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Abstract (150 words)

This study explored how population mobility flows form commuting networks across US
counties and influence the spread of COVID-19. We utilized 3-level mixed effects negative
binomial regression models to estimate the impact of network COVID-19 exposure on county
confirmed cases and deaths over time. We also conducted weighting-based analyses to estimate
the causal effect of network exposure. Results showed that commuting networks matter for
COVID-19 deaths and cases, net of spatial proximity, socioeconomic, and demographic factors.
Different local racial and ethnic concentrations are also associated with unequal outcomes. These
findings suggest that commuting is an important causal mechanism in the spread of COVID-19
and highlight the significance of interconnected of communities. The results suggest that local
level mitigation and prevention efforts are more effective when complemented by similar efforts
in the network of connected places. Implications for research on inequality in health and flexible

work arrangements are discussed.
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Introduction

The coronavirus disease 2019 (COVID-19) pandemic has dramatically impacted societies
globally, with over 32 million confirmed cases and over 980,000 COVID-19 deaths worldwide at
the time of this writing! (Hopkins, 2020). Consequently, a growing body of research seeks to
understand the social and demographic predictors of this disease at the community level,
identifying local etiological factors such as age structure (Dowd et al., 2020), population density
(Sy et al., 2020), and racial composition of the residents (Millett et al., 2020). In addition to local
factors, equally important it is to understand the role of social contacts (Block et al., 2020) within
and across communities, such as the extent to which the movement of people between communities
facilitate the transmission of this infectious disease. One important type of such movement is
commuting for work, a routine mobility activity that millions of people in the US engage in,
typically on a daily basis (McKenzie, 2015). Many of the local and state level mitigation and
prevention policies have involved some form of social distancing recommendations to “flatten the
curve”, in recognition that close physical proximity among people (in the regular course of their
daily activities such as in the workplace, at church, or in school) can contribute significantly
contributor to the spread of this disease.

Research on the transmission of this disease across space, between places such as work
areas and residential areas is still in its infancy, yet important evidence is starting to emerge. For
instance, (Bai et al., 2020) analyzed inter-county commuting flows in the state of New York and
found that “community spreader” counties were characterized by high commuting flows to and
from other counties. These findings are consistent with prior research focused on the spread of

other infectious diseases which finds that commuting is an important mechanism through which
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diseases may be transmitted to new populations. For example, (Xu et al., 2019) linked road traffic
among Chinese cities to the incidence of Influenza A (HIN1) during the 2009 pandemic.
Understanding how exposures to coronavirus in an area’s commuting network affects local cases
and deaths is important in guiding thinking and policy in support of remote working schedule and
other flexible work arrangements. Because many types of jobs do not permit remote work, certain
populations, often underpaid and socioeconomically vulnerable minority groups, are
disproportionately affected both at work and at home by increased risk of exposure to this disease.
Moreover, these same groups are further disadvantaged disproportionately by school closures and
the need to find alternative arrangements for the care of school age children and other dependents.

We contribute to the extant literature on the social and spatial dynamics of COVID-19 by
analyzing population across United States (US) counties which we consider to be linked via a
network of commuting ties. We assess the extent to which county rates of COVID-19 deaths and
cases are predicted by COVID-19 cases in linked counties, controlling for relevant structural and
sociodemographic characteristics and spatial contiguity. We leverage methodological strategies
from computational statistics to assess model fit and estimate significance while accounting for
spatial and network dependencies within the data. Our findings demonstrate that commuting
networks are an important determinant of the spread of COVID-19, as measured by deaths and

confirmed cases.
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Methods
COVID-19 Data and Analytic Strategy

