1 tiφ(t1, . . . , tk),

implying that
(Bkf)(θ) = E∆(1) . . .∆(k)ϕ.

For f ∈ Ck,γ(E), the function ϕ is k times continuously differentiable on
[0, 1]k with

∂kϕ(t1, . . . , tk)

∂t1 . . . ∂tk
= f (k)

(
θ +

k∑
j=1

tjξj

)
(ξ1, . . . , ξk).

By generalized Newton-Leibnitz formula,

∆(1) . . .∆(k)ϕ =

∫ 1

0
. . .

∫ 1

0

∂kϕ(t1, . . . , tk)

∂t1 . . . ∂tk
dt1 . . . dtk.

Therefore,

(Bkf)(θ) = E
∫ 1

0
. . .

∫ 1

0
f (k)

(
θ +

k∑
j=1

tjξj

)
(ξ1, . . . , ξk)dt1 . . . dtk,

which implies the result.
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Remark 3.2. The representation formula of Theorem 3.2 for functions
(Bkf)(θ) suggests another approach to approximate computation of the
value of these functions at a given point θ. Namely, one can simulate suffi-
ciently large number N of i.i.d. copies of r.v. {τj , ξj : 1 ≤ j ≤ k} (recall that
the distribution of the noise is known) and then compute the average of r.v.

f (k)

(
θ +

∑k
j=1 τjξj

)
(ξ1, . . . , ξk) for these i.i.d. copies. This approach yields

another Monte Carlo approximation of estimator fk(X).

Corollary 3.1. Let f : E 7→ R be a polynomial of degree m + 1 ≥ 1. Then
Bm+1f = 0 and, as a consequence, fm(X) is an unbiased estimator of f(θ).

Moreover, Bjf = 0 for all j > (m+ 1)/2 implying that, for all k ≥
[
m+1

2

]
,

fk(X) = f[m+1
2

](X) is an unbiased estimator of f(θ).

proof. Note that f ∈ Cs,m+1(E) for all s > 0. Since f (m+1)(θ) = M, θ ∈ E
for some M ∈Mm+1(E;R), we can use independence of ξ1, . . . , ξm+1 to get

(Bm+1f)(θ) = EM(ξ1, . . . , ξm+1) = M(Eξ1, . . . ,Eξm+1) = 0

and
(Bmf)(θ) = (−1)k(Bm+1f)(θ) = 0.

To prove the second claim, note that, for j > (m + 1)/2, f (j) is a poly-
nomial of degree m + 1 − j < j. By the Taylor expansion, for a fixed θ,
x 7→ f (j)(θ + x) is also a polynomial of degree m+ 1− j. Therefore, we can
now represent

f (j)
(
θ +

j∑
i=1

τiξi

)
(ξ1, . . . , ξj)

as a sum of multilinear forms

M(τi1ξi1 , . . . , τilξil)(ξ1, . . . , ξj), l ≤ m+ 1− j < j, 1 ≤ i1, . . . , il ≤ j.

Since {i1, . . . , il} is a proper subset of {1, . . . , j}, we easily get by condition-
ing that

EM(τi1ξi1 , . . . , τilξil)(ξ1, . . . , ξj) = 0,

which implies that

(Bjf)(θ) = Ef (j)
(
θ +

j∑
i=1

τiξi

)
(ξ1, . . . , ξj) = 0, θ ∈ E.
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Remark 3.3. Other representations of unbiased estimators of polynomials
of parameter θ of Gaussian shift model (especially, in the case of standard
model of Example 1.1) could be found in the literature (in particular, see
[16]).

Representation of Theorem 3.2 could be now used to provide an upper
bound on L∞,γ-norm of function Bkf.

Proposition 3.3. For all γ ≥ 0 and all f ∈ Ck,γ(E), the following bound
holds:

‖Bkf‖L∞,γ ≤ 2γ‖f (k)‖L∞,γ
(

1 + kγ/2E1/2‖ξ‖2γ
)

(E1/2‖ξ‖2)k.

proof. Observe that∣∣∣f (k)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk)

∣∣∣ ≤ ‖f (k)‖L∞,γ
(

1 ∨
∥∥∥∥θ +

k∑
j=1

τjξj

∥∥∥∥)γ‖ξ1‖ . . . ‖ξk‖

≤ 2γ‖f (k)‖L∞,γ
(

1 ∨ ‖θ‖ ∨
∥∥∥∥ k∑
j=1

τjξj

∥∥∥∥)γ‖ξ1‖ . . . ‖ξk‖,

implying that

|(Bkf)(θ)| ≤ 2γ‖f (k)‖L∞,γE1/2

(
1 ∨ ‖θ‖ ∨

∥∥∥∥ k∑
j=1

τjξj

∥∥∥∥)2γ

E1/2(‖ξ1‖2 . . . ‖ξk‖2)

≤ 2γ‖f (k)‖L∞,γ
(

(1 ∨ ‖θ‖)2γ + E
∥∥∥∥ k∑
j=1

τjξj

∥∥∥∥2γ)1/2

(E1/2‖ξ‖2)k.

Next note that, conditionally on τ1, . . . , τk, the distribution of
∑k

j=1 τjξj is

the same as the distribution of r.v.
(∑k

j=1 τ
2
j

)1/2
ξ. Therefore,

E
∥∥∥∥ k∑
j=1

τjξj

∥∥∥∥2γ

= E
( k∑
j=1

τ2
j

)γ
E‖ξ‖2γ ≤ kγE‖ξ‖2γ ,

and we get

|(Bkf)(θ)| ≤ 2γ‖f (k)‖L∞,γ
(

(1 ∨ ‖θ‖)γ + kγ/2E1/2‖ξ‖2γ
)

(E1/2‖ξ‖2)k.

This yields the bound of the proposition.
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The next corollary is immediate.

Corollary 3.2. Suppose E1/2‖ξ‖2 ≤ 1/2. For all γ ≥ 0 and all f ∈ Ck,γ(E),
the following bound holds:

‖fk‖L∞,γ ≤ 2γ+1‖f‖Ck,γ
(

1 + kγ/2E1/2‖ξ‖2γ
)
.γ (k + 1)γ/2‖f‖Ck,γ .

Theorem 3.3. Suppose f ∈ Ck+1,γ(E) for some γ ≥ 0. Then θ 7→ (Bkf)(θ)
is Fréchet differentiable with continuous derivative

(Bkf)′(θ)(h) = Ef (k+1)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk, h), θ, h ∈ E, (3.8)

where τ1, . . . , τk are i.i.d. random variables uniformly distributed in [0, 1] and
independent of ξ1, . . . , ξk.

proof. First note that the expression in the right hand side of (3.8) is well
defined. This easily follows from the bound∥∥∥∥f (k+1)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk)

∥∥∥∥
≤ ‖f (k+1)‖L∞,γ

(
1 ∨ ‖θ‖ ∨

∥∥∥∥ k∑
j=1

τjξj

∥∥∥∥)γ‖ξ1‖ . . . ‖ξk‖

whose right hand side has finite expectation. By Lebesgue dominated con-
vergence theorem, this also implies the continuity of the function θ 7→
(Bkf)′(θ)(h) defined by expression (3.8). It remains to show that this ex-
pression indeed provides the derivative of Bkf. To this end, observe that

f (k)

(
θ + h+

k∑
j=1

τjξj

)
(ξ1, . . . , ξk)− f (k)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk)

=

∫ 1

0
f (k+1)

(
θ + th+

k∑
j=1

τjξj

)
(ξ1, . . . , ξk, h)dt,
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which implies

f (k)

(
θ + h+

k∑
j=1

τjξj

)
(ξ1, . . . , ξk)− f (k)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk)

− f (k+1)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk, h)

=

∫ 1

0

[
f (k+1)

(
θ + th+

k∑
j=1

τjξj

)
(ξ1, . . . , ξk, h)− f (k+1)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk, h)

]
dt

and

(Bkf)(θ + h)− (Bkf)(θ)− (Bkf)′(θ)(h)

= E
∫ 1

0

[
f (k+1)

(
θ + th+

k∑
j=1

τjξj

)
(ξ1, . . . , ξk, h)− f (k+1)

(
θ +

k∑
j=1

τjξj

)
(ξ1, . . . , ξk, h)

]
dt.

Therefore,∣∣∣(Bkf)(θ + h)− (Bkf)(θ)− (Bkf)′(θ)(h)
∣∣∣

≤ E
∫ 1

0

∥∥∥∥f (k+1)

(
θ + th+

k∑
j=1

τjξj

)
− f (k+1)

(
θ +

k∑
j=1

τjξj

)∥∥∥∥dt‖ξ1‖ . . . ‖ξk‖‖h‖.

It remains to observe that by continuity of f (k+1)

∥∥∥∥f (k+1)

(
θ+ th+

k∑
j=1

τjξj

)
− f (k+1)

(
θ+

k∑
j=1

τjξj

)∥∥∥∥→ 0 as h→ 0, t ∈ [0, 1],

and to use Lebesgue dominated convergence to conclude that

E
∫ 1

0

∥∥∥∥f (k+1)

(
θ+th+

k∑
j=1

τjξj

)
−f (k+1)

(
θ+

k∑
j=1

τjξj

)∥∥∥∥dt‖ξ1‖ . . . ‖ξk‖ = o(1) as h→ 0.

This proves Fréchet differentiability of the function θ 7→ (Bkf)(θ) along with
formula (3.8) for its derivative.

