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Modeling the effects of dynamic range compression

on signals in noise

Ryan M. Corey® and Andrew C. Singer®
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ABSTRACT:

Hearing aids use dynamic range compression (DRC), a form of automatic gain control, to make quiet sounds louder
and loud sounds quieter. Compression can improve listening comfort, but it can also cause unwanted distortion in
noisy environments. It has been widely reported that DRC performs poorly in noise, but there has been little
mathematical analysis of these noise-induced distortion effects. This work introduces a mathematical model to study
the behavior of DRC in noise. By making simplifying assumptions about the signal envelopes, we define an effective
compression function that models the compression applied to one signal in the presence of another. Using the proper-
ties of concave functions, we prove results about DRC that have been previously observed experimentally: that the
effective compression applied to each sound in a mixture is weaker than it would have been for the signal alone; that
uncorrelated signal envelopes become negatively correlated when compressed as a mixture; and that compression
can reduce the long-term signal-to-noise ratio in certain conditions. These theoretical results are supported by soft-
ware experiments using recorded speech signals. © 2021 Acoustical Society of America.
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I. INTRODUCTION

Hearing aids often perform poorly in noisy environ-
ments, where people with hearing loss need help most. One
challenge for hearing aids in noise is a nonlinear processing
technique known as dynamic range compression (DRC),
which improves audibility and comfort by making quiet
sounds louder and loud sounds quieter (Allen, 2003; Kates,
2005; Souza, 2002; Villchur, 1973). Compression is used in
all modern hearing aids, but it can cause unwanted distortion
when applied to multiple overlapping sounds. For example, a
sudden noise can reduce the gain applied to speech sounds.
This effect is well documented empirically but has been little
studied mathematically. To better understand DRC in noisy
environments, this work applies tools from signal processing
theory to model the effects of DRC on sound mixtures.

The auditory systems of people with hearing loss often
have reduced dynamic range: Quiet sounds need to be
amplified in order to be audible, but loud sounds can cause
discomfort. Hearing aids with DRC apply level-dependent
amplification so that the output signal has a smaller dynamic
range than the input signal. A typical DRC system is shown
in Fig. 1. An envelope detector tracks the level of the input
signal over time in one or more frequency bands while a
compression function adjusts the amplification to keep the
output level within a comfortable range. Both the envelope
detector and the compression function are nonlinear pro-
cesses, so when the input contains sounds from multiple
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sources, changes in one component signal can affect the
processing applied to the others.

This interaction between signals can be difficult to mea-
sure, but hearing researchers have found three quantifiable
effects. First, noise can reduce the effect of a compressor,
especially at low signal-to-noise ratios (SNR) (Souza et al.,
2006). The DRC system applies gain based on the stronger
signal and has little effect on the dynamic range of the
weaker signal. This effect can measured by comparing the
overall dynamic ranges of the input and output signals
(Braida et al., 1982; Stone and Moore, 1992). Second, fluc-
tuations in the input level of one component signal vary the
output levels of other components. This interaction has been
called across-source modulation (Stone and Moore, 2007)
and can be measured using the correlation coefficient
between output envelopes. Finally, at high SNR, compres-
sors tend to amplify low-level noise more strongly than the
higher-level signal of interest, which can reduce the long-
term average SNR (Alexander and Masterson, 2015;
Hagerman and Olofsson, 2004; Rhebergen et al., 2009;
Souza et al., 2006).

The adverse effects of noise on DRC systems have been
well documented empirically, but the problem has received
little formal mathematical analysis. While experimental
work is useful for studying the consequences of these effects,
especially on human listeners, theoretical results can help to
understand their causes. This work applies signal processing
research methods to the DRC distortion problem: First, we
make simplifying assumptions to develop a tractable mathe-
matical model of a complex system. Next, we use that model
to prove theorems that explain the behavior of the system.
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FIG. 1. A typical DRC system performs automatic gain control in each of
several frequency bands or channels.

Finally, we validate those assumption-based theoretical
results using experiments with a realistic system.

Compression systems are difficult to analyze because of
the complex interactions between the envelope detector and
compression function, both of which are nonlinear. Using the
simplifying assumption that envelopes are additive in signal
mixtures, we can separate the effects of the envelope detector
from those of the compression function. To characterize the
interaction between signals in a mixture, we introduce the
effective compression function (ECF), which relates the input
and output levels of one signal in the presence of another. The
ECEF is used to explain the three effects described above: that
noise reduces the effect of compression (Sec. IV), that com-
pression induces negative correlation between signal enve-
lopes (Sec. V), and that compression can reduce long-term
average SNR in certain conditions (Sec. VI).

Each section includes a theorem about the effect and
simulation experiments that illustrate it. The theorems rely
on the concavity, or downward curvature, of the compres-
sion function and, like many results in signal processing the-
ory, take the form of inequalities. The experiments illustrate
the predictions of each theorem and show how the results
change when the assumptions are violated.

Il. DRC

Because most modern hearing aids are digital, we formu-
late the DRC system in discrete time. Let the sequence X[t] be
a sampled audio signal at the input of the DRC system, where
t is the sample index. Let y[f] be the output of the system.

A. Filterbank and envelope detector

Compression is often performed separately in several
frequency bands. A filterbank splits the signal into B chan-
nels corresponding to different bands, which may be linearly
or nonlinearly spaced and may or may not overlap. Let
x[t,b] and y[t, b] be the filterbank representations of X[f] and
y[#], respectively, in channels b = 1, ..., B.
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The gain applied by DRC is calculated from the signal
envelope, which tracks the signal level over time. Level is
typically defined in terms of either magnitude (|x|) or power
(x%); this work uses power. Let the non-negative signal
v.[t, b] be the envelope of the input signal x[f,b] at time
index ¢ and channel b. In the theoretical analysis presented
here, the envelope is an abstract property of a signal, such as
a statistical variance. In real DRC systems, the envelope is
estimated from the observed signal, typically using a mov-
ing average.

