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a b s t r a c t

This paper introduces a unified approach for modeling high-frequency financial data

that can accommodate both the continuous-time jump–diffusion and discrete-time

realized GARCH model by embedding the discrete realized GARCH structure in the

continuous instantaneous volatility process. The key feature of the proposed model is

that the corresponding conditional daily integrated volatility adopts an autoregressive

structure, where both integrated volatility and jump variation serve as innovations.

We name it as the realized GARCH-Itô model. Given the autoregressive structure in

the conditional daily integrated volatility, we propose a quasi-likelihood function for

parameter estimation and establish its asymptotic properties. To improve the parameter

estimation, we propose a joint quasi-likelihood function that is built on the marriage of

daily integrated volatility estimated by high-frequency data and nonparametric volatility

estimator obtained from option data. We conduct a simulation study to check the finite

sample performance of the proposed methodologies and an empirical study with the

S&P500 stock index and option data.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In modern financial markets, volatility measures the degree of dispersion for assets and plays a crucial role in portfolio

allocation, performance evaluation, and risk management. Low-frequency and high-frequency stock data are widely

adopted to model the dynamic evolution of daily volatilities. Option data provide one more natural source for the

more precise forecast of volatilities and have been investigated thoroughly since the seminal work of Black and Scholes

(1973). In traditional volatility analysis, researchers employ discrete parametric econometric models and low-frequency

data. Examples include the generalized autoregressive conditional heteroskedasticity (GARCH) models (Bollerslev, 1986;

Engle, 1982) which adopt squared daily log returns as innovations in the conditional volatilities. However, when the

volatility changes rapidly to a new level, it is often difficult to catch up with the new level immediately using only

the daily log returns as the innovations (Andersen et al., 2003). On the other hand, high-frequency financial data that
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efer to intra-daily observations such as tick-by-tick stock prices became available thanks to advances in information
echnology. Major challenges in estimating volatilities with high-frequency data are the market microstructure noises
nd price jumps. Without the presence of price jumps, Zhang et al. (2005) proposed two-time scale realized volatility
TSRV) which is a consistent estimator for daily variation while Zhang (2006) further improved the TSRV to multi-
cale realized volatility (MSRV) so that it can achieve the optimal convergence rate. Other forms of estimators that can
chieve the optimal convergence rate only in the presence of market microstructure noises are kernel realized volatility
KRV) (Barndorff-Nielsen et al., 2008), quasi-maximum likelihood estimator (QMLE) (Aït-Sahalia et al., 2010; Xiu, 2010),
re-averaging realized volatility (PRV) (Jacod et al., 2009), and robust pre-averaging realized volatility (Fan and Kim,
018). Empirical studies support the existence of price jumps, and decomposition of daily variation into its continuous
nd jump components can improve volatility forecasts (Aït-Sahalia et al., 2012; Andersen et al., 2007; Barndorff-Nielsen
nd Shephard, 2006; Corsi et al., 2010). For example, Mancini (2004) studied a threshold method for jump-detection
nd presented the order of an optimal threshold, and Davies and Tauchen (2018) further examined a data-driven type
hreshold method. Also Fan and Wang (2007) and Zhang et al. (2016) employed wavelet method to identify the jumps
iven noisy high-frequency data. We refer to the estimators of daily variation based on high-frequency data as the
ealized volatility estimators. Such estimators are more informative compared to simple squared daily log returns as
he innovations, which may help to catch up with rapid changes in the volatility process better.

Efforts made for volatility estimation usually employ low- and high-frequency data independently. However, the
nter-correlation between low- and high-frequency data gathered at the two different time scales cannot be ignored
s low-frequency data present high-frequency data in an aggregated form. There are several attempts to bridge the
ap between the two types of data. For example, multiple studies proposed new GARCH type models, which include
ealized volatilities as innovations in the conditional volatilities (Engle and Gallo, 2006; Shephard and Sheppard, 2010;
ansen et al., 2012). On the other hand, Wang (2002) showed that the standard GARCH model and its diffusion limit are
onequivalent asymptotically, which discredits the direct application of statistical inferences derived for the GARCH model
o its diffusion limit. Thus, Kim and Wang (2016) introduced the unified GARCH-Itô model by embedding the standard
ARCH volatility structure in the instantaneous volatilities of an Itô diffusion process. The unified GARCH-Itô model is a
ontinuous-time process at the high-frequency timescale and when restricted to the low-frequency timescale, retains the
tandard GARCH structure.
In this paper, we expand the unified GARCH-Itô model (Kim and Wang, 2016) so that features of financial data at

oth frequencies can be better captured as follows. First, price jumps that are well-documented in empirical studies
re allowed, and we incorporate squared price jumps into the volatility dynamics by a structure similar to the ones
ntroduced in the COGARCH model (Klüppelberg et al., 2004) and the jump-driven volatility model (Todorov, 2011).
econd, we embed the realized GARCH volatility structure (Hansen et al., 2012) in the instantaneous volatilities of a
ump–diffusion process, which employs the more informative high-frequency data-based innovations. Third, the well-
nown intra-day U-shape volatility pattern is accounted for (Admati and Pfleiderer, 1988; Andersen et al., 1997, 2019;
ong and Wang, 2000). We name the proposed model as the realized GARCH-Itô model. The key feature of the proposed
odel is that its conditional volatility has integrated volatility and jump variation as innovations. Based on the structure
f the conditional volatility process, we propose a quasi-likelihood function for estimating model parameters. Specifically,
he quasi-likelihood function that is usually adopted in the standard GARCH type models is employed, and the realized
olatility estimators are used as the proxy for conditional volatilities. We call the proposed estimator the quasi-maximum
ikelihood estimator based on high-frequency data and low-frequency structure (QMLE-HL). The proposed model and
his estimating approach are constructed purely based on stock data. We as well harness option data to improve the
odel parameter estimation. In specific, Todorov (2019) developed nonparametric volatility estimator based on a portfolio
f short-dated option contracts given a general setting where jumps are present. As stated in Todorov (2019), the
stimator can be viewed as the option counterpart of high-frequency data-based volatility estimators. To incorporate
he option-based nonparametric volatility estimator, we construct a joint quasi-likelihood function. We call the proposed
stimator the quasi-maximum likelihood estimator based on high-frequency data, low-frequency structure and additional
ption data (QMLE-HLO). Both the QMLE-HL and the QMLE-HLO present good consistency and asymptotic properties. In
umerical analysis, we further demonstrate that the joint estimation method QMLE-HLO performs better in estimation
nd prediction than the QMLE-HL.
This paper is organized as follows. Section 2 introduces the realized GARCH-Itô model. We demonstrate its connection

ith the realized GARCH model and discuss its advantages comparing to the unified GARCH-Itô model. Section 3 intro-
uces quasi-likelihood estimation methods and investigates their asymptotic behaviors. Section 4 conducts a simulation
tudy to check the finite sample performance for the proposed estimators. Section 5 carries out an empirical analysis with
&P500 stock and option data to demonstrate the advantage of the proposed model in volatility analysis. We collect all
he proofs in Appendix A.

. Realized GARCH-Itô model

The realized GARCH-Itô model is an innovated jump–diffusion process that can incorporate high-frequency based
olatility model (Shephard and Sheppard, 2010) and realized GARCH model (Hansen et al., 2012) structures. Let R+ =

0,∞) and N be the set of all non-negative integers. Our proposed model is formulated as follows.
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Definition 1. Log stock price Xt , t ∈ R+, obeys a realized GARCH-Itô model if it satisfies

dXt = µtdt + σt (θ )dBt + LtdΛt , (2.1)

σ 2
t (θ ) = σ 2

⌈t−1⌉(θ ) + γ (t − ⌈t − 1⌉)2
{
ω1 + σ 2

⌈t−1⌉(θ )
}

− (t − ⌈t − 1⌉)
{
ω2 + σ 2

⌈t−1⌉(θ )
}

+α

∫ t

⌈t−1⌉
σ 2
s (θ )ds + β

∫ t

⌈t−1⌉
L2s dΛs + ν (⌈t − 1⌉ + 1 − t) Z2

t , (2.2)

here ⌈t − 1⌉ denotes the ceiling of t − 1, Zt =
∫ t

⌈t−1⌉ dWt , Bt and Wt are standard Brownian motions with respect to
iltration Ft with dWtdBt = ρdt a.s., µt is a predictable process that is known as the drift, and σt (θ ) is the volatility process
hat is adapted to Ft . For the jump part, Λt is the standard Poisson process with constant intensity λ and Lt denotes the
.i.d. jump sizes which are independent of the Poisson and continuous diffusion processes.