The following corollary is immediate.
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Corollary 3.3. Suppose f ∈ Ck+1,γ(E) for some γ ≥ 0. Then

SBkf (θ;h) = ESf (k)
(
θ +

k∑
j=1

τjξj ;h

)
(ξ1, . . . , ξk), θ, h ∈ E. (3.9)

Proposition 3.4. Let s = k + 1 + ρ for some ρ ∈ (0, 1] and let γ ≥ 0.
Suppose that f ∈ Cs,γ(E). Then, for all j = 1, . . . , k,

‖(Bjf)′‖L∞,γ ≤ 2γ‖f (j+1)‖L∞,γ (1 + jγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)j . (3.10)

Moreover, for all j = 1, . . . , k − 1

‖(Bjf)′‖Lip1,γ
≤ 2γ‖f (j+1)‖Lip1,γ

(1 + jγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)j (3.11)

and

‖(Bkf)′‖Lipρ,γ ≤ 2γ‖f (k+1)‖Lipρ,γ (1 + kγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)k. (3.12)

proof. We will prove only the last bound of the proposition. The proof of
other bounds is similar. Using representation (3.8), we get

‖(Bkf)′(θ1)− (Bkf)′(θ2)‖

≤ E
∥∥∥∥f (k+1)

(
θ1 +

k∑
j=1

τjξj

)
− f (k+1)

(
θ2 +

k∑
j=1

τjξj

)∥∥∥∥‖ξ1‖ . . . ‖ξk‖

≤ 2γ‖f (k+1)‖Lipρ,γE
(

1 ∨ ‖θ1‖ ∨ ‖θ2‖ ∨
∥∥∥∥ k∑
j=1

τjξj

∥∥∥∥)γ‖ξ1‖ . . . ‖ξk‖‖θ1 − θ2‖ρ

≤ 2γ‖f (k+1)‖Lipρ,γE
1/2

(
1 ∨ ‖θ1‖ ∨ ‖θ2‖ ∨

∥∥∥∥ k∑
j=1

τjξj

∥∥∥∥)2γ

(E1/2‖ξ‖2)k‖θ1 − θ2‖ρ

Next recall that, conditionally on τ1, . . . , τk,
∑k

j=1 τjξj has the same distri-

bution as
(∑k

j=1 τ
2
j

)1/2
ξ. Therefore,

E
(

1 ∨ ‖θ1‖ ∨ ‖θ2‖ ∨
∥∥∥∥ k∑
j=1

τjξj

∥∥∥∥)2γ

= E
(

1 ∨ ‖θ1‖ ∨ ‖θ2‖ ∨
( k∑
j=1

τ2
j

)1/2
‖ξ‖
)2γ

≤ E
(

1 ∨ ‖θ1‖ ∨ ‖θ2‖ ∨ k1/2‖ξ‖
)2γ

≤ (1 ∨ ‖θ1‖ ∨ ‖θ2‖)2γ + kγE‖ξ‖2γ .
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Hence, we easily get

‖(Bkf)′(θ1)− (Bkf)′(θ2)‖

≤ 2γ‖f (k+1)‖Lipρ,γ

[
(1 ∨ ‖θ1‖ ∨ ‖θ2‖)γ + kγ/2E1/2‖ξ‖2γ

]
(E1/2‖ξ‖2)k‖θ1 − θ2‖ρ,

implying the result.

Proposition 3.5. Let s = k + 1 + ρ for some ρ ∈ (0, 1] and let γ ≥ 0.
Suppose that f ∈ Cs,γ(E). Then

‖Bk+1f‖L∞,γ . 2γ‖f (k+1)‖Lipρ,γ (1 + kγ/2E1/2‖ξ‖2γ)(1 + E1/2‖ξ‖2γ)(E1/2‖ξ‖2)s.

proof. Note that

(Bk+1f)(θ) = (BBkf)(θ) = E(Bkf)(θ + ξ)− (Bkf)(θ)

= E(Bkf)′(θ)(ξ) + ESBkf(θ; ξ) = ESBkf(θ; ξ).

Using the first bound of Lemma 2.1 along with bound (3.12), we get

|SBkf (θ; ξ)| <∼ ‖(B
kf)′‖Lipρ,γ (1 ∨ ‖θ‖ ∨ ‖ξ‖)γ‖ξ‖1+ρ

. 2γ‖f (k+1)‖Lipρ,γ (1 + kγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)k(1 ∨ ‖θ‖ ∨ ‖ξ‖)γ‖ξ‖1+ρ.

Therefore,

|(Bk+1f)(θ)| ≤ E|SBkf (θ; ξ)|
<∼ 2γ‖f (k+1)‖Lipρ,γ (1 + kγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)kE(1 ∨ ‖θ‖ ∨ ‖ξ‖)γ‖ξ‖1+ρ

<∼ 2γ‖f (k+1)‖Lipρ,γ (1 + kγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)kE1/2(1 ∨ ‖θ‖ ∨ ‖ξ‖)2γE1/2‖ξ‖2(1+ρ).

Since for a centered Gaussian random variable ξ and for ρ ∈ (0, 1],

E1/2‖ξ‖2(1+ρ) . (E1/2‖ξ‖2)1+ρ,

we get

|(Bk+1f)(θ)|

. 2γ‖f (k+1)‖Lipρ,γ (1 + kγ/2E1/2‖ξ‖2γ)
[
(1 ∨ ‖θ‖)γ + E1/2‖ξ‖2γ

]
(E1/2‖ξ‖2)k+1+ρ,

implying the claim.

Theorem 3.1 immediately follows from the bound of Proposition 3.5 and
formula (3.4).
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4. Concentration

In this section, we prove a concentration inequality for random variable g(ξ),
where ξ is a Gaussian random vector in E with mean zero and covariance
operator Σ and g is a functional on E satisfying the assumption described
below. This inequality will be then used to prove concentration bounds for
estimator fk(X).

Assumption 1. Suppose g : E 7→ R satisfies the following Lipschitz condi-
tion:

|g(x)− g(x′)| ≤ L(‖x‖ ∨ ‖x′‖)‖x− x′‖, x, x′ ∈ E,

where δ ≥ 0 7→ L(δ) ∈ R+ is a non-decreasing continuous function such that

L(aδ) .L L(a)eδ
2/2, δ ≥ 0, a ≥ 0. (4.1)

It is easy to see that assumption (4.1) on function L implies that for any
constant c1 > 0 there exists a constant c2 > 0 (depending only on L) such
that L(c1δ) ≤ c2L(δ), δ ≥ 0. Clearly, (4.1) holds for L(δ) := Cδα, δ ≥ 0
for arbitrary C > 0, α ≥ 0. Also, if functions L1, . . . , Lm satisfy assumption
(4.1), then so do the functions L1 + · · · + Lm, L1 ∨ · · · ∨ Lm. In particular,
this implies that any function of the form

L(δ) := C1δ
α1
∨
· · ·
∨
Cmδ

αm , δ ≥ 0,

where m ≥ 1, C1 > 0, . . . , Cm > 0 and α1 ≥ 0, . . . , αm ≥ 0 are given
constants, satisfy assumption (4.1).

Note that, if g(0) = 0, then Assumption 1 implies that

|g(x)| ≤ L(‖x‖)‖x‖, x ∈ E.

Theorem 4.1. Suppose Assumption 1 holds. For all t ≥ 1 with probability
at least 1− e−t,

|g(ξ)− Eg(ξ)| . L(E‖ξ‖ ∨ ‖Σ‖1/2
√
t)‖Σ‖1/2

√
t. (4.2)

proof. Without loss of generality, assume that g(0) = 0. For δ > 0, define

h(x) := g(x)ϕ

(
‖x‖
δ

)
, x ∈ E,
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where

ϕ(u) =


2− x, u ∈ (1, 2),

1, u ≤ 1,

0, u ≥ 2.

Clearly, ϕ is a Lipschitz function with constant 1. We will now prove a
Lipschitz condition for the function h : E 7→ R.

Lemma 4.1. Under Assumption 1, for all x, x′ ∈ E

|h(x)− h(x′)| ≤ 3L(3δ)‖x− x′‖.

proof. Note that

|h(x)− h(x′)| = |h(x)− h(x′)|I{‖x‖ ≤ 2δ, ‖x′‖ ≤ 2δ} (4.3)

+ |h(x)− h(x′)|I{‖x‖ ≤ 2δ, ‖x′‖ > 2δ}
+ |h(x)− h(x′)|I{‖x′‖ ≤ 2δ, ‖x‖ > 2δ}.

For the first summand in the right hand side of (4.3), we have the following
bound for ‖x‖, ‖x′‖ ≤ 2δ

|h(x)− h(x′)|I{‖x‖, ‖x′‖ ≤ 2δ}

≤ |g(x)− g(x′)|ϕ
(
‖x‖
δ

)
+ |g(x′)|

∣∣∣∣ϕ(‖x‖δ
)
− ϕ

(
‖x′‖
δ

)∣∣∣∣
≤ L(2δ)‖x− x′‖+ L(2δ)‖x′‖‖x− x′‖/δ
≤ 3L(2δ)‖‖x− x′‖. (4.4)

To bound the second summand in (4.3), observe that for ‖x‖ ≤ 2δ, ‖x′‖ > 2δ

|h(x)− h(x′)|I{‖x‖ ≤ 2δ, ‖x′‖ > 2δ}
= |h(x)− h(x′)|I{‖x‖ ≤ 2δ, ‖x′‖ > 2δ, ‖x− x′‖ ≥ δ} (4.5)

+ |h(x)− h(x′)|I{‖x‖ ≤ 2δ, ‖x′‖ > 2δ, ‖x− x′‖ < δ},

and bound the first term in the right hand side of (4.5) as follows:

|h(x)− h(x′)|I{‖x‖ ≤ 2δ, ‖x′‖ > 2δ, ‖x− x′‖ ≥ δ}

= |g(x)|ϕ
(
‖x‖
δ

)
I{‖x‖ ≤ 2δ, ‖x′‖ > 2δ, ‖x− x′‖ ≥ δ}

≤ L(2δ)‖x‖I{‖x‖ ≤ 2δ, ‖x′‖ > 2δ, ‖x− x′‖ ≥ δ}.
≤ 2L(2δ)‖x− x′‖.
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For the second term in (4.5), we have

|h(x)− h(x′)|I{‖x‖ ≤ 2δ, ‖x′‖ > 2δ, ‖x− x′‖ < δ}
= |h(x)− h(x′)|I{‖x‖ ≤ 2δ, 2δ < ‖x′‖ ≤ 3δ, ‖x− x′‖ < δ}
≤ |h(x)− h(x′)|I{‖x‖ ≤ 3δ, ‖x′‖ ≤ 3δ}
≤ 3L(3δ)‖‖x− x′‖,

where the last inequality is proved similarly to bound (4.4) (with an obvious
change of 2δ to 3δ). Substituting the above bounds in (4.3), leads to the
resulting inequality. �

In what follows, we set

δ = δ(t) := E‖ξ‖+ C‖Σ‖1/2
√
t

for t ≥ 1 with a constant C > 0 such that

P{‖ξ‖ ≥ δ(t)} ≤ e−t, t ≥ 1

(which holds by the Gaussian concentration inequality, see, e.g., [27]).

