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abstract

Quantumstatetomography, whichaimstoestimatequantumstatesthatarede-

scribedbydensity matrices,playsanimportantroleinquantumscienceandquantum

technology.Thispaperexaminestheeigenspaceestimationandthereconstructionof

largelow-rankdensity matrixbasedonPauli measurements.Bothordinaryprincipal

componentanalysis(PCA)anditerativethresholdingsparsePCA(ITSPCA)estimators

oftheeigenspacearestudied,andtheirrespectiveconvergenceratesareestablished.

Inparticular, weshowthattheITSPCAestimatorisrate-optimal. Wepresentthe

reconstructionofthelargelow-rankdensitymatrixandobtainitsoptimalconvergence

ratebyusingtheITSPCAestimator.Anumericalstudyiscarriedouttoinvestigatethe

finitesampleperformanceoftheproposedestimators.

©2020ElsevierB.V.Allrightsreserved.

1.Introduction

Inquantumscienceandquantumtechnology,weoftenneedtolearnandengineerquantumsystems.Aprominent

xampleisquantuminformationscience(NielsenandChuang,2010;Wang,2011,2012;WangandSong,2020).A

quantumsystemisdescribedbyitsstate,thereforeforitsstudy, weneedtoreconstructthequantumstate.Inthe

literature,researchersoftencharacterizethequantumstatebyacomplexmatrixthatistheso-calleddensitymatrixand

refertothereconstructionofthequantumstatebyquantumstatetomography.Traditionally,quantumstatetomography

employsclassicalstatistical modelsand methodstodeducequantumstatesfromquantum measurementsthatare

observationsobtainedfrom measuringidenticallypreparedquantumsystems.Becauseoftheexponentialcomplexity

ofthequantumsystemandtheexponentialgrowthofitscorrespondingdensity matrix,quantumstatetomography

oftenneedstoreconstructthedensitymatrixofhigh-dimension.Itisknownthatclassicalstatisticalmethodsareneither

efficientnoreffectiveinrecoveringthelargedensitymatrix.Inthispaper,weemploymodernhigh-dimensionalstatistics

toinvestigatethereconstructionoflargedensitymatrix.

Caietal.(2016)studiedtheestimationoflargesparsedensitymatrixrepresentedbyPaulimatricesandestablished

theoptimalconvergencerateofitsestimator.However,thesparsityconditionassumedinCaietal.(2016)maynotbe

veryreasonable.Forexample,alow-rankdensity matrixdoesnotsatisfytheconditionunderthePaulirepresentation.

KoltchinskiiandXia(2015)studiedthereconstructionoflow-rankdensitymatrixandinvestigateditsoptimalestimation.

Wenotethattheestimationofeigenspacealsoplaysanimportantroleinthereconstructionofthelow-rankdensity
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atrix, and modern high-dimensional statistics suggest that the optimal estimation of the eigenspace depends on the
parse structure of the eigenvectors. See Birgé (2001), Cai et al. (2013, 2015), Johnstone and Lu (2009), Ma (2013) and
Vu and Lei (2013) for related research works. Koltchinskii and Xia (2015) considered a broad class of low-rank density
matrices that may not be suitable for density matrices with sparse eigenvectors, and as a result, their optimal rate is not
sharp for density matrices with sparse eigenvectors.

This paper considers the eigenspace estimation problem for a quantum spin system based on Pauli measurements. As
all Pauli matrices have ±1 eigenvalues, Pauli measurements also take binary values 1 and −1 while their distributions
correspond to shifted and rescaled binomial distributions (Cai et al., 2016; Wang, 2013). Thus, the eigenspace estimation
problem studied in this paper is a high-dimensional statistics problem with binomial distributions, where both the matrix
size and sample size are allowed to go infinity. To be specific, we analyze the asymptotic behaviors of the principal
component analysis (PCA) estimators and establish their convergence rates under both dense and sparse eigenvector
settings. Under the sparse eigenvector condition, we derive the minimax lower bound for the eigenspace estimation
procedure and demonstrate that the iterative thresholding sparse PCA (ITSPCA) proposed by Ma (2013) can achieve the
minimax lower bound, and therefore the ITSPCA is rate-optimal. The convergence rates and minimax lower bound in this
paper are obtained by asymptotic analysis with binomial distributions instead of usual normal distributions. With the
ITSPCA eigenspace estimator, we can estimate the corresponding eigenvalues and reconstruct the large density matrix.
We show that the constructed low-rank density matrix is also rate-optimal.

The rest of this paper proceeds as follows: Section 2 briefly reviews the quantum state and the density matrix that is
represented through Pauli matrices with its estimation. Section 3 describes the iterative thresholding estimation algorithm
and defines a sparsity condition for eigenvectors. Given the sparsity condition, Section 4 establishes the asymptotic theory
for the iterative thresholding estimator and derives the minimax lower bound for eigenspace estimation under spectral
and Frobenius norms, where both the matrix size and sample size are allowed to go to infinity. Section 5 proposes the
eigenvalue and low-rank density matrix estimators and derives their convergence rates. Section 6 features numerical
tudies to illustrate the finite sample performances of the proposed estimators. All proofs are collected in Section 7 and
urther technical details are presented in the Appendix.

. Review for quantum state tomography

.1. Quantum state and density matrix

For a d-dimensional quantum system, we describe its quantum state by a density matrix ρ on the d-dimensional
omplex space Cd, where the density matrix ρ is a d-by-d complex matrix satisfying (1) Hermitian, that is, ρ is equal to its
onjugate transpose; (2) positive semi-definite; (3) unit trace. The density matrix ρ can be expressed by the d-dimensional
Pauli matrices. To be specific, let

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −

√
−1

√
−1 0

)
, and σ3 =

(
1 0
0 −1

)
,

here σ1, σ2, and σ3 are called Pauli matrices. High-dimensional Pauli matrices are defined through Tensor products. Let
d = 2b for some integer b. We form b-fold tensor products of σ0, σ1, σ2, and σ3 to obtain the d-dimensional Pauli matrices

GP =
{
Bj = σℓ1 ⊗ σℓ2 ⊗ · · · ⊗ σℓb , (ℓ1, ℓ2, . . . , ℓb) ∈ {0, 1, 2, 3}b

}
,

nd the cardinality of GP is p = 4b. We set B1 = Id, where Id is the d-dimensional identity matrix. Denote by Cd×d the
pace of all d-by-d complex matrices equipped with the Frobenius norm. Proposition 1 in Cai et al. (2016) showed that
ll Pauli matrices B1, . . . ,Bp form an orthogonal basis for complex Hermitian matrices in Cd×d, and any density matrix ρ
an be expanded under the Pauli basis as follows:

ρ = d−1

⎛⎝Id +

p∑
j=2

βjBj

⎞⎠ ,
here coefficients βj’s satisfy βj = tr(ρBj) and |βj| ≤ 1.

.2. Pauli measurements and density matrix estimation

The Pauli matrices are widely used in quantum physics and quantum information science to perform quantum
easurements, and quantummeasurements are often based on observables, where an observable is defined as a Hermitian
atrix on Cd. To be specific, suppose that an experiment is conducted to perform measurements on each Pauli observable
j independently for n quantum systems that are identically prepared under the same quantum state ρ. As each Bj has
igenvalues ±1, the theory of quantum mechanics indicates that the Pauli measurements take values 1 and −1, and thus
re Bernoulli trials. Denote by N the average of the n measurement outcomes obtained from measuring B , j = 2, . . . , p.
j j
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hen n(Nj + 1)/2 obeys a binomial distribution with n trials and cell probability (1 + βj)/2, where E(Nj) = βj and
ar(Nj) = (1 − β2

j )/n (Cai et al., 2016). The goal of this paper is to estimate eigenspace of ρ based on data N2, . . . ,Np.
To estimate the eigenspace of the density matrix ρ, we first need an initial estimator of ρ based on the Pauli

easurements N2, . . . ,Np. Given the binomial distribution, we easily derive that each Nj is the MLE and UMVUE of βj.
hus, a natural estimator of ρ is given by

ρ̂ = (̂ρij)i,j=1,...,d =
1
d

⎛⎝Id +

p∑
j=2

β̂jBj

⎞⎠ , (2.1)

here β̂j = Nj.

. Eigenspace estimation

.1. Eigen-decomposition of density matrix

Assume that a density matrix ρ has finite rank r . By the spectral decomposition, we have

ρ =

r∑
ν=1

λνqνq†
ν, (3.1)

here λν ’s are eigenvalues such that λ1 ≥ λ2 ≥ · · · ≥ λr > 0 and
∑r

ν=1 λν = 1, moreover, q1, . . . , qr ∈ Cd are their
corresponding eigenvectors.

In this paper, we consider estimation of the eigenspace spanned by the first m eigenvectors of ρ, that is, our aim is
to estimate the eigenspace generated by Q = (q1, . . . , qm) ∈ Cd×m, where m is a given integer. To make the eigenspace
estimation problem well defined, we need to assume that m ≤ r and λm − λm+1 > Cλ for some generic positive constant
Cλ free of n and d, that is, there is a gap between eigenvalues λm and λm+1 so that the corresponding eigenspaces are well
separated for investigating asymptotic properties of the eigenspace estimation.

