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1. Introduction

Asset volatilities play a central role in finance, and it is important to develop sound statistical inferences for volatility
models in financial econometrics. Empirical and theoretical financial studies often employ discrete-time models such as
the GARCH and stochastic volatility (SV) models, as well as continuous-time models like the diffusions. It is well known
that the GARCH and SV models may have the same diffusion model as their weak-convergence limit. However, statistically,
they are not asymptotically equivalent. The statistical non-equivalence is established by showing that their respective
likelihoods present different asymptotic behaviors. See Brown et al. (2003), Nelson (1990) and Wang (2002) for details.
We further note that the likelihoods for the SV and diffusion models are intractable even asymptotically. Thus, in this
paper, we develop a quasi-likelihood approach for the SV and diffusion models and examine the corresponding quasi-
likelihood ratios given statistical testing problems. In specific, we plug observations from the SV model and discretely
sampled observations from the diffusion model into the GARCH likelihood function to obtain their respective quasi-
likelihood ratios. We show that their quasi-likelihood ratios share the same weak limit with a closed-form expression
that is different from the limit of the GARCH likelihood ratio.

The rest of this paper is organized as follows. Section 2 reviews the GARCH and SV models and shows that their
approximating processes share the same diffusion limit. Section 3 develops quasi-likelihoods for the SV and diffusion
models and derives the same weak convergence limit for their quasi-likelihood ratios. Additional technical proofs are
collected in an Appendix as the online Supplementary Material.
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2. Volatility models and their diffusion limits
2.1. GARCH models

The well-known GARCH models (Bollerslev, 1986; Engle, 1982) are defined by setting the conditional variances of
a series of prediction errors equal to some functions of lagged errors. Given observed time series x;, i = 1,...,n, we
consider the following multiplicative GARCH (p, q) model defined by

Xi = i + 2, Zi = Ti€i, (1)

p q
logr? =ao+ Y ojlogz?;+ Y apy loge? . (2)
j=1 j=1
where ¢; is a sequence of i.i.d. standard normal random errors, riz is the conditional variance of x; given all information
up to time i — 1, and «;’s are model parameters. In particular, the GARCH(1,1) specification has been found to be sufficient
for modeling the dynamics of most financial time series. Thus, we confine our analysis to the GARCH(1,1) model in this
paper and employ a common financial parameterization of the drift term u; such that

[Li:C0+lei2. (3)

By taking advantage of the conditional structure in the GARCH(1,1) model, we easily derive its likelihood function in the
following

n

1 (%= ) T i E
E[«/ZTTH exp( 721,_2 )] 0’ |:Eri :| exp( > ) (4)

Since the above likelihood function is in a relatively simple form, statistical inferences for the GARCH model can be carried
out easily.

2.2. Stochastic volatility models

In contrast to the GARCH models defined in (2) where the conditional variance is a deterministic function of past
data and model parameters, the stochastic volatility (SV) models generate the conditional variance, known as volatility,
by a probability mechanism. As a result, the volatilities are unobservable random variables and the density function is
then a mixture over the volatility distribution that is rather complicated. In specific, given the observed time series x;,
i=1,...,n, we consider the following widely used SV models that assume the conditional variance of each x; obeys a
log-AR(p) process such that

Xi = (i +Yi, Vi = Gi€i, (5)

p
10g§12 =0op + ZajIOggi{j—’_a}H—l di, (6)
=1

where ¢;’s and §;’s are independent standard normal random variables, and ¢;’s are the conditional variances. As in the
GARCH model case, this paper focuses on SV models with a log-AR(1) specification.

Due to the latent random component in the volatility process, the likelihood function for the SV model involves
a n-dimensional integration with respect to the unobservable latent volatilities ¢;’s and thus does not have a closed
form. Statistical inferences for the SV models can be carried out with Markov chain Monte Carlo (MCMC) simulation
methods (Jacquier et al., 2002), which are computationally much harder than those for the GARCH models.