Most DRC systems respond faster to increases in signal
level (attack mode) than to decreases in signal level (release
mode) in order to suppress sudden loud sounds. There are
many ways of implementing an envelope detector
(Giannoulis et al., 2012). A representative detector is the
nonlinear recursive filter (Kates, 2008),

BaUX[t - 17b] + (1 - ﬂa)|x[t7 b]|2>
vt b] = if [x[t, b]|> > vt — 1,b]
Broclt = 1,6] + (1 — B,)|x[t, b]|, otherwise,

ey

for b=1,...,B, and where f, and f, are constants that
determine the attack and release times.

Because envelope detection is a nonlinear process, it
contributes to the distortion effects of DRC systems. The
theorems in this work do not depend on the filterbank struc-
ture or the choice of attack and release time, but these
parameters do affect the rate of fluctuation of the measured
envelopes and therefore the distribution of envelope sam-
ples. Many nonlinear interaction effects are more severe for
fast-acting and many-channel compression than for slow-
acting and few-channel compression (Alexander and
Masterson, 2015; Alexander and Rallapalli, 2017; Naylor
and Johannesson, 2009; Plomp, 1988; Rallapalli and
Alexander, 2019; Reinhart et al., 2017), though these
parameters do not necessarily impact speech intelligibility
(Salorio-Corbetto et al., 2020).

B. Compression function

A compression function C, determines the instanta-
neous mapping between input level and target output level
in each channel,

v[t,b] = Cy(vy[t,b]), b=1,....B, @)
where vy[f,b] is the target output level. The amplification

applied in each channel is then

vy[t, b]

g[t,b] = Ux[t,br

b=1,...B, 3)

so that the output is the product
ylt,b] = g[t, blx[t,b], b=1,...,B. )
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FIG. 2. A compression function C,, shown here on a logarithmic scale,
maps input levels to output levels.

Note that the target output level vy[r, b] is not necessar-
ily equal to the measured envelope of y[t, b] because the
envelope is a moving average. Longer release times cause
gains to lag behind short-term signal levels, especially for
dynamic signals such as speech (Braida et al., 1982; Stone
and Moore, 1992).

Although compression functions are defined here in
terms of input and output level (i.e., power), they are often
visualized and described on a logarithmic scale, such as in
decibels (dB). A typical “knee-shaped” compression func-
tion is shown in Fig. 2: It features a linear region in which
gain is constant, a compressive region where the output
level increases by less than the input level, and and a limit-
ing region that prevents the output from exceeding a maxi-
mum safe level.

The strength of compression can be characterized by
the compression ratio (CR), which is the inverse of the slope
of the compression function on a log-log scale, as shown in
Fig. 2. For example, in a 3:1 compressor, the output
increases by 1 dB for every 3 dB increase in the input. For a
constant CR, the compression function is given by the
power-law relationship

C},(U) = Go[b]v(l/CR>, (5)

where G[b] is a constant power gain factor. Thus, for a 3:1
compressor, the output level is proportional the cube root of
the input level. In limiters, Cp(v) is constant and so the CR
is infinite.

While most compressors reported in the literature use
some combination of linear, power-law, and limiting com-
pression functions, many others are possible. To make our
analysis as general as possible, we allow the compression
function to be any mapping between non-negative numbers
such that the output level grows no faster than the input
level. More precisely, we require it to be a concave
function.

Definition 1. A function C,(v) is a compression function
if it is concave, non-negative, and nondecreasing for all v > 0.

In mathematics, a function f(x) is said to be concave if
for any 4 € [0, 1] and any x; and x,,

x4+ (1= D) > 2(x) + (1= f (x2): (©)
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Note that Definition 1 includes non-differentiable functions
such as knee-shaped compression curves. It excludes
dynamic range expanders, which some hearing aids apply at
low signal levels to reduce noise. The proofs in this work
will also involve convex functions that satisfy Eq. (6) with
the inequality reversed. Convex and concave functions are
widely used to prove inequalities in signal processing and
information theory (Cover and Thomas, 2006).

To describe how much a compression function reduces
the dynamic range of a signal, we could compute its CR.
Because the CR can be infinite, however, it is more conve-
nient to work with its inverse, the compression slope.

Definition 2. For all points v at which a compression
function Cp,(v) is differentiable, the compression slope
CS,(v) is the slope of Cp(v) on a log-log scale,

CS,(v) = iln Cp(e")

du |u:lnvﬂ (7)
_G)
=i ®)

For example, if Cy(v) = Go[b]v*, then CS,(v) = o for
all v. The smaller the compression slope, the more the
dynamic range of the signal is reduced.

C. Experimental methods

To validate the predictions of the mathematical model,
each section of this work includes experiments using speech
recordings and a software DRC system. The theoretical
results in this work rely on simplifying assumptions, but the
simulation experiments are more realistic and therefore
illustrate the limitations of the model. Wherever possible,
the experiments use methods and performance metrics from
prior work in the literature.