Let M := Med(g(ξ)). Assuming that t ≥ log(4), we get

P{h(ξ) ≥M} ≥ P{h(ξ) ≥M, ‖ξ‖ ≤ δ(t)} ≥ P{g(ξ) ≥M, ‖ξ‖ ≤ δ(t)}

≥ P{g(ξ) ≥M} − P{‖ξ‖ ≥ δ(t)} ≥ 1

2
− e−t ≥ 1

4
,

where we used the fact that, on the event {‖ξ‖ ≤ δ}, h(ξ) = g(ξ). Similarly,
we have P{h(ξ) ≤ M} ≥ 1

4 . We can now use again Gaussian concentration
inequality (in a little bit non-standard fashion, see [22], Section 3 for a similar
argument) to prove that with probability at least 1 − e−t

|h(ξ)−M | . L(3δ(t))‖Σ‖1/2
√
t

and, since h(ξ) and g(ξ) coincide on the event of probability at least 1−e−t,
we also have that

|g(ξ)−M | . L(3δ(t))‖Σ‖1/2
√
t

with probability at least 1 − 2e−t. Moreover, by adjusting the value of the
constant in the above inequality, the probability bound can be written in
its standard form 1 − e−t and the inequality holds for all t ≥ 1. Using the
properties of function L (namely, its monotonicity and condition (4.1)) and
the definition of δ(t), we can also rewrite the above bound as

|g(ξ)−M | ≤ CL(L(E‖ξ‖)‖Σ‖1/2
√
t
∨
L(‖Σ‖1/2

√
t)‖Σ‖1/2

√
t) =: s(t)
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for some constant CL > 0. Note that this bound actually holds for all t ≥ 0
with probability at least 1 − e1−t. Note also that the function t 7→ s(t) is
strictly increasing on [0,+∞) with s(0) = 0 and s(+∞) = +∞. Moreover,
it easily follows from condition (4.1) that s(t) = o(et) as t→∞. It remains
to integrate out the tails of the probability bound:

|Eg(ξ)−M | ≤ E|g(ξ)−M |

=

∫ ∞
0

P{|g(ξ)−M | ≥ s}ds =

∫ ∞
0

P{|g(ξ)−M | ≥ s(t)}ds(t)

≤ e
∫ ∞

0
e−tds(t) = e

∫ ∞
0

s(t)e−tdt.

By condition (4.1),

s(t) ≤ CLL(E‖ξ‖)‖Σ‖1/2
√
t+ C ′LL(‖Σ‖1/2)‖Σ‖1/2

√
tet/2, t ≥ 0.

Therefore,

|Eg(ξ)−M | ≤
∫ ∞

0
s(t)e−tdt

.L L(E‖ξ‖)‖Σ‖1/2
∫ ∞

0

√
te−tdt+ L(‖Σ‖1/2)‖Σ‖1/2

∫ ∞
0

√
te−t/2dt

.L L(E‖ξ‖)‖Σ‖1/2
∨
L(‖Σ‖1/2)‖Σ‖1/2,

which now allows us to replace the median M by the mean Eg(ξ) in the
concentration bound, completing the proof.

The following corollary is immediate (for the proof, check that Assump-
tion 1 holds with L(δ) = C‖g‖Lip1,γ

(1 ∨ ‖θ‖ ∨ δ)γ for some C > 0).

Corollary 4.1. Suppose g ∈ Lip1,γ(E) for some γ ≥ 0. Then, for all θ ∈ E
and for all t ≥ 1 with probability at least 1− e−t

|g(θ + ξ)− Eg(θ + ξ)| . ‖g‖Lip1,γ
(1 ∨ ‖θ‖ ∨ E‖ξ‖ ∨ ‖Σ‖1/2

√
t)γ‖Σ‖1/2

√
t.

Another immediate corollary of this theorem is the following concentra-
tion bound for the remainder Sg(θ; ξ) of the first order Taylor expansion of
g(θ + ξ). For the proof, it is enough to observe that, by Lemma 2.1, the
function x 7→ Sg(θ;x) satisfies Assumption 1 with L(δ) = C‖g′‖Lipρ,γ (1 ∨
‖θ‖ ∨ δ)γδρ for some constant C > 0.

Corollary 4.2. Suppose, for some ρ ∈ (0, 1] and γ ≥ 0, ‖g′‖Lipρ,γ < ∞.
Then, for all θ ∈ E and for all t ≥ 1 with probability at least 1− e−t,

|Sg(θ; ξ)−ESg(θ; ξ)| . ‖g′‖Lipρ,γ (1∨‖θ‖∨E‖ξ‖∨‖Σ‖1/2
√
t)γ(E‖ξ‖∨‖Σ‖1/2

√
t)ρ‖Σ‖1/2

√
t.
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We now apply corollaries 4.1 and 4.2 to obtain concentration bounds for
estimator fk(X) and the remainder of its first order Taylor expansion.

Proposition 4.1. Let γ ≥ 0 and suppose that f ∈ Ck+1,γ(E) and that
E1/2‖ξ‖2 ≤ 1/2. Then, for all t ≥ 1, with probability at least 1− e−t

|fk(θ + ξ)− Efk(θ + ξ)| .γ (k + 1)γ/2‖f‖Ck+1,γ (1 ∨ ‖θ‖ ∨ ‖Σ‖1/2
√
t)γ‖Σ‖1/2

√
t.

(4.6)

proof. Using bound (3.10), we get

‖f ′k‖L∞,γ ≤
k∑
j=0

‖(Bjf)′‖L∞,γ

≤ 2γ
k∑
j=0

‖f (j+1)‖L∞,γ (1 + jγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)j

≤ 2γ‖f‖Ck+1,γ (1 + kγ/2E1/2‖ξ‖2γ)
k∑
j=0

(E1/2‖ξ‖2)j

≤ 2γ+1‖f‖Ck+1,γ (1 + kγ/2E1/2‖ξ‖2γ) .γ (k + 1)γ/2‖f‖Ck+1,γ .

The result now follows from Corollary 4.1.

With a little additional work, we get the following modification of con-
centration bound (4.6).

Corollary 4.3. Let γ ≥ 0 and suppose that f ∈ Ck+1,γ(E) and that
E1/2‖ξ‖2 ≤ 1/2. If γ ≤ 1, then, for all t ≥ 1, with probability at least
1− e−t

|fk(θ + ξ)− Efk(θ + ξ)| .γ (k + 1)γ/2‖f‖Ck+1,γ (1 ∨ ‖θ‖)γ‖Σ‖1/2
√
t. (4.7)

If γ > 1, then, for all t ≥ 1, with the same probability

|fk(θ + ξ)− Efk(θ + ξ)| .γ (k + 1)γ/2‖f‖Ck+1,γ (1 ∨ ‖θ‖)γ
(
‖Σ‖1/2

√
t ∨ (‖Σ‖1/2

√
t)γ
)
.

(4.8)

proof. It follows from Corollary 3.2 that ‖fk‖L∞,γ .γ (k + 1)γ/2‖f‖Ck,γ .
This implies that

|fk(θ + ξ)| .γ (k + 1)γ/2‖f‖Ck,γ (1 ∨ ‖θ‖ ∨ ‖ξ‖)γ ,
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which easily yields the following bounds

|Efk(θ + ξ)| .γ (k + 1)γ/2‖f‖Ck,γ (1 ∨ ‖θ‖)γ

and
|fk(θ + ξ)| .γ (k + 1)γ/2‖f‖Ck,γ (1 ∨ ‖θ‖ ∨ ‖Σ‖1/2

√
t)γ

(the last bound holds for all t ≥ 1 with probability at least 1− e−t). There-
fore, for all t ≥ 1 with probability at least 1 − e−t

|fk(θ + ξ)− Efk(θ + ξ)| .γ (k + 1)γ/2‖f‖Ck,γ (1 ∨ ‖θ‖ ∨ ‖Σ‖1/2
√
t)γ . (4.9)

If ‖Σ‖1/2
√
t ≤ 1, then bound (4.7) follows from bound (4.6) (regardless of

what the value of γ ≥ 0 is). If ‖Σ‖1/2
√
t > 1, we use bound (4.9) to get

|fk(θ + ξ)− Efk(θ + ξ)|

.γ (k + 1)γ/2‖f‖Ck,γ (1 ∨ ‖θ‖)γ
∨

(k + 1)γ/2‖f‖Ck,γ (‖Σ‖1/2
√
t)γ

.γ (k + 1)γ/2‖f‖Ck,γ (1 ∨ ‖θ‖)γ(‖Σ‖1/2
√
t)γ ,

which yields (4.8).