2.3. Diffusion processes

Besides discrete-time models such as the GARCH and SV, continuous-time models are widely employed in modern
finance such as option pricing and high-frequency finance. In specific, given security price S, t € [0, T], we consider the
following stochastic differential equation

dS; = pu Sp dt + or S¢ dW, (7)

where W; is a standard Brownian motion process, u; and o; are the instantaneous drift and volatility, respectively. In
particular, the well-known Black-Scholes model (Black and Scholes, 1973) is constructed on (7) with constant yx; and oy.
However, empirical financial series tend to be highly heteroskedastic. To capture this important feature, we allow o; to
be random and assume it obeys some stochastic differential equation. Such o; is called stochastic volatility. Further let
X; = logS; be the log price process, from (7) and by Itd’s lemma, we can show that

dXe = (yo + ymtz)dt + o, dW;
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where the drift of X; includes the volatility term atz, which shares the same structure as (3). Since the GARCH models are
designed to model the increments of log prices, parametrizing the GARCH drift w; by (3) is very natural from a diffusion
point of view.

Given discretely sampled data from a diffusion model, the likelihood function is only available in a closed form for a
handful of simple cases. Thus, approximations of the likelihood function are typically necessary, and statistical inferences
are much harder than those of the GARCH models (Ait-Sahalia, 2002, 2008; Beskos et al., 2005, 2006; Durham and Gallant,
2002).

2.4. Diffusion limits of the discrete-time models

In this section, we define the approximating processes of the GARCH and SV models and show that they share the

same diffusion limit. Divide the interval [0, T] into n subintervals of length s, = T/n and set t; = is;, i = 1, ..., n. Given
i.i.d. standard normal random variables &;’s, let
‘g;:f = Kl(loggiz - K0)7 é‘i = 2_1/2(81‘2 - l)a (8)

where ko and k4 are generic constants such that
ko = Eloge? ~ —1.27,  «; = [Var(loge?)]”"/? ~ 0.45. 9)

First, we define the approximating process for the continuous multiplicative GARCH(1,1) model and will show in
Section 2.5 that there is a one-to-one correspondence between the discrete multiplicative GARCH (1,1) model defined
by (1)-(2) and the approximating process specified in (10)-(11). Let

XS =X =+t +Znis  Zni = Zni — Znj—1 = TniSy &, (10)

log 721 = Posu + (1+ Brsa)log 72, + Bas)/2&:. (11)

For any t € [t;, tiy1), denote X,f[ = XHGJ,Zn.t = Zy;, and r,it = rnzi. As n — o0, Nelson (1990) demonstrated that

the normalized partial sum process of (g;, &) converges in distribution to a planar Wiener process and the process

(X,E s Znts T,i .) converges weakly to a diffusion process (X;, Z;, 02) satisfying the following stochastic differential equation
system
dX; = (yo + )’lU[Z)dt + dZz;, azZ; = opdWy g, (12)
dlogo[Z = (,30 + /31 logotz)dt =+ ﬂdez’t, (]3)

where Wy and W, ; stand for two independent standard Wiener processes. We refer the process (X;, Z;, crtz) the diffusion
limit of the approximating process (X{ ., Zn.c, T2,)-

We now define the approximating process for the continuous SV model and will show in Section 2.5 that there is a
one-to-one correspondence between the discrete SV model defined by (5)-(6) and the approximating process specified

n (14)-(15). Let
S S _ 2 ) V. R 1/24.
Xn,i _Xn.ifl =+ V1§n,,’)5n + Yn,is Yni=Yni— Yni-1 = ¢niSy & (14)

10g 6111 = Bosn + (1 + isw)log o ; + Bosy/ 5, (15)
where ¢;’s and §;’s are independent standard normal random variables. For any t € [t;, ti+1), denote X,f’t = X,f‘,., Yot = Yai,
and g,f’t = gii. As n — o0, since the normalized partial sum process of the i.i.d. sequence (¢;, §;) converges in distribution
to a planar Wiener process, the process (X,f,t, Yo, §ﬁ.r) converges weakly to the same diffusion process (X;, Yt, 02) defined

by (12)-(13) with Z; replaced by Y;. Thus, we show that the approximating processes specified by (10)-(11) and (14)-(15)
share the same diffusion limit described by (12)-(13).