Although the compression function varies with each
experiment, all simulations in this work use the same envelope
detector. The input is first processed by a short-time Fourier
transform with 8 ms windows and 50% overlap. A frequency-
domain filterbank splits the signals into 6 Mel-spaced bands
from O to 8§ kHz, which are roughly linearly spaced at lower
frequencies and exponentially spaced at higher frequencies.
Within each band, the envelopes are computed using the non-
linear recursive filter (1) with an attack time of 10ms and a
release time of 50 ms as defined by ANSI S3.22-1996 (ANSI,
1996). All speech signals are 60-s clips derived from the
Voice Cloning Toolkit (VCTK) dataset of quasi-anechoic read
speech (Veaux et al., 2017). The figures in this work use loga-
rithmic scales for envelope level. These levels are given in dB
relative to the mean wideband signal level. That is, each
speech signal has a mean level of 0 dB across channels.

lll. MODELING COMPRESSION OF SOUND MIXTURES

Hearing aids are often used in noisy environments with
several simultaneous sound sources. The interactions
between multiple signals are difficult to analyze because
DRC involves two nonlinear operations: envelope detection
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and level-dependent amplification. To create a tractable
model for sound mixtures, we make a simplifying assump-
tion about the signal envelopes that allows us to separate the
effects of these two nonlinearities, as shown in Fig. 3. Under
this model, the filterbank and envelope detector determine
the relationship between input signals and envelope values;
they act independently on each component signal.
Meanwhile, the compression function determines the output
levels from these envelopes; it acts independently at each
time index and within each channel. In this work, we focus
on the compression function.

A. Envelope model

Suppose that the input to the system is X[f] = §;[]
+ 5,[t], where §[f] and §,[f] are two discrete-time signals.
For example, 5; and §, could be two speech signals as cap-
tured at the listening device microphone, including any
reverberation effects. Because a filterbank is a linear system,
the filterbank representation of the input is

X[t,b] = s1[t,b] + s2[t,b], b=1,....B, )
where s, b] and s,[t, b] are the filterbank representations of
§1[t] and 5, ], respectively.

Because envelope detection is a nonlinear process, the
additivity property of Eq. (9) does not hold in general for
the signal envelopes measured by practical envelope detec-
tors. However, to simplify our analysis, the signal envelopes
can be modeled as obeying additivity.

Assumption 1. The envelopes uy,[t,b], v,|t,b], and
v, b] of s1(t,b], s2[t,b], and x[t, b, respectively, satisfy

v lt, b] = vy, [t,b] + v, [t,b], b=1,....B. (10)

This assumption is justified if we think of the envelopes
as abstract properties of signals, such as parameters of a pro-
cess that generates them, rather than as measurements. For
example, suppose that si[f,b] and s,[t,b] are sample func-
tions of random processes that are uncorrelated with each
other (Hajek, 2015). Then the variance of the mixture is

given by Var(x[t,b]) = Var(s([r,b]) + Var(sa[t,b]). If

Filterbank
&
envelope
detector

C1 > vylt, 1
51t] 1 vy[t, 1]

C2 Uy [t7 2}

Filterbank
&
envelope
detector

ol
S2lt] Cs |— vylt, B]

FIG. 3. A simplified model separates the effects of the filterbank and enve-
lope detector from those of the compression functions Cy, ...,Cg. The for-
mer act independently across signals, while the latter act independently
across time and channels.
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v[t,b] were any linear transformation of the sequence
Var(x[t, b)), then the envelopes would satisfy Assumption 1.
Because the variance is an ensemble average, not a time
average, the processes need not be stationary or ergodic.

Of course, real compression systems cannot observe
the underlying variance of a random process; they derive
envelopes from recorded samples. The accuracy of the
additive envelope model depends on the signals: Two sinus-
oids would strongly violate the assumption (Ludvigsen,
1993), while two signals that are disjoint across time and
channels would satisfy it exactly. To test the accuracy of
the assumption for a realistic envelope detector, we applied
the software envelope detector described in Sec. IIC to a
mixture of two speech signals and compared the envelope
of the mixture, v,[t, b], to the sum of the envelopes of the
component signals, vy, [t, b] + vs,[t, b]. Figure 4 shows a set
of envelope samples drawn from different time frames and
frequency channels plotted on a decibel scale. In this exper-
iment, the assumption is accurate to within 1 dB for 93% of
samples.

B. Output model

Care is also required in analyzing the components of
the output of a nonlinear system. Let y[f| = 7[r] + 72 [f],
where 7] is the component of the output corresponding to
§1[f] and 7,[f] is the component corresponding to §,[¢]. For
systems with the additivity property, like linear filters, these
components can be calculated by applying the same system
to s and §,. For nonlinear systems like DRC, each compo-
nent of the output depends on all components of the input.
In general, nonlinear distortion artifacts cannot be clearly
attributed to one input signal or the other, and they cannot
be easily classified as helpful or harmful to intelligibility
(Ludvigsen, 1993). For the relatively mild compression used
in hearing aids—compared to aggressive compression-based
effects in electronic music, for example—a reasonable
approach is to treat the nonlinear system as a time-varying
linear system.

In this work, the output components are determined by
calculating the level-dependent amplification sequence
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FIG. 4. Empirical evaluation of Assumption 1 with a mixture of two speech
signals. The plotted points are samples of the sum of the envelopes,
vy, [t, b] + vy, [t, b], and the envelope of the sum, v, [t, b]. The inset plot shows
a histogram of the difference 101og,(vs, + v5,) — 1010g;o0,.
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g[t,b] based on the mixture x[t, b], then applying it to each
component,

y[l,b] :g[l,b]x[[,b] (11)
= g[t,b](s1[t,b] + 821, b]) (12)
= g[t, b]si1[t, b] + g[t, b]sat, b], (13)

r1[1,b] ra[t,b]

for all time indices ¢t and channels b = 1, ..., B. This definition
of the output components is used in the mathematical analysis
below. Similarly, in the software simulations, the two input
signals are stored in memory alongside their mixture and the
amplification sequence is applied separately to each, allowing
the output components to be computed exactly. This time-
varying linear approach to computing output coefficients is
conceptually related to the phase inversion technique of
Hagerman and Olofsson (2004), which is often used in labora-
tory experiments with real hearing aids where the time-
varying amplification sequence cannot be observed directly.