3.2. Ordinary PCA

We define the eigenspace estimator of Q by the eigenspace spanned by the first m eigenvectors of the density matrix
estimator ρ̂ in (2.1). As the m eigenvectors are from ordinary PCA, the defined eigenspace estimator is called the ordinary
PCA estimator and is denoted by Q̂. Before investigating its asymptotic properties, we first fix some notations. For
x = (x1, . . . , xd)⊤ ∈ Cd and A = (Aij) ∈ Cd×d, define the ℓα-norms,

∥x∥α =

(
d∑

i=1

|xi|α
)1/α

, ∥A∥α = sup{∥Ax∥α , ∥x∥α = 1}, 1 ≤ α ≤ ∞.

Then the matrix spectral norm ∥A∥2 is equal to square root of the largest eigenvalue of AA†. Moreover, note that

∥A∥1 = max
1≤j≤d

d∑
i=1

|Aij|, ∥A∥∞ = max
1≤i≤d

d∑
j=1

|Aij|.

and we have the following inequality,

∥A∥
2
2 ≤ ∥A∥1 ∥A∥∞ .

The matrix Frobenius norm is denoted by ∥A∥F =
√
tr(A†A). For a symmetric or complex Hermitian matrix A, ∥A∥F is the

quare root of the sum of squared eigenvalues, ∥A∥2 is equal to its largest absolute eigenvalue, and ∥A∥2 ≤ ∥A∥1 = ∥A∥∞.
Denote by C a positive generic constant whose values are free of n and p and may change from appearance to appearance.
For positive sequences ϕn,d and ψn,d depend on n and d, we use ϕn,d ≍ ψn,d to denote that their ratio ϕn,d/ψn,d is
asymptotically bounded by positive generic constants from both below and above as n, d → ∞.

To measure the performances of proposed eigenspace estimators, we define a notation for the distance between
eigenspaces. To be specific, the distance between two eigenspaces spanned by Q1 and Q2 is defined by

∥ sin(Q1,Q2)∥2
F = ∥Q1Q†

1(Q2Q†
2)

⊥
∥
2
F (3.2)

and
2 † † ⊥ 2
∥ sin(Q1,Q2)∥2 = ∥Q1Q1(Q2Q2) ∥2, (3.3)
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here Q1Q†
1 and Q2Q†

2 are projection matrices on eigenspaces Q1 and Q2, respectively, and for a given projection matrix
, we have P⊥

= Id − P. The distances refer to the canonical angles between Q1 and Q2 that generalize the notion of
ngles between lines.
The following theorem establishes the convergence rate of the ordinary PCA estimator.

heorem 1. Suppose that one of the following conditions is satisfied,

(i) nα1 ≤ d ≤ exp(nα2 ) for some α1 > 1/2 and α2 < 1;
(ii) d ≤ n1/2 and log n

d → 0 as n → ∞.

hen we have

sup
Q∈Vd,m

E
[
∥ sin(Q, Q̂)∥2

2

]
≤ sup

Q∈Vd,m

E
[
∥ sin(Q, Q̂)∥2

F

]
≤ Cn−1, (3.4)

here Vd,m = {Q ∈ Cd×m
: Q†Q = Id} is the complex Stiefel manifold of d-by-m orthonormal matrices, and C is a generic

onstant free of n and d.

emark 1. Theorem 1 shows that the convergence rate for the ordinary PCA estimator is n−1/2 regardless of sparsity
ondition on eigenvectors. As the PCA approach does not utilize any sparse eigenvectors, it can achieve only n−1/2

onvergence rate even for a density matrix with sparse eigenvectors. We will show later that this convergence rate is
uboptimal for the sparse case. Also due to the proof techniques used we leave some gaps for d in the conditions (i) and
ii), that is, d is between n1/2 and nα1 or below log n. However, as α1 can be very close to 1/2, and the classical PCA theory
ndicates that the theorem is true for the case of fixed d, the gaps are very small. Of course future work may resolve this
ssue.

.3. Iterative thresholding sparse PCA

As the complexity of a quantum system increases exponentially with its components, the dimension d of the density
atrix grows exponentially and is often very large. In usual high-dimensional statistics, we may impose sparsity condition
n the eigenvectors of the density matrix and estimate the eigenspace spanned by the first m sparse eigenvectors
ccordingly. For A ∈ Cd×m, AIJ denotes the submatrix of A formed by rows and columns whose indices are in I and J ,
espectively, where I and J are subsets of {1, . . . , d}. When I or J includes all the indices, we replace them with dot. For
xample, A·J is the submatrix of A with all rows and columns indexed by J .
We now impose the sparsity condition on the first r eigenvectors of ρ defined in (3.1) as follows: For each ν = 1, . . . , r ,

ssume that for some δ ∈ [0, 2),

qν ∈ Ξδ(π (d))
def
=

{
a = (a1, . . . , ad) :

d∑
ν=1

|aν |δ ≤ π (d) and
d∑
ν=1

|aν |2 = 1

}
, (3.5)

here π (d) is a deterministic function of d that diverges slowly such as log d. Sparsity conditions are often employed in
igh-dimensional statistics, including sparse covariance matrix estimation (Bickel et al., 2008; Cai and Liu, 2011; Cai and

Zhou, 2012), sparse integrated volatility matrix estimation (Kim et al., 2018, 2016; Tao et al., 2013a,b; Wang and Zou,
2010), and sparse PCA (Birnbaum et al., 2013; Kim and Wang, 2016; Johnstone and Lu, 2009; Ma, 2013; Vu and Lei, 2013;
Vu et al., 2013).

The orthogonal iteration may be used to compute the leading eigenspace of a given Hermitian matrix (Golub and
Van Loan, 1996), which yields the ordinary PCA estimator. As we have shown in Section 3.2, the ordinary PCA estimator
has the convergence rate of n−1/2. However, the ordinary PCA approach may not be the best for the sparse eigenvector
estimation in terms of mean squared error (MSE). To obtain better eigenspace estimators under the sparsity condition
in (3.5), we employ iterative thresholding algorithm known as the iterative thresholding sparse PCA (ITSPCA) proposed
by Ma (2013) and described in Algorithm 1.

As presented in Algorithm 1, the ITSPCA method has three steps: multiplication, thresholding, and QR factorization.
Without the thresholding step, the ITSPCA method returns to the ordinary orthogonal iteration method. The thresholding
step removes weak signal elements of T(k) with a user-specified thresholding function T which satisfies

|T (t, γ ) − t| ≤ γ and T (t, γ )1(|t|≤γ ) = 0 for all t and all γ > 0, (3.6)

where 1E denotes the indicator function of an event E. We note that both hard thresholding rule TH (t, γ ) = t 1(|t|>γ ) and
soft thresholding rule TS(t, γ ) = e

√
−1 θ max(0, |t| − γ ) satisfy (3.6), where t = |t|e

√
−1 θ , and θ is the phase of complex

umber t .
To harness the ITSPCA algorithm in Algorithm 1, we need an appropriate initial orthonormal matrix Q̂(0). Johnstone and

Lu (2009) introduced a diagonal thresholding sparse PCA (DTSPCA) method to estimate the eigenspace and showed its
consistency. We propose to use the DTSPCA described in Algorithm 2 to obtain Q̂(0). Given the output Q̂S = (̂q1, . . . , q̂|S|),
e may take its firstm columns as the initial orthogonal matrix Q̂(0)

= (̂q1, . . . , q̂m) for Algorithm 1. We choose cq = 0.001
in the numerical study.
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Algorithm 1 Iterative thresholding sparse PCA (ITSPCA)

Input:

(1) Estimated density matrix ρ̂;
(2) Target subspace dimension m;
(3) Initial orthonormal matrix Q̂(0);
(4) Thresholding function T (t, γ ), and threshold levels γnj, j = 1, . . . ,m.

1: repeat
2: Multiplication: T(k)

= (t (k)νj ) = ρ̂Q̂(k−1);
3: Thresholding: T̂(k)

= (̂t (k)νj ), with t̂ (k)νj = T (t (k)νj , γnj);
4: QR factorization: Q̂(k)R̂(k)

= T̂(k);
5: until ∥Q̂(k)

− Q̂(k−1)
∥F ≤ cq for some pre-chosen small cq.

Algorithm 2 Diagonal thresholding sparse PCA (DTSPCA)

Input:

(1) Estimated density matrix ρ̂;
(2) Diagonal thresholding parameter αn.

Output: Orthonormal matrix Q̂S .
1: Selection: select the set S of coordinates:

S = {ν : ρ̂νν ≥ αn};

2: Reduced PCA: compute the eigenvectors, q̂S
1, . . . , q̂

S
|S|, of the submatrix ρ̂SS ;

3: Zero-padding: construct Q̂S = (̂q1, . . . , q̂|S|) such that

q̂jS = q̂S
j , q̂jSc = 0, j = 1, . . . , |S|.

