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a b s t r a c t

There is a widely known intriguing phenomenon that discrete-time GARCH and stochas-
tic volatility (SV) models share the same continuous-time diffusion model as their weak
convergence limit, but statistically, the GARCH model is not asymptotically equivalent
to the SV or diffusion model. This paper investigates GARCH-type quasi-likelihood ratios
for the SV and diffusion models whose own likelihoods are analytically intractable. We
show that the two quasi-likelihood ratios for the SV and diffusion models asymptotically
have the same closed-form expression that is different from the limiting likelihood ratio
of the GARCH model.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Asset volatilities play a central role in finance, and it is important to develop sound statistical inferences for volatility
models in financial econometrics. Empirical and theoretical financial studies often employ discrete-time models such as
the GARCH and stochastic volatility (SV) models, as well as continuous-time models like the diffusions. It is well known
that the GARCH and SV models may have the same diffusion model as their weak-convergence limit. However, statistically,
they are not asymptotically equivalent. The statistical non-equivalence is established by showing that their respective
likelihoods present different asymptotic behaviors. See Brown et al. (2003), Nelson (1990) and Wang (2002) for details.
We further note that the likelihoods for the SV and diffusion models are intractable even asymptotically. Thus, in this
paper, we develop a quasi-likelihood approach for the SV and diffusion models and examine the corresponding quasi-
likelihood ratios given statistical testing problems. In specific, we plug observations from the SV model and discretely
sampled observations from the diffusion model into the GARCH likelihood function to obtain their respective quasi-
likelihood ratios. We show that their quasi-likelihood ratios share the same weak limit with a closed-form expression
that is different from the limit of the GARCH likelihood ratio.

The rest of this paper is organized as follows. Section 2 reviews the GARCH and SV models and shows that their
approximating processes share the same diffusion limit. Section 3 develops quasi-likelihoods for the SV and diffusion
models and derives the same weak convergence limit for their quasi-likelihood ratios. Additional technical proofs are
collected in an Appendix as the online Supplementary Material.
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2. Volatility models and their diffusion limits

2.1. GARCH models

The well-known GARCH models (Bollerslev, 1986; Engle, 1982) are defined by setting the conditional variances of
a series of prediction errors equal to some functions of lagged errors. Given observed time series xi, i = 1, . . . , n, we
consider the following multiplicative GARCH (p, q) model defined by

xi = µi + zi, zi = τiεi, (1)

log τ 2
i = α0 +

p∑
j=1

αj log τ 2
i−j +

q∑
j=1

αp+j log ε2
i−j, (2)

where εi is a sequence of i.i.d. standard normal random errors, τ 2
i is the conditional variance of xi given all information

up to time i−1, and αj’s are model parameters. In particular, the GARCH(1,1) specification has been found to be sufficient
for modeling the dynamics of most financial time series. Thus, we confine our analysis to the GARCH(1,1) model in this
paper and employ a common financial parameterization of the drift term µi such that

µi = c0 + c1τ 2
i . (3)

By taking advantage of the conditional structure in the GARCH(1,1) model, we easily derive its likelihood function in the
following

n∏
i=1

[
1

√
2πτi

exp
(

−
(xi − µi)2

2τ 2
i

)]
∝

[
n∏

i=1

τ−1
i

]
exp

(
−

∑n
i=1 ε2

i

2

)
. (4)

Since the above likelihood function is in a relatively simple form, statistical inferences for the GARCH model can be carried
out easily.

2.2. Stochastic volatility models

In contrast to the GARCH models defined in (2) where the conditional variance is a deterministic function of past
data and model parameters, the stochastic volatility (SV) models generate the conditional variance, known as volatility,
by a probability mechanism. As a result, the volatilities are unobservable random variables and the density function is
then a mixture over the volatility distribution that is rather complicated. In specific, given the observed time series xi,
i = 1, . . . , n, we consider the following widely used SV models that assume the conditional variance of each xi obeys a
log-AR(p) process such that

xi = µi + yi, yi = ςiεi, (5)

log ς2
i = α0 +

p∑
j=1

αj log ς2
i−j + αp+1 δi, (6)

where εi’s and δi’s are independent standard normal random variables, and ςi’s are the conditional variances. As in the
GARCH model case, this paper focuses on SV models with a log-AR(1) specification.