C. Effective compression function

The additive models for the input envelopes and output
signal components, while imperfect, allow us to study the
dominant source of nonlinearity in a DRC system: the com-
pression function. Although the signals s;[z, b] and s3]t, b]
may have different levels, the amplification g, b] applied to
both of them is the same and is computed from the overall
level of the input signal,

Cp(vy[t, b))

g[t’ b] = Ux[[, b]

: (14)

Under Assumption 1, the amplification is

. Ch(le [tvb] +Ué‘2[t7b])
glt,b] = \/ vy, [1,b] + v, [1,6] (4

resulting in the output levels

Cb(vﬁ [tv b] + Usy [tv b])
Us, [t, b] + s, [t, D]

Cp(vs, [t,b] + v, [1, B])
v, [t, b] + v, [t, B]

Ury [t’ b] -

vy, [t, b], (16)

v, [t,b] =

Us,[1, ], a7)

for channels b = 1, ..., B. The gain and therefore the output
levels are functions of both input signal levels, as illustrated
in Fig. 5. The gain applied to s[f,b] in the presence of
s2[t, b] is weaker than it would have been for s;[t, b] alone.
To characterize this effect, we can define an effective com-
pression function (ECF) that relates the input and output lev-
els of one signal in the presence of another.

Definition 3. The ECF C,(v;|v,) applied to a signal
with level v; > 0 in the presence of a signal with level
v, > 01is given by
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; Cp(vi +v
Crlnfen) = AL

(18)

where Cp,(v) is the compression function applied to the mix-
ture level vy + v,.
Using this definition, Egs. (16) and (17) become

v, [t,b] = C(vs, [1, b][vs, 1, b]), (19)

Ur, [t7 b] = Ch(vé‘z [t7 b] ‘UM [t’ b])? (20)
for b=1,...,B. The ECF expresses the dependence
between the levels of the two signal components. The ECF
can be used to mathematically characterize the nonlinear
interactions between signals in DRC systems, including the
effective CR, the across-source modulation effect, and the
SNR.

IV. EFFECTIVE COMPRESSION PERFORMANCE

When DRC is applied to a mixture of multiple signals,
it has a weaker effect on the dynamic range of each compo-
nent signal than it would if they were processed indepen-
dently. Intuitively, if a signal of interest is weaker than a
noise source, then the noise level will determine the gain
applied to both signals and the target signal will not be com-
pressed. Even when the target signal has a higher level, the
noise will cause the gain to decrease less than it should with
respect to the target level.

To quantify the effect of noise on compression perfor-
mance, we can measure the change in the output level of the
target signal in response to a change in its input level and
compare that relationship to the nominal CR. Even without
noise, the long-term effective compression ratio (ECR) is
generally lower than the nominal ratio because of the time-
averaging effects of the envelope detector (Braida et al.,
1982; Stone and Moore, 1992). However, it has been
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FIG. 5. Gain applied to a mixture signal as a function of the signal enve-
lopes vy, [z, b] and vy, [t, b] for Cp(v) = v'/3 under Assumption 1. The length
of the arrows is proportional to the power gain g*[t, b] in dB and the dashed
curve shows the equilibrium mixture level Cp, (vs1 + USZ) = vy, + U,.
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observed that the ECR of a DRC system is further reduced
in the presence of noise (Souza et al., 2006). While this
noise-induced reduction in CR has been previously mea-
sured as a long-term average for particular signals, here we
show that it is a short-term effect caused by the concavity of
the compression function. Although the magnitude of the
reduction depends on the compression function and the sig-
nal characteristics, the effect occurs for every compression
function and at every SNR.

Because the instantaneous CR can be infinite, we will
instead use the effective compression slope, defined as the
log-log slope of the ECF.

Definition 4. If C,(v)|0,) is differentiable with respect to
vy, then the effective compression slope CS,,(v;|v2) is given by

A o -
CSp(v1]v2) = 5 - Cole”|v2)]imine, 21
9 .
—Ch(U1|1)2)
T (22)
Cp(vi]2)

Note that the effective compression slope defined here is
a function of the two signal levels, so it provides a more
complete description of the compression system than the
long-term ECR. Furthermore, it only measures the instanta-
neous effects of interaction between signals, not the time-
averaging effects of the envelope detector. The simplified
envelope model allows us to analyze these two compression-
weakening mechanisms separately.

A. Noise reduces compression performance

Using the properties of the ECF, it can be shown that
the effective compression slope from Definition 4 is always
larger than the nominal compression slope from Definition
2—equivalently, the instantaneous ECR is always smaller
than the nominal CR—meaning that, when applied to a mix-
ture, the system is less compressive on each component sig-
nal than it would be if applied to the components separately,

CSp(vs, |vs,) = CSp(vs, +v5,), b=1,...,B. (23)
Notably, this result applies to any pair of signal levels v,
and v,,. Whereas the across-source modulation result of Sec.
V relies on probabilistic averaging and the SNR result of
Sec. VI uses time averaging, Eq. (23) holds for each individ-
ual envelope sample.

The proof relies on concavity. Because the lemmas and
theorems in this work follow from the properties of com-
pression functions, which act independently across time and
frequency, the time and channel indices [z, b] are omitted in
their statements and proofs.