4. Asymptotic theory for the eigenspace estimation

4.1. Convergence rates of PCA estimators

Assume that density matrix ρ belongs to the following class,

Fδ(π (d)) =

{
ρ =

r∑
ν=1

λνqνq†
ν : qν ∈ Ξδ(π (d)) for all ν ∈ {1, . . . , r}

}
, (4.1)

here Ξδ(π (d)) is defined in (3.5). For the eigenspace Q of the density matrix ρ, we consider the ITSPCA estimator Q̂(Rs)

where Rs is the number of iterations after which Algorithm 1 stops for a theoretical study where

Rs =

⌈
1.1ℓS1

ℓSm − ℓSm+1
(log n + 0.5 log(d ∨ n))

⌉
,

[ ] denotes ceiling, ℓSj = ℓj (̂ρSS) ∨ 0, and ℓj (̂ρSS) is the jth largest eigenvalue of ρ̂SS .
The following theorem establishes the convergence rate of the eigenspace estimator Q̂(Rs) obtained from Algorithm 1.

Theorem 2. Assume the density matrix ρ given by model (3.1) belongs to Fδ(π (d)) defined in (4.1) so that for some
δ ∈ (0, 2/3),

π (d) ≤ Cτ 3δ/4−1/2
n , (4.2)

where τn =

√
log(d∨n)

nd , and C is a constant free of d and n. Take αn = Cατn in Algorithm 2 and γnj = Cγ
√
ℓSj τn in Algorithm 1

for some constant Cα and Cγ free of n and d, and let

R =

⌈
λ1 (log n + 0.5 log(d ∨ n))

⌉
.

λm − λm+1
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hen there exist constants C0 and Cu such that for (n, d, π (d)) satisfying (4.2), uniformly over Fδ(π (d)), with probability at
least 1 − C0(d ∨ n)−2, and Rs ∈ [R, 2R], we have

∥ sin(Q, Q̂(Rs))∥2
2 ≤ ∥ sin(Q, Q̂(Rs))∥2

F ≤ Cuπ (d)τ 2−δn .

Remark 2. Due to the proof techniques used we impose the restriction δ ∈ (0, 2/3) in Theorem 2. The restriction is
largely due to the facts that we need to represent large density matrices by Pauli matrices and handle Pauli representation
structures and approximation errors of the truncated representation. We expect the restriction can be relaxed or even
removed in future.

Remark 3. The sparsity condition (4.2) is required to obtain the consistency of the proposed estimator. Similar conditions
are often imposed by asymptotic analysis in high dimensional statistics such as large covariance matrix estimation where
π (d) usually grows very slowly in d with an example of log d. Condition (4.2) is not very restrictive in the sense that
π (d) = log d satisfies the condition, and in fact, when δ < 2/3, the condition (4.2) indicates that π (d) is at most of order
d with some positive power.

The result of Theorem 2 can be extended to an upper bound for the MSE. Note that (d ∨ n)−2
= o

(
π (d)τ 2−δn

)
and the

loss functions, (3.2) and (3.3), are bounded by r and 1, respectively. The following corollary is a direct consequence of
Theorem 2.

Corollary 1. Under the conditions of Theorem 2, we have

sup
ρ∈Fδ (π (d))

E
[
∥ sin(Q, Q̂(Rs))∥2

2

]
≤ sup

ρ∈Fδ (π (d))
E
[
∥ sin(Q, Q̂(Rs))∥2

F

]
≤ Cuπ (d)τ 2−δn .

Remark 4. Since in high-dimensional statistics, there is a constant C free of n and d such that log(d ∨ n) ≤ C log d,
Theorem 2 and Corollary 1 show that the ITSPCA estimator has the convergence rate of π (d)1/2

[
n−1d−1 log d

]1/2−δ/4
under the Frobenius and spectral norms. As d is often much larger than n, this convergence rate is faster than n−1/2,
the convergence rate in the ordinary PCA case.

Although our main objective is to estimate the eigenspace, when individual eigenvector qk is identifiable, it is
interesting to examine whether the ITSPCA method can estimate qk well. The corollary below shows that the kth column
of Q̂(Rs) provides a good estimator for the well-separated qk.

Corollary 2. Suppose that for some k ≤ m, λk − λk+1 ≥ Cλ1 and λk−1 − λk ≥ Cλ2 for some positive constants Cλ1 and Cλ2
free of n and d. Under the conditions of Theorem 2, we have that the kth column q̂(Rs)

k of Q̂(Rs) satisfies

sup
ρ∈Fδ (π (d))

E
[
∥ sin(qk, q̂

(Rs)
k )∥2

2

]
≤ sup

ρ∈Fδ (π (d))
E
[
∥ sin(qk, q̂

(Rs)
k )∥2

F

]
≤ Cuπ (d)τ 2−δn .

4.2. Optimality of ITSPCA estimator

This section establishes the minimax lower bound for the problem of estimating the eigenspace spanned by Q under
model (3.1), uniformly over Fδ(π (d)), and shows that the ITSPCA estimator achieves the minimax lower bound, and thus
its convergence rate is optimal.

The theorem below provides a minimax lower bound for eigenspace estimation under the Frobenius and spectral
norms.

Theorem 3. For model (3.1), suppose that for some δ ∈ [0, 2), as d, n → ∞,

π (d) ≍ d(1−δ/2)−Nn−δ/2 logδ/2 d, (4.3)

where N ∈ (0, 1) is a constant free of n and d. Then there exists a positive constant CL free of n and d such that for (n, d, π (d))
satisfying (4.3),

inf
Q̌

sup
ρ∈Fδ (π (d))

E
[
∥ sin(Q, Q̌)∥2

2

]
≥ CLπ (d)

[
log d
nd

]1−δ/2
,

nd

inf
Q̌

sup
ρ∈Fδ (π (d))

E
[
∥ sin(Q, Q̌)∥2

F

]
≥ CLπ (d)

[
log d
nd

]1−δ/2
,

where Q̌ denotes any estimator of Q based on N2, . . . ,Np.
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emark 5. The lower bound in Theorem 3 matches the convergence rate of the ITSPCA estimator in Theorem 2, and so
we conclude that the ITSPCA estimator achieves the optimal convergence rate under the Frobenius and spectral norms
(especially when d ≥ n). That is, under the sparsity condition, the convergence rate, π (d)1/2

[
n−1d−1 log d

]1/2−δ/4, of the
ITSPCA estimator is optimal, while the convergence rate, n−1/2, of the ordinary PCA estimator is sub-optimal. On the other
hand, without the sparsity assumption on the eigenspace, that is, π (d) = d and δ = 0, we can show that the minimax
lower bound for estimating the eigenspace of ρ is n−1/2. Thus, the upper bound of the ordinary PCA estimator in Theorem 1
is the optimal rate for the dense eigenspace case.

Remark 6. Cai et al. (2016) investigated the optimality of the density matrix estimation in the usual matrix sparsity
framework. This paper considers the estimation of large low-rank density matrices and studies the associated optimality
of eigenspace estimation. Thus, to derive the lower bound in Theorem 3, we consider a special subclass of Q, and take
ρ = m−1QQ†, then as usual we apply Fano’s lemma to obtain the minimax lower bound (Birnbaum et al., 2013; Vu and
Lei, 2013). The key difference between our approach and those in the literature is that our observations are characterized
by binomial distributions instead of the usual normal distributions, as a result, different proof arguments are needed to
obtain the minimax lower bounds (see Section 7 for more details).

Remark 7. When δ = 0, condition (4.3) becomes π (d) ≍ d1−N with N > 0, and the minimax lower bounds hold for π (d)
very close to d. Consider δ > 0, and that d typically grows polynomially or exponentially in n. If d grows exponentially
in n, that is, d = en

κ
, then π (d) ≍ d(1−δ/2)−N(log d)δ/2(1−1/κ), and N could be chosen very small value such that π (d) is of

order d with some positive power. In the case of d = nκ , as quantum systems often have large d, we may consider the
case of d ≥ n and take κ ≥ 1, and thus π (d) ≍ d(1−δ/2)−N−δ/(2κ)(log d)δ/2, which is of order d with some positive power.
Therefore, condition (4.3) is feasible. Also the conditions (4.2) and (4.3) are compatible under reasonable setting such as
that [log d/(nd)]δ/8+1/4d1−N is bounded by a generic constant. Of course the condition (4.3) can be relaxed, and future
work may make it less restrictive.