Due to the latent random component in the volatility process, the likelihood function for the SV model involves
a n-dimensional integration with respect to the unobservable latent volatilities ςi’s and thus does not have a closed
form. Statistical inferences for the SV models can be carried out with Markov chain Monte Carlo (MCMC) simulation
methods (Jacquier et al., 2002), which are computationally much harder than those for the GARCH models.

2.3. Diffusion processes

Besides discrete-time models such as the GARCH and SV, continuous-time models are widely employed in modern
finance such as option pricing and high-frequency finance. In specific, given security price St , t ∈ [0, T ], we consider the
following stochastic differential equation

dSt = µt St dt + σt St dWt , (7)

where Wt is a standard Brownian motion process, µt and σt are the instantaneous drift and volatility, respectively. In
particular, the well-known Black–Scholes model (Black and Scholes, 1973) is constructed on (7) with constant µt and σt .
However, empirical financial series tend to be highly heteroskedastic. To capture this important feature, we allow σt to
be random and assume it obeys some stochastic differential equation. Such σt is called stochastic volatility. Further let
Xt = log St be the log price process, from (7) and by Itô’s lemma, we can show that

dXt = (γ0 + γ1σ
2
t ) dt + σt dWt
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where the drift of Xt includes the volatility term σ 2
t , which shares the same structure as (3). Since the GARCH models are

designed to model the increments of log prices, parametrizing the GARCH drift µi by (3) is very natural from a diffusion
point of view.

Given discretely sampled data from a diffusion model, the likelihood function is only available in a closed form for a
handful of simple cases. Thus, approximations of the likelihood function are typically necessary, and statistical inferences
are much harder than those of the GARCH models (Aït-Sahalia, 2002, 2008; Beskos et al., 2005, 2006; Durham and Gallant,
2002).

2.4. Diffusion limits of the discrete-time models

In this section, we define the approximating processes of the GARCH and SV models and show that they share the
same diffusion limit. Divide the interval [0, T ] into n subintervals of length sn = T/n and set ti = isn, i = 1, . . . , n. Given
i.i.d. standard normal random variables εi’s, let

ξi = κ1(log ε2
i − κ0), ζi = 2−1/2(ε2

i − 1), (8)

where κ0 and κ1 are generic constants such that

κ0 = E log ε2
1 ≈ −1.27, κ1 = [Var(log ε2

1)]
−1/2

≈ 0.45. (9)

First, we define the approximating process for the continuous multiplicative GARCH(1,1) model and will show in
Section 2.5 that there is a one-to-one correspondence between the discrete multiplicative GARCH (1,1) model defined
by (1)–(2) and the approximating process specified in (10)–(11). Let

XG
n,i − XG

n,i−1 = (γ0 + γ1τ
2
n,i)sn + zn,i, zn,i = Zn,i − Zn,i−1 = τn,is1/2n εi, (10)

log τ 2
n,i+1 = β0sn + (1 + β1sn) log τ 2

n,i + β2s1/2n ξi. (11)

For any t ∈ [ti, ti+1), denote XG
n,t = XG

n,i, Zn,t = Zn,i, and τ 2
n,t = τ 2

n,i. As n → ∞, Nelson (1990) demonstrated that
the normalized partial sum process of (εi, ξi) converges in distribution to a planar Wiener process and the process
(XG

n,t , Zn,t , τ
2
n,t ) converges weakly to a diffusion process (Xt , Zt , σ 2

t ) satisfying the following stochastic differential equation
system

dXt = (γ0 + γ1σ
2
t )dt + dZt , dZt = σtdW1,t , (12)

d log σ 2
t = (β0 + β1 log σ 2

t ) dt + β2dW2,t , (13)

where W1,t and W2,t stand for two independent standard Wiener processes. We refer the process (Xt , Zt , σ 2
t ) the diffusion

limit of the approximating process (XG
n,t , Zn,t , τ

2
n,t ).