We analyze a population of all US counties. Data on total number of COVID-19 confirmed
cases and total number of COVID-19 deaths are drawn from a database maintained by USA Facts?,
which is updated daily and contains counts by county and state. We utilize 3-level mixed effects
negative binomial models, analyzing COVID-19 cases and deaths of county-time periods
(N=31,380), nested within counties (N=3,139), nested within states (N=51, includes DC). These
models are implemented using the menbreg command in Stata 16 (StataCorp, 2019). Negative
binomial models are well suited to predicting overdispersed count outcomes (Osgood, 2000),
making them well suited to this research application. We incorporate state-level random intercepts
to account for cross-state variation in COVID-19 outcomes which may have been driven by state-
level policy differences (e.g., different masking requirements and enforcement of business
lockdowns) and county-level random intercepts to account for unmeasured variation across
counties in COVID-19 susceptibility and response. County-time periods, our first-level units of
analysis, are based on the number of new COVID-19 cases and deaths for a given county within a
given two weeks. Within each county are nested ten of these county-time periods, ranging from
April Ist to August 18th, 2020. We use total county population (based on the 2018 American
Community Survey 5-year population estimates) as an exposure term for all models, making the
model coefficients interpretable as population rates. All models are estimated using Huber-White

robust standard errors.

2 https://usafacts.org/visualizations/coronavirus-covid-19-spread-map/
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Permutation Tests

As a result of the network and spatial interdependencies which we hypothesize to exist
among counties, conventional, analytic tests of statistical significance may fail to produce accurate
confidence estimates (LeSage, 2015). Instead, we utilize a permutation testing, a flexible,
simulation-based approach (Breiman, 2001; Graif et al., 2019). For each predictor, we conduct
100 permutations in which the values of the predictor are randomly permuted across all
observations, breaking any association with COVID-19 mortality rates. Each permuted dataset is
used to calculate model error, generating a distribution of what model error would look like if the
predictor had no effect. The observed error is then compared to this distribution in order to assess
the contribution which the predictor makes to model fit. A relatively low proportion of permuted
cases which produced a lower error than that which was observed shows a significant contribution
to model fit.

In these permutation tests, we use mean arctangent absolute percentage error (MAAPE) to
capture average model error. MAAPE is computed by averaging the arctangent of the ratio of error
to observed value for each observation, as shown in Equation 1. MAAPE has the advantage of
capturing error as a percent, making it less sensitive to outliers than MAE, while also being robust
to observations for which the true value of y is 0 (an advantage over MAPE) (Kim & Kim, 2016).

N
1 5.
MAAPE = NZ arctan <M> )
i=1

Vi

Network and Spatial Measures
We used data on intercounty commuting, used to construct a weighted average of network-
lagged COVID-19 exposure, were drawn from the LEHD Origin-Destination Employment

Statistics (LODES) dataset, which is publicly available from the U.S. Census Bureau (US Census
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—LEHD) (Graifetal., 2017; Kelling et al., 2020) . This measure was created according to Equation
2, where a given home county (h) is connected to W work counties. Cj_,, represents the number
of commuters from county h who commute to county w, while Cj,_;,¢4; represents the total number
of outgoing commuters from county h. An additional measure of COVID-19 exposure was also
created based on spatial proximity using average rate of confirmed cases of all (queen) contiguous
counties (e.g., Equation 3 for a county which borders B counties). We incorporate a temporal lag
into the construction of these measures by using cases from the prior two-week time period. We
also incorporate measures capturing network and spatial change in COVID-19 cases from the prior
to current time period which use identical weighting (Equations 4 and 5). Finally, we control for

each county’s own COVID-19 case rate during the prior 2 weeks.

w
Ch-w Cases,,
100,000 )
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Causal Attribution Framework
We used the Rubin-Neyman causal inference potential outcomes framework (Rubin, 2005)
to estimate the causal effect of each of the county-level characteristics, including economic

disadvantage, percentage of population over the age of 65, etc. (see Table 1 for details), on the
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number of deaths by COVID-19 in that county. To estimate the causal effects, we applied the well-
established weighting procedure in causal inference by following a two-step mechanism: First, we
weight each data sample so as to adjust for the effect of confounding and generate a weighted
population that we can consider “as if randomized.” Second, we perform a weighted regression
where we regress total number of deaths by COVID-19 against county-level characteristics. We
repeated this two-step procedure for each county-level characteristic separately, each time
designating a characteristic as “treatment,” and estimated the causal effect of that characteristic on
total number of deaths by COVID-19.