Theorem 1. If a compression function C(v) is differentia-
ble at v, = vy + vy, then its effective compression slope satisfies

CS(v1|v2) > CS(v,), (24)
with equality if C(v) is linear or if v, = 0.
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Proof. Because C(v) is defined to be concave and non-
negative for v > 0, it follows that

C(v) —ovC'(v) >0 (25)

for all v at which C is differentiable, with equality if C is lin-
ear. The effective compression slope is given by

o .
) 70 € (v1]v2)
CS = 26
(v102) o) (26)
o [(Clu)u +C(v)  Clognn
- C(vy) ( vy 02 ) @7
_ CI(UX) _u
= oy v+ 1 o (28)
_C) () 0
= Clvy) Uy C(or) Uy + o (29)
_ b2 0
= CS(vy) + 000 (C(vy) — vl (vy))  (30)
> CS(vy), (31
with equality if C is linear or if v, = 0. [

Suppose that v, corresponds to a sound source of inter-
est and v, is the level of unwanted noise. The proof illus-
trates that the effective compression slope for the target
increases with the level of the interfering signal. For exam-
ple, in the limit as vy /v, approaches 0, the slope from Eq.
(28) approaches 1, so that the system applies linear gain to
the target signal. At low SNR, the gain applied to both sig-
nals is determined by the noise. The theorem shows, how-
ever, that even at high SNR, the compression effect is
slightly weaker.

B. Experiments

Theorem 1 shows that under the simplified envelope
model, noise always reduces the effect of compression on a
signal of interest. To verify this result experimentally in a
realistic system, the software DRC system described in Sec.
II C was applied to a mixture of speech at a wideband level
of 0dB and varying levels of white Gaussian noise with a
nominal CR of 3:1.

Figure 6 shows the effective compression performance
of the system for three wideband SNRs. The dashed line
shows the nominal compression function C,(v) = v'/? for all
b. The solid curves are the ECFs Cj,(vy,|vs,) predicted by the
model for constant noise power v;, equal to the variance of
the Gaussian noise. The plotted points show speech input
envelope samples and their corresponding output levels
computed using the time-varying gain of the software DRC
system. The curves align closely with the nominal compres-
sion function when the speech has higher level than the
noise, but they are nearly linear when the noise has higher
level.
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FIG. 6. (Color online) ECF for speech and white noise at different wide-
band input SNRs. The dashed line shows the nominal compression function,
the curves show the ECFs evaluated with constant noise level, and the plot-
ted points show speech envelope samples.

The long-term ECR depends on the distribution of
envelope samples. For target signals whose envelopes are
usually above the noise level, the long-term ECR will be
close to the nominal ratio. When the noise is usually more
intense, as in the rightmost curve of Fig. 6, the long-term
ECR will be close to unity. Using the method of Souza et al.
(2006), which measures dynamic range between the 5th and
95th percentiles of input and output envelope samples, and
averaging across signal bands, the long-term ECRs from the
experiments here were 1.01 at -30dB SNR, 1.17 at 0dB,
and 1.75 at +-30dB.

V. ACROSS-SOURCE MODULATION DISTORTION

DRC creates distortion in mixtures because the pres-
ence of one signal alters the gain applied to another signal.
It has been observed experimentally (Alexander and
Masterson, 2015; Stone and Moore, 2004, 2007, 2008) that
when two signals are mixed together and passed through a
compressor, their output envelopes become negatively cor-
related: As one sound becomes louder, the other sound
becomes quieter. The across-source modulation coeffient, a
measure of this negative correlation, was found to be corre-
lated with reduced speech intelligibility (Stone and Moore,
2007, 2008).

A. Output levels are anticorrelated

The ECF can be used to show that if the input envelopes
v, [t,b] and vy, [t, b] are independent random processes, then
the covariance between the output levels in each channel is
negative,

Cov(v,, [t,b],v,,[t,b]) <0, b=1,...,B. (32)
The covariance is an ensemble mean over the distributions
of the envelope samples vy, [t,b] and v,,[t, b]. Although the
covariance is often measured empirically using a time aver-
age, our mathematical analysis applies to each time index
and channel independently.

We first show that the ECF is nondecreasing in one
envelope and nonincreasing in the other.

Lemma 1. Any ECF C(v;|v,) is nondecreasing in v,
and nonincreasing in v, for vy, v, > 0.
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Proof. Because C(v) is nondecreasing and v, is non-
negative, @(Ul|vz) = C(v; + v2)(v1/v1 4 v2) is the product
of two nondecreasing functions of v; and is therefore nonde-
creasing. Because C(v) is concave and non-negative, C(v) /v
is nonincreasing for v > 0. Then C(vy + v2)/(vy + v2) is non-
increasing in v,. O

Next, we will need the following result about functions
of random variables. Let [E denote the expectation of a ran-
dom variable, that is, its probabilistic mean.

Lemma 2. If f{x) is nondecreasing, g(x) is nonincreas-
ing, X is a random variable, and E[f(X)], E[¢(X)], and
E[f(X)g(X)] exist, then

E[f(X)g(X)] < E[f(X)]E[g(X)].