Remark 8. Koltchinskii and Xia (2015) investigated the optimal convergence rate for estimating a low-rank density matrix
belonging to a general low-rank density matrix class. For example, under the Pauli basis, Theorem 10 in Koltchinskii and
Xia (2015) shows that the optimal rate of estimating low-rank density matrices is n−1/2 which we can obtain by the
ordinary PCA estimator (see Theorem 5 in Section 5). Their low-rank class includes both the dense and sparse cases, and
thus the minimax rate is determined by the sub-class with dense eigenvectors. However, as we have shown in Theorems 3
and 4, the rate n−1/2 is not optimal under the sparse condition (3.5). Also their analysis focused on estimating a low-rank
density matrix itself. On the other hand, this paper is devoted to investigating the eigenspace estimation particularly under
the sparse condition (3.5). Our analysis implies that the optimal rate of estimating low-rank density matrices under the
sparse condition is π (d)1/2

[
n−1d−1 log d

]1/2−δ/4 (see Theorem 4 in Section 5).

5. Large low-rank density matrix estimation

This section proposes low-rank density matrix estimators using the ordinary PCA and the ITSPCA methods. We first
develop estimators for eigenvalues of the low-rank density matrix ρ as follows:

λ̂(Rs)ν =
λ̃(Rs)ν∑r
j=1 λ̃

(Rs)
j

and λ̂∗

ν =
λ̃ν∑r
j=1 λ̃j

for ν = 1, . . . , r,

where

λ̃(Rs)ν = max
[
(̂q(Rs)
ν )†ρ̂ q̂(Rs)

ν , 0
]
, λ̃ν = max

[̂
q†
ν ρ̂ q̂ν, 0

]
,

and q̂(Rs)
ν and q̂ν are the νth column of Q̂(RS ) and Q̂, respectively. Note that λ̂(Rs)ν and λ̃ν are non-negative, and the sum of

ach set of estimated eigenvalues is 1. Using the eigenvalue and eigenspace estimators, we can reconstruct the low-rank
ensity matrix as follows:

ρ̂(Rs) =

r∑
ν=1

λ̂(Rs)ν q̂(Rs)
ν (̂q(Rs)

ν )† and ρ̂∗
=

r∑
ν=1

λ̂∗

ν q̂ν q̂
†
ν .

hese two estimators are well-defined density matrices given in Section 2.1.
The following theorems provide the convergence rates of eigenvalue estimators λ̂(Rs)ν and λ̂∗

ν , and low-rank density
atrix estimators ρ̂(Rs) and ρ̂∗.

heorem 4. Under the assumptions of Theorem 2 for the ITSPCA, we have for ν = 1, . . . , r,

E
[
|̂λ(Rs) − λ |

]
≤ Cπ (d)1/2τ 1−δ/2 (5.1)
ν ν n
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E
[
∥̂ρ(Rs) − ρ∥F

]
≤ Cπ (d)1/2τ 1−δ/2n , (5.2)

here C is a generic constant free of n and d.

heorem 5. Under the assumptions of Theorem 1 for the ordinary PCA, we have for ν = 1, . . . , r,

E
[
|̂λ∗

ν − λν |
]

≤ C(n−1
∨ (nd)−1/2) and E

[
∥̂ρ∗

− ρ∥F
]

≤ Cn−1/2,

here C is a generic constant free of n and d.

emark 9. When δ = 0, the convergence rate for E
[
∥̂ρ(Rs) − ρ∥F

]
is π (d)1/2d−1/2

( log(d∨n)
n

)1/2
, which is the same as the

convergence rate of the optimal density matrix estimator under the sparse representation in Theorem 1 of Cai et al. (2016).
Also under the sparse condition (3.5), the minimax lower bound of estimating low-rank density matrices is π (d)1/2τ 1−δ/2n ,
hich can be established using the same sub-class employed in the proof of Theorem 3.

emark 10. The threshold density matrix estimator has the convergence rate (d/n)1/2 under the Frobenius norm (see
emma 3 of Cai et al. (2016)). On the other hand, the low-rank density matrix estimator has convergence rate n−1/2 which
is the optimal rate given the general low-rank density matrix class (Koltchinskii and Xia, 2015).

Remark 11. The proposed low-rank density matrix estimation procedure needs to know the true rank r . In practice r
is unknown, and we may estimate r from the data to implement the procedure. For example, Kim and Wang (2017)
established asymptotic distributions for the eigenvectors of density matrices, and developed some preliminary methods
to choose the rank r . This paper focuses on the sparse eigenvector estimation with known r . We may investigate the
selection of rank r in the future study.

6. A numerical study

We conducted simulations to check the finite sample performance of the proposed estimators in Sections 6.1 and 6.2,
and studied their empirical performance in Section 6.3.

6.1. Simulation for a rank one case

We first considered the case where the density matrix ρ in (3.1) has r = 1, and

ρ = QQ†
= d−1

⎛⎝Id +

p∑
j=2

βjBj

⎞⎠ ,
where Q ∈ Cd and βj = tr(ρBj) for j = 1, . . . , d2. The eigenvectors Q were generated as follows: First, its π (d) components
were generated by π (d) i.i.d. random variables from U1 + U2

√
−1, where Uj’s are i.i.d. uniform distributions on [−1, 1],

nd the rest d−π (d) components were set to be zero. The generated vector was then normalized by dividing its ℓ2-norm
o that the generated Q satisfies ∥Q∥2 = 1. We varied π (d) from 5 log(d) to d − 1 with d = 64,128. The whole procedure
as repeated for 200 times.
For each simulated dataset, we estimated Q using the ITSPCA with hard threshold (ITS-H), ITSPCA with soft threshold

ITS-S), DTSPCA, and ordinary PCA algorithms. The MSEs of the eigenspace estimator Q̂ and low-rank density matrix
stimator ρ̂, E∥ sin(̂Q,Q)∥2

F and E∥̂ρ−ρ∥
2
F , were calculated by averaging the corresponding squared norms of Q̂ and ρ̂ over

200 simulations. For the ITSPCA and DTSPCA algorithms in Algorithms 1 and 2, respectively, we set tuning parameters
(Cα, Cγ ) to be (0.1, 2), (0.5, 1), and (0, 1) for the ITS-H, the ITS-S, and the DTSPCA, respectively, by searching in the range
of {3, 2.5, . . . , 0.5, 0.1}2 for minimizing MSE. We used hard thresholding rule TH (t, γ ) = t1(|t|>γ ) and soft thresholding
rule TS(t, γ ) = e

√
−1θ max(0, |t|− γ ) for the thresholding step in Algorithm 1 for the ITS-H and ITS-S, respectively, where

= |t|e
√

−1θ . We stopped iterating once ∥ sin(̂Q(k), Q̂(k−1))∥2 ≤ n−1d−1.
Table 1 summarizes the MSEs for the eigenspace and density matrix estimators. Regarding the eigenspace estimators,

ig. 1 plots the MSEs against π (d) for different n and d values while Fig. 2 plots the relative efficiencies of the ITS-
, ITS-S, DTSPCA, and PCA estimators with respect to the PCA estimator against the sample size n for different d and
(d) values. The numerical results show that the MSEs usually decrease in sample size n. The MSEs of the ITSPCA and
TSPCA estimators become worse as π (d) increases while the performance of the PCA estimator is robust against π (d).
or the sparse eigenvectors with π (d) = 5 log d or 5d1/2, the ITSPCA estimators often have superior performance over the
TSPCA and PCA estimators while for the non-sparse case with π (d) = d− 1, the PCA estimator overall presents the best
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6

able 1
he MSEs of ITS-H, ITS-S, DTSPCA, and PCA estimators and their corresponding low-rank density matrix estimators when d = 64, 128 and

n = 100, 200, 500, 1000, 2000 (we make the smallest MSE bold).
d π (d) n MSE (eigenspace) ×102 MSE (density matrix) ×102

ITS-H ITS-S DTSPCA PCA ITS-H ITS-S DTSPCA PCA ρ̂

64 5 log(d) 100 0.3008 0.4383 1.1629 0.9627 0.6016 0.8767 2.3258 1.9254 63.0741
200 0.1453 0.2155 0.5489 0.4909 0.2906 0.4310 1.0977 0.9819 31.5377
500 0.0577 0.0878 0.2251 0.1929 0.1153 0.1757 0.4501 0.3858 12.6377
1000 0.0284 0.0443 0.1163 0.0948 0.0568 0.0885 0.2327 0.1895 6.3216
2000 0.0142 0.0224 0.0438 0.0485 0.0284 0.0447 0.0877 0.0970 3.1531

5d1/2 100 0.8961 1.0046 4.8367 0.9680 1.7921 2.0093 9.6733 1.9359 63.0148
200 0.4082 0.5295 2.4086 0.4855 0.8165 1.0590 4.8173 0.9709 31.5230
500 0.1347 0.2129 1.0878 0.1941 0.2693 0.4259 2.1756 0.3882 12.6007
1000 0.0593 0.1085 0.4885 0.0961 0.1186 0.2170 0.9771 0.1922 6.2871
2000 0.0304 0.0576 0.2433 0.0484 0.0607 0.1151 0.4866 0.0969 3.1456

d − 1 100 1.3800 1.5670 12.3886 0.9876 2.7600 3.1340 24.7772 1.9751 63.0856
200 0.6485 0.7903 6.3141 0.4871 1.2970 1.5806 12.6282 0.9742 31.5273
500 0.1952 0.3325 2.4912 0.1930 0.3905 0.6649 4.9825 0.3860 12.5754
1000 0.0957 0.1713 1.3645 0.0971 0.1914 0.3427 2.7290 0.1943 6.3095
2000 0.0485 0.0881 0.5835 0.0493 0.0970 0.1762 1.1671 0.0985 3.1518