Given an increasing, convex function ψ : R+ 7→ R+ with ψ(0) = 0 and
ψ(t) → +∞ as t → +∞ (in what follows, an Orlicz function), the Orlicz
ψ-norm of a r.v. η is defined as

‖η‖ψ := inf

{
C > 0 : Eψ

(
|η|
C

)
≤ 1

}
.

For p ≥ 1 and ψ(t) := tp, t ≥ 0, this yields the usual Lp-norms. Another
popular choice is ψα(t) := et

α − 1, t ≥ 0 for some α ≥ 1, in particular,
ψ2-norm for subgaussian random variables and ψ1-norm for subexponential
random variables.

We will need the following simple lemma.

Lemma 4.2. Let Y be a non-negative random variable. Suppose, for some
A1 > 0, . . . , Am > 0, β1 > 0, . . . , βm > 0 and for all t ≥ 1,

P{Y ≥ A1t
β1 ∨ · · · ∨ Amtβm} ≤ e−t.

Let β := max1≤j≤m βj . Then, for any Orlicz function ψ satisfying the con-

dition ψ(t) ≤ c1e
c2t1/β , t ≥ 0 for some constants c1, c2 > 0, we have

‖Y ‖ψ .ψ A1 ∨ · · · ∨ Am.
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Proposition 4.2. Let s = k + 1 + ρ for some ρ ∈ (0, 1] and let γ ≥ 0.
Suppose that f ∈ Cs,γ(E) and that E1/2‖ξ‖2 ≤ 1/2. If γ ≤ 1, then, for all
t ≥ 1, with probability at least 1− e−t

|fk(θ + ξ)− f(θ)| .γ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ
(
‖Σ‖1/2

√
t ∨ (E1/2‖ξ‖2)s

)
.

(4.10)

If γ > 1, then, for all t ≥ 1, with the same probability

|fk(θ + ξ)− f(θ)| .γ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ
(
‖Σ‖1/2

√
t ∨ (‖Σ‖1/2

√
t)γ ∨ (E1/2‖ξ‖2)s

)
.

(4.11)

Moreover, for all Orlicz functions ψ satisfying the condition ψ(t) ≤ c1e
c2t2/(γ∨1)

for all t ≥ 0 and for some constants c1, c2 > 0, the following bound holds:

‖fk(θ + ξ)− f(θ)‖ψ .γ,ψ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ
(
‖Σ‖1/2 ∨ (E1/2‖ξ‖2)s

)
.

(4.12)

proof. The proof immediately follows from bounds (4.7), (4.8), Lemma
4.2 and bound on the bias of Theorem 3.1.

Now it is easy to prove Theorem 2.1 stated in Section 2.

proof. If ‖Σ‖1/2r1/2(Σ) = E1/2‖ξ‖2 > 1/2, then Tk(X) = 0 and the claim
of the theorem immediately follows from the bound

|f(θ)| ≤ ‖f‖Cs,γ (1 ∨ ‖θ‖)γ .

Assume now that E1/2‖ξ‖2 ≤ 1/2. If s > 1, the result follows from bound
(4.12) (with ψ(t) = t2). If s ∈ (0, 1], then fk(X) = f(X) and

|f(X)− f(θ)| .s ‖f‖Cs,γ (1 ∨ ‖θ‖γ ∨ ‖ξ‖γ)‖ξ‖s,

which easily implies

Eθ(fk(X)− f(θ))2 .s ‖f‖2Cs,γ (1 ∨ ‖θ‖2γ ∨ E1/2‖ξ‖4γ)E1/2‖ξ‖4s

.s,γ (1 ∨ ‖θ‖)2γ(E‖ξ‖2)s,

and the claim follows again.
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Remark 4.1. In the case when the functional f : E 7→ R is a bounded
polynomial of degree k + 1, estimator f[ k+1

2
](X) is unbiased (see Corollary

3.1) and the following version of bound (4.12) for ψ(t) = t2 holds (the proof
follows the same lines as the proof of (4.12) with minor modifications):

Eθ
(
f[ k+1

2
](X)− f(θ)

)2
.k ‖f‖2op(1 ∨ ‖θ‖)2k‖Σ‖

(
1 ∨ (E‖ξ‖2)k

)
. (4.13)

In the case of standard finite-dimensional Gaussian shift model (see Example
1.1 in Section 1) and f(θ) = ‖θ‖2 (a polynomial of degree 2), it is easy to
check that f1(X) = ‖X‖2 − σ2d. Then, bound (4.13) yields that

sup
‖θ‖≤1

Eθ(f1(X)− f(θ))2 . σ2
(

1 ∨ σ2d
)
,

which could be also proved by an elementary analysis. The last fact is well
known and it is crucial in understanding of so called “elbow effect” in es-
timation of the quadratic functional f(θ) = ‖θ‖2 in infinite-dimensional
(nonparametric) models (the phase transition in the convergence rate at the
smoothness degree 1/4).

The following proposition provides a concentration bound on the remain-
der Sfk(θ; ξ) of Taylor expansion of function fk(θ + ξ) (at point θ). It will
be used in the proof of the efficiency of estimators fk(X).

Proposition 4.3. Let s = k + 1 + ρ for some ρ ∈ (0, 1] and let γ ≥ 0.
Suppose that f ∈ Cs,γ(E) and that E1/2‖ξ‖2 ≤ 1/2. Then, for all t ≥ 1, with
probability at least 1− e−t

|Sfk(θ; ξ)− ESfk(θ; ξ)|
.γ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖ ∨ ‖Σ‖1/2

√
t)γ((E‖ξ‖)ρ ∨ (‖Σ‖1/2

√
t)ρ ∨ ‖Σ‖1/2

√
t)‖Σ‖1/2

√
t.

(4.14)
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proof. It follows from bounds (3.11) of Proposition 3.4 that

‖f ′k−1‖Lip1,γ
≤ ‖f ′‖Lip1,γ

+
k−1∑
j=1

‖(Bjf)′‖Lip1,γ

≤ ‖f ′‖Lip1,γ
+ 2γ

k−1∑
j=1

‖f (j+1)‖Lip1,γ
(1 + jγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)j

≤ ‖f ′′‖L∞,γ + 2γ
k−1∑
j=1

‖f (j+2)‖L∞,γ (1 + jγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)j

≤ ‖f‖Ck+1,γ

(
1 + 2γ(1 + kγ/2E1/2‖ξ‖2γ)

k−1∑
j=1

(E1/2‖ξ‖2)j
)

≤ 2γ+2(1 + kγ/2E1/2‖ξ‖2γ)‖f‖Ck+1,γ .

Using the bound of Corollary 4.2, we get that for all t ≥ 1 with probability
at least 1− e−t,

|Sfk−1
(θ; ξ)− ESfk−1

(θ; ξ)|
. 2γ+2‖f‖Ck+1,γ (1 + kγ/2E1/2‖ξ‖2γ)(1 ∨ ‖θ‖ ∨ E‖ξ‖ ∨ ‖Σ‖1/2

√
t)γ(E‖ξ‖ ∨ ‖Σ‖1/2

√
t)‖Σ‖1/2

√
t

.γ (k + 1)γ/2‖f‖Ck+1,γ (1 ∨ ‖θ‖ ∨ ‖Σ‖1/2
√
t)γ(E‖ξ‖ ∨ ‖Σ‖1/2

√
t)‖Σ‖1/2

√
t.

Similarly, using the bound of Corollary 4.2 along with bound (3.12) of Propo-
sition 3.4, we get that with probability at least 1 − e−t

|SBkf (θ; ξ)− ESBkf (θ; ξ)|

.γ (k + 1)γ/2‖f (k+1)‖Lipρ,γ (E1/2‖ξ‖2)k(1 ∨ ‖θ‖ ∨ ‖Σ‖1/2
√
t)γ(E‖ξ‖ ∨ ‖Σ‖1/2

√
t)ρ‖Σ‖1/2

√
t.

Combining these bounds and adjusting the constants yield bound (4.14).

5. Normal Approximation Bounds

In this section, we develop normal approximation bounds for fk(X) − f(θ)
needed to complete the proof of Theorem 2.3. More precisely, it will be shown
that fk(X) − f(θ) could be approximated by a mean zero normal random
variable with variance σ2

f,ξ(θ) := E(f ′(θ)(ξ))2 = 〈Σf ′(θ), f ′(θ)〉. Recall that

K(f ; Σ; θ) := Ks,γ(f ; Σ; θ) :=
‖f‖Cs,γ (1 ∨ ‖θ‖)γ‖Σ‖1/2

σf,ξ(θ)
.
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Theorem 5.1. Suppose, for some s = k + 1 + ρ, ρ ∈ (0, 1] and some
γ ≥ 0, f ∈ Cs,γ(E). Suppose also that E1/2‖ξ‖2 ≤ 1/2. Then, the following
representation holds

fk(X)− f(θ) = σf,ξ(θ)Z +R, (5.1)

where Z is a standard normal random variable and R is the remainder sat-
isfying, for all t ≥ 1 with probability at least 1− e−t, the bound

|R| .γ sγ/2‖f‖Cs,γ (1 ∨ ‖θ‖ ∨ ‖Σ‖1/2
√
t)γ(

(E1/2‖ξ‖2)ρ‖Σ‖1/2
√
t ∨ (‖Σ‖1/2

√
t)1+ρ ∨ ‖Σ‖t ∨ (E1/2‖ξ‖2)s

)
. (5.2)

Moreover, for any Orlicz function ψ such that ψ(t) . c1e
c2t2/(2+γ) , t ≥ 0 for

some constants c1, c2 > 0,∥∥∥∥fk(X)− f(θ)

σf,ξ(θ)
− Z

∥∥∥∥
ψ

.γ,ψ s
γ/2Ks,γ(f ; Σ; θ)

(
(E1/2‖ξ‖2)ρ

∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
. (5.3)

Remark 5.1. Note that E‖ξ‖2 = ‖Σ‖r(Σ), where r(Σ) is the effective rank
of Σ. Assume that ‖Σ‖ is “small” (that is, the noise level is small) and, for
some α ∈ (0, 1), r(Σ) . ‖Σ‖−α. Then E‖ξ‖2 . ‖Σ‖1−α, which is “small”,
too. Moreover, under the assumption that s > 1

1−α ,

(E1/2‖ξ‖2)s

‖Σ‖1/2
.