Proof. See Appendix A. O
We can now prove that independent envelopes become
negatively correlated when compressed.
Theorem 2. If C(v;|v,) is an ECF and V; and V are
independent random variables, then

(33)

Cov (é(v1|v2),é(vg|v1)> <0. (34)

E[C(V1|V2)
sufficient to

: [V2), C(ValV1)) =
E[CW[V2)IEC(V2[V1)], it is

Proof. Because Cov(C(V1|V2),

C(Va|Vy)] =
show that

[@(m |V2)} E [é(vﬂvlﬂ .
(35)

[ (Viv2)C (Vz\Vl)}

From Lemma 1, C(v;|v) is a nondecreasing function of v,
and a nonincreasing function of v,. Let E[X|Y] denote the
conditional expectation of X given Y. From iterated expecta-
tion and application of Lemma 2, we have

E[eWiV2)e(valvy)]

= By, [Ev, [COnVaC Vv Vs (36)

< B [Ev [ Vo) va] Ev [e0aviva] | a7

Now, because V; and V, are independent, Evl[ (V1|V2)|V2]
is a nonincreasing function of V, and Ey, [C(V2|V})|V,] is a
nondecreasing function of V,. Applying Lemma 2 once
more,

E[e0aVa)emalvy)] <Ev, [Ey [e0ivaiva]]
g

v, [Ev [evalviva] | a®)

— E[eviva)|E[C0vavi)].
(39)
U
 For linear gain, the theorem holds with equality because
C(v1]v2) does not depend on v,. The magnitude of the negative
correlation depends on the compression function: Stronger
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compression causes the ECFs and the conditional expectations
to increase or decrease more quickly, resulting in a stronger
negative correlation. The channel structure and time constants
of the envelope detector affect the correlation indirectly by
altering the distributions of V| and V.

B. Experiments

To illustrate the negative correlation effect with a real-
istic envelope detector, the software DRC system from Sec.
IIC was applied to mixtures of speech and white Gaussian
noise with a 3:1 CR. Each plot in Fig. 7 shows pairs of mea-
sured envelope samples for two signals: the input mixtures
(vy, [t, b], v5,[t,b]) on the left and the output mixtures
(vy,[t, b, v, [t, b]) on the right. The top plots are for speech
and white noise and the bottom plots are for two speech sig-
nals. The correlation coefficient p is computed on a linear
scale and averaged across channels. The dashed curve shows
the equilibrium level v,, 4 v,, = 1, which indicates perfect
negative correlation (p = —1).

The input levels are mostly uncorrelated between the
two component signals, but DRC shifts the levels according
to a vector field like that in Fig. 5, producing correlated out-
put levels. Because the white noise has nearly constant enve-
lope, the effect of DRC is most visible at high speech levels:
When the speech signal is strong, both speech and noise are
attenuated, bending the distribution of level pairs downward
and producing a negative correlation. When the interfering
signal is speech, which has a wide dynamic range, the signal
components interact at all levels. At low instantaneous SNR,
the weaker speech signal of interest is modulated according
to the level of the stronger interfering speech.

VI. OUTPUT SNR

Of the three nonlinear interaction effects discussed in
this work, the impact of DRC on long-term SNR is both the

Input envelopes Output envelopes

20 T T \ \
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FIG. 7. Sample input and output envelope pairs for mixtures of two signals
in a DRC system. Top: Speech and white noise. Bottom: Speech and
speech. The dashed curve shows the equilibrium level of the compression
function as in Fig. 5.
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most studied empirically and the most challenging to ana-
lyze mathematically. Hagerman and Olofsson (2004)
showed that fast-acting compression improved the average
output SNR of speech in babble noise at negative average
input SNR but made it worse for positive input SNR. Souza
et al. (2006) found that DRC reduced the SNR of speech in
speech-shaped noise. Naylor and Johannesson (2009)
showed that this effect depends on the type of noise, filter-
bank structure, and envelope time constants. Brons et al.
(2015) and Miller et al. (2017) demonstrated the effect in
hearing aids that include nonlinear noise reduction, which
can interact with DRC in complex ways (Kortlang et al.,
2018). SNR changes appear to be more severe for fast com-
pression (Alexander and Masterson, 2015; May et al., 2018)
and less severe with reverberation (Reinhart et al., 2017).

It is important to remember that long-term SNR is not
the same as intelligibility. Listening tests suggest that DRC
can improve intelligibility with some types of noise but not
others (Kowalewski er al., 2018; Rhebergen et al., 2017;
Rhebergen et al., 2009; Yund and Buckles, 1995).

A. Output SNR for constant-envelope noise

While it is difficult to say much in general about the
effect of compression on output SNR, we can prove a result
for an important special case: a target signal with a time-
varying envelope and a noise signal with constant envelope.
Stationary white noise, for example, has constant variance,
and its measured envelope fluctuates only slightly over time.
Meanwhile, information-rich signals such as speech tend to
vary rapidly. Many classic speech enhancement algorithms,
such as spectral subtraction, assume that the noise spectrum
is constant while the speech level varies (Loizou, 2013).
When the mixture level is high, it is assumed that speech is
present and the gain is increased, while at lower levels the
output is attenuated to remove noise. Because these speech
enhancement systems amplify high-level signals and attenu-
ate low-level signals, they act as dynamic range expanders.

If a dynamic range expander can improve long-term
SNR, it stands to reason that a compressor might make it
worse. To see why, let us analyze the effect of compression
on the average SNR over time. Because the envelope is pro-
portional to the power of a signal component, the average
SNR at the input is given by

_mean,uy, [t, b]

SNR;, [b] = . b=1,..,B, (40)
mean, vy, [1, b
and the average SNR at the output is
NN
SNRyy 5] = meann [, 0] 1)
mean,v,, [t, b]
_ mean,Cy, (vy, [1, b]|vs, [1, b)) 2)

mean,Cy (v, [t, b]|vs, [t,b])

If the compression function were linear, then the input
and output SNRs would be identical. For a concave
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compression function with convex gain, it can be shown
that, if the noise envelope is constant, then the average out-
put SNR is lower than the average input SNR,

SNR[p] < SNRy,[b], b=1,...,B. (43)
Unlike in Sec. V, here the envelopes are not modeled as ran-
dom processes and the quantities of interest are time aver-
ages, not ensemble averages.