emark 1. The i.i.d. assumption on jump sizes can be rewritten as

L2t = ωL + Mt , (2.3)

here Mt ’s are i.i.d. random variables with mean zero and variance ζ 2, ωL + Mt is restricted to be positive. For instance,
f the jump sizes Lt ’s obey the Normal distribution with mean δ and variance η, then the corresponding ωL takes value
2
+ η while Mt has mean zero and variance 4δ2η + 2η2.
The instantaneous volatility σ 2

t (θ ) in (2.2) is defined at all times for t ∈ R+ and also retains some U-shape pattern
ithin the intra-day. Specifically, when considering the deterministic process part of the instantaneous volatility, it is
onvex with respect to time t and for an appropriate parameter, it has the smallest value in the middle section of
he day. This U-shape instantaneous volatility pattern is often observed in empirical data and supported by financial
arket (Admati and Pfleiderer, 1988; Andersen et al., 1997, 2019; Hong and Wang, 2000). Moreover, random fluctuations

are accounted for in the instantaneous volatility process. We note that when the process is restricted to integer times,
it employs the realized GARCH model type structure (Hansen et al., 2012) with an additional jump innovation term as
follows:

σ 2
n (θ ) = ω + γ σ 2

n−1(θ ) + α

∫ n

n−1
σ 2
s (θ )ds + β

∫ n

n−1
L2s dΛs, (2.4)

where ω = γω1 − ω2 and n ∈ N. Therefore, the instantaneous volatility process is affected by both the integrated
volatilities and the jump variations of the stock price process. In comparison to the unified GARCH-Itô model (Kim and
Wang, 2016), the realized GARCH-Itô model considers price jumps, accounts for intra-day U-shape volatility pattern, and
adopts a richer volatility dynamics with random fluctuations.

For statistical inferences, we study the integrated volatilities obtained from the realized GARCH-Itô model over
consecutive integers, that is,

∫ n
n−1 σ

2
t (θ )dt .

Proposition 1. Iterative relationship exists in integrated volatilities for the realized GARCH-Itô model defined in Definition 1
and when condition (2.3) is met.

(a) For 0 < α < 1 and n ∈ N, the realized GARCH-Itô model implies that∫ n

n−1
σ 2
t (θ )dt = hn(θ ) + Dn a.s., (2.5)

where

hn(θ ) = ωg
+ γ hn−1(θ ) + αg

∫ n−1

n−2
σ 2
s (θ )ds + βg

∫ n−1

n−2
L2t dΛt , (2.6)

ωg
= γ (ρ1 − ϱ2 + 2ϱ3)ω1 − (ϱ1 − γ ϱ2 + 2γ ϱ3)ω2 + (1 − γ ){(ϱ2 − 2ϱ3)ν + ϱ2βλωL},

αg
= (ρ1 − ρ2 + 2γ ϱ3) α, βg

= (ρ1 − ρ2 + 2γ ϱ3) β, θ =
(
ωg , αg , βg , γ

)
,

ρ1 = α−1(eα − 1), ρ2 = α−2(eα − 1 − α), ρ3 = α−3(eα − 1 − α −
α2

2
), (2.7)

and

Dn = Dc
n + DJ

n,

Dc
n = 2να−2

∫ n

n−1

{
α(n − t − α−1)eα(n−t)

+ 1
}
ZtdZt ,

DJ
n = βα−1

{∫ n

n−1

(
eα(n−t)

− 1
)
MtdΛt + ωL

∫ n

n−1

(
eα(n−t)

− 1
)
(dΛt − λdt)

}
are all martingale differences.
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(b) For 0 < α < 1 and n ∈ N,

E

[∫ n

n−1
σ 2
t (θ )dt

⏐⏐⏐⏐⏐Fn−1

]
= hn(θ ) a.s., (2.8)

where hn(θ ) is defined in (2.6).
(c) For 0 < αg

+ γ < 1 and n ∈ N,

E[hn(θ )] =
ωg

+ βgλωL

1 − αg − γ
, E[σ 2

n ] =
(ω + βλωL)(1 − αg

− γ ) + α(ωg
+ βgλωL)

(1 − αg − γ )(1 − γ )
, (2.9)

where ωg , αg and βg are defined in (2.7).

Proposition 1(a) indicates that the daily integrated volatility can be decomposed into the realized GARCH volatility
n(θ ) and the martingale difference Dn, where the GARCH volatility hn(θ ) can be further explained by historical integrated
olatilities and jump variations. We utilize this model feature to build up parameter estimation methods. Moreover,
his paper uses the integrated volatilities as proxy to develop an estimation procedure for the GARCH parameter θ =

ωg , αg , βg , γ ) in Section 3. This is because without the spot volatility estimation, we cannot distinguish the interceptor
arameters ω1, ω2, and ν.

. Parameter estimation

In this section, we first discuss the model set-up and review nonparametric estimation methods for the integrated
olatility in the presence of market microstructure noises given the jump–diffusion process. With the well-performing
ealized volatility and jump variation estimators, we construct quasi-maximum likelihood estimation procedures and
nvestigate their asymptotic behaviors.

.1. The model set-up and realized volatility estimators

Let n be the total number of low-frequency observations and mi be the total number of high-frequency observations
uring the ith low-frequency period, for example, the ith day. We further denote m =

∑n
i=1 mi/n. The underlying log

rice process is assumed to obey the realized GARCH-Itô model as described in Definition 1. The low-frequency data are
he true log prices at integer times, Xi, i = 0, 1, . . . , n. The high-frequency data are observations between integer times
nd are contaminated by market microstructure noises. Major sources for the market microstructure noises are bid–ask
ounce, discreteness of price change, and infrequent trading that only play a role in high-frequency trading (Ait-Sahalia
nd Yu, 2009). We let ti,j be the high-frequency observed time points during the ith low-frequency period such that
− 1 = ti,0 < ti,1 < · · · < ti,mi = ti+1,0 = i. In this regard, we take the well-agreed assumption in high-frequency
iterature such that

Yti,j = Xti,j + ϵti,j , (3.1)

where ϵti,j ’s are market microstructure noises that are some stationary random variables with E(ϵti,j ) = 0. Moreover, we
note that the effect of the drift term µt on high-frequency data based volatility estimators is negligible asymptotically, so
we take µt = 0 to highlight on modeling the volatility and jump processes.

Without the presence of price jumps, researchers have constructed nonparametric realized volatility estimators that
take advantage of sub-sampling and local-averaging techniques to remove the effect of market microstructure noises so
that the integrated volatility can be estimated consistently and efficiently. Such estimators include the multi-scale realized
volatility estimator (Zhang, 2006, 2011), the pre-averaging realized volatility estimator (Christensen et al., 2010; Jacod
t al., 2009), and the kernel realized volatility estimator (Barndorff-Nielsen et al., 2008). To identify the jump locations
iven noisy high-frequency data, Fan and Wang (2007) and Zhang et al. (2016) proposed wavelet methods to detect jumps
nd applied the MSRV method to jump-adjusted data. They demonstrated that the estimator of jump variation has the
onvergence rate of m−1/4, which further helps the estimator of integrated volatility to achieve the optimal convergence
ate of m−1/4. In this paper, we let JVi to be the estimator of jump variation for the ith day and RVi to be the corresponding
estimator of daily integrated volatility that is robust to microstructure noises and price jumps, where both estimators can
achieve the convergence rate m−1/4.