√
‖Σ‖s(1−α)

‖Σ‖
=
√
‖Σ‖s(1−α)−1

is also “small”, implying that the right hand side of bound (5.3) is “small”.
The same conclusion holds for the right hand side of bound (2.7) provided
that Ks,γ(f ; Σ; θ) . 1.

Remark 5.2. We will also state (without providing a proof) the following
bound on the risk of estimator fk(X) with respect to convex loss functions
(under some constraints on their growth rate). Let ` : R 7→ R+ be a loss
function such that `(−t) = `(t), t ∈ R, ` is an Orlicz function on R+ and,
for some δ ∈ (0, 1), ν < 2

γ∨1

`(t) . e(1−δ)tν , t ≥ 0. (5.4)
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Suppose also that (
E1/2‖ξ‖2

)s
≤ ‖Σ‖1/2. (5.5)

Then ∣∣∣∣E`(fk(X)− f(θ)

σf,ξ(θ)

)
− E`(Z)

∣∣∣∣
.γ,`,δ s

γ/2Ks,γ,`,k(f ; Σ; θ)

(
(E1/2‖ξ‖2)ρ

∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
, (5.6)

where

Ks,γ,`,k(f ; Σ; θ) := (k+1)γ/2Ks,γ(f ; Σ; θ)

(
`

(
cγ,ν(k+1)

γ
2−(γ∨1)νK

1
1−(γ∨1)ν/2
s,γ (f ; Σ; θ)

)
+1

)
.

Bound (2.8) of Theorem 2.3 follows from bound (5.3) of Theorem 5.1 (for
ψ(t) = t2). We now turn to the proof of Theorem 5.1 and bound (2.7) of
Theorem 2.3.

proof. Clearly,

fk(X)− f(θ)

= fk(X)− Eθfk(X) + Eθfk(X)− f(θ)

= f ′k(θ)(ξ) + Sfk(θ; ξ)− ESfk(θ; ξ) + Eθfk(X)− f(θ)

= σfk,ξ(θ)Z + Sfk(θ; ξ)− ESfk(θ; ξ) + Eθfk(X)− f(θ)

= σf,ξ(θ)Z +R,

where Z is a standard normal random variable and

R := (σfk,ξ(θ)− σf,ξ(θ))Z + Sfk(θ; ξ)− ESfk(θ; ξ) + Eθfk(X)− f(θ) (5.7)

is the remainder.

The following lemma will be used to control σfk,ξ(θ)− σf,ξ(θ).

Lemma 5.1. Suppose that, for some γ ≥ 0, f ∈ Ck+1,γ(E) and E1/2‖ξ‖2 ≤
1/2. Then

|σfk,ξ(θ)− σf,ξ(θ)| .γ (k + 1)γ/2‖f‖Ck+1,γ (1 ∨ ‖θ‖)γ‖Σ‖1/2E1/2‖ξ‖2. (5.8)
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proof. Note that

|σfk,ξ(θ)− σf,ξ(θ)| ≤ |σfk−f,ξ(θ)| ≤
k∑
j=1

E1/2
∣∣∣(Bjf)′(θ)(ξ)

∣∣∣2
=

k∑
j=1

〈
Σ(Bjf)′(θ), (Bjf)′(θ)

〉1/2
≤ ‖Σ‖1/2

k∑
j=1

‖(Bjf)′(θ)‖.

Using bound (3.10), we get

|σfk,ξ(θ)− σf,ξ(θ)|

≤ 2γ‖Σ‖1/2(1 ∨ ‖θ‖)γ
k∑
j=1

‖f (j+1)‖L∞,γ (1 + jγ/2E1/2‖ξ‖2γ)(E1/2‖ξ‖2)j

≤ 2γ‖f‖Ck+1,γ‖Σ‖1/2(1 ∨ ‖θ‖)γ(1 + kγ/2E1/2‖ξ‖2γ)
k∑
j=1

(E1/2‖ξ‖2)j

≤ 2γ+1‖f‖Ck+1,γ‖Σ‖1/2(1 ∨ ‖θ‖)γ(1 + kγ/2E1/2‖ξ‖2γ)E1/2‖ξ‖2

.γ (k + 1)γ/2‖f‖Ck+1,γ (1 ∨ ‖θ‖)γ‖Σ‖1/2E1/2‖ξ‖2.

Bound (5.2) follows from representation (5.7), Theorem 3.1, bound (4.14)
and bound (5.8).

We now prove bound (5.3). We can easily deduce from (4.14) that:

|Sfk(θ; ξ)− ESfk(θ; ξ)| .γ A1t
1/2 ∨A2t

(1+γ)/2 ∨A3t
(1+ρ)/2 ∨A4t

(1+ρ+γ)/2 ∨A5t ∨A6t
(2+γ)/2,

where

A1 �γ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ(E‖ξ‖)ρ‖Σ‖1/2,
A2 �γ (k + 1)γ/2‖f‖Cs,γ (E‖ξ‖)ρ‖Σ‖(1+γ)/2,

A3 �γ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ‖Σ‖(1+ρ)/2,

A4 �γ (k + 1)γ/2‖f‖Cs,γ‖Σ‖(1+ρ+γ)/2,

A5 �γ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ‖Σ‖,
A6 �γ (k + 1)γ/2‖f‖Cs,γ‖Σ‖(2+γ)/2.

Using Lemma 4.2, we conclude that, for any ψ satisfying the condition ψ(t) ≤
c1e

c2t2/(2+γ) , t ≥ 0, we have∥∥∥Sfk(θ; ξ)− ESfk(θ; ξ)
∥∥∥
ψ
.γ,ψ A1 ∨ · · · ∨ Am.
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Using the fact that ‖Σ‖ ≤ E‖ξ‖2 ≤ 1, it is easy to check that

A1 ∨ · · · ∨ Am .γ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ(E1/2‖ξ‖2)ρ‖Σ‖1/2.

Thus,∥∥∥Sfk(θ; ξ)− ESfk(θ; ξ)
∥∥∥
ψ
.γ,ψ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ(E1/2‖ξ‖2)ρ‖Σ‖1/2.

(5.9)

Using bound (5.8), we get∥∥∥(σfk,ξ(θ)− σf,ξ(θ))Z
∥∥∥
ψ
.γ (k + 1)γ/2‖f‖Ck+1,γ (1 ∨ ‖θ‖)γE1/2‖ξ‖2‖Σ‖1/2‖Z‖ψ,

which is dominated by the right hand side of (5.9). Thus, we can conclude
that

‖R‖ψ .γ,ψ (k + 1)γ/2‖f‖Cs,γ (1 ∨ ‖θ‖)γ
(

(E1/2‖ξ‖2)ρ‖Σ‖1/2
∨

(E‖ξ‖)s
)
,

implying bound (5.3).

To prove normal approximation bound (2.7), we need the following ele-
mentary lemma.

Lemma 5.2. For random variables η1, η2, denote

∆(η1, η2) := sup
x∈R
|P{η1 ≤ x} − P{η2 ≤ x}|

and
δ(η1, η2) := inf

δ>0

[
P{|η1 − η2| ≥ δ}+ δ

]
.

Then, for an arbitrary random variable η and a standard normal random
variable Z,

∆(η, Z) ≤ δ(η;Z).

We apply this lemma to random variable η := fk(X)−f(θ)
σf,ξ(θ)

. Using represen-

tation (5.1) and bound (5.2), we get that, for all t ≥ 1 with probability at
least 1− e−t∣∣∣∣fk(X)− f(θ)

σf,ξ(θ)
− Z

∣∣∣∣ .γ (k + 1)γ/2Ks,γ(f ; Σ; θ)(1 ∨ ‖Σ‖1/2
√
t)γ(

(E1/2‖ξ‖2)ρ
√
t
∨
‖Σ‖ρ/2t(1+ρ)/2

∨
‖Σ‖1/2t

∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
.
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Let t := log

(
1
‖Σ‖

)
. With this choice of t, it is easy to see that

‖Σ‖1/2
√
t . 1 and ‖Σ‖1/2t . ‖Σ‖ρ/2t(1+ρ)/2.

Thus, with probability at least 1 − ‖Σ‖,∣∣∣∣fk(X)− f(θ)

σf,ξ(θ)
− Z

∣∣∣∣ .γ (k + 1)γ/2Ks,γ(f ; Σ; θ)(
(E1/2‖ξ‖2)ρ

√
log

(
1

‖Σ‖

)∨
‖Σ‖ρ/2 log(1+ρ)/2

(
1

‖Σ‖

)∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
.

It follows from Lemma 5.2 that

∆(η;Z) ≤ δ(η;Z) .γ (k + 1)γ/2Ks,γ(f ; Σ; θ)(
(E1/2‖ξ‖2)ρ

√
log

(
1

‖Σ‖

)∨
‖Σ‖ρ/2 log(1+ρ)/2

(
1

‖Σ‖

)∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
+ ‖Σ‖.