128 5 log(d) 100 0.2084 0.3270 1.4792 0.9979 0.4169 0.6539 2.9584 1.9958 127.2219
200 0.0883 0.1600 0.6500 0.4916 0.1765 0.3200 1.3001 0.9832 63.4730
500 0.0360 0.0691 0.2996 0.1954 0.0721 0.1382 0.5991 0.3909 25.3742
1000 0.0182 0.0359 0.1593 0.0990 0.0364 0.0718 0.3186 0.1979 12.6988
2000 0.0090 0.0188 0.0775 0.0498 0.0180 0.0377 0.1550 0.0995 6.3408

5d1/2 100 0.5461 0.7029 4.8951 0.9819 1.0921 1.4058 9.7902 1.9638 126.9431
200 0.2097 0.3514 2.2088 0.4856 0.4195 0.7029 4.4177 0.9711 63.5284
500 0.0841 0.1468 0.9327 0.1968 0.1682 0.2937 1.8654 0.3936 25.4182
1000 0.0430 0.0760 0.5597 0.0988 0.0860 0.1519 1.1195 0.1977 12.7027
2000 0.0216 0.0388 0.2378 0.0496 0.0433 0.0776 0.4756 0.0993 6.3566

d − 1 100 1.6628 1.4878 19.1328 0.9926 3.3256 2.9755 38.2656 1.9851 127.0068
200 0.7028 0.7814 11.4092 0.4903 1.4056 1.5629 22.8184 0.9807 63.5389
500 0.2354 0.3478 5.1377 0.1964 0.4708 0.6957 10.2754 0.3929 25.4193
1000 0.1144 0.1838 2.5418 0.0979 0.2287 0.3676 5.0837 0.1957 12.7010
2000 0.0553 0.0962 1.2805 0.0488 0.1106 0.1924 2.5610 0.0976 6.3562

performance. The numerical results of the density matrix estimators summarized in Table 1 show similar behaviors to the
esults of the eigenspace estimators, while ρ̂ in (2.1) presents much worse performance than the PCA type estimators.

.2. Simulation for a rank four case

We now simulated density matrix ρ using (3.1) with r = 4 and chose arbitrary eigenspace Q0 ∈ Vπ (d),4, where Vh,k is
the Stiefel manifold of h-by-k orthonormal matrices. First, we generated a π (d)-by-π (d) positive definite Hermitian matrix
from uniform random variables, to be specific, the diagonal elements of the matrix took value 1 and for the off-diagonal
elements, the (h, k)th and (k, h)th elements were U1+

√
−1U2, where Ui’s follow uniform distributions on (−

√
0.5,

√
0.5).

We then formed d-by-4 matrix Q = (QT
0, 0)

T . Eigenvalues Λ were chosen from (0.25, 0.25, 0.25, 0.25), (0.4, 0.3, 0.2, 0.1),
(0.5, 0.3, 0.19, 0.01). The density matrix ρ was obtained in the following:

ρ =

4∑
ν=1

λνqνq†
ν = d−1

⎛⎝Id +

d2∑
j=2

βjBj

⎞⎠ ,
where Q = (q1, . . . , q4) and d = 27. With the ρ above, we computed βj = tr(ρBj) for j = 1, . . . , 214, where Bj’s are Pauli
matrices. For each simulated dataset, we estimated Q for m = 4 and used the same scheme as the rank one case.

Table 2 summarizes the MSEs for the eigenspace and density matrix estimators and Fig. 3 plots the MSEs of the
eigenspace estimators against π (d) for different sample size n and eigenvalues Λ. Fig. 4 further plots the relative
efficiencies of the ITS-H, ITS-S, DTSPCA, and PCA estimators with respect to the PCA estimator against the sample size
n for different π (d) and eigenvalues Λ. We note that the effects of n and π (d) levels are similar to the rank one case
so that we focus on the effects of the magnitude of the fourth eigenvalue λ4 in Λ. The numerical results show that the
magnitude of the λ4 plays an important role. When λ4 is large such as 0.25, the MSEs are relatively small, and our methods
show better performance than the benchmarks. When λ4 is small such as 0.01, all estimators present poor performance
with large MSEs, and their relative efficiencies are close.
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Fig. 1. Plots of MSEs against π (d) for the ITS-H, ITS-S, DTSPCA, and PCA estimators with n = 100, 500, 2000 and d = 64,128. (a)–(c) are plots of
MSEs based on the Frobenius norm for n = 100, 500, 2000, respectively, with d = 64. (d)–(f) are plots of MSEs based on the Frobenius norm for
n = 100, 500, 2000, respectively, with d = 128.

6.3. A real data example

In this section, we conducted a Monte Carlo simulation to analyze the density matrices that were estimated by Häffner
et al. (2005). We considered two density matrices with d = 27 and 28, and denoted them by ρ7 and ρ8, respectively.
Based on each density matrix ρ, we first calculated βj = tr(ρBj), where Bj’s are the Pauli matrices and then, generated n
Pauli measurements for each Pauli matrix. Given the generated Pauli measurements, we estimated ρ by the ITS-H, ITS-S,
DTSPCA, and PCA. We selected tuning parameters (0.1, 2), (0.5, 1), and (0, 1) for the ITS-H, ITS-S, and DTSPCA estimators,
respectively, and used the results of the rank test proposed in Kim and Wang (2017) to determine the rank r . We varied
n from 100 to 2000 and repeated the whole procedure by 200 times.

Fig. 5 plots the absolute values for the elements of eigenvectors corresponding to the first six eigenvectors of ρ7 and ρ8,
while the first six eigenvalues of ρ7 is (0.7825, 0.0605, 0.0445, 0.0324, 0.023, 0.0167) and of ρ8 is (0.7514, 0.0609, 0.0456,
0.04, 0.0233, 0.0189). Thus, the density matrices, ρ and ρ , have the low-rank structure with sparse eigenvectors, which
7 8
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Fig. 2. Plots of relative efficiencies against the sample size n for the ITS-H, ITS-S, DTSPCA, and PCA estimators with respect to the PCA estimator for
(d) = 5 log(d), 5d1/2, d−1 with d = 64 and 128. (a)–(c) are plots of relative efficiencies based on the Frobenius norm for π (d) = 5 log(d), 5d1/2, d−1,
espectively, with d = 64. (d)–(f) are plots of relative efficiencies based on the Frobenius norm for π (d) = 5 log(d), 5d1/2, d − 1, respectively, with
= 128.

atisfy the assumptions imposed in this paper. It follows that the iterative thresholding estimators such as the ITSPCA
nd the DTSPCA may present good performance.
Table 3 presents MSEs of the ITS-H, ITS-S, DTSPCA, and PCA density matrix estimators. Fig. 6 plots the relative

fficiencies with respect to the PCA estimator against the sample size n and for d = 128, 256. From Table 3 and Fig. 6, we
an see that the MSEs decrease in the sample size n while the iterative thresholding methods usually have smaller MSEs
han the PCA density matrix estimator or the estimator ρ̂ in (2.1).

. Proofs

Denote by C and C1 the generic constants whose values are free of n and p and may change from appearance to
ppearance.
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able 2
he MSEs of the ITS-H, ITS-S, DTSPCA, and PCA estimators and their corresponding low-rank density matrix estimators for n =

00, 200, 500, 1000, 2000 and Λ = (0.25, 0.25, 0.25, 0.25), (0.4, 0.3, 0.2, 0.1), (0.5, 0.3, 0.19, 0.01), and π (d) = 5 log d, 5d1/2, d − 1 with d = 128
we make the smallest MSE bold).
π (d) Λ n MSE (eigenspace) MSE (density matrix)

ITS-H ITS-S DTSPCA PCA ITS-H ITS-S DTSPCA PCA ρ̂

5 log d (0.25, 0.25, 0.25, 0.25) 100 0.1861 0.1941 0.3532 0.6215 0.0240 0.0248 0.0448 0.0781 1.2792
200 0.0722 0.0925 0.1724 0.3099 0.0095 0.0119 0.0220 0.0391 0.6386
500 0.0231 0.0353 0.0648 0.1240 0.0031 0.0046 0.0083 0.0157 0.2555
1000 0.0109 0.0175 0.0310 0.0622 0.0015 0.0023 0.0040 0.0079 0.1277
2000 0.0052 0.0085 0.0151 0.0309 0.0007 0.0011 0.0019 0.0039 0.0638

(0.4, 0.3, 0.2, 0.1) 100 0.5935 0.5626 0.7734 1.2608 0.0309 0.0345 0.0519 0.0902 1.2787
200 0.2444 0.2491 0.3923 0.6903 0.0128 0.0150 0.0249 0.0436 0.6384
500 0.0846 0.0903 0.1488 0.2758 0.0044 0.0055 0.0092 0.0165 0.2553
1000 0.0415 0.0440 0.0721 0.1379 0.0019 0.0027 0.0044 0.0080 0.1276
2000 0.0195 0.0211 0.0344 0.0687 0.0009 0.0013 0.0020 0.0040 0.0638