.2. Quasi-maximum likelihood estimation based on high-frequency data and low-frequency structure

.2.1. Estimation procedure
Recall that the integrated volatility over the ith period can be decomposed into the realized GARCH volatility hi(θ ) and

artingale difference D as described in Proposition 1(a). We harness this information for making inferences on the true
i
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parameter θ0 = (ωg
0, α

g
0 , β

g
0 , γ0). Specifically, using the likelihood of the standard GARCH model and the low-frequency

tructure of the realized GARCH-Itô model, we define the following quasi-likelihood function

LGHn,m(θ ) = −

n∑
i=1

[
log(hi(θ )) +

RVi

hi(θ )

]
. (3.2)

nder some technical conditions, the impact of the martingale difference term Di is negligible in the asymptotic sense.
herefore, the realized volatility estimators RVi’s based on data from (3.1) can be considered as the observed value
or hi(θ )’s and are employed as the proxy. To harness the proposed quasi-likelihood function (3.2), we first need to
valuate the realized GARCH term hi(θ ). Recall the iterative relationship in the realized GARCH term hi(θ ) as described in
roposition 1(a):

hi(θ ) =ωg
+ γ hi−1(θ ) + αg

∫ i−1

i−2
σ 2
t (θ )dt + βg

∫ i−1

i−2
L2t dΛt

=

i−1∑
l=1

γ l−1
{
ωg

+ αg
∫ i−l

i−l−1
σ 2
t (θ )dt + βg

∫ i−l

i−l−1
L2t dΛt

}
+ γ i−1h1(θ ), i = 2, . . . , n.

he initial h1(θ ) is selected to be E[h1(θ )] that is given in Proposition 1(c). Specifically, we take

h1(θ ) =
ωg

+ βgλωL

1 − αg − γ
.

he true integrated volatilities and jump variations are not observed so that we adopt their estimators RVi and JVi,
respectively. Specifically, let

ĥi(θ ) =

i−1∑
l=1

γ l−1 {ωg
+ αgRVi−l + βg JVi−l

}
+ γ i−1h1(θ ), i = 2, . . . , n. (3.3)

ith the realized GARCH volatility estimator ĥi(θ ) in (3.3), the quasi-likelihood function (3.2) is updated to the following:

L̂GHn,m(θ ) = −

n∑
i=1

[
log(̂hi(θ )) +

RVi

ĥi(θ )

]
. (3.4)

e estimate the true parameter θ0 by maximizing the quasi-likelihood function L̂GHn,m(θ ) in (3.4),

θ̂GH = argmax
θ∈Θ

L̂GHn,m(θ ), (3.5)

nd call the maximizer θ̂GH in (3.5) the quasi-maximum likelihood estimator based on high-frequency data and
ow-frequency structure combined (QMLE-HL).

.2.2. Asymptotic theory
This section establishes the consistency and asymptotic distribution for the proposed estimator θ̂GH . We first define

ome notations. For any given random variable X and p ≥ 1, define ∥X∥Lp =
{
E[|X |

p
]
}1/p. For a matrix A =

(
Ai,j
)
1≤i≤k′,1≤j≤k,

et ∥A∥max = maxi,j|Ai,j|. Let C ’s be positive generic constants whose values are free of θ , n, and mi, and may change
rom occurrence to occurrence. To investigate the asymptotic behaviors of proposed estimation method, we require the
ollowing technical assumptions.

ssumption 1.

(a) Let

Θ = {(ωg , αg , βg , γ ) : ω
g
l < ωg < ωg

u, α
g
l < αg < αg

u , β
g
l < βg < βg

u , γl < γ < γu, α
g
+ γ < 1},

where ωg
l , ω

g
u, α

g
l , α

g
u , β

g
l , β

g
u , γl, γu are known positive constants.

(b) We have maxt∈R+
E
{
σ 4
t (θ0)

}
< ∞ and E(ϵ4ti,j ) < ∞.

(c) There exist some fixed constants C1 and C2 such that C1m ≤ mi ≤ C2m, and sup1≤j≤mi
|ti,j − ti,j−1| = O(m−1) and

n2m−1
→ 0 as m, n → ∞.

(d) One of the following conditions is satisfied.

(d1) There exists a positive constant δ such that E

[(
R2i

hi(θ0)

)2+δ
]

≤ C for any i ∈ N, where Ri =
∫ i
i−1 σt (θ0)dBt .

(d2) E[R4i |Fi−1]

2 ≤ C a.s. for any i ∈ N.

hi (θ0)
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(e) supi∈N
RVi −

∫ i
i−1 σ

2
s (θ0)ds


L2

≤ Cm−1/4 and supi∈N
JVi −

∫ i
i−1 L

2
s dΛs


L2

≤ Cm−1/4.

(f) For any i ∈ N, E [RVi|Fi−1] ≤ C E
[∫ i

i−1 σ
2
s ds|Fi−1

]
+ C a.s.

(g)
(
Di,
∫ i
i−1 σ

2
t (θ0)dt, R

2
i

)
is a stationary ergodic process.

emark 2. The parameters of interests are related to volatilities (the 2nd moment), thus, to study their asymptotic
ehaviors, we require some finite 4th moment conditions such as Assumption 1(b) and (d). Therefore, these conditions are
ot restrictive at all. Assumption 1(c) is a well-known key condition in high-frequency data based volatility analysis. Under
he finite 4th moment condition, Kim et al. (2016) showed that the realized volatility estimators satisfy Assumption 1(e).
inally, the stationary ergodic condition Assumption 1(g) is used to obtain asymptotic normality for the QMLE-HL.

The following theorems establish the convergence rate and asymptotic normality for the QMLE-HL θ̂GH defined in (3.5).

heorem 1. Under Assumption 1(a)–(f) (except for n2m−1
→ 0 in Assumption 1(c)), we have̂θGH − θ0


max = Op

(
m−1/4

+ n−1/2) .
heorem 2. Under Assumption 1, we have as m, n → ∞,

√
n
(̂
θGH − θ0

) d
→ N

(
0, B−1AGHB−1) ,

where

AGH
= E

[{
α−4
0 ν20

∫ 1

0

{
α0(1 − t − α−1

0 )eα0(1−t)
+ 1

}2
tdt

+
λ0β

2
0

4α2
0

∫ 1

0

(
eα0(1−t)

− 1
)2

(M2
t + ω2

L0)dt

}
∂h1(θ )
∂θ

∂h1(θ )
∂θ T

⏐⏐⏐⏐⏐
θ=θ0

h−4
1 (θ0)

]
and

B =
1
2
E

⎡⎣∂h1(θ )
∂θ

∂h1(θ )
∂θ T

⏐⏐⏐⏐⏐
θ=θ0

h−2
1 (θ0)

⎤⎦ .
emark 3. Theorem 1 shows that the convergence rate of θ̂GH is m−1/4

+ n−1/2. The rate n−1/2 is coming from the usual
arametric convergence rate based on the low-frequency structure while the rate m−1/4 is due to the high-frequency
olatility and jump variation estimations and is known as the optimal convergence rate for estimating integrated
olatilities with the presence of market microstructure noises and price jumps. Theorem 2 provides the asymptotic
ormal distribution for θ̂GH . When deriving the asymptotic normality, the condition n2m−1

→ 0 in Assumption 1(c)
s imposed so that the high-frequency estimation errors of order m−1/4 are negligible in comparison with the low-
requency estimation errors of order n−1/2. When the condition n2m−1

→ 0 is not satisfied, the asymptotic normality
ay depend on m1/4(RVi −

∫ i
i−1 σ

2
s (θ0)ds), which is the quantity related to high-frequency estimation. For example, if

1/4(RVi −
∫ i
i−1 σ

2
s (θ0)ds) is some martingale difference sequence, we can relax the condition n2m−1

→ 0 to nm−1
→ 0.

e also note that if the true stock prices are observed (i.e., without the microstructure noises), we only need the typical
ondition nm−1

→ 0 instead of n2m−1
→ 0 to obtain the asymptotic normality (see Todorov (2009)).

emark 4. We note that when replacing m−1/4 in Assumption 1(e) by m−ξ for some positive constant ξ ∈ (0, 1/4], the
onvergence rate in Theorem 1 will change tom−ξ

+n−1/2. On the other hand, the condition n2m−1
→ 0 in Assumption 1(c)

ill be relaxed to n2m−4ξ
→ 0 for deriving the asymptotic normality in Theorem 2.