Since also

‖Σ‖ ≤ ‖Σ‖ρ/2 log(1+ρ)/2

(
1

‖Σ‖

)
,

we can conclude that

∆(η;Z) .γ (k + 1)γ/2Ks,γ(f ; Σ; θ)(
(E1/2‖ξ‖2)ρ

√
log

(
1

‖Σ‖

)∨
‖Σ‖ρ/2 log(1+ρ)/2

(
1

‖Σ‖

)∨ (E1/2‖ξ‖2)s

‖Σ‖1/2

)
.

6. The proof of efficiency: a lower bound

Our goal in this section is to prove Theorem 2.4. It will be convenient for
our purposes to represent the noise as a sum of a series with i.i.d. standard
normal coefficients. To this end, we use the following well known result.

Theorem 6.1 ([25]). Let ξ ∈ E, ξ ∼ N (0; Σ). There exists a sequence
{gk}k∈N of i.i.d. standard normal random variables and a sequence {xk}k∈N
in E such that, for all k ∈ N, xk 6∈ span{xj : j 6= k}, ξ =

∑∞
k=1 xkgk with

the series in the right hand side converging in E a.s., and
∑∞

k=1 ‖xk‖2 <∞.
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Clearly, Im(Σ) = span{xj : j ∈ N}. In the rest of this section, we provide
the proof of Theorem 2.4.

proof. First, we will replace σ2
f,ξ(θ) in the lower bound with σ2

f,ξ(θ0). To
this end, we use the following simple lemma.

Lemma 6.1. For all θ ∈ E such that

‖θ − θ0‖ ≤ c‖Σ‖1/2 < 1,

the following bound holds:∣∣∣∣ σ2
f,ξ(θ)

σ2
f,ξ(θ0)

− 1

∣∣∣∣ ≤ 2s+2γK2
s,γ(f ; Σ; θ0)cs−1‖Σ‖(s−1)/2.

proof. Here and in what follows, denote ρ := s− 1. We have

∣∣∣∣ σ2
f,ξ(θ)

σ2
f,ξ(θ0)

− 1

∣∣∣∣ =

∣∣∣〈Σf ′(θ), f ′(θ)〉 − 〈Σf ′(θ0), f ′(θ0)〉
∣∣∣

σ2
f,ξ(θ0)

≤ ‖Σ‖‖f
′(θ)− f ′(θ0)‖(‖f ′(θ)‖+ ‖f ′(θ0)‖)

σ2
f,ξ(θ0)

≤
‖Σ‖‖f ′‖Lipρ,γ (1 ∨ ‖θ‖ ∨ ‖θ0‖)γ‖θ − θ0‖ρ‖f ′‖L∞,γ

(
(1 ∨ ‖θ‖)γ + (1 ∨ ‖θ0‖)γ

)
σ2
f,ξ(θ0)

We then use the condition ‖θ − θ0‖ ≤ 1 to get

‖θ‖ ≤ ‖θ0‖+ ‖θ − θ0‖ ≤ 2(1 ∨ ‖θ0‖).

Therefore,∣∣∣∣ σ2
f,ξ(θ)

σ2
f,ξ(θ0)

− 1

∣∣∣∣ ≤ 22γ+1‖Σ‖‖f‖2Cs,γ (1 ∨ ‖θ0‖)2γ‖θ − θ0‖ρ

σ2
f,ξ(θ0)

≤ 22γ+1K2(f ; Σ; θ0)‖θ − θ0‖ρ ≤ 22γ+1+ρK2(f ; Σ; θ0)cρ‖Σ‖ρ/2,

concluding the proof. �
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The bound of Lemma 6.1 implies that

sup
‖θ−θ0‖≤c‖Σ‖1/2

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ)

= sup
‖θ−θ0‖≤c‖Σ‖1/2

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ0)

σ2
f,ξ(θ0)

σ2
f,ξ(θ)

≥ sup
‖θ−θ0‖≤c‖Σ‖1/2

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ0)

1

1 + sup‖θ−θ0‖≤c‖Σ‖1/2

∣∣∣∣ σ2
f,ξ(θ)

σ2
f,ξ(θ0)

− 1

∣∣∣∣
≥ sup
‖θ−θ0‖≤c‖Σ‖1/2

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ0)

1

1 + 2s+2γK2
s,γ(f ; Σ; θ0)cs−1‖Σ‖(s−1)/2

.

(6.1)

The rest of the proof is based on a finite-dimensional approximation and
an application of van Trees inequality. For a fixed N ∈ N, let

LN := span{x1, . . . , xN} ⊂ E,

and

ξN :=

N∑
k=1

xkgk ∈ LN , ξ⊥N := ξ − ξN =
∑
k>N

xkgk. (6.2)

Clearly, random variables ξN and ξ⊥N are independent.

We define a linear mapping AN : RN 7→ LN such that, for all (α1, . . . , αN ) ∈
RN , AN (α1, . . . , αN ) :=

∑N
k=1 αkxk. Since x1, . . . , xN are linearly indepen-

dent vectors and LN is an N -dimensional subspace of E, AN is a bijection
between the spaces RN and LN with inverse A−1

N : LN 7→ RN . In what
follows, RN is viewed as a Euclidean space with canonical inner product.
Denote by L∗N ⊃ E∗ the dual space of LN and let A∗N : L∗N 7→ RN be the
adjoint operator of AN . For α = (α1, . . . , αN ) ∈ RN and u ∈ L∗N , we have

〈α,A∗Nu〉 = 〈ANα, u〉 =
N∑
j=1

αj〈xj , u〉,

implying that A∗Nu =
(
〈xj , u〉 : j = 1, . . . , N

)
. With some abuse of notation,

we denote by 〈·, ·〉 both the inner product of RN (and other inner product
spaces) and the action of a linear functional on a vector in a Banach space.

Let ZN := (g1, . . . , gN ) ∼ N (0, IN ). Then ξN = ANZN . Denote by ΣN

the covariance operator of ξN : ΣNu := E〈ξN , u〉ξN , u ∈ L∗N . Then

ΣNu =

N∑
j=1

〈xj , u〉xj = ANA
∗
Nu, u ∈ L∗N ,
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implying that
ΣN = ANA

∗
N . (6.3)

It is easy to check that ‖ΣN − Σ‖ → 0 as N → ∞, which follows from the
bound

‖(Σ− ΣN )u‖ =

∥∥∥∥ ∑
j>N+1

〈xj , u〉xj
∥∥∥∥ ≤ ∑

j>N+1

‖xj‖2‖u‖, u ∈ E∗

and the condition
∑

j∈N ‖xj‖2 <∞. It is also easy to see that, for all u ∈ E∗,
〈ΣNu, u〉 monotonically converges to 〈Σu, u〉 and that ‖ΣN‖ ≤ ‖Σ‖, N ≥ 1.

Since θ0 ∈ span{xj : j ∈ N}, there exists a sequence θ0,N ∈ LN such that
θ0,N → θ0 as N →∞. Therefore,

σ2
f,ξN

(θ0,N ) = 〈ΣNf
′(θ0,N ), f ′(θ0,N )〉 → 〈Σf ′(θ0), f ′(θ0)〉 = σ2

f,ξ(θ0) asN →∞.

By a simple continuity argument, it also follows that

K(f ; ΣN ; θ0,N )→ K(f ; Σ; θ0) as N →∞.

Thus, for all large enough N,

U(θ0; c; Σ) :=
{
θ ∈ E : ‖θ − θ0‖ ≤ c‖Σ‖1/2

}
⊃
{
θ ∈ LN : ‖θ − θ0,N‖ ≤

c

2
‖ΣN‖1/2

}
=: UN (θ0,N ; c/2; ΣN ).

Using a simple conditioning argument and Jensen’s inequality, this implies

sup
θ∈U(θ0;c;Σ)

Eθ(T (X)− f(θ))2 ≥ sup
θ∈UN (θ0,N ;c/2;ΣN )

Eθ(T (X)− f(θ))2

≥ sup
θ∈UN (θ0,N ;c/2;ΣN )

EE{(T (θ + ξN + ξ⊥N )− f(θ))2|ξN}

≥ sup
θ∈UN (θ0,N ;c/2;ΣN )

E(E{T (θ + ξN + ξ⊥N )|ξN} − f(θ))2

= sup
θ∈UN (θ0,N ;c/2;ΣN )

Eθ(T̃ (XN )− f(θ))2,

where

XN := θ + ξN ∈ LN and T̃ (x) := ET (x+ ξ⊥N ), x ∈ E.
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Next, we get

sup
θ∈U(θ0;c;Σ)

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ0)

≥ sup
θ∈UN (θ0,N ;c/2;ΣN )

Eθ(T̃ (XN )− f(θ))2

σ2
f,ξN

(θ0,N )

σ2
f,ξN

(θ0,N )

σ2
f,ξ(θ0)

. (6.4)

To bound

sup
θ∈UN (θ0,N ;c/2;ΣN )

Eθ(T̃ (XN )− f(θ))2

σ2
f,ξN

(θ0,N )

from below, we will use the following lemma whose proof is based on an
application of van Trees inequality (see [12]).

Lemma 6.2. Under the assumptions of Theorem 2.4, for some constant
D′γ > 0 and for all large enough N, the following bound holds for an arbitrary
estimator T (XN ) :

sup
θ∈UN (θ0,N ;c/2;ΣN )

Eθ(T (XN )− f(θ))2

σ2
f,ξN

(θ0,N )

≥ 1−D′γK2
s,γ(f ; ΣN ; θ0,N )

(
cs−1‖ΣN‖(s−1)/2 +

1

c2

)
.