We now define the approximating process for the continuous SV model and will show in Section 2.5 that there is a
one-to-one correspondence between the discrete SV model defined by (5)–(6) and the approximating process specified
in (14)–(15). Let

X S
n,i − X S

n,i−1 = (γ0 + γ1ς
2
n,i)sn + yn,i, yn,i = Yn,i − Yn,i−1 = ςn,is1/2n εi, (14)

log ς2
n,i+1 = β0sn + (1 + β1sn) log ς2

n,i + β2s1/2n δi, (15)

where εi’s and δi’s are independent standard normal random variables. For any t ∈ [ti, ti+1), denote X S
n,t = X S

n,i, Yn,t = Yn,i,
and ς2

n,t = ς2
n,i. As n → ∞, since the normalized partial sum process of the i.i.d. sequence (εi, δi) converges in distribution

to a planar Wiener process, the process (X S
n,t , Yn,t , ς

2
n,t ) converges weakly to the same diffusion process (Xt , Yt , σ

2
t ) defined

by (12)–(13) with Zt replaced by Yt . Thus, we show that the approximating processes specified by (10)–(11) and (14)–(15)
share the same diffusion limit described by (12)–(13).

2.5. Approximating processes of the discrete-time models

In this section, we connect the approximating processes of the GARCH and SV models with their respective specifica-
tions provided in Sections 2.1 and 2.2.

For the GARCH model, using the relationship between ξi and ε2
i given by (8)–(9) such that ξi = κ1(log ε2

i −κ0), we may
rewrite Eq. (11) by

log τ 2
n,i+1 = β0sn − β2s1/2n κ0κ1 + (1 + β1sn) log τ 2

n,i + β2s1/2n κ1 log ε2
i . (16)

Comparing the volatility specification for the GARCH(1,1) model by (2) and for the approximating process by (16), we
demonstrate that they share the same structure with

α0 = β0sn − β2s1/2n κ0κ1, α1 = 1 + β1sn, α2 = β2s1/2n κ1.
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Further comparing the drift specification for the GARCH(1,1) model by (1) and (3) and for the approximating process by
(10), we show their relative relationship in the following

c0 = γ0sn, c1 = γ1sn.

Therefore, the parameters γ ’s and β ’s are, respectively, the rescaled versions of drift parameters c ’s and local reparam-
eterization of volatility parameters α’s. It follows that the diffusion limit in (12)–(13) can be established for the GARCH
model in (1)–(2).

For the SV model, comparing the volatility specification for the SV model by (6) and for the approximating process by
(15), we have

α0 = β0sn, α1 = 1 + β1sn, α2 = β2s1/2n .

There is also a one-to-one correspondance between the drift terms in (5) and in (14). Thus, the diffusion limit in
(12)–(13) can be obtained for the SV model in (5)–(6). We can further conclude that the GARCH and SV models share
the same diffusion limit.

In the rest of the paper, we assume T = 1 and thus sn = 1/n, moreover, the initial values eβ3 ≡ τ 2
n,0 = ς2

n,0 = σ 2
0 and

XG
t,0 = X S

t,0 = X0 are known constants.

3. Asymptotic analysis of likelihood ratios

In this section, we examine the likelihood ratios for making statistical inferences based on the approximating processes
of the GARCH (10)–(11) and SV (14)–(15) models as well as the discretized process of their diffusion limit (12)–(13). We
show that although the GARCH and SV models share the same diffusion limit, their respective likelihood ratios differ
even in the asymptotic sense. Moreover, since the likelihood ratio based on the approximating SV model is intractable,
we further adopt the idea of quasi-likelihood by plugging samples obtained from the approximating SV model into the
GARCH likelihood. A similar quasi-likelihood function can be established for the diffusion model by plugging discrete
samples obtained from the diffusion model into the GARCH likelihood. We show in Theorem 1 that the quasi-likelihood
ratios for the SV and diffusion models share the same asymptotic limit, which differs from the limit of GARCH likelihood
ratio.