.3. Quasi-maximum likelihood estimation based on high-frequency data, low-frequency structure, and additional option data

.3.1. Estimation procedure
In this section, we discuss how to incorporate additional option data information in parameter estimation. The famous

lack–Scholes model indicates that option prices are determined by several factors such as time to expiration, strike
rice, underline asset price, and its volatility, and so one can deduce the volatility from option data. For example, the VIX
resents the stock market’s general expectation of volatility. However, we usually find that the VIX is different from the
istorical nonparametric realized volatility. This may be because of the jumps in stock prices and the wedge between the
isk-neutral and statistical probabilities. Recently, Todorov (2019) proposed a nonparametric volatility estimator based on

portfolio of noisy short-dated option contracts with different strike prices. This estimator is robust to price jumps and
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does not require any assumption on the wedge between risk-neutral and statistical probabilities. Specifically, let T be the
time to expiration for an option contract, kℓ be the ℓth log strike price, where k1 < k2 < · · · < kN and ∆ℓ = kℓ − kℓ−1
for ℓ = 2, . . . ,N . Let κT (kℓ) be the true option price given expiration T and log-strike kℓ. Due to observation errors in
empirical derivatives pricing, the observed option price κ̂T (kℓ) obeys

κ̂T (kℓ) = κT (kℓ) + εℓ,

where the noises εℓ’s are random variables with mean zero and satisfy the technical conditions in Todorov (2019). Given
this set-up, Todorov (2019) proposed the following nonparametric volatility estimator

NVi =
−2
Tu

R
(
log
(̂
fi(u) ∧ T

))
,

where

f̂i(u) = 1 − (u2
+

√
−1u)

N∑
ℓ=2

e(
√

−1u−1)kℓ−1−
√

−1uXi κ̂T (kℓ−1)∆ℓ,

R(A) is the real part of a complex number A, and u is a tuning parameter.
Under some technical conditions, as T goes to zero, this nonparametric volatility estimator NVi converges to the true

spot volatility σ 2
i (θ0) (Todorov, 2019). However, option contracts from traditional data sources such as the OptionMetrics

are often quoted at the market open or close on each trading day so that the minimum choice of T is 1 business day. In this
sense, NVi may contain integrated volatility for the remaining period from time i. Also Todorov (2019) showed that the
estimates NVi’s hold a close relationship with the jump-robust realized type volatility estimates RVi’s in his empirical study.
Based on his results, we assume that the nonparametric volatility estimator NVi−1 and the conditional daily integrated
volatility hi(θ ) have the following linear relationship:

NVi−1 = b + ahi(θ ) + ei, i = 1, . . . , n, (3.6)

where b and a are the intercept and slope coefficients, respectively. Moreover, ei’s are martingale differences with mean
zero and variance σ 2

e , and they are independent of the price process and the microstructure component.
Let ϕ = (ωg , αg , βg , γ , a, b) and φ = (ωg , αg , βg , γ , a, b, σ 2

e ). Note that θ corresponds to the first four coordinates of
ϕ and φ. We generalize (3.4) to propose the following joint quasi-likelihood function based on high-frequency and option
data for estimating the true parameter φ0 = (ωg

0, α
g
0 , β

g
0 , γ0, a0, b0, σ

2
e0)

L̂GHOn,m (φ) = −

n∑
i=1

[
log(̂hi(θ )) +

RVi

ĥi(θ )

]
−

n∑
i=1

[
log(σ 2

e ) +
(NVi−1 − b − âhi(θ ))2

σ 2
e

]
. (3.7)

We maximize L̂GHOn,m (φ) in (3.7) to obtain parameter estimators, that is,

φ̂GHO
= argmax

φ∈Φ

L̂GHOn,m (φ), θ̂GHO = the first four coordinates of φ̂GHO, (3.8)

hereΦ is the parameter space of φ. We call the proposed estimator φ̂GHO (or θ̂GHO) in (3.8) the quasi-maximum likelihood
stimator based on high-frequency data, low-frequency structure, and additional option data combined (QMLE-HLO).

.3.2. Asymptotic theory
To establish the asymptotic behaviors of the proposed estimation method, we require the following additional

ssumptions.

ssumption 2.

(a) Let

Φ = {(ωg , αg , βg , γ , a, b, σ 2
e ) : (ωg , αg , βg , γ ) ∈ Θ, al < a < au, bl < b < bu, σ 2

el < σ 2
e < σ 2

eu},

where al, au, bl, bu, σ 2
el , σ

2
eu are known positive constants.

(b) supi∈N E
[
e4i
]
< ∞.

(c)
(
Di,
∫ i
i−1 σ

2
t (φ0)dt, R2

i , ei
)
is a stationary ergodic process.

The following theorems establish the convergence rate and asymptotic normality for the QMLE-HLO φ̂GHO defined in
3.8).

heorem 3. Under Assumption 1(a)–(f) (except for n2m−1
→ 0 in Assumptions 1(c)) and 2(a)–(b), we haveφ̂GHO

− φ0

max = Op

(
n−1/2

+ m−1/4) .
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heorem 4. Under Assumptions 1 and 2, we have as m, n → ∞,
√
n
(̂
φGHO

− φ0
) d

−→ N
(
0,
(
BGHO)−1

AGHO (BGHO)−1
)
,

here

AGHO
=

(
AGH 04×3
0T
4×3 03×3

)
+ AO, BGHO

=

(
Bϕ 06×1

0T
6×1

1
2σ

−4
e0

)
,

AO
=E

⎡⎢⎢⎣
⎛⎜⎜⎝
∂ f1(ϕ)
∂ϕ

∂ f1(ϕ)
∂ϕT

⏐⏐⏐⏐
ϕ=ϕ0

1
σ2
e0

∂ f1(ϕ)
∂ϕ

⏐⏐⏐⏐
ϕ=ϕ0

e31
2σ6

e0

∂ f1(ϕ)
∂ϕT

⏐⏐⏐⏐
ϕ=ϕ0

e31
2σ6

e0

(e21−σ2
e0)

2

4σ8
e0

⎞⎟⎟⎠
⎤⎥⎥⎦ ,

Bϕ =
1
2
E

[
∂h1(θ )
∂ϕ

∂h1(θ )
∂ϕT

⏐⏐⏐⏐
ϕ=ϕ0

h−2
1 (θ0) +

∂ f1(ϕ)
∂ϕ

∂ f1(ϕ)
∂ϕT

⏐⏐⏐⏐
ϕ=ϕ0

2
σ 2
e0

]
,

nd fi(ϕ) = b + ahi(θ ) for i = 1, . . . , n. Here 0i×j denotes an i-by-j matrix of zeros.

emark 5. Theorem 3 shows that the convergence rate for the QMLE-HLO is the same as the QMLE-HL. Theorem 4
rovides the asymptotic normal distribution for the QMLE-HLO.

. Simulation study

In this section, we conducted a simulation study to check the finite sample performance of the estimators θ̂GH and φ̂GHO

iven by (3.5) and (3.8) respectively, as well as to investigate the prediction performance of the realized GARCH volatilities
i (̂θGH ) and ĥi (̂θGHO), which was also compared with the performance of the GARCH volatilities used in Kim and Wang
2016). Here ĥi(·) is defined in (3.3). The true log prices Xti,j , ti,j = i − 1 + j/m, i = 1, . . . , n, j = 1, . . . ,m, were generated
ased on the proposed realized GARCH-Itô model defined in (2.1) and (2.2) with the following set of parameters ω1 =

5.816, ω2 = 1.228, α = 0.765, β = 0.482, ν = 0.6, γ = 0.225, and ρ = −0.6. For the jump process, we took the intensity
λ to be 26 and generated L2t such that L2t = ωL + Mt , where ωL = 0.005 and Mt follows the normal distribution with
mean zero and standard deviation 0.001. Each jump Lt was further assigned to be either positive or negative randomly.
The chosen parameters resulted in the following target parameter θ = (ωg , αg , βg , γ ) = (0.0122, 0.717, 0.452, 0.225)
for modeling the dynamics in conditional integrated volatilities. We note that the parameter ωg was scaled by 10000
times compared to its empirical counterpart while the rest parameters remained the same. Scaling in this simulation
study was done in order to avoid the generation of any negative value for the instantaneous volatilities due to the U-
shape intra-day pattern. Initial values for the simulation were chosen to be X0 = 10 and σ 2

0 = E(σ 2
1 ) = 1.4. For the

high-frequency data Yti,j ’s from (3.1), market microstructure noises were added to simulated log prices Xti,j ’s between
integer times, and the noises were modeled by i.i.d normal random variables with mean 0 and standard deviation 0.005.
For the option model described in (3.6), we took a = 0.812, b = 0.072, σe = 0.04, where the intercept b and standard
deviation σe were scaled by roughly 10000 times comparing to their empirical estimates. We took n = 125, 250, 500, 1000
and m = 390, 780, 2340, 23 400. For each combination of n and m, we repeated the simulation procedure for 2000
times. We followed the procedure as described in Fan and Wang (2007) to detect the jump locations, estimate the jump
variations, and compute the jump-adjusted MSRV estimators. Model parameter estimators were obtained by maximizing
the proposed quasi-likelihood functions L̂GHn,m(θ ) and L̂GHOn,m (φ) defined in (3.4) and (3.7), respectively.