2.5. Approximating processes of the discrete-time models

In this section, we connect the approximating processes of the GARCH and SV models with their respective specifica-
tions provided in Sections 2.1 and 2.2.
For the GARCH model, using the relationship between &; and 812 given by (8)-(9) such that & = «1(log giz — Kp), we may
rewrite Eq. (11) by
log 7y 1 = Bosn — Pasy*kok1 + (1 + Bisp)log T} + Bosy/*ky log e (16)

Comparing the volatility specification for the GARCH(1,1) model by (2) and for the approximating process by (16), we
demonstrate that they share the same structure with

1/2 1/2
oo = BoSn — /‘325,1/ KoK1, ay =1+ Bisy, oy = ,323,,/ K1.
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Further comparing the drift specification for the GARCH(1,1) model by (1) and (3) and for the approximating process by
(10), we show their relative relationship in the following

Co = YoSn, €1 = Y15n-

Therefore, the parameters y’s and §’s are, respectively, the rescaled versions of drift parameters c¢’s and local reparam-
eterization of volatility parameters «'s. It follows that the diffusion limit in (12)-(13) can be established for the GARCH
model in (1)-(2).

For the SV model, comparing the volatility specification for the SV model by (6) and for the approximating process by
(15), we have

172
ap = BoSn, ay =1+ Bisy, ay = Posy?.

There is also a one-to-one correspondance between the drift terms in (5) and in (14). Thus, the diffusion limit in
(12)-(13) can be obtained for the SV model in (5)-(6). We can further conclude that the GARCH and SV models share
the same diffusion limit.

In the rest of the paper, we assume T = 1 and thus s, = 1/n, moreover, the initial values e/ = 77| = ¢?, = 0§ and

X%, = X2, = Xo are known constants.

3. Asymptotic analysis of likelihood ratios

In this section, we examine the likelihood ratios for making statistical inferences based on the approximating processes
of the GARCH (10)-(11) and SV (14)-(15) models as well as the discretized process of their diffusion limit (12)-(13). We
show that although the GARCH and SV models share the same diffusion limit, their respective likelihood ratios differ
even in the asymptotic sense. Moreover, since the likelihood ratio based on the approximating SV model is intractable,
we further adopt the idea of quasi-likelihood by plugging samples obtained from the approximating SV model into the
GARCH likelihood. A similar quasi-likelihood function can be established for the diffusion model by plugging discrete
samples obtained from the diffusion model into the GARCH likelihood. We show in Theorem 1 that the quasi-likelihood
ratios for the SV and diffusion models share the same asymptotic limit, which differs from the limit of GARCH likelihood
ratio.

Let us specify the testing problem and define the likelihood ratios. Set 8 = (Bo, B1, B2, B3), ¥ = (Y0, ¥1) and 0 = (B, y).
The asymptotic study in statistics often needs to investigate the behavior of distributions and likelihoods in a shrinking
neighborhood around certain parameters. Thus, we consider parameters in a n~'/2-shrinking neighborhood of 6 = (8, ).
For a given @ = (B + n~'2¢, y), denote # = (¢, ). In particular, for a fixed 8*, consider §* = (8*, 0), or equivalently,
#* = (0,0), we are interested in testing the null Hy : § = 6%, or equivalently, # = #7 against the alternative
Hy : 0 = (B +n""2¢,y) for # = (@,y) # 0. Since there is a one-to-one correspondence between # and ¥, we
use ¥ instead of 6, and write #* for * when there is no confusion. We note that the likelihood processes have non-
degenerate limiting distributions over the entire ¥ and over only a n~'/?-shrinking neighborhood of B. Thus, only a
shrinking neighborhood of the volatility parameter g is studied.