Let us specify the testing problem and define the likelihood ratios. Set β = (β0, β1, β2, β3), γ = (γ0, γ1) and θ = (β, γ).
The asymptotic study in statistics often needs to investigate the behavior of distributions and likelihoods in a shrinking
neighborhood around certain parameters. Thus, we consider parameters in a n−1/2-shrinking neighborhood of θ = (β, γ).
For a given θ = (β + n−1/2ϕ, γ), denote ϑ = (ϕ, γ). In particular, for a fixed β∗, consider θ∗

≡ (β∗, 0), or equivalently,
ϑ∗

≡ (0, 0), we are interested in testing the null H0 : θ = θ∗, or equivalently, ϑ = ϑ∗, against the alternative
Ha : θ = (β∗

+ n−1/2ϕ, γ) for ϑ = (ϕ, γ) ̸= 0. Since there is a one-to-one correspondence between θ and ϑ, we
use ϑ instead of θ, and write ϑ∗ for θ∗ when there is no confusion. We note that the likelihood processes have non-
degenerate limiting distributions over the entire γ and over only a n−1/2-shrinking neighborhood of β. Thus, only a
shrinking neighborhood of the volatility parameter β is studied.

We now examine the asymptotic behaviors of the likelihood ratios for the testing problem. Denote by Ln,1(ϑ) the
likelihood function of the GARCH approximating process XG

n,ti . Let Λn,1(ϑ) = Ln,1(ϑ)/Ln,1(ϑ∗) be the corresponding
likelihood ratio given respective parameters of ϑ in Ha and ϑ∗ in H0. We can show that as n → ∞, Λn,1(ϑ) converges in
distribution to Λ1(ϑ) defined by

Λ1(ϑ) = exp
[

1
√
2

∫ 1

0
Vt dW3,t −

1
4

∫ 1

0
V 2
t dt +

∫ 1

0
σ−1
t,0

(
γ0 + γ1 σ 2

t,0

)
dW1,t −

1
2

∫ 1

0
σ−2
t,0

(
γ0 + γ1 σ 2

t,0

)2
dt
]

, (17)

where σ 2
t,0 is the diffusion volatility σ 2

t in (13) given the null parameter ϑ = ϑ∗,

Vt =

3∑
i=0

ϕi
∂ log σ 2

t,0

∂β∗

i
, (18)

and W1,t ,W2,t ,W3,t are standard Brownian motions. We note that W1,t , W2,t , and W3,t are associated with the empirical
processes of εi in (10), standardized log ε2

i in (16) [see its standardized version ξi in (8)] and ε2
i appeared in the GARCH

likelihood (4) [see its standardized version ζi in (8)]. Note that log ε2
i and ε2

i are correlated, but each is uncorrelated with
εi, thus, W1,t is independent of W2,t and W3,t with corr(W2,t ,W3,t ) = corr(log ε2

1, ε
2
1) ≈ 0.64.

Denote by Ln,2(ϑ) the likelihood function of the SV approximating process X S
n,ti . Let Λn,2(ϑ) = Ln,2(ϑ)/Ln,2(ϑ∗) be the

corresponding likelihood ratio given respective parameters of ϑ in Ha and ϑ∗ in H0. We will demonstrate that Λn,2(ϑ)
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relates to Λ2(ϑ) defined by

Λ2(ϑ) = EW2

{
exp

[
1

√
2

∫ 1

0
Vt dW4,t −

1
4

∫ 1

0
V 2
t dt +

∫ 1

0
σ−1
t,0

(
γ0 + γ1 σ 2

t,0

)
dW1,t

−
1
2

∫ 1

0
σ−2
t,0

(
γ0 + γ1 σ 2

t,0

)2
dt
]}

, (19)

where W4,t is a standard Brownian motion process independent of W1,t ,W2,t ,W3,t , and EW2 denotes the expectation taken
with respect to W2,t in Vt and σ 2

t,0. We note that W1,t , W2,t , and W4,t are associated with the empirical processes of εi
in (14), δi in (15), and ε2

i appeared in the conditional normal likelihood given δi. Since εi, δi, and ε2
i are uncorrelated,