Table 1 reports the mean squared errors (MSEs) for the jump parameters ωL and λ. We find that the MSEs decrease
as the number of high-frequency observations increases for each n, and larger n often helps to locate the jumps and
to estimate the parameters ωL and λ better. Table 2 presents the MSEs for the QMLE-HL and QMLE-HLO. The proposed
estimating procedures present good finite sample performances and support the theoretical results derived in Section 3.
For each estimation method, as the number of low-frequency or high-frequency observations increases, the MSEs decrease.
When comparing the two methods, the QMLE-HLO has smaller MSE than the QMLE-HL. Thus, it is reasonable to conclude
that additional option data help to enhance the estimation of model parameters.

The major motivation of our model proposal is to predict future volatilities by taking advantage of the imposed
autoregressive type of model structure at the low-frequency. So we examined the finite sample performance of the
proposed predictors ĥi (̂θGH ) and ĥi (̂θGHO), where θ̂GH and θ̂GHO are defined in (3.5) and (3.8), respectively, and ĥi(·) is
given by (3.3). For comparison purpose, we as well investigated the prediction performance of the unified GARCH-Itô
model proposed by Kim and Wang (2016), and denote the predictor by ĥi0 (̂θGH0 ). Specifically, we evaluated the mean
squared prediction errors (MSPEs) by

1
n − h

n∑ (
Ĥi − hi(θ )

)2
,

i=h+1
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Table 1
The mean squared errors (MSEs) for the jump process parameters ωL and λ given n = 125, 250, 500, 1000 and m = 390, 780, 2340, 23 400.

MSE

ωL λ

n \ m 390 780 2340 23400 390 780 2340 23400

125 5.461 × 10−4 1.288 × 10−4 1.317 × 10−5 4.149 × 10−8 457.691 329.315 180.923 1.868
250 5.335 × 10−4 1.244 × 10−4 1.231 × 10−5 3.960 × 10−8 456.705 327.808 177.606 1.609
500 5.232 × 10−4 1.213 × 10−4 1.190 × 10−5 3.921 × 10−8 453.558 327.112 176.499 1.480
1000 5.182 × 10−4 1.193 × 10−4 1.159 × 10−5 3.859 × 10−8 450.895 325.991 175.006 1.227

Table 2
The mean squared errors (MSEs) for the QMLE-HL and QMLE-HLO methods on estimating realized GARCH volatility parameters for n =

25, 250, 500, 1000 and m = 390, 780, 2340, 23 400.
n m MSE × 103

QMLE-HL QMLE-HLO

ωg αg βg γ ωg αg βg γ a b σe

125

390 22.514 83.956 401.751 80.986 6.349 70.967 220.209 73.972 13.829 7.301 2.707
780 13.874 59.539 263.366 64.944 1.946 52.000 64.073 55.349 5.973 5.622 1.456
2340 12.759 27.847 154.776 32.416 1.549 21.814 55.391 27.515 3.915 5.341 0.896
23400 11.414 9.172 100.052 12.784 1.430 2.500 36.110 2.417 1.801 2.574 0.057

250

390 9.197 76.620 266.625 75.162 3.862 69.965 169.024 65.612 11.865 3.784 2.018
780 4.645 50.045 146.061 58.639 1.106 46.422 34.844 50.483 4.224 3.189 1.426
2340 3.604 20.791 73.631 25.116 0.850 19.384 27.946 20.633 2.154 2.947 0.723
23400 3.089 4.571 47.478 5.838 0.762 1.356 16.774 1.209 1.135 1.557 0.029

500

390 4.552 71.620 187.886 69.883 2.633 65.360 140.817 60.363 10.524 2.300 1.895
780 1.767 46.471 71.798 53.530 0.561 42.864 18.012 45.275 2.939 1.983 1.357
2340 1.232 17.835 42.019 18.183 0.421 13.502 16.107 15.762 1.288 1.873 0.597
23400 1.108 2.127 24.276 2.645 0.390 0.718 8.779 0.609 0.611 0.841 0.014

1000

390 2.544 69.202 139.960 60.467 1.808 60.128 126.474 52.889 9.530 1.694 1.646
780 0.706 44.901 34.083 44.476 0.293 38.988 8.461 36.868 1.942 1.569 1.174
2340 0.522 16.317 23.354 13.971 0.271 10.613 7.610 8.862 0.855 1.222 0.500
23400 0.454 1.087 13.779 1.301 0.247 0.366 4.518 0.306 0.325 0.436 0.007

where Ĥi is one of the followings: ĥi (̂θGH ), ĥi (̂θGHO), or ĥi0 (̂θGH0 ). As a benchmark, we as well considered the prediction
f hi(θ ) using RVi−1. We let the initial forecast origin to be h = n − 20 and expanded the observation window by one

low-frequency period at a time. Each time, the model parameters were estimated and the predictors were obtained.
Table 3 summarizes the MSPEs and Fig. 1 presents the log MSPEs against the number of high-frequency observations.

Overall, the MSPE for the realized GARCH-Itô approach decreases as the number of low-frequency or high-frequency
observations increases. Moreover, the QMLE-HLO method presents the best performance regarding the MSPE. That is,
the numerical results indicate that utilizing information contained in an additional data source can improve both the
estimation and prediction performance of the proposed methodology. On the other hand, the unified GARCH-Itô model
is not capable of explaining the rich dynamics in order to predict the conditional integrated volatilities. This may be
because it takes into account neither the realized volatility nor the jump variation as an innovation. The benchmark
method does not perform well because the realized GARCH-Itô model has rich dynamics that cannot be fully captured by
the jump-adjusted MSRV method.

5. Empirical analysis

In this section, we illustrate the proposed estimation methods with trading data in second for S&P500 stock index
and option data quoted at the market opening on each trading day, where S&P500 stock index is the underline asset.
The data sets were obtained from the TAQ and the CBOE database, respectively. We examined the period from January
3rd, 2017 to December 31th, 2018 so that the number of low-frequency periods is n = 502. The high-frequency data are
available between open and close of the market so that the number of high-frequency observations for a full trading day is
m = 23 400. We followed the procedure given in Fan and Wang (2007) to detect jumps, as well as to compute the jump
variation estimates JVi’s and jump-adjusted MSRV estimates RVi’s. We estimated the intensity λ by the daily averaged
number of price jumps, and the parameter ωL by the sample median of all squared price jumps because the sample
median better described the center of the distribution formed by squared jumps. The estimated values are λ̂ = 25.938 and
ωL = 3.675× 10−8. For the option data, we followed the procedure presented in Todorov (2019) as their empirical study
covered a similar period and considered the S&P500 index as well. Specifically, we took the option contracts where the
time to expiration ranges from 1 to 2 business days and skipped the contracts that were settled on a holiday. The average
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Table 3
The mean squared prediction errors (MSPEs) of the realized GARCH volatility predictors hi(θ ) proposed in
realized GARCH-Itô model with the QMLE-HL and the QMLE-HLO methods, the GARCH volatility predictor hi0(θ0)
proposed in unified GARCH-Itô model (Kim and Wang, 2016), and the benchmark jump-adjusted MSRV method
for n = 125, 250, 500, 1000 and m = 390, 780, 2340, 23 400.
n m MSPE × 102

Realized GARCH-Itô Unified GARCH-Itô Jump-adjusted

QMLE-HL QMLE-HLO QMLE-HL MSRV

125

390 4.017 3.303 7.560 7.869
780 2.119 1.839 7.570 5.287
2340 1.296 1.141 8.284 3.229
23400 0.578 0.459 8.806 1.205

250

390 3.819 3.240 7.957 7.959
780 1.990 1.715 8.088 5.346
2340 1.206 1.035 9.182 3.284
23400 0.500 0.438 9.593 1.231

500

390 3.657 3.101 8.127 8.004
780 1.860 1.657 8.138 5.478
2340 1.007 0.911 8.483 3.286
23400 0.438 0.396 9.664 1.202

1000

390 3.501 2.998 8.052 7.963
780 1.775 1.601 8.378 5.403
2340 0.903 0.852 8.474 3.165
23400 0.401 0.389 9.141 1.235

Fig. 1. The log mean squared prediction errors (MSPEs) of the realized GARCH volatility predictors hi(θ ), the GARCH volatility predictors hi0(θ0) and
the benchmark jump-adjusted MSRV predictors RVi−1 against m for the different n choices.