The proofs in this section rely on an additional technical
condition on the compression function. Not only must Cp(v)
be non-negative and concave, the gain function C,(v)/v
must be convex. This condition is satisfied for many smooth
compression functions, including linear, power-law, and
logarithmic, but not for some functions with corners like
that in Fig. 2. This condition ensures that the ECF is con-
cave in its first argument and convex in its second.

Lemma 3. If C(v) is a compression function and C(v)/v
is convex for all v> 0, then the ECF C(v;|v,) is concave in
vy and convex in vs.

Proof. See Appendix B. O

This property lets us take advantage of Jensen’s
inequality (Cover and Thomas, 2006), one form of which
states that for any convex function f(x),

mean,f (x[7]) > f(mean,x[f]), (44)
with equality if f(x) is linear or x[¢] is constant. The same
property holds with the inequality reversed if f(x) is a con-
cave function. Jensen’s inequality allows us to prove that
the average output SNR is no larger than the average input
SNR.

Theorem 3. If C(v) is a compression function and
C(v)/v is convex for all v>0, vi[t] > 0 for all t, and v,][t]
=0y > 0 forallt, then

SNRout < SNRin (45)
with equality if v\[t] is constant or C is linear.

Proof. Since uv,[r] is fixed, the output SNR can be
written

SNR ¢ =

mean,C (v []]72) (46)
[

mean,C (B, |v1[1])

The numerator is the mean over ¢ of a concave function of
v1[f]. By Jensen’s inequality,

mean,@(vl [f]]p2) < @(mean,vl [1]|72), (47)
with equality when C is linear or v;[f] is constant. Similarly,
the denominator is the mean over ¢ of a convex function of
v1[#]. Again applying Jensen’s inequality,

mean,@(ﬁﬂvl[t}) > @(52|mean,vl[t]), (48)
with equality when C is linear or v;[f] is constant. Let

U; = mean,v;[tf]. Since the numerator and denominator of
Eq. (46) are both positive, we have
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SNRout S M (49)
C(v2]01)
_ ?1‘3(?1 + ?2)/(?1 + ?2) (50)
02C(01 + 02) /(01 + 02)
=t 51
Us
= SNR;j,, (52)
with equality when C is linear or v, [f] is constant. O

B. Experiments

Because Theorem 3 requires stronger assumptions than
the other theorems in this work, it is especially important to
validate its predictions experimentally. Figure 8 compares
the input and output SNRs for speech in white Gaussian
noise—which has a relatively steady but not constant enve-
lope—at different CRs. For this section, the software simu-
lations use a knee-shaped compression function like that in
Fig. 2, which is commonly used in hearing aids but violates
the technical condition required for Lemma 3. The knee
point is 40dB below the wideband average speech level.
Although the assumptions are violated, the results still show
the behavior predicted by the theorem. The SNR-reducing
effect is greatest at high input SNRs; at low input SNRs, the
noise level determines the gain and the ECF is linear, so the
SNR is not affected.

As an inequality, Theorem 3 does not predict the mag-
nitude of SNR reduction, but the equality condition suggests
that the effects are smaller for more linear compression
functions. Indeed, the experiments show that higher CRs
have stronger effects on SNR, which is consistent with
results in the literature (Naylor and Johannesson, 2009;
Rhebergen et al., 2009).

Theorem 3 applies only to constant-envelope noise.
When the target and noise signals both vary strongly with
time, the weaker signal will be amplified more and the stron-
ger signal less, pushing their average output levels closer
together. Figure 9 shows the results of the SNR experiment
with 3:1 knee-shaped compression and different noise types.
With white noise, the long-term SNR is always reduced, as
predicted by Theorem 3. With speech babble, generated by
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FIG. 8. (Color online) Effect of DRC with different CRs on long-term SNR
of speech in white noise.
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FIG. 9. (Color online) Effect of compression on long-term SNR of mixtures
of speech with different types of noise.

mixing 14 VCTK speech clips, the SNR is slightly increased
at low input SNRs. When the target and interference signals
are both single-talker speech signals, the long-term SNR is
improved when it is negative but made worse when it is
positive.

These results align well with those in the literature.
Hagerman and Olofsson (2004) showed that fast-acting com-
pression can improve negative SNRs but worsen SNRs near
zero for speech in babble noise. Naylor and Johannesson
(2009) found that output SNR is always reduced for speech
in unmodulated noise, greatly reduced at positive input SNR
and slightly reduced at negative input SNR for speech in
modulated noise, and symmetrically increased at negative
input SNR and decreased at positive input SNR for a mixture
of two speech signals. Reinhart et al. (2017) performed
experiments with different numbers of talkers and found that
the SNR improvement at negative input SNRs declined with
each additional interfering talker, consistent with the results
for speech babble here.

VIl. DISCUSSION

The mathematical analysis presented here confirms the
empirical evidence from the hearing literature that DRC
causes unintended distortion in noise. The effects of this dis-
tortion depend on the characteristics of the signals, espe-
cially their relative levels. At low SNR, the ECF for the
target signal becomes nearly linear and the dynamic range
of that signal is not changed. At high SNR, the signal of
interest is amplified by less than the noise, reducing average
SNR. At all SNRs, the signal components modulate each
other, compressing the weaker signal according to the level
of the stronger component.