We used the following state-of-the-art weighting methods for causal inference from
observational data. Each of the three methods that we applied use a different methodology for
computing the weights (in the weight model). (I) Covariate balancing propensity score weighting
(CBPSW): Propensity score is defined as the probability of receiving the treatment given the
covariates and is used in estimating the causal effect of binary treatments on outcomes. Propensity
density is its counterpart for coping with continuous treatments. CBPSW was recently proposed
and it estimates the weights based on the propensity score (for binary treatments) and propensity
density (for continuous treatments) while maximizing covariate balance between the treated and
controlled via an additional balancing constraint in the optimization (Fong et al., 2018; Imai &
Ratkovic, 2014) (II) Inverse probability of treatment weighting: This method weights each of data
samples proportionate to the inverse of the propensity score (Robins et al., 2000). (IITI) Super
learner: This method offers a doubly robust estimate of causal effects computed through an
ensemble of propensity score estimators (Pirracchio et al., 2015; Van der Laan et al., 2007). The

methods that we have used have been shown to be reliable, effective, and efficient in estimating
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causal effects from observational data in various applications (Khademi et al., 2019; Khademi &
Honavar, 2019, 2020).

The weighted outcome regression model determines the causal effect of each county level
characteristic on deaths by COVID-19 through statistical hypothesis testing. We tested for the null
hypothesis that each such causal effect is zero. A statistically non-significant p-value would
determine a non-significant causal effect. A statistically significant p-value shows a significant
causal effect and the degree (and sign) of the causal effect is determined by the magnitude (and
sign) of the estimated coefficient for the treatment in the outcome regression model. We used 0.05

as the statistical significance level.

Sociodemographic Controls

Research has indicated that communities that have lower socioeconomic status can have
more preexisting health conditions, lower access to healthcare, lower access to high-speed internet
that could enable remote work, and are less able to engage in social distancing during the Covid-
19 pandemic (Chiou & Tucker, 2020; Weill et al., 2020). For these reasons, several
sociodemographic controls are included in the analyses. These measures were drawn from the
2014-2018 American Community Survey (ACS) 5-year estimates. Note that these measures are
county-level attributes, i.e., considered to be invariant over time for the two-week time periods
defining the level-one units. Economic disadvantage was measured as the first principal
component produced following an analysis of unemployment rate, median income, percent in
poverty, percent female-headed households, percent college graduates, percent owner-occupied
housing units, and percent vacant housing units (eigenvalue = 3.2). We also include the percent

of residents of 65 years or older, as well as binary indicators of whether the county is above average
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regarding (1) percent non-Hispanic White, (2) percent non-Hispanic Black, and (3) Hispanic.
Finally, we include a measure of the percent of the county with urban residence, as measured in

2010. Table 1 shows descriptive statistics for all measures described above.

Table 1. Descriptive statistics for entire analytic sample

Mean SD Min. Max.
Outcomes
Total COVID-19 deaths 5.29 42.57 0 2578.00
Total COVID-19 confirmed cases 166.25 945.21 0 41134.00
Predictors
Network lagged confirmed case rate (tn-1) 122.43  129.19 .60 1371.39
A network lagged confirmed case rate (ta-1 - tn) 19.79 73.75 -856.49 810.75
Spatially lagged confirmed case rate (tn-1) 102.60 139.12 0 2346.52
A spatially lagged confirmed case rate (ts.1 - tn) 20.06 98.14 -2195.78  2761.80
Confirmed case rate (tn.1) 102.26  209.10 -52.25 13726.10
Economic disadvantage -.01 1.77 -6.17 8.43
% 65 and older 18.37 4.58 3.80 55.60
Above avg. NHW .64 - 0 1
Above avg. NHB 27 - 0 1
Above avg. Hispanic 21 - 0 1
% Urban population 41.34 31.50 0 100

Notes: N = 31,380 county-times nested within 3,139 counties, nested within 51 states (includes DC)