umber of strikes per date was 62.843 and the values of the tuning parameters were set to be the same as in Todorov
2019). Denote the option-based nonparametric volatility estimates by NVi’s. Fig. 2 displays the auto- and cross-correlation
unctions (Brockwell and Davis, 2016) for the RVi’s, JVi’s, and NVi’s, which provides promising evidence for explaining the
ich dynamics with these innovations. The QMLE-HL estimates are ω̂g

= 1.224 × 10−6, α̂g
= 0.717, β̂g

= 0.452, and
= 0.225, and the QMLE-HLO estimates are ω̂g

= 3.450 × 10−7, α̂g
= 0.512, β̂g

= 2.375, γ̂ = 0.305, â = 0.812, b̂ =

.198×10−6, σ̂e = 4.298×10−6. The parameter ωg denotes the intercept term in the realized GARCH volatility dynamics
hile the parameter b denotes the intercept term in model (3.6). Their small estimated values reflect the overall level of
aily volatilities that can be seen in Fig. 3.
Fig. 3 displays the jump-adjusted MSRV estimates, the option-based nonparametric volatility estimates, the realized

ARCH volatility estimates from the QMLE-HL and the QMLE-HLO. For comparison purpose, we as well present the
ARCH volatilities adopted in the unified GARCH-Itô model (Kim and Wang, 2016). Fig. 3 shows that the nonparametric
ump-adjusted MSRV and the option-based nonparametric volatility estimates are both volatile, and the realized GARCH
olatility estimates from the QMLE-HL and QMLE-HLO methods can account for these dynamics well. Moreover, when
omparing with the unified GARCH-Itô estimates, the proposed realized GARCH-Itô estimates are closer to the jump-
djusted MSRV estimates. This may be because the realized GARCH-Itô model includes realized volatilities and jump
ariations as innovations while the unified GARCH-Itô model comprises squared daily log returns as innovations. That is,
he proposed structure in the realized GARCH-Itô model helps to capture the market dynamics promptly.

To investigate the prediction performance of the proposed methodologies, we employed the MSPE criteria again. De-
ote the forecast origin by h. To further examine the dependency of split points, we took h = 376, 397, 420, 439, 462, 483,
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Fig. 2. Auto-correlation function (ACF) and cross-correlation function (CCF) plots (Brockwell and Davis, 2016) for the time series of the daily
jump-adjusted MSRV (RV) estimators, the daily jump variation (JV) estimators and the daily nonparametric volatility (NV) estimators with option
data.

Fig. 3. Daily volatility estimates with (1) RV: jump-adjusted MSRV estimates
√
RVi; (2) NV: option-based nonparametric volatility estimates:

√
NVi;

(3) GH: realized GARCH volatility estimates
√̂
hi (̂θGH ) with the QMLE-HL; (4) GHO: realized GARCH volatility estimates

√̂
hi (̂θGHO) with the QMLE-HLO;

5) GH_0: GARCH volatility estimates
√
hi0 (̂θGH0 ) given the unified GARCH-Itô model..

where each value corresponds to the last trading day of June, July, August, September, October, and November in the
year of 2018. Since the exact conditional daily integrated volatilities are unknown for empirical data, we used the
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Table 4
The mean squared prediction errors (MSPEs) of the realized GARCH-Itô estimates with the QMLE-HL and the
QMLE-HLO, the unified GARCH-Itô estimates with the QMLE-HL, and the jump-adjusted MSRV estimates.
Forecast origin MSPE × 109

Realized GARCH-Itô Unified GARCH-Itô Jump-adjusted

QMLE-HL QMLE-HLO QMLE-HL MSRV

h = 376 2.527 2.323 3.141 2.655
h = 397 3.024 2.770 3.744 3.177
h = 420 3.851 3.510 4.766 4.040
h = 439 5.005 4.536 6.189 5.251
h = 462 4.052 3.913 6.813 4.134
h = 483 6.628 5.073 12.559 6.578

jump-adjusted MSRV estimates instead and evaluated the following MSPE:

1
n − h

n∑
i=h+1

(
Ĥi − RVi

)2
,

where Ĥi is one of the followings: ĥi (̂θGH ), ĥi (̂θGHO), ĥi0 (̂θGH0 ), or RVi−1, and ĥi(·) is defined in (3.3).
Table 4 summarizes the MSPEs from the realized GARCH-Itô, the unified GARCH-Itô, and the jump-adjusted MSRV

estimates. Overall, the proposed realized GARCH-Itô estimates outperform the other methods in terms of the MSPE across
various split points. When comparing the realized GARCH-Itô estimates, the QMLE-HLO presents smaller MSPE than
the QMLE-HL. The empirical results indicate that the realized GARCH-Itô model holds advantages in predicting future
volatilities as it utilizes the autoregressive structure in daily integrated volatilities and emphasizes high-frequency based
information by using both realized volatilities and jump variations as innovations. Moreover, incorporating option-based
nonparametric volatility estimates could help to predict future volatilities.

6. Conclusion

In this paper, we introduce a novel realized GARCH-Itô model based on a jump–diffusion process which embeds the
discrete realized GARCH model structure (Hansen et al., 2012) in its instantaneous volatility process. When the model
s restricted to the low-frequency period, it employs an autoregressive type structure to explain the co-dynamics in
he integrated volatilities and jump variations. Model parameters in the realized GARCH-Itô model are estimated by
aximizing a quasi-likelihood function. To improve the statistical performance of the proposed estimating approach
nd to incorporate additional information from option data, we as well connect the nonparametric volatility estimator
roposed by Todorov (2019) with the conditional integrated volatility from the proposed model. A joint quasi-likelihood
unction is then adopted and we show that this method helps to improve accounting for the market dynamics in the
umerical analysis.
We also leave some open issues for future study. For example, we may observe some heterogeneous variance in

odel (3.6). One possible approach is to generalize the homogeneous variance in (3.6) to heterogeneous variance such as
replacing σ 2

e by σ 2
e h

ζ

i (θ ), where parameter ζ > 0 is used to adjust the level of heteroscedasticity with ζ = 0 corresponding
to the homogeneous case. We replace σ 2

e by σ 2
e ĥ

ζ

i (θ ) in the quasi-likelihood L̂GHOn,m (φ) given by (3.7) and then estimate ζ
jointly with the other parameters by maximizing L̂GHOn,m (φ). Moreover, it is important to explore further about the optimal
approach to combine and model the return and option data for volatility estimation.
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ppendix A

Let C > 0 and 0 < ρ < 1 be generic constants whose values are free of θ , φ, n, and m and may change from occurrence
to occurrence.

A.1. Proof of Proposition 1

roof of Proposition 1. For k, n ∈ N, let

R(k) ≡

∫ n

n−1

(n − t)k

k!
σ 2
t (θ )dt.

By the Itô’s Lemma, we have

R(k) =
(k + 1)ν
(k + 3)!

+
γω1 − ω2 + γ σ 2

n−1(θ )
(k + 1)!

+
ω2 − 2γω1 + (1 − 2γ )σ 2

n−1(θ )
(k + 2)k!

+
γω1 + γ σ 2

n−1(θ )
(k + 3)k!

+
βλωL

(k + 2)!
+ αR(k + 1)

+ β

∫ n

n−1

(n − t)k+1

(k + 1)!
MtdΛt + β

∫ n

n−1

(n − t)k+1

(k + 1)!
ωL(dΛt − λdt)

+ 2ν
∫ n

n−1

(
(n − t)k+2

(k + 1)!
−

(n − t)k+2

(k + 2)!

)
ZtdZt .