The theorems in this work apply to ideal envelopes that
obey the additivity assumption. In that sense, they are opti-
mistic predictions. Real DRC systems that use measured
envelopes would exhibit even stronger interactions between
signals. Further theoretial work is required to model distor-
tion within the envelope detector, predict the effects of fil-
terbank structure and envelope time constants, and show
how these nonlinearities interact with those of the compres-
sion function.

Can anything be done to improve the performance of
DRC systems in noise? The analysis shows that all these
effects are caused by the concave curvature of the
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compression function, which is also what makes the system
compressive. The results for effective compression perfor-
mance and across-source modulation hold instantaneously,
not just over time, and apply to any compression function
and any combination of signals, even hypothetical ideal sig-
nals that have independent envelopes. It seems, then, that
nonlinear interactions are inevitable whenever signals are
compressed as a mixture.

A possible solution is to compress the component sig-
nals of a mixture independently, as music producers do
when mixing instrumental and vocal recordings. Listening
tests have shown improved intelligibility when signals are
compressed before rather than after mixing (Rhebergen
et al., 2009; Stone and Moore, 2008). Of course, real hear-
ing aids do not have access to the unmixed source signals,
so a practical multisource compression system must perform
source separation. Hassager et al. (2017) used a single-
microphone classification method to separate direct from
reverberant signal components, helping to preserve spatial
cues that can be distorted by DRC. May et al. (2018) pro-
posed a single-microphone separation system that applies
fast-acting compression to speech components and slow-
acting compression to noise components; listening experi-
ments with an ideal separation algorithm improved both
quality and intelligibility (Kowalewski et al., 2020). Corey
and Singer (2017) used a multimicrophone separation
method to apply separate compression functions to each of
several competing speech signals. The output exhibited bet-
ter measures of across-source modulation distortion, effec-
tive compression performance, and SNR compared to a
conventional system. The modeling framework described
here could be applied to analyze the performance of these
multisource compression systems and to devise new ones.

VIil. CONCLUSIONS

The mathematical tools introduced in this work can
help researchers to understand the distortion effects of con-
ventional DRC systems in noise and to devise new
approaches to nonlinear processing for mixtures of multiple
signals. The additive envelope model allows the envelope
detector and compression function to be analyzed indepen-
dently, greatly reducing the complexity of the system. The
ECF models interactions between signal envelopes at the
input and output of any compression function, characteriz-
ing system behavior across all signal levels. It can be used
to analyze instantaneous interactions or integrated into long-
term or probabilistic models to study average effects.

Like the human auditory system itself, DRC is a com-
plex nonlinear system that defies simple analysis. By model-
ing how DRC systems behave in the presence of noise, we
can develop and analyze new strategies for nonlinear signal
processing in the most challenging environments.
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APPENDIX A: PROOF OF LEMMA 2

Lemma 2. If f{x) is nondecreasing, g(x) is nonincreas-
ing, X is a random variable, and E[f(X)], E[g(X)], and
E[f(X)g(X)] exist, then

E[f(X)gX)] < E[f(X)]E[g(X)]. (A1)

Proof. Because f(x) is nondecreasing and g(x) is nonincreas-
ing, for every x and y we have

[f () =f()]lg(x) — g(¥)] <0. (A2)

It is sufficient to show that E[f(X)g(X)] — E[f(X)]
Elg(X)] <0. If X has cumulative distribution function P(x),
then

ELf (X)g(X)] ~ E[f ()| E[g (X)]
=jf(x)g(x)dP(x)—jf<x>dP<x>jg(y)dP(y) (A3)

X X

- ny(x) [8(x) — 8(3)] dP(3)AP(x) (Ad)
=] | _solew) —sjapmary

+ LL}f()O s(0) — s dPWAPL) (A3
- Uyqf(X) 8(x) — 8] dP(y)dP(x)

+] fo(y)[g(y) 5] APOIP()  (A6)
- Lx[f(X) ~FO)]lg) — g AP()AP(R)  (AT)
<O0. (A8)

Equation (AS) swaps the order of integration using Fubini’s
theorem (Knapp, 2005) and line Eq. (A6) exchanges the
integration variables x and y. ]

APPENDIX B: PROOF OF LEMMA 3

Lemma 3. If C(v) is a compression function and C(v) /v
is convex for all v> 0, then the ECF C(v;|v,) is concave in
vy and convex in vs.

Proof. Starting with Definition 3 and
v = }vp + (1 — }v)q,

letting
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Ciip+ (1 —=2)g+ )

Clorfe) = o+ (1—=2A)g+ v

(4p + (1 = 2)q)
(B1)
=C(A(p +v2) + (1 = A)(q + 2))

CAlp+v2)+ (1 —=2)(g+12))
TR )+ (=g +r) )

(B2)

Because C(v) is concave and C(v) /v is convex,

Clvi|va) > JC(p + v2) + (1 — 2)C(q + v2) (B4)
p Pt q+ v
Clp+1v2) Clg +v2)
=1— 1—A)——== B6
pre DT, (B0
= 7C(plvz) + (1 = 2)C(glv2). (B7)
Therefore, C(v;|v) is concave in v;.
Similarly, letting v; = Ap + (1 — 4)g,
5 Clon+p+ (1 —=2)q)
C = B8
(vrfe2) vy +Ap+(1—2A)gq (B8)
_ Cla(m +p) +(1-A)(v1 +9))
= v (B9)
Mor+p)+ (1 =21 +4q)
< EwEp) Lyt (B10)
U1 +p v +¢q
= 2C(v1lp) + (1 = A)C(vig)- (B11)
Therefore, C(v1|v,) is convex in v,. |
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