W1,t , W2,t , and W4,t are independent. Moreover, given the fact that εi and δi are independent while the SV volatility ς2
n,i’s

in (15) are latent, the joint density of yn,i’s is equal to the product of the conditional normal density of each yn,i given
δ1, . . . , δn with expectation taken with respect to all δi’s whose empirical process converges to W2,t . Thus, Λ2(ϑ) involves
the expectation EW2 . As a matter of fact, neither Λn,2(ϑ) nor Λ2(ϑ) are tractable even asymptotically. It is only under
some very special case such as given zero drift and deterministic volatility, Λn,2(ϑ) converges in distribution to Λ2(ϑ) as
n → ∞. In particular, we note that the limiting likelihood ratios in (17) and (19) are different.

Note that the likelihood Λ1(ϑ) in (17) has an explicit expression but Λ2(ϑ) in (19) has no closed form. We thus develop
quasi-likelihood ratios for the study of SV and diffusion models. In specific, consider a quasi-likelihood Ln,0(ϑ) that is
obtained by plugging samples from the SV approximating process X S

n,ti into the GARCH likelihood Ln,1(ϑ). We define the
corresponding quasi-likelihood ratio Λn,0(ϑ) = Ln,0(ϑ)/Ln,0(ϑ∗) given respective parameters of ϑ in Ha and ϑ∗ in H0.
Similarly, denote by Λn(ϑ) the quasi-likelihood ratio that is obtained by plugging discrete samples Xti obtained from the
diffusion model (12)–(13) into the GARCH likelihood ratio. The theorem below derives an explicit asymptotic expression
for the proposed quasi-likelihood ratios.

Theorem 1. As n → ∞, both the quasi-likelihood ratios for the SV model, Λn,0(ϑ), and for the diffusion model, Λn(ϑ),
converge in distribution to Λ(ϑ), where

Λ(ϑ) = exp
[

1
√
2

∫ 1

0
Vt dW4,t −

1
4

∫ 1

0
V 2
t dt +

∫ 1

0
σ−1
t,0

(
γ0 + γ1 σ 2

t,0

)
dW1,t

−
1
2

∫ 1

0
σ−2
t,0

(
γ0 + γ1 σ 2

t,0

)2
dt
]

. (20)

where Vt is defined in (18), and σ 2
t,0 denotes the diffusion volatility σ 2

t in (13) with ϑ = ϑ∗.

Proof. From the GARCH likelihood (3) we easily derive the following expression for the log GARCH likelihood ratio,

logΛn,1(ϑ) =
1
2

n∑
i=1

(
1 −

τ 2
n,ti,0

τ 2
n,ti

)
(ε2

i − 1) +
1
2

n∑
i=1

(
1 + log

τ 2
n,ti,0

τ 2
n,ti

−
τ 2
n,ti,0

τ 2
n,ti

)

+ n−1/2
n∑

i=1

(
γ0 + γ1τ

2
n,ti

)
τn,ti,0 τ−2

n,ti εi −
1
2n

n∑
i=1

(
γ0 + γ1τ

2
n,ti

)2
τ−2
n,ti , (21)

where τn,ti,0 denotes the GARCH volatility τn,ti in (11) with ϑ = ϑ∗ (see more details in Appendix A.2). To obtain the
quasi-likelihood Λn(ϑ), we plug observations X S

n,ti from the SV approximating process (14) or discrete observations Xti
from the diffusion process (12) into the log GARCH likelihood ratio logΛn,1(ϑ) in (21). Since Appendix A.3 shows that
the SV and diffusion samples behave the same asymptotically, we adopt the diffusion model here for demonstration and
replace τ 2

n,ti and εi in the above log GARCH likelihood ratio (21) by the corresponding σ̄ 2
n,ti and ε̌i, where ε̌i are i.i.d. standard