Then simple algebraic manipulations show∫ n

n−1
σt (θ )2dt = R(0) = (ϱ2 − 2ϱ3)ν + ϱ2βλωL + 2ϱ3γω1 − ϱ2ω2 + (ϱ1 − ϱ2 + 2γ ϱ3)σ 2

n−1(θ ) + DJ
n + Dc

n a.s.

ince

σ 2
n (θ ) = ω + γ σ 2

n−1(θ ) + α

∫ n

n−1
σ 2
s (θ )ds + β

∫ n

n−1
L2s dΛs,

e have

hn(θ ) = (ϱ2 − 2ϱ3)ν + ϱ2βλωL + 2ϱ3γω1 − ϱ2ω2 + (ϱ1 − ϱ2 + 2γ ϱ3)σ 2
n−1(θ )

= (ϱ2 − 2ϱ3)ν + ϱ2βλωL + 2ϱ3γω1 − ϱ2ω2

+ (ϱ1 − ϱ2 + 2γ ϱ3)
(
ω + γ σ 2

n−2(θ ) + α

∫ n−1

n−2
σ 2
s (θ )ds + β

∫ n−1

n−2
L2s dΛs

)
= ωg

+ γ hn−1(θ ) + αg
∫ n−1

n−2
σ 2
s (θ )ds + βg

∫ n−1

n−2
L2t dΛt ,

here ωg , αg and βg are defined in (2.7). Thus, we have∫ n

n−1
σt (θ )2dt = hn(θ ) + Dn,

here Dn = Dc
n + DJ

n. Since the integrand of Dc
n is predictable, Dn is a martingale difference. Proposition 1(b) and (c) can

e showed immediately following the results of Proposition 1(a). ■

.2. Proof of Theorem 1

Maximizing L̂GHn,m proposed in Section 3.2 is equivalent to maximizing

L̂GHn,m = −
1
2n

n∑[
log(̂hi(θ )) +

RVi

ĥ (θ )

]
.

i=1 i
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e focus on L̂GHn,m defined above in this proof. Define

L̂GHn,m(θ ) = −
1
2n

n∑
i=1

[
log(̂hi(θ )) +

RVi

ĥi(θ )

]
= −

1
2n

n∑
i=1

l̂GHi (θ ) and ψ̂GH
n,m(θ ) =

∂̂LGHn,m(θ )
∂θ

;

L̂GHn (θ ) = −
1
2n

n∑
i=1

[
log(hi(θ )) +

∫ i
i−1 σ

2
t (θ0)dt

hi(θ )

]
and ψ̂GH

n (θ ) =
∂̂LGHn (θ )
∂θ

;

LGHn (θ ) = −
1
2n

n∑
i=1

[
log(hi(θ )) +

hi(θ0)
hi(θ )

]
and ψGH

n (θ ) =
∂LGHn (θ )
∂θ

.

To ease notations, we denote derivatives of any given function g at x0 by

∂g(x0)
∂x

=
∂g(x)
∂x

⏐⏐⏐⏐⏐
x=x0

.

Lemma 1 in Kim and Wang (2016) shows that the dependence of hi(θ ) on the initial value decays exponentially. Thus,
we may use the true initial value σ 2

0 (θ0) during the rest of the proofs.

Lemma 1. Under Assumption 1(a)–(f), we have

(a) E
(
R2
i

)
= E

(∫ i
i−1 σ

2
t (θ0)dt

)
= E {hi(θ0)}, supi∈N E(R2

i ) ≤
ω
g
0+β

g
0 λωL

1−αg0−γ0
+ E(h1(θ0)) < ∞, and supi∈N E(supθ∈Θ hi(θ )) < ∞;

(b) for any p ≥ 1,

sup
i∈N

sup
θ∈Θ

ĥ−1
i (θ )

∂ ĥi(θ )
∂θj


Lp

≤ C, sup
i∈N

sup
θ∈Θ

ĥ−1
i (θ )

∂ 2̂hi(θ )
∂θj∂θk


Lp

≤ C, and sup
i∈N

sup
θ∈Θ

ĥ−1
i (θ )

∂ 3̂hi(θ )
∂θj∂θk∂θl


Lp

≤ C

for any j, k, l ∈ {1, 2, 3, 4}, where θ = (θ1, θ2, θ3, θ4) = (ωg , αg , βg , γ ).

roof of Lemma 1. The statements can be showed similar to the proofs of Lemma 2 (Kim and Wang, 2016). ■

emma 2. Under Assumption 1(a)–(d), we have

(a) there exists a neighborhood B(θ0) of θ0 such that

sup
i∈N

 sup
θ∈B(θ0)

∂ 3̂lGHi (θ )
∂θj∂θk∂θl


L1

< ∞

for any j, k, l ∈ {1, 2, 3, 4} where θ = (θ1, θ2, θ3, θ4) = (ωg , αg , βg , γ );
(b) −▽ψGH

n (θ0) is a positive definite matrix for n ≥ 5.

Proof of Lemma 2. The proof is in the online Appendix.

Lemma 3. Under Assumption 1(a)–(f), we have

sup
θ∈Θ

⏐⏐̂LGHn,m(θ ) − L̂GHn (θ )
⏐⏐ = Op(m−1/4), (A.1)

sup
θ∈Θ

⏐⏐̂LGHn (θ ) − LGHn (θ )
⏐⏐ = op(1), (A.2)

sup
θ∈Θ

⏐⏐̂LGHn,m(θ ) − LGHn (θ )
⏐⏐ = Op(m−1/4) + op(1). (A.3)

roof of Lemma 3. The proof is in the online Appendix.

roposition 2. Under Assumption 1(a)–(d), there is a unique maximizer of LGHn (θ ) and as m, n → ∞, θ̂GH → θ0 in probability.

roof of Proposition 2. The statement can be showed similar to the proofs of Theorem 1 (Kim and Wang, 2016) together
ith the result of Lemma 3. ■

roof of Theorem 1. By the mean value theorem and Taylor expansion, there exists θ∗ between θ0 and θ̂GH such that

ψ̂GH (θ ) − ψ̂GH (̂θGH ) = ψ̂GH (θ ) = −▽ψ̂GH (θ∗)(̂θGH − θ ).
n,m 0 n,m n,m 0 n,m 0
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If −▽ψ̂GH
n,m(θ

∗)
p

→ −▽ψGH
n (θ0) which is a positive definite matrix by Lemma 2(b), the convergence rate of ∥̂θGH − θ0∥max

is the same as that of ψ̂GH
n,m(θ0). Thus, it is enough to show

ψ̂GH
n,m(θ0) = Op(m−1/4) + Op(n−1/2)

and ▽ψ̂GH
n,m(θ

∗) − ▽ψGH
n (θ0)


max = op(1).

First consider ψ̂GH
n,m(θ0) = Op(m−1/4)+ Op(n−1/2). Similar to the proofs of Theorem 2 (Kim and Wang, 2016), we can show

that

ψ̂GH
n,m(θ0) = ψGH

n (θ0) +
1
2n

n∑
i=1

∂hi(θ0)
∂θ

hi(θ0)−1 Di

hi(θ0)
+ Op(m−1/4)

=
1
2n

n∑
i=1

∂hi(θ0)
∂θ

hi(θ0)−1 Di

hi(θ0)
+ Op(m−1/4). (A.4)

y the application of the Itô’s lemma and Itô’s isometry, we can show for any j ∈ {1, 2, 3, 4},

E

⎡⎣( 1
2n

n∑
i=1

∂hi(θ0)
∂θj

hi(θ0)−1 Di

hi(θ0)

)2
⎤⎦ =

1
4n2

n∑
i=1

E

[(
∂hi(θ0)
∂θj

)2

hi(θ0)−2 E
[
D2
i

⏐⏐Fi−1
]

h2
i (θ0)

]

≤
C
n2

n∑
i=1

E

[(
∂hi(θ0)
∂θj

)2

hi(θ0)−2 1
h2
i (θ0)

]

≤
C
n2

n∑
i=1

E

[(
∂hi(θ0)
∂θj

)2

hi(θ0)−2

]
≤ Cn−1,

here the last inequality is due to Lemma 1(b). Similar to the proofs of Theorem 2 (Kim and Wang, 2016) together with
he results of Lemma 2 and Proposition 2, we can show▽ψ̂GH

n,m(θ
∗) − ▽ψGH

n (θ0)

max = op(1). ■

.3. Proof of Theorem 2

roof of Theorem 2. By the mean value theorem and Taylor expansion, we have for some θ∗ between θ0 and θ̂GH ,

−▽ψ̂GH
n,m(θ

∗)(̂θGH − θ0) = ψ̂GH
n (θ0) +

{
ψ̂GH

n,m(θ0) − ψ̂GH
n (θ0)

}
=

1
2n

n∑
i=1

∂hi(θ0)
∂θ

hi(θ0)−1 Di

hi(θ0)
+ Op(m−1/4),

where the second equality is due to (A.4). By the ergodic theorem and the result in the proof of Theorem 1, we have

−▽ψ̂GH
n,m(θ

∗) → B in probability,

and B is a positive definite matrix. For any f ∈ R4, let

di = f T
∂hi(θ0)
∂θ

hi(θ0)−1 Di

hi(θ0)
.