Results

Table 2 displays coefficient and standard error estimates from multilevel negative binomial
models predicting total deaths and total confirmed cases using the full analytic sample. Results
from these models are consistent with prior literature and theoretical expectations. As shown, the
commuting network-based measures are robust predictors of both total deaths and total cases. This
is true for both the network measure based on confirmed cases at the prior time period and the
network measure capturing change in cases from the prior time period. Note that, when these
network measures are taken into account, spatial contiguity is not a strong predictor of COVID-19
spread across counties. Estimated coefficients for other measures are also consistent with extant
research and our expectations. Economic disadvantage, concentration of racial/ethnic minority
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groups, and urban population are associated with higher rates of COVID-19 cases and deaths,

while a higher concentration of non-Hispanic White population is associated with lower COVID-

19 cases and deaths (Tai et al., 2020). Population percent aged 65 years and older is negatively

associated with cases, but positively associated with deaths (Le Couteur et al., 2020). As expected,

a county’s case rate at the prior time point is a strong predictor of cases at the current time point.

Table 2. Negative binomial models (with state and county random intercepts) predicting COVID-19
outcomes across 10 time periods based on network, spatial, and time lagged cases

Total Deaths Total confirmed cases
Beta SE Beta SE
Network lagged confirmed case rate (ts-1) .0029  F** (.001) .0037  H** (.001)
A network lagged confirmed case rate (tn-1 - tn) .0007 * (.000) 0044 ***  (,000)
Spatially lagged confirmed case rate (ts-1) .0003 (.000) .0003 (.000)
A spatially lagged confirmed case rate (ty-1 - tn) .0003 ¥ (.000) .0004 § (-000)
Confirmed case rate (tn-1) 0018  *** (.000) 0010  *** (.000)
Economic disadvantage 0471 ** (.015) 0285 ** (.009)
% 65 and older 0184  ** (.007) -.0285 ***  (.005)
Above avg. NHW -.3510 ***  (.060) -2164  F* 0 (L041)
Above avg. NHB 1963 ***  (L058) 1933 ** (.062)
Above avg. Hispanic .0680 (.068) 3074 (.055)
% Urban population 0061 (-001) 0025 H** (.001)
Two-week time period (ref. 4/1-4/14)
4/15-4/28 .0268 (.063) .0295 (.038)
4/29-5/12 .0718 (.063) .0424 (.045)
5/13-5/26 -1195 § (.065) 1300 * (.052)
5/27-6/9 -.1840  ** (.070) 1958 *** - (L056)
6/10-6/23 -4006 ***  (.077) 3480  *** - (.079)
6/24-7/7 -.5674  *F**  ((138) 4828  *F¥x (L077)
7/8-17/21 7162 FFE 0 ((123) 6501 ***  (,085)
7/22-8/4 -.5829 ***  ((140) 7632 F* - ((100)
8/5-8/18 -4671  *Fx o ((136) 8684  ***  ((103)
Constant -11.9601 ***  (|181) -7.9921  ***  ((107)
In(alpha) -4932  **x (1073) -.6243  F**  (L051)
State-level variance 3184 ***  (.088) 0971  ***  (.030)
County-level variance 4817  ***  (,047) 1993 *** (L019)

Notes: Exposure = County race-specific population 2014-2018, ACS 5-year estimates; NHB = Non-Hispanic

Black; ***p <.001; ** p<.01; *p<.05; + p<0.10

The permutation test results shown in Table 3 provide further support for these findings.

The p-values shown in Table 3 are based on the proportion of trials in which a model based on a
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random permutation of each respective variable outperformed the original model based on the
observed data, as measured by MAAPE. Based on this alternative measure of significance, the
network-based measures still emerge as very salient predictors, i.e., these measures meaningfully
improve model fit. Specifically, the network-based measures improved model fit in all trials for
the models predicting deaths and cases (i.e., no model in which this measure was permuted
outperformed the original model based on observed data).