normal random variables. In specific, σ̄ 2
n,ti and ε̌i are given by

σ̄ 2
n,t = n

∫ t

t−1/n
σ 2
u du, ε̌i =

(
σ̄ 2
n,ti/n

)−1/2
∫ ti

ti−1

σu dW1,u, (22)

where σ 2
t is defined in (13) [see (A.7) and (A.8) in Appendix A.3 for more details about their properties]. Then we obtain

the log quasi-likelihood ratio for the diffusion model,

logΛn(ϑ) =
1
2

n∑
i=1

(
1 −

σ̄ 2
n,ti,0

σ̄ 2
n,ti

)
(ε̌2

i − 1) +
1
2

n∑
i=1

(
1 + log

σ̄ 2
n,ti,0

σ̄ 2
n,ti

−
σ̄ 2
n,ti,0

σ̄ 2
n,ti

)

+ n−1/2
n∑

i=1

(
γ0 + γ1σ̄

2
n,ti

)
σ̄n,ti,0 σ̄−2

n,ti ε̌i −
1
2n

n∑
i=1

(
γ0 + γ1σ̄

2
n,ti

)2
σ̄−2
n,ti
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=
1

√
2

∫ 1

0
V̄n,t dW

(n)
4,t +

1
2n

n∑
i=1

H̄n,ti +

∫ 1

0

(
γ0 + γ1σ̄

2
n,t

)
σ̄n,t,0 σ̄−2

n,t dW (n)
1,t

−
1
2n

n∑
i=1

(
γ0 + γ1σ̄

2
n,ti

)2
σ̄−2
n,ti , (23)

where

V̄n,t = n1/2

(
1 −

σ̄ 2
n,t,0

σ̄ 2
n,t

)
, H̄n,t = n

[
n−1/2V̄n,t + log

(
1 − n−1/2V̄n,t

)]
, (24)

and

W (n)
1,t = n−1/2

[nt]∑
i=1

ε̌i, W (n)
4,t = (2n)−1/2

[nt]∑
i=1

(ε̌2
i − 1).

By strong approximation (Komlós et al., 1975, 1976), we can realize the processes W (n)
1,t , W

(n)
4,t , W1,t , W2,t , and W4,t on some

common probability spaces, and approximate (W (n)
1,t ,W

(n)
4,t ) by (W1,t ,W4,t ) with order Op(n−1/2 log2 n). Using the definition

of σ̄ 2
n,t in (22) and the explicit solution of σ 2

t in (13), we have that σ̄ 2
n,t approaches σ 2

t,0, with σ̄ 2
n,t/σ̄

2
n,t,0 approximated by

σ 2
t /σ 2

t,0. Thus, an application of the Taylor expansion together with the definition of Vt in (18) leads to

log

(
σ̄ 2
n,t

σ̄ 2
n,t,0

)
∼ log

(
σ 2
t

σ 2
t,0

)
∼ n−1/2Vt .

Therefore, from (24) we arrive at

V̄n,t ∼ n1/2 [1 − exp
(
−n−1/2Vt

)]
∼ Vt , H̄n,t ∼ −V 2

t /2. (25)

(See Appendix A.3 for more details about above derivations.) Combining the strong approximation with (25) and the
expression (23) for logΛn(ϑ), we conclude that Λn(ϑ) converges in distribution to Λ(ϑ) and hence prove Theorem 1. □

As indicated in Wang (2002), the GARCH and SV models share the same diffusion limit, but they employ different noise
propagation systems in their conditional variances to yield different behaviors in likelihood and thus the statistical non-
equivalence. It may be further demonstrated by the fact that the limiting quasi-likelihood ratio Λ(ϑ) in (20) is different
from the GARCH limiting likelihood ratio Λ1(ϑ) in (17). The explicit expression for the asymptotic quasi-likelihood ratios
in Theorem 1 is very handy in developing statistical inferences for these models. For example, the result can be naturally
employed to design and carry out hypothesis tests for the SV and diffusion models. Furthermore, we may exploit the
difference between Λ1(ϑ) in (17) and Λ(ϑ) in (20) to statistically distinguish the GARCH and SV models based on observed
data.
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