Then di is a martingale difference with E(d2i ) < ∞.
Since

(
Di,
∫ i
i−1 σ

2
t (θ0)dt, R

2
i

)
’s are stationary and ergodic processes, di is also stationary and ergodic. By the martingale

central limit theorem and Cramér-Wold device, we have

−
√
nψ̂GH

n (θ0) =
√
n

1
2n

n∑ ∂hi(θ0)
∂θ

hi(θ0)−1 Di

hi(θ0)
d

→ N(0, AGH ).

i=1
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Pˆ
herefore, by Slutsky’s theorem, we conclude that
√
n(̂θGH − θ0)

d
→ N(0, B−1AGHB−1). ■

A.4. Proof of Theorem 3

Maximizing L̂GHOn,m is equivalent to maximizing

L̂GHOn,m (φ) = −
1
2n

n∑
i=1

[
log(̂hi(θ )) +

RVi

ĥi(θ )

]
−

1
2n

n∑
i=1

[
log σ 2

e +
(NVi−1 − f̂i(ϕ))2

σ 2
e

]
,

where f̂i(ϕ) = b + âhi(θ ). We focus on L̂GHOn,m defined above in this proof. Define

L̂GHOn,m (φ) = −
1
2n

n∑
i=1

[
log(̂hi(θ )) +

RVi

ĥi(θ )

]
−

1
2n

n∑
i=1

[
log σ 2

e +
(NVi−1 − f̂i(ϕ))2

σ 2
e

]
= −

1
2n

n∑
i=1

l̂GHi (θ ) −
1
2n

n∑
i=1

l̂GOi (φ)

and

ψ̂GHO
n,m (φ) =

∂̂LGHOn,m (φ)
∂φ

;

L̂GHOn (φ) = −
1
2n

n∑
i=1

[
log(hi(θ )) +

∫ i
i−1 σ

2
t (θ0)dt

hi(θ )

]
−

1
2n

n∑
i=1

[
log σ 2

e +
(NVi−1 − fi(ϕ))2

σ 2
e

]
nd

ψ̂GHO
n (φ) =

∂̂LGHOn (φ)
∂φ

;

LGHOn (φ) = −
1
2n

n∑
i=1

(
log hi(θ ) +

hi(θ0)
hi(θ )

)
−

1
2n

n∑
i=1

{
log σ 2

e +
[fi(ϕ) − fi(ϕ0)]2 + σ 2

e0

σ 2
e

}
and

ψGHO
n (φ) =

∂LGHOn (φ)
∂φ

.

emma 4. Under Assumptions 1(a)–(f) and 2(a)–(b),

(a) there exists a neighborhood B(φ0) around φ0 such that

sup
i∈N

 sup
φ∈B(φ0)

∂ 3̂lGOi (φ)
∂φj∂φk∂φl


L1

< ∞

for any j, k, l ∈ {1, 2, . . . , 7}, where φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7) = (ωg , αg , βg , γ , a, b, σ 2
e );

(b) −▽ψGHO
n (θ0) is a positive definite matrix for n ≥ 7.

roof of Lemma 4. The proof is in the online Appendix. ■

emma 5. Under Assumptions 1(a)–(f) and 2(a)–(b), we have

sup
φ∈Φ

⏐⏐̂LGHOn,m (φ) − L̂GHOn (φ)
⏐⏐ = Op(m−1/4),

sup
φ∈Φ

⏐⏐̂LGHOn (φ) − LGHOn (φ)
⏐⏐ = op(1),

sup
φ∈Φ

⏐⏐̂LGHOn,m (φ) − LGHOn (φ)
⏐⏐ = Op(m−1/4) + op(1).

roof of Lemma 5. The proof is in the online Appendix. ■

roposition 3. Under Assumptions 1(a)–(f) and 2(a)–(b), there exists a unique maximizer for LGHOn (φ). As m, n → ∞,
φGHO

→ φ in probability, where φ is a vector of true parameters.
0 0
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Proof of Proposition 3. According to the definition of LGHOn (φ), we have

max
φ∈Φ

LGHOn (φ) ≤ −
1
2n

n∑
i=1

min
θi∈Θ

[
log(hi(θi)) +

hi(θ0)
hi(θi)

]

−
1
2n

n∑
i=1

min
φi∈Φ

[
log σ 2

ei +
(fi(ϕi) − fi(ϕ0))2 + σ 2

e0

σ 2
ei

]
.

Then, similar to the proofs in Theorem 1 of Kim and Wang (2016), we can show the uniqueness of the solution of LGHOn (φ),
which together with Lemma 5 implies Proposition 3. ■

roof of Theorem 3. By the mean value theorem and Taylor expansion, we have

ψ̂GHO
n,m (̂φGHO) − ψ̂GHO

n,m (φ0) = −ψ̂GHO
n,m (φ0) = ∇ψ̂GHO

n,m (φ∗)(̂φGHO
− φ0),

here φ∗ is between φ0 and φ̃GHO. According to Lemma 4(b), −∇ψGHO
n (φ0) is a positive definite matrix. If −∇ψ̂GHO

n,m (φ∗)
p

−→

∇ψGHO
n (φ0), then the convergence rate of φ̂GHO

− φ0 is the same as the convergence rate of ψ̂GHO
n,m (φ0).

By the similar arguments in the proof of Theorem 1, we can showψ̂GHO
n,m (φ0) − ψ̂GHO

n (φ0)

L1

≤ Cm−1/4.

e have

ψ̂GHO
n (φ0) =

1
2n

n∑
i=1

(
Di

h2i (θ0)
∂hi(θ0)
∂ϕ

0

)
−

1
2n

n∑
i=1

⎛⎝−2ei
σ2
e0

∂ fi(ϕ0)
∂ϕ

1
σ2
e0

−
e2i
σ4
e0

⎞⎠ . (A.5)

he arguments in the proof of Theorem 1 show that the first term of the right side of (A.5) is Op(n−1/2). Since ei is
ndependent of ∂ fi(ϕ0)

∂ϕ
, the second term of the right side of (A.5) is also Op(n−1/2). Thus, the convergence rate of ψ̂GHO

n,m (φ0)
is n−1/2

+ m−1/4.
Similar to the proof of Theorem 1, we can show∇ψ̂GHO

n,m (φ∗) − ∇ψGHO
n (φ0)


max = op(1).

Therefore, the statement is proved. ■

A.5. Proof of Theorem 4

Proof of Theorem 4. Since the mean value theorem and Taylor expansion provide

ψ̂GHO
n,m (̂φGHO) − ψ̂GHO

n,m (φ0) = −ψ̂GHO
n,m (φ0) = ∇ψ̂GHO

n,m (φ∗)(̂φGHO
− φ0),

where φ∗ is between φ0 and φ̂GHO, we have
√
n(̂φGHO

− φ0) = −
√
n
(
∇ψGHO

n (φ0) + op(1)
)−1

ψ̂GHO
n (φ0) + op(1),

where the equality can be showed similar to the proof of Theorem 1. Since ei is independent of Di and
(
Di, ei, Z2

i

)
is

stationary and ergodic, by the Cramér-Wold device and the martingale central limit theorem, we have

√
nψ̂GHO

n (φ0) =

√
n

2n

n∑
i=1

(
Di

h2i (θ0)
∂hi(θ0)
∂ϕ

0

)
−

√
n

2n

n∑
i=1

⎛⎝−2ei
σ2
e0

∂ fi(ϕ0)
∂ϕ

1
σ2
e0

−
e2i
σ4
e0

⎞⎠ d
→ N(0, AGHO).

On the other hand, we have

−∇ψGHO
n (φ0) =

1
2n

(∑n
i=1

∂hi(θ0)
∂ϕ

∂hi(θ0)
∂ϕT

hi(θ0)−2 06×1

0T
6×1 0

)
+

1
2n

( 2
σ2
e0

∑n
i=1

∂ fi(ϕ0)
∂ϕ

∂ fi(ϕ0)
∂ϕT

06×1

0T
6×1

n
σ4
e0

)
p

→BGHO.



410 X. Song, D. Kim, H. Yuan et al. / Journal of Econometrics 222 (2021) 393–410

T
herefore, by the Slutsky’s theorem, we have
√
n(̂φGHO

− φ0)
d

→ N(0, (BGHO)−1AGHO(BGHO)−1). ■

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2020.07.007.
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