To complete the proof of Theorem 2.4, use bounds (6.1), (6.4) and the
bound of Lemma 6.2 to get

sup
‖θ−θ0‖≤c‖Σ‖1/2

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ)

≥
1−D′γK2

s,γ(f ; ΣN ; θ0,N )
(
cs−1‖ΣN‖(s−1)/2 + 1

c2

)
1 + 2s+2γK2

s,γ(f ; Σ; θ0)cs−1‖Σ‖(s−1)/2

σ2
f,ξN

(θ0,N )

σ2
f,ξ(θ0)

.

Passing to the limit as N →∞, we get

sup
‖θ−θ0‖≤c‖Σ‖1/2

Eθ(T (X)− f(θ))2

σ2
f,ξ(θ)

≥
1−D′γK2

s,γ(f ; Σ; θ0)
(
cs−1‖Σ‖(s−1)/2 + 1

c2

)
1 + 2s+2γK2

s,γ(f ; Σ; θ0)cs−1‖Σ‖(s−1)/2

≥ 1− (D′γ + 2s+2γ)K2
s,γ(f ; Σ; θ0)

(
cs−1‖Σ‖(s−1)/2 +

1

c2

)
,

implying the bound of Theorem 2.4.

�
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Finally, we prove Lemma 6.2.

proof. Let c′ := c
Ks,γ(f ;ΣN ;θ0,N ) . For t ∈ [−c′/2, c′/2], θ0,N ∈ LN and

h ∈ LN , define
θt := θ0,N + th, XN := θt + ξN .

Consider a problem of estimation of a function

ϕ(t) := f(θt), t ∈ [−c′/2, c′/2]

based on an observation XN ∼ N (θt,ΣN ), t ∈ [−c′/2, c′/2]. Since AN :
RN 7→ LN is a bijection, an equivalent problem is to estimate ϕ(t) based on
an observation

A−1
N X := A−1

N θt + ZN ∼ N (A−1
N θt; IN ).

The Fisher information for the model A−1
N X ∼ N (A−1

N θt; IN ) with t ∈
[−c′/2, c′/2] is equal to

I(t) = I = 〈A−1
N h,A−1

N h〉.

We will choose h :=
ΣNf

′(θ0,N )
σf,ξN (θ0,N ) . For this choice of h,

c′

2
‖h‖ ≤

(c′/2)‖ΣN‖‖f ′(θ0,N )‖
σf,ξN (θ0,N )

≤ c′

2

‖f‖Cs,γ (1 ∨ ‖θ0,N‖)γ‖ΣN‖1/2

σf,ξN (θ0,N )
‖ΣN‖1/2

=
c′

2
Ks,γ(f ; ΣN ; θ0,N )‖ΣN‖1/2 =

c

2
‖ΣN‖1/2 < 1,

implying that, for all large enough N, θt ∈ UN (θ0,N ; c/2; ΣN ), |t| ≤ c′/2 and,
as a consequence,

sup
θ∈UN (θ0,N ;c/2;ΣN )

Eθ(T (XN )− f(θ))2

σ2
f,ξN

(θ0,N )
≥ sup

t∈[−c′/2,c′/2]

Et(T (XN )− ϕ(t))2

σ2
f,ξN

(θ0,N )

= sup
t∈[−c′/2,c′/2]

Et(T̂ (A−1
N XN )− ϕ(t))2

σ2
f,ξN

(θ0,N )
, (6.5)

where T̂ (x) := T (ANx), x ∈ RN . We also have

I =
〈A−1

N ΣNf
′(θ0,N ), A−1

N ΣNf
′(θ0,N )〉

σ2
f,ξN

(θ0,N )
=
〈A−1

N ANA
∗
Nf
′(θ0,N ), A−1

N ANA
∗
Nf
′(θ0,N )〉

σ2
f,ξN

(θ0,N )

=
〈A∗Nf ′(θ0,N ), A∗Nf

′(θ0,N )〉
σ2
f,ξN

(θ0,N )
=
〈ANA∗Nf ′(θ0,N ), f ′(θ0,N )〉

σ2
f,ξN

(θ0,N )
=
〈ΣNf

′(θ0,N ), f ′(θ0,N )〉
σ2
f,ξN

(θ0,N )
= 1.



V. Koltchinskii and M. Zhilova/Estimation of smooth functionals 48

Let π be a prior density on [−1, 1] with π(−1) = π(1) = 0 and such that

Jπ :=

∫ 1

−1

(π′(s))2

π(s)
ds <∞.

Denote πc′(t) := 2
c′π
(

2t
c′

)
, t ∈ [−c′/2, c′/2]. Then Jπc′ = 4Jπ

(c′)2 .

By van Trees inequality, for any estimator T̂ (A−1
N XN ) of ϕ(t), it holds

that

sup
t∈[−c′/2,c′/2]

Et(T̂ (A−1
N XN )− ϕ(t))2 ≥

∫ c′/2

−c′/2
Et(T̂ (A−1

N XN )− ϕ(t))2πc′(t)dt ≥

≥

(∫ c′/2
−c′/2 ϕ

′(t)πc′(t)dt
)2∫ c′/2

−c′/2 I(t)dt+ 4Jπ/(c′)2
≥

(∫ c′/2
−c′/2 ϕ

′(t)πc′(t)dt
)2

1 + 4Jπ/(c′)2
. (6.6)

It remains to bound from below
(∫ c′/2
−c′/2 ϕ

′(t)πc′(t)dt
)2
. Note that ϕ′(t) =

〈h, f ′(θt)〉 and let

I0 =

∫ c′/2

−c′/2
〈h, f ′(θ0,N )〉πc′(t)dt = 〈h, f ′(θ0,N )〉,

I1 =

∫ c′/2

−c′/2
[ϕ′(t)− ϕ′(0)]πc′(t)dt.

We have(∫ c′/2

−c′/2
ϕ′(t)πc′(t)dt

)2

= (I0 + I1)2 ≥ I2
0 − 2|I0||I1| ≥ 〈h, f ′(θ0,N )〉2 − 2|〈h, f ′(θ0,N )〉||I1|.

With h =
ΣNf

′(θ0,N )
σf,ξN (θ0,N ) , we get

〈h, f ′(θ0,N )〉2 =
〈ΣNf

′(θ0,N ), f ′(θ0,N )〉2

σ2
f,ξN

(θ0,N )
= σ2

f,ξN
(θ0,N )

and (∫ c′/2

−c′/2
ϕ′(t)πc′(t)dt

)2

≥ σ2
f,ξN

(θ0,N )− 2σf,ξN (θ0,N )|I1|. (6.7)
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Finally, we bound |I1| as follows. Note that

|ϕ′(t)− ϕ′(0)| = |〈h, f ′(θt)− f ′(θ0,N )〉|
≤ ‖h‖‖f ′‖Lipρ,γ (1 ∨ ‖θ0,N‖ ∨ ‖θt‖)γ(c′/2)ρ‖h‖ρ

≤ ‖f‖Cs,γ (1 ∨ ‖θ0,N‖ ∨ (‖θ0,N‖+ (c′/2)‖h‖))γ(c′/2)ρ‖h‖1+ρ

≤ 2γ−ρ‖f‖Cs,γ (1 ∨ ‖θ0,N‖)γ(c′)ρ‖h‖1+ρ,

where we used the fact that (c′/2)‖h‖ ≤ 1. It follows that

|I1| ≤ 2γ−ρ‖f‖Cs,γ (1 ∨ ‖θ0,N‖)γ(c′)ρ‖h‖1+ρ

≤ 2γ−ρ
‖f‖Cs,γ (1 ∨ ‖θ0,N‖)γ

σ1+ρ
f,ξN

(θ0,N )
(c′)ρ‖ΣN‖1+ρ‖f ′(θ0,N )‖1+ρ

≤ 2γ−ρσf,ξN (θ0,N )
‖f‖Cs,γ (1 ∨ ‖θ0,N‖)γ

σ2+ρ
f,ξN

(θ0,N )
(c′)ρ‖ΣN‖1+ρ‖f ′‖1+ρ

L∞,γ
(1 ∨ ‖θ0,N‖)γ(1+ρ)

≤ 2γ−ρσf,ξN (θ0,N )
‖f‖2+ρ

Cs,γ (1 ∨ ‖θ0,N‖)γ(2+ρ)‖ΣN‖(2+ρ)/2

σ2+ρ
f,ξN

(θ0,N )
(c′)ρ‖ΣN‖ρ/2

= 2γ−ρσf,ξN (θ0,N )K2+ρ
s,γ (f ; ΣN ; θ0,N )(c′)ρ‖ΣN‖ρ/2.