(0.5, 0.3, 0.19, 0.01) 100 1.1132 1.1137 1.2272 1.4019 0.0257 0.0321 0.0527 0.0851 1.2782
200 1.0371 1.0486 1.0997 1.1951 0.0143 0.0170 0.0275 0.0455 0.6378
500 1.0031 1.0125 1.0219 1.0736 0.0070 0.0078 0.0117 0.0194 0.2552
1000 0.9887 0.9975 0.9873 1.0310 0.0040 0.0044 0.0057 0.0100 0.1275
2000 0.9741 0.9817 0.9514 1.0041 0.0022 0.0024 0.0029 0.0051 0.0637

5d1/2 (0.25, 0.25, 0.25, 0.25) 100 0.6163 0.4233 0.5953 0.6201 0.0775 0.0533 0.0747 0.0779 1.2799
200 0.2571 0.2169 0.3132 0.3085 0.0325 0.0274 0.0394 0.0389 0.6385
500 0.0813 0.0882 0.1343 0.1239 0.0104 0.0112 0.0170 0.0157 0.2553
1000 0.0347 0.0442 0.0683 0.0620 0.0044 0.0056 0.0086 0.0079 0.1276
2000 0.0152 0.0220 0.0336 0.0308 0.0020 0.0028 0.0042 0.0039 0.0638

(0.4, 0.3, 0.2, 0.1) 100 1.1828 0.9932 1.0824 1.2713 0.0779 0.0631 0.0839 0.0899 1.2790
200 0.5289 0.4585 0.5603 0.6914 0.0329 0.0306 0.0420 0.0435 0.6382
500 0.1773 0.1701 0.2300 0.2732 0.0113 0.0117 0.0182 0.0164 0.2553
1000 0.0815 0.0840 0.1172 0.1369 0.0050 0.0058 0.0098 0.0080 0.1276
2000 0.0385 0.0421 0.0622 0.0688 0.0021 0.0029 0.0054 0.0040 0.0638

(0.5, 0.3, 0.19, 0.01) 100 1.3123 1.2543 1.3840 1.4003 0.1199 0.1089 0.1554 0.1630 1.3185
200 1.0565 1.1265 1.1983 1.1961 0.0685 0.0723 0.1259 0.1260 0.6779
500 0.9264 1.0494 1.0758 1.0763 0.0493 0.0508 0.1095 0.1074 0.2952
1000 0.8809 1.0208 1.0348 1.0346 0.0440 0.0452 0.1082 0.1037 0.1676
2000 0.8658 1.0051 1.0188 1.0145 0.0412 0.0422 0.1088 0.1035 0.1037

d − 1 (0.25, 0.25, 0.25, 0.25) 100 1.5437 0.8133 1.1214 0.6187 0.1930 0.1020 0.1401 0.0778 1.2761
200 0.6946 0.4366 0.6917 0.3079 0.0870 0.0549 0.0865 0.0389 0.6394
500 0.2316 0.1886 0.3512 0.1239 0.0291 0.0237 0.0439 0.0157 0.2553
1000 0.0996 0.0986 0.1968 0.0618 0.0125 0.0124 0.0246 0.0078 0.1278
2000 0.0432 0.0503 0.1020 0.0309 0.0055 0.0063 0.0128 0.0039 0.0638

(0.4, 0.3, 0.2, 0.1) 100 2.0636 1.4548 1.6928 1.2713 0.2020 0.1127 0.1640 0.0901 1.2750
200 1.1570 0.8458 1.0975 0.6977 0.0902 0.0605 0.1019 0.0437 0.6392
500 0.4181 0.3307 0.5206 0.2738 0.0287 0.0244 0.0507 0.0165 0.2552
1000 0.1899 0.1702 0.2761 0.1372 0.0120 0.0124 0.0275 0.0080 0.1278
2000 0.0875 0.0887 0.1406 0.0698 0.0050 0.0063 0.0139 0.0040 0.0637

(0.5, 0.3, 0.19, 0.01) 100 1.9442 1.5199 1.7585 1.3988 0.1611 0.0965 0.1579 0.0847 1.2743
200 1.4469 1.2706 1.4723 1.1967 0.0792 0.0535 0.1027 0.0456 0.6389
500 1.1390 1.1081 1.2426 1.0724 0.0271 0.0241 0.0553 0.0195 0.2552
1000 1.0472 1.0482 1.1359 1.0301 0.0123 0.0128 0.0330 0.0099 0.1277
2000 1.0068 1.0109 1.0639 1.0034 0.0055 0.0068 0.0185 0.0051 0.0637

7.1. Proofs of Theorems 1–2

7.1.1. Proof of Theorem 1

roof of Theorem 1. By Davis-Kahn’s sin θ theorem (Theorem 3.1 in Li (1998b)), we obtain the following inequality to
stablish (3.4),

∥ sin(Q, Q̂)∥2
F ≤

∥(ρ − ρ̂)Q∥
2
F , (7.1)
(λm − λ̂m+1)2
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f
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Fig. 3. Plots of MSEs against π (d) for the ITS-H, ITS-S, DTSPCA, and PCA estimators for n = 100, 500, 2000 and d = 128. (a1)–(a3) are plots of
MSEs based on the Frobenius norm for n = 100, 500, 2000, respectively, with Λ = (0.25, 0.25, 0.25, 0.25). (b1)–(b3) are plots of MSEs based on
the Frobenius norm for n = 100, 500, 2000, respectively, with Λ = (0.4, 0.3, 0.2, 0.1). (c1)–(c3) are plots of MSEs based on the Frobenius norm for
n = 100, 500, 2000, respectively, with Λ = (0.5, 0.3, 0.19, 0.01).

where λ̂m is the mth eigenvalue of ρ̂. For the denominator on the right hand side of (7.1), as λm −λm+1 is bounded below
rom a generic constant Cλ, we need to study only λ̂m+1 − λm+1. By Weyl’s theorem (Theorem 4.3 in Li (1998a)), we
ave

|̂λm+1 − λm+1| ≤ max |̂λν − λν | ≤ ∥̂ρ − ρ∥
2
2.
1≤ν≤d
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π

r
r
r

S

Fig. 4. Plots of relative efficiencies against sample size n for the ITS-H, ITS-S, DTSPCA, and PCA estimators with respect to the PCA estimator for
(d) = 5 log d, 5d1/2, d − 1 with d = 128. (a1)–(a3) are plots of relative efficiencies based on the Frobenius norm for π (d) = 5 log(d), 5d1/2, d − 1,
espectively, with Λ = (0.25, 0.25, 0.25, 0.25). (b1)–(b3) are plots of relative efficiencies based on the Frobenius norm for π (d) = 5 log(d), 5d1/2, d−1,
espectively, with Λ = (0.4, 0.3, 0.2, 0.1). (c1)–(c3) are plots of relative efficiencies based on the Frobenius norm for π (d) = 5 log(d), 5d1/2, d − 1,
espectively, with Λ = (0.5, 0.3, 0.19, 0.01).

imple algebraic manipulations show

max
d−1 (̂βj − βj)Bj

 ≤
2

j 2 d
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Fig. 5. Plots for the absolute elements of the eigenvectors corresponding to the first 6 eigenvalues. (a1)–(f1) are plots for ρ7 . (a2)–(f2) are plots for
ρ8 .

and d−2
p∑

E
[
(̂βj − βj)2BT

j Bj
] ≤

1
n
.

j=2 2
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F

(

Table 3
MSEs in Frobenius norm for the ITS-H, ITS-S, DTSPCA, and PCA density matrix estimators with d =

128, 256 and n = 100, 200, 500, 1000, 2000 (We make the smallest MSE bold).
d n ITS-H ITS-S DTSPCA PCA ρ̂

128 100 0.04672 0.04975 0.05157 0.06837 1.27381
200 0.03360 0.03632 0.03347 0.04897 0.63686
500 0.02060 0.02060 0.01781 0.02704 0.25442
1000 0.01233 0.01222 0.01056 0.01557 0.12727
2000 0.00750 0.00706 0.00630 0.00781 0.06376

256 100 0.04529 0.05616 0.05988 0.09043 2.55323
200 0.03612 0.03778 0.03966 0.05278 1.27709
500 0.01995 0.01970 0.01868 0.02876 0.51098
1000 0.01246 0.01187 0.01041 0.01663 0.25544
2000 0.00796 0.00758 0.00649 0.00978 0.12770

Fig. 6. Plots of relative efficiencies against the sample size n for the ITS-H, ITS-S, DTSPCA, and PCA estimators with respect to the PCA estimator.
(a)–(b) are plots of relative efficiencies based on the Frobenius norm with d = 128 and 256, respectively.