We now examine the asymptotic behaviors of the likelihood ratios for the testing problem. Denote by L, 1(¢) the
likelihood function of the GARCH approximating process X,Eti. Let Ap1(#) = Ln1(#)/Ly1(9*) be the corresponding
likelihood ratio given respective parameters of # in H, and #* in Hp. We can show that as n — oo, Ap 1(#) converges in

distribution to A(#) defined by
1 1

1 1 1 1 1
A1(9) = exp [ﬁ/o V, dWs, — 4/0 V2 dt+/o oo (Yo +y102y) AWy, — 5/0

where crfo is the diffusion volatility atz in (13) given the null parameter # = ¥*,

_ 2
atyoz (yo + 11 030) dt:| , (17)

3

dlogo?
Vi = Z‘PiT;’O, (18)
i=0 t

and Wy ¢, Wy, W35 ; are standard Brownian motions. We note that Wy, W, ;, and W3 are associated with the empirical
processes of ¢; in (10), standardized log 5,? in (16) [see its standardized version &; in (8)] and 8,~2 appeared in the GARCH
likelihood (4) [see its standardized version ¢; in (8)]. Note that log siz and siz are correlated, but each is uncorrelated with
&;, thus, Wy ¢ is independent of W5, and W3, with corr(W, ¢, W3 ) = corr(log €2, £2) ~ 0.64.

Denote by L, »(#) the likelihood function of the SV approximating process X,f‘[i. Let Apo(?) = Ly 2(9)/Ln2(9") be the
corresponding likelihood ratio given respective parameters of # in H, and #* in Hy. We will demonstrate that A, »(#)
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relates to A,(#) defined by

1 1 1 1 1
Az('l}) = EW2 {exp [ﬁ / VE dW4’[ — Z / Vtz dt + / O'[,_O] (]/0 + Y1 (750) dW],t
0 0 0

1 (! B 2
_5/ at_g (Yo + v1020) dt“, (19)
0

where Wy, is a standard Brownian motion process independent of Wy ¢, W, ;, W3 ;, and Ey, denotes the expectation taken
with respect to W, in V; and 030. We note that Wy, W, , and W, are associated with the empirical processes of ¢;
n (14), & in (15), and eiz appeared in the conditional normal likelihood given §;. Since ¢;, §;, and sf are uncorrelated,
Wi, W, and Wy, are independent. Moreover, given the fact that ¢; and §; are independent while the SV volatility gii's
in (15) are latent, the joint density of y,;’s is equal to the product of the conditional normal density of each y,; given
81, ..., 8, with expectation taken with respect to all §;’s whose empirical process converges to W5 . Thus, A,(#) involves
the expectation Ey,. As a matter of fact, neither A, »(#) nor A,(#) are tractable even asymptotically. It is only under
some very special case such as given zero drift and deterministic volatility, A, (#) converges in distribution to A,(#) as
n — oo. In particular, we note that the limiting likelihood ratios in (17) and (19) are different.

Note that the likelihood A¢(#) in (17) has an explicit expression but A,(#) in (19) has no closed form. We thus develop
quasi-likelihood ratios for the study of SV and diffusion models. In specific, consider a quasi-likelihood L, o(#) that is
obtained by plugging samples from the SV approximating process Xr?,t,- into the GARCH likelihood L, 1(#). We define the
corresponding quasi-likelihood ratio A, o(#) = Ly o(#)/Lno(#*) given respective parameters of # in H, and #* in Hy.
Similarly, denote by A(#) the quasi-likelihood ratio that is obtained by plugging discrete samples X;; obtained from the
diffusion model (12)-(13) into the GARCH likelihood ratio. The theorem below derives an explicit asymptotic expression
for the proposed quasi-likelihood ratios.

Theorem 1. As n — oo, both the quasi-likelihood ratios for the SV model, A, o(#), and for the diffusion model, A,(#),
converge in distribution to A(¥), where

1 1 1 1 1 B
A(®) = exp [ﬁ/ Ve dWy, — Z/ vfdt+/ oo (vo+r102,) dWi,
0 0 0

1 (! _ 2
-5 / cr[,o2 ()/0 + 11 030) dt] . (20)
0

where V, is defined in (18), and afo denotes the diffusion volatility 0[2 in (13) with # = 9.