We substitute this bound in (6.7) to get(∫ c′/2

−c′/2
ϕ′(t)πc′(t)dt

)2

≥ σ2
f,ξN

(θ0,N )
(

1− 2γ+1−ρK2+ρ
s,γ (f ; ΣN ; θ0,N )(c′)ρ‖ΣN‖ρ/2

)
. (6.8)

Using bounds (6.5), (6.6) and (6.8), we conclude that

sup
θ∈UN (θ0,N ;c/2;ΣN )

Eθ(T (XN )− f(θ))2

σ2
f,ξN

(θ0,N )
≥

1− 2γ+1−ρK2+ρ
s,γ (f ; ΣN ; θ0,N )(c′)ρ‖ΣN‖ρ/2

1 + 4Jπ/(c′)2

≥ 1− 2γ+1−ρK2
s,γ(f ; ΣN ; θ0,N )cρ‖ΣN‖ρ/2 −

4JπK
2
s,γ(f ; ΣN ; θ0,N )

c2
,

implying the claim of the lemma. �

7. The proof of minimax lower bound

In this section, we use a modification of the approach developed by Ne-
mirovski [31, 32] to prove minimax lower bounds implying the optimality of
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smoothness thresholds for efficient estimation. This will be done only in the
case of classical Gaussian shift model (see Example 1.1)

X = θ + σZ, θ ∈ Rd, Z ∼ N (0, Id)

with unknown mean θ and known noise level σ2. The noise in this model is
ξ := σZ with covariance Σ = σ2Id, and the parameter space is the Euclidean
space Rd with canonical inner product. Our main goal is to prove Theorem
2.2 stated in Section 2. Our approach is based on a construction of a set Θ of
2d/8 2ε-separated points of the unit ball in Rd and a set of smooth functionals
fl(θ), l = 1, . . . , d. Assuming the existence of estimators Tl(X), l = 1, . . . , l
of these functionals with mean squared error rate δ2, we show that it is
possible to estimate parameter θ ∈ Θ with mean squared error . δ2

ε2(s−1) .
We compare this with well known minimax rates of estimation of θ ∈ Θ to
prove a lower bound on δ2.

proof. Let h be the Hamming distance on the binary cube {−1, 1}d :

h(ω, ω′) :=
d∑
j=1

I(ωj 6= ω′j), ω, ω
′ ∈ {−1, 1}d.

It follows from Varshamov-Gilbert bound (see [35], Lemma 2.9) that there
exists a subset Ω ⊂ {−1, 1}d such that card(Ω) ≥ 2d/8 and h(ω, ω′) ≥
d/8, ω 6= ω′, ω, ω′ ∈ Ω. For some ε ∈ (0, 1/8), let

θω :=
8ε√
d

(ω1, . . . , ωd), ω ∈ Ω

and let Θ := {θω : ω ∈ Ω}. Note that ‖θω‖ = 8ε and

‖θω − θω′‖ = 16ε

√
h(ω, ω′)

d
, ω, ω′ ∈ Ω, (7.1)

which implies that, for all ω 6= ω′,

‖θω − θω′‖ ≥
8√
2
ε ≥ 2ε.

Let ϕ : R 7→ [0, 1] be a C∞ function with support in [−1, 1], with ‖ϕ̃‖Cs ≤
1 for ϕ̃(t) := ϕ(‖t‖2), t ∈ Rd and ϕ(0) > 0 being a constant. Define

fl(θ) :=
∑
ω∈Ω

ωlε
sϕ̃

(
θ − θω
ε

)
, θ ∈ Rd, l = 1, . . . , d.
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Note that the functions εsϕ̃
(
θ−θω
ε

)
, ω ∈ Ω have disjoint supports (since the

function ϕ
(
θ−θω
ε

)
is supported in a ball of radius ε around θω and points

θω, ω ∈ Ω are 2ε-separated). It follows that fl(θω) = ωlϕ(0)εs, ω ∈ Ω, l =
1, . . . , d and also that ‖fl‖Cs ≤ 1 (recall that ‖ϕ̃‖Cs ≤ 1 and ε ≤ 1/8).

Define

τ(θ, θ′) :=

(
1

d

d∑
l=1

(fl(θ)− fl(θ′))2

)1/2

, θ, θ′ ∈ Θ.

We will need the following simple lemma:

Lemma 7.1.

τ(θ, θ′) =
ϕ(0)εs−1

8
‖θ − θ′‖, θ, θ′ ∈ Θ. (7.2)

proof. Indeed, for all ω, ω′ ∈ Ω, we have by a straightforward computation
that

τ(θω, θω′) = 2ϕ(0)εs
√
h(ω, ω′)

d

(this is based on the fact that fl(θω) = ϕ(0)εsωl). Combining this with (7.1)
yields

τ(θω, θω′) =
ϕ(0)εs−1

8
‖θω − θω′‖, ω, ω′ ∈ Ω,

which implies the claim.

In addition, we will use the following well known fact:

Lemma 7.2. If ε2 ≤ c′σ2d for a small enough numerical constant c′ > 0,
then

inf
θ̂

max
θ∈Θ

Eθ‖θ̂(X)− θ‖2 ≥ c′′σ2d, (7.3)

where the infimum is taken over all estimators θ̂ and c′′ is a numerical
constant.

The proof of this fact is quite standard (it could be based, for instance,
on Theorem 2.5 in [35]). Note that the lower bound could be also written as
c′′ε2 for some numerical constant c′′.
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Suppose now that, for some δ > 0,

sup
‖f‖Cs≤1

inf
T

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 < δ2. (7.4)

This implies that

max
1≤l≤d

inf
T

max
θ∈Θ

Eθ(T (X)− fl(θ))2 < δ2

and, moreover, for all l = 1, . . . , d there exist estimators Tl(X) such that

max
θ∈Θ

Eθ(Tl(X)− fl(θ))2 < δ2.

It will be convenient to replace estimators Tl(X) by estimators T̃l(X) defined
as follows: T̃l(X) := εsϕ(0) if Tl(X) ≥ 0 and T̃l(X) := −εsϕ(0) otherwise.
For these modified estimators, it is easy to check that

max
θ∈Θ

Eθ(T̃l(X)− fl(θ))2 < 4δ2. (7.5)

Define finally ω̃ := (ω̃1, . . . , ω̃d), where ω̃l = ω̃l(X) := sign(T̃l(X)) and
set θ̃ = θ̃(X) := θω̃. The following identity immediately follows from the
definitions and from (7.2):

‖θ̃ − θ‖ =
8

ϕ(0)εs−1
τ(θ̃, θ) =

8

ϕ(0)εs−1

(
1

d

d∑
l=1

(T̃l(X)− fl(θ))2

)1/2

, θ ∈ Θ.

Therefore, we can deduce from (7.5)

Eθ‖θ̃ − θ‖2 =
82

ϕ2(0)ε2(s−1)

1

d

d∑
l=1

Eθ(T̃l(X)− fl(θ))2 ≤ 4 82δ2

ϕ2(0)ε2(s−1)
, θ ∈ Θ.

(7.6)

It remains to set ε2 := c′(σ2d∧ 1) and to use minimax lower bound (7.3) to
get

max
θ∈Θ

Eθ‖θ̃ − θ‖2 ≥ c′′ε2.

Combining this with bound (7.6), we get

4 82δ2

ϕ2(0)ε2(s−1)
≥ c′′ε2,
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which implies that δ2 & ε2s. Therefore,

sup
‖f‖Cs≤1

inf
T

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 & (σ2d)s ∧ 1. (7.7)

To complete the proof, it remains to show that, for some c2 > 0, the
following bound holds:

sup
‖f‖Cs≤1

inf
T

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 ≥ c2(σ2 ∧ 1). (7.8)

This easily follows from the bound of Theorem 2.4. To this end, take f(θ) :=
〈θ, u〉ϕ(‖θ‖2), θ ∈ Rd, where ‖u‖ = κ for a small enough constant κ > 0 and
ϕ : R 7→ [0, 1] is a C∞ function with ϕ(t) = 1, t ∈ [0, 1] and ϕ(t) = 0, |t| > 2.
It is easy to see that u and ϕ could be chosen in such a way that ‖f‖Cs ≤ 1.
For such a function f and for ‖θ‖ ≤ 1, σ2

f,ξ(θ) = κ2σ2 and K(f ; Σ; θ) ≤ 1
κ .

Take also θ0 = 0. The bound of Theorem 2.4 now easily implies that, for
small enough constants c3, c4 > 0 and for all σ ≤ c3,

inf
T

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 ≥ c4σ
2. (7.9)

If σ > c3, then σ2d & c2
3, and bound (7.7) implies that, for some c′4 > 0,

inf
T

sup
‖θ‖≤1

Eθ(T (X)− f(θ))2 ≥ c′4.

Together with (7.9), this implies (7.8).
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397–423.

[25] S. Kwapien and B. Szymanski. Some remarks on Gaussian measures
on Banach spaces. Probab. Math. Statist., 1980, 1, 1, 59–65.

[26] B. Laurent. Efficient estimation of integral functionals of a density.
Annals of Statistics, 1996, 24, 659–681.

[27] M. Ledoux. The Concentration of Measure Phenomenon. American
Mathematical Society. 2001.

[28] B. Levit. On the efficiency of a class of non-parametric estimates. The-
ory of Prob. and applications, 1975, 20(4), 723–740.

[29] B. Levit. Asymptotically efficient estimation of nonlinear functionals.
Probl. Peredachi Inf. (Problems of Information Transmission), 1978,
14(3), 65–72.

[30] O. Lepski, A. Nemirovski and V. Spokoiny. On estimation of the Lr
norm of a regression function. Probab. Theory Relat. Fields, 1999, 113,
221–253.

[31] A. Nemirovski. On necessary conditions for the efficient estimation of
functionals of a nonparametric signal which is observed in white noise.
Theory of Probab. and Appl., 1990, 35, 94–103.

[32] A. Nemirovski. Topics in Non-parametric Statistics. Ecole d’Ete de
Probabilités de Saint-Flour. Lecture Notes in Mathematics, v. 1738,
Springer, New York, 2000.

[33] V.V. Peller. Hankel operators in the perturbation theory of unitary
and self-adjoint operators. Funk. anal. i ego pril., 1985, 19(2), 37–51
(In Russian), English transl.: Func. Anal. Appl., 1985, 19(2), 111–123.

[34] J.O. Ramsay and B.W. Silverman. Functional Data Analysis. Springer
Series in Statistics. Springer, 2005.

[35] A.B. Tsybakov. Introduction to Nonparametric Estimation. Springer,
2009.
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