Then, by the Matrix Bernstein inequality (Theorem 6.1 in Tropp (2012)), we get

P (∥̂ρ − ρ∥2 ≥ t) = P

⎛⎝d−1
p∑

j=2

(̂βj − βj)Bj


2

≥ t

⎞⎠
≤ 2d exp

(
−

t2/2
n−1 + 2t/(3d)

)
.

irst consider the condition (i). We take t =
√
6 log(d ∨ n)/n and then obtain

P
(
∥̂ρ − ρ∥2 ≥

√
6 log(d ∨ n)/n

)
≤ 2(d ∨ n)−2. (7.2)

Consider the numerator on the right hand side of (7.1). For any a = (a1, . . . , ad) ∈ Cd such that ∥a∥2
2 = 1, since

β̂j − βj)’s are independent with mean zero, we have

E
[
∥(̂ρ − ρ)a∥2

2

]
=

1
d2

p∑
j=2

E
[
(̂βj − βj)2

]
∥Bja∥2

2

=
1
d2

p∑
j=2

1 − β2
j

n

=
1

−

∑r
ν=1 λ

2
ν
,

n dn
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w

F

w

w
r

7

P

w

I

ρ̂

U
T

hich along with ∥qν∥2
2 = 1 imply

E
[
∥(ρ − ρ̂)Q∥

2
F

]
=

m∑
ν=1

E
[
∥(ρ − ρ̂)qν∥2

2

]
= m

(
1
n

−

∑r
ν=1 λ

2
ν

dn

)
. (7.3)

inally since ∥ sin(̂Q,Q)∥2
F ≤ m, we conclude

E
[
∥ sin(̂Q,Q)∥2

F

]
= E

[
∥ sin(̂Q,Q)∥2

F1E
]
+ E

[
∥ sin(̂Q,Q)∥2

F1Ec
]

≤
2m

(d ∨ n)2
+ E

[
∥(̂ρ − ρ)Q∥

2
F

] (
λm − λm+1 −

√
6 log(d ∨ n)

n

)−2

≤
2m
n

+
m
n

(
λm − λm+1 −

√
6 log(d ∨ n)

n

)−2

= O
(

n−1

(λm − λm+1)2

)
,

here E = {max1≤ν≤d |̂λν − λν | ≥

√
6 log(d∨n)

n }, and the second and third inequalities are due to (7.2) and (7.3), respectively.

We prove the theorem in the condition (i).
For the case of the condition (ii), we take t = 2 log n/d and replace (7.2) by

P (∥̂ρ − ρ∥2 ≥ 2 log n/d) ≤ 2n−2. (7.4)

The same argument can be used to prove the theorem as follows:

E
[
∥ sin(̂Q,Q)∥2

F

]
= E

[
∥ sin(̂Q,Q)∥2

F1E
]
+ E

[
∥ sin(̂Q,Q)∥2

F1Ec
]

≤
4m
n2 + E

[
∥(̂ρ − ρ)Q∥

2
F

] (
λm − λm+1 −

2 log n
d

)−2

≤
4m
n

+
m
n

(
λm − λm+1 −

2 log n
d

)−2

= O
(

n−1

(λm − λm+1)2

)
,

here E = {max1≤ν≤d |̂λν − λν | ≥ 2 log n/d}, and the second and third inequalities are due to (7.4) and (7.3),
espectively. ■

.1.2. Proof of Theorem 2

roof of Theorem 2. Define the set of high signal coordinates,

H = H(τ ) = {ν : |qνj| ≥ Cτ τn, for some 1 ≤ j ≤ r},

here Cτ is a constant. Then, similar to the proof of Lemma 3.1 in Ma (2013), we can show

r ≤ |H| ≤ Cπ (p)τ−δ
n . (7.5)

n addition, let L = {1, . . . , d} \H . Here and after, we use an extra superscript ‘‘o’’ to indicate oracle quantities. That is, let

ρ =

[
ρHH ρHL
ρLH ρLL

]
and ρo

=

[
ρHH 0
0 0

]
.

and ρ̂o are estimators for ρ and ρo, respectively. Specifically,

ρ̂ = (̂ρij)i,j=1,...,p and ρ̂o
=

[̂
ρHH 0
0 0

]
.

sing Algorithm 1, we construct an oracle sequence of d-by-m orthonormal matrices {̂Q(k),o, k ≥ 1} with the initial Q̂(0),o.
o construct Q̂(0),o, we use an oracle version of Algorithm 2. Specifically, So = S ∩ H . This ensures that Q̂(0),o

= 0.
L·

66



T. Cai, D. Kim, X. Song et al. Journal of Statistical Planning and Inference 213 (2021) 50–71

P

P

P

7

P

L
Θ

w
i

L

a

L

With probability at least 1 − C0(d ∨ n)−2, we have

∥ sin(Q, Q̂(Rs))∥2
F

≤ C
{
∥ sin(Q,Qo)∥2

F + ∥ sin(Qo, Q̂o)∥2
F + ∥ sin(̂Qo, Q̂(Rs),o)∥2

F + ∥ sin(̂Q(Rs),o, Q̂(Rs))∥2
F

}
≤ C

π (d)τ 2−δn

(λm − λm+1)2
,

where the fist inequality is due to the triangular inequality and Jensen’s inequality, and the last inequality is from
Propositions 1–4. ■

Proposition 1. Under assumptions of Theorem 2, we have

∥ sin(Q,Qo)∥2
F ≤ C

π (d)τ 2−δn

(λm − λm+1)2
.

roposition 2. Under assumptions of Theorem 2, we have with probability at least 1 − C0(d ∨ n)−2

∥ sin(Qo, Q̂o)∥2
F ≤ C

π (d)τ 2−δn

(λm − λm+1)2
.

roposition 3. Under assumptions of Theorem 2, we have with probability at least 1 − C0(d ∨ n)−2,

∥ sin(̂Qo, Q̂(Rs),o)∥2
F ≤ C

π (d)τ 2−δn

(λm − λm+1)2
.

roposition 4. Under assumptions of Theorem 2, we have with probability at least 1 − C0(d ∨ n)−2,

Q̂(k),o
= Q̂(k) for k ≥ 0.

The proofs of Propositions 1–4 are given in the Appendix.

.2. Proof of Theorem 3

To obtain the lower bound, we consider the real valued density matrix, ρ. That is, βj’s corresponding to complex valued
auli matrices are zero.
We use the following Fano’s lemma (Lemma A.5 in Birnbaum et al. (2013)).

emma 1 (Fano’s Lemma). Denote by {Pθ : θ ∈ Θ} a family of probability distribution on a common measurable space, where
is an arbitrary parameter set. Then, for any finite subset G = {θ1, . . . , θM} of Θ , we have

inf
T

sup
θ∈Θ

Pθ (T ̸= θ ) ≥ 1 − inf
F

M−1∑M
k=1 D(Pk ∥ F ) + log 2

logM
,

here F is an arbitrary probability distribution, Pk = Pθk , T denotes an arbitrary estimator of θ with values in Θ , and D(Pk ∥ F )
s the Kullback–Leibler (KL) divergence of F from Pk.

emma 2. For k = 1, 2, let

ρk =
1
d
B1 +

1
d

p∑
j=2

β
(k)
j Bj

nd Pk be the product of the binomial probability measures, B(n, 1+β(k)2
2 ), . . . , B(n, 1+β(k)p

2 ). Then we have

D(P1 ∥ P2) ≤ n
p∑

j=2

(β (1)
j − β

(2)
j )2

1 − (β (2)
j )2

.

emma 3. For ϵ ∈ [0, 1], the function Aϵ : Vd−m,m ↦→ Vd,m is defined in block form as

Aϵ(J) =

(
(1 − ϵ2)1/2Im

ϵJ

)
,

where Vd,h = {Q ∈ Rd×h
: Q†Q = I} is the Stiefel manifold of d-by-h orthonormal matrices. For J1, J2 ∈ Vd−m,m, we have

∥ sin(A (J ),A (J ))∥2
≥ ϵ2(1 − ϵ2)∥J − J ∥

2,
ϵ 1 ϵ 2 2 1 2 2
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a

P

L
f

a

b

nd

ϵ2(1 − ϵ2)∥J1 − J2∥2
F ≤ ∥ sin(Aϵ(J1),Aϵ(J2))∥2

F ≤ ϵ2∥J1 − J2∥2
F .

roof. Similar to the proof of Lemma 3 (Kim and Wang, 2016), we can show this statement. ■

emma 4. Let h be an integer satisfying e ≤ h, and let s ∈ [1, h]. There exists a subset {J1, . . . , JM} ⊂ Vh,1 satisfying the
ollowing properties:

(1) ∥Jj − Jj′∥2
2 ≥ 1/4 for all j ̸= j′;

(2) ∥Jj∥0 ≤ s for all j;
(3) logM ≥ max{cs[1 + log(h/s)], log h}, where c > 1/30 is an absolute constant.