Proof. From the GARCH likelihood (3) we easily derive the following expression for the log GARCH likelihood ratio,

1 ! Tnzt,‘O 2 1 n Tr%tio rr%t,-o
gt 130 (1 B2 ) e 150 (g e

i=1 rn,t,- i=1 n,t; n,tj

n

n
412 Z ()/0 + fitl_) Tn,t;,0 r,;tzi & — % Z ()/o + 7 rii[i)z tr;,tz,-’ (21)
i=1 i=1
where 7, o denotes the GARCH volatility 7, ., in (11) with # = #* (see more details in Appendix A.2). To obtain the
quasi-likelihood A,(#), we plug observations X,f‘ti from the SV approximating process (14) or discrete observations X;,
from the diffusion process (12) into the log GARCH likelihood ratio log A, 1(#) in (21). Since Appendix A.3 shows that
the SV and diffusion samples behave the same asymptotically, we adopt the diffusion model here for demonstration and
replace r,i . and ¢&; in the above log GARCH likelihood ratio (21) by the corresponding &,ﬁti and &;, where &; are i.i.d. standard

normal random variables. In specific, c'rn% b and &; are given by

t tj

- . (= ~172

Gl = n/ opdu, &= (d;,./n) f oy AW 4, (22)
t—1/n ti—q

where crtz is defined in (13) [see (A.7) and (A.8) in Appendix A.3 for more details about their properties]. Then we obtain
the log quasi-likelihood ratio for the diffusion model,

1 o 6r%,t,-,0 w2 1 ¢ 6112,t,-.0 c}nz,r,-,o
log Ap(9) = ZZ<]_62 (& —1)+§Z 1+ log 2 52

i=1 n,t i=1 n,t On.t;

n

n
1
+n'2 Z (vo+ V15§ti) On,t;,0 5{[2,.51' ~on Z (vo + )/15nz,r,~)2 5;1_,t2,~
i=1 i=1
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1 1. 1 & - ! o
= ﬁ/o Voo W) + o Y Hug +/0 (Yo +11674) Gnco 6, AW
i=1

n

1

o \2 __
o Z (J/o + V10,12.t,.) Cfn,tzi, (23)
i=1
where
- _2 - - -
Voo =n'/? (1 — f’zt’o) . Hpe=n[nVo +1log (1—n""2V,,)], (24)
n,t
and
[nt] [nt]

Wi =n"23 s Wil =) @ - ).
i=1 i=1

By strong approximation (Komlés et al., 1975, 1976), we can realize the processes ng't), Wf;'t), Wi, Wy, and Wy on some
common probability spaces, and approximate (W]("t), Wfl"t)) by (Wi ¢, Wa,) with order Op(n*” 2 log? n). Using the definition
of 67, in (22) and the explicit solution of o in (13), we have that &, approaches o, with 67 /72, , approximated by
o} /afo. Thus, an application of the Taylor expansion together with the definition of V; in (18) leads to

_2 5
5 o,

log | ) ~log | = ) ~ n"?V..
Gn,t,O Gt,O

Therefore, from (24) we arrive at

Vae ~n'?[1—exp (—n""?V)] ~ v, Hy ~ —V2/2. (25)

(See Appendix A.3 for more details about above derivations.) Combining the strong approximation with (25) and the
expression (23) for log A,(#), we conclude that A,(#) converges in distribution to A(#) and hence prove Theorem 1. O

As indicated in Wang (2002), the GARCH and SV models share the same diffusion limit, but they employ different noise
propagation systems in their conditional variances to yield different behaviors in likelihood and thus the statistical non-
equivalence. It may be further demonstrated by the fact that the limiting quasi-likelihood ratio A(#) in (20) is different
from the GARCH limiting likelihood ratio A¢(#) in (17). The explicit expression for the asymptotic quasi-likelihood ratios
in Theorem 1 is very handy in developing statistical inferences for these models. For example, the result can be naturally
employed to design and carry out hypothesis tests for the SV and diffusion models. Furthermore, we may exploit the
difference between A1(#)in (17) and A(#) in (20) to statistically distinguish the GARCH and SV models based on observed
data.
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