Proof. See the proof of Lemma A.5 in Vu and Lei (2013). ■

Proof of Theorem 3. Since Pauli matrices form an orthogonal basis for all complex Hermitian matrices, for any given
A ∈ Vd,m, where Vd,m is the Stiefel manifold of d-by-m orthonormal matrices, there are β ′

j s such that

ρ(A) = d−1

⎛⎝Id +

p∑
j=2

βjBj

⎞⎠ = m−1AAT .

We consider the subclass of A as follows: Let

Aϵ(J) =

(
(1 − ϵ2)1/2Im

ϵJ

)
, (7.6)

where Im is a m-by-m identity matrix, and ϵ ∈ [0, 1], and J ∈ Vd−m,m. Using Lemma 4, we construct the packing set of
J as follows: Define Gτ = {J1, . . . , JM ′} with h = ⌊(d − m)/m⌋ and s = ϱh, where ϱ ∈ (1/h, 1). Then, from Lemma 4,
(i) logM ′

≥ c max{dϱ[1 − log ϱ], log d} for some constant c free n and p; (ii) ∥Ji∥0 ≤ s for all j = 1, . . . ,M ′; (iii)
∥Jj − Jj′∥2

2 ≥ 1/4 for all j ̸= j′. Choose J in (7.6) as follows:

J(a1, . . . , am) =

⎛⎜⎜⎝
a1 0 · · · 0
0 a2 · · · 0
... 0

. . .
...

0 0 · · · am

⎞⎟⎟⎠ ,
where aj ∈ Gτ for all j. Let G(J) = {J(a1, . . . , am), aj ∈ Gτ for j = 1, . . . ,m}. Then, from the construction of Gτ ,
G(J) ⊂ Vd−m,m, and the cardinality of G(J) is M = (M ′)m. Note that logM ≥ mc max{dϱ[1 − log ϱ], log d}, and for any
Jk ∈ G(J), there exist β (k)

j ’s such that

ρ(Jk) = d−1

⎛⎝Id +

p∑
j=2

β
(k)
j Bj

⎞⎠ = m−1Aϵ(Jk)Aϵ(Jk)T .

Without loss of generality, we assume that the first d Pauli matrices, Bj’s, correspond to the diagonal Pauli matrices.

Define P0 the product of the binomial probability measures, B(n, 1+β(0)2
2 ), . . . , B(n, 1+β(0)p

2 ) with β (0)
j ’s determined as follows:

β
(0)
d+1 = · · · = β (0)

p = 0

nd β (0)
1 , . . . , β

(0)
d are a solution of the following equation,

ρ0 =
1
d

d∑
j=1

β
(0)
j Bj = m−1

(
(1 − ϵ2)Im 0

0 mϵ2
d−m Id−m

)
.

Let β(0)
= (β (0)

1 , . . . , β
(0)
d )T and β(k)

= (β (k)
1 , . . . , β

(k)
d )T , and H = (b1, . . . , bd), where bj = diag(Bj) for j = 1, . . . , d. Then,

y the construction of the Pauli matrices, H is d-by-d Hadamard matrix. We have

β(0)
= HTdiag(ρ ) and β(k)

= HTdiag(ρ(J )).
0 k
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T

w

B

w

T

hen
d∑

j=2

|β
(k)
j − β

(0)
j |

2
= ∥HT

[diag(ρ(Jk)) − diag(ρ0)]∥
2
2

= d[diag(ρ(Jk)) − diag(ρ0)]
T
[diag(ρ(Jk)) − diag(ρ0)]

≤ 2m−1dϵ4, (7.7)

where the second equality is established by the fact that HTH = d Id. Note that |β
(0)
j | ≤ 1 − ϵ2/2 for all j = 2, . . . , d. For

off-diagonal terms, we have for any k = 1, . . . ,M ,

∥ρ(Jk) − ρ0∥
2
F = d

p∑
j=1

|β
(k)
j − β

(0)
j |

2

= m−2


(

0 (1 − ϵ2)1/2ϵJTk
(1 − ϵ2)1/2ϵJk ϵ2JkJTk −

mϵ2
d−m Id−m

)
2

F

= m−1
[2(1 − ϵ2)ϵ2 + ϵ4 + mϵ4/(d − m)] ≤ 2m−1ϵ2.

o, we have
p∑

j=d+1

|β
(k)
j − β

(0)
j |

2
≤ 2m−1dϵ2. (7.8)

hen, by Lemma 2, we can obtain the upper bound for the KL divergence as follows:

D(Pk ∥ P0) ≤ n
p∑

j=2

(β (k)
j − β

(0)
j )2

1 − (β (0)
j )2

= n

⎡⎣ d∑
j=2

(β (k)
j − β

(0)
j )2

1 − (β (0)
j )2

+

p∑
j=d+1

(β (k)
j − β

(0)
j )2

1 − (β (0)
j )2

⎤⎦
≤ n

⎡⎣ d∑
j=2

(β (k)
j − β

(0)
j )2

1 − (1 − ϵ2/2)2
+

p∑
j=d+1

(β (k)
j − β

(0)
j )2

⎤⎦
≤ n

[
4dm−1ϵ4

ϵ2
+ 2m−1dϵ2

]
= 6m−1ndϵ2, (7.9)

here the third inequality is due to (7.7) and (7.8).
By Lemmas 3 and 4, we have for any k ̸= k′,

∥sin(Aϵ(Jk),Aϵ(Jk′ ))∥2
2 ≥ ϵ2(1 − ϵ2)∥Jk − Jk′∥2

2 ≥
1
4
ϵ2(1 − ϵ2). (7.10)

y Chebyshev’s inequality and Lemma 1, we have for all ϵ2 ∈ [0, 1/2],

max
k

EPk∥sin(̂A,Aϵ(Jk))∥
2
2 ≥

ϵ2(1 − ϵ2)
16

[
1 −

6m−1dnϵ2 + log 2
mc max{dϱ[1 − log ϱ], log d}

]
≥
ϵ2(1 − ϵ2)

16

[
1 −

6dnϵ2

cm2dϱ[1 − log ϱ]
−

log 2
mc log d

]
≥
ϵ2

32

[
1
2

−
6dnϵ2

cm2dϱ[1 − log ϱ]

]
,

here the first inequality is due to (7.9) and (7.10). Take

ϵ2 =
cm2

24
ϱd[1 − log ϱ]

dn
=

cm2

24
ϱ[1 − log ϱ]

n
.

Then

max
k

EPk∥sin(̂A,Aϵ(Jk))∥
2
2 ≥

1
128

ϵ2. (7.11)

To ensure that ρ(Aϵ(Jk))’s are in the sparse subspace, Fδ(π (d)), we need the following condition

1 + ϵδs(2−δ)/2 ≤ π (d). (7.12)

ake

ϱ = cϱπ (d)d−1
(
log d

)−δ/2

,

nd
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here cϱ =
1

√
2

(
cm2

24

)−δ/2
. Then (4.3) implies

ϱ ≍ π (d)d−1
(
log d
nd

)−δ/2

≍ d−N, N ∈ (0, 1),

hile 1/h = m/(d − m) ≍ d−1. Thus, asymptotically we have ϱ ∈ (1/h, 1]. Also

ϵ2 ≤
cϱcm2

24
π (d)d−1n−1

(
log d
nd

)−δ/2 [
1 +

1
2
(1 − δ/2) log d + δ/2 log log d

]
≤ cϱ

cm2

24
π (d)

(
log d
nd

)1−δ/2

≤ 1/2,

here the last inequality is due to the fact that for (n, d, π (d)) satisfying (4.3), π (d)
( log d

nd

)1−δ/2
is of order n−1d−N log d

hich is asymptotically negligible.
Simple algebras show

ϵ2δs(2−δ) ≤ c2ϱ

(
cm2

24

)δ (
π (d)

(
log d
nd

)1−δ/2
)δ (

π (d)
(
log d
nd

)−δ/2
)2−δ

=
1
2
π (d)2

(
log d
nd

)−δ ( log d
nd

)δ
=

1
2
π (d)2.

Thus, (7.12) holds. Now, from (7.11), we have

max
k

EPk∥sin(̂A,Aϵ(Jk))∥
2
2 ≥ Cπ (d)n−1d−1

(
log d
nd

)−δ/2

×

[
1 + N log d − log

(
cϱπ (d)dN−1

(
log d
nd

)−δ/2
)]

≥ Cπ (d)n−1d−1
(
log d
nd

)−δ/2

log d

= Cπ (d)
(
log p
nd

)1−δ/2

, (7.13)

here the second inequality is due to (4.3).
For the Frobenius norm, by Lemmas 3 and 4, we have for any k ̸= k′,

∥sin(Aϵ(Jk),Aϵ(Jk′ ))∥2
F ≥ ϵ2(1 − ϵ2)∥Jk − Jk′∥2

F ≥
m
4
ϵ2(1 − ϵ2).

hen, similar to the proof of (7.13), we can show

max
k

EPk∥sin(̂A,Aϵ(Jk))∥
2
F ≥ Cπ (d)

(
log d
nd

)1−δ/2

. ■
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