Table 3. Negative binomial models (with state and county random intercepts) predicting COVID-19
outcomes across 10 time periods based on network, spatial, and time lagged cases: Permutation test results

Total deaths Total confirmed cases
Beta Proportion Beta Proportion
Network lagged confirmed case rate (tn-1) .0029 .00 .0037 .00
A network lagged confirmed case rate (ta-1 - tn) .0007 .00 .0044 .00
Spatially lagged confirmed case rate (ta-1) .0003 43 .0003 .01
A spatially lagged confirmed case rate (ts.1 - tn) .0003 10 .0004 .00
Confirmed case rate (tn.1) .0018 .00 .0010 .00
Economic disadvantage .0471 .00 .0285 24
% 65 and older .0184 .03 -.0285 1.00
Above avg. NHW -3510 1.00 -2164 95
Above avg. NHB .1963 .99 1933 1.00
Above avg. Hispanic .0680 .20 3074 40
% Urban population .0061 1.00 .0025 1.00

Notes: Exposure = County race-specific population 2014-2018, ACS 5-year estimates; NHB = Non-Hispanic
Black; ***p <.001; ** p<.01; *p<.05; T p<0.10

Sensitivity Tests

We conducted several tests to assess how findings changed with alternative model
specifications. In order to better separate network effects from possible unmeasured spatial
confounders, we re-estimated the models using network measures based on (1) only contiguous
counties and (2) only non-contiguous counties. Tables 4 and 5 show estimates from these models
(respectively). As shown, the network effects persist in both cases, further supporting our finding

that commuting networks matter for the spread of COVID-19 beyond spatial proximity.
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Table 4. Negative binomial models (with state and county random intercepts) predicting COVID-19
outcomes across 10 time periods based on network, spatial, and time lagged cases. Network based on only
contiguous counties

Total Deaths Total confirmed cases
Beta SE Beta SE
Network lagged confirmed case rate (ta-1) 0016 ***  (.000) 0027  ***  (.000)
A network lagged confirmed case rate (ta-1 - tn) .0006  *** (.000) .0028  H** (.000)
Spatially lagged confirmed case rate (ta-1) .0009 * (.000) .0004 (-000)
A spatially lagged confirmed case rate (ts.1 - tn) .0004 * (-000) .0007 * (-000)
Confirmed case rate (ts-1) 0019  ***  (.000) 0011 ***  (.000)
Economic disadvantage 0407  ** (.015) 0262 ** (.009)
% 65 and older 0196 ** (.007) -.0270 ***  (.005)
Above avg. NHW -3323  *#* (L059) -2020 *** 0 (L042)
Above avg. NHB 1920 *** - (L056) 1878 *** - (L057)
Above avg. Hispanic .0670 (.068) 3110 ***  (L055)
% Urban population 0063  ***  (.001) 0028 ***  (.001)
Two-week time period (ref. 4/1-4/14)
4/15-4/28 .0649 (.058) .0075 (.036)
4/29-5/12 1035 § (.061) .0323 (.051)
5/13-5/26 -.0903 (.068) .0850 (.059)
5/27-6/9 -.1643  * (.072) 1546  * (.068)
6/10-6/23 -3869  *F** - (L083) 3365 *** 0 (L100)
6/24-7/7 -5375 ** 0 (1133) 6002 ***  ((110)
7/8-7/21 -.6019 ***  ((127) 8233 *** ((112)
7/22-8/4 -4160 * (.167) 8870  ***  ((123)
8/5-8/18 -3349 * (.157) 9290 ***  ((124)
Constant -11.9509  ***  (.186) -7.9040 ***  (109)
In(alpha) -4609  *F* o (L077) -.5884 ***  (L056)
State-level variance 3206 Fx* (.082) 1006 *** (.027)
County-level variance 4696 Fx* (.046) 1917 *** (.018)

Notes: Exposure = County race-specific population 2014-2018, ACS 5-year estimates; NHB = Non-Hispanic
Black; ***p <.001; ** p<.01; *p<.05; T p<0.10

To aid our causal inference, we also conducted several analyses using different weighting
strategies on a cross-sectional version of our data in which outcomes are cumulative counts of a
county’s cases or deaths, and network and spatially lagged measures are based on these cumulative
counts. Results from these models are shown in Table 6. As shown, these alternative model

specifications produced substantively similar results with regard to the commuting network
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effects, offering further support for our conclusions. Results of all of the causal effect estimators

consistently show that the percentage of population over the age of 65 and economic

Table 5. Negative binomial models (with state and county random intercepts) predicting COVID-19

outcomes across 10 time periods based on network, spatial, and time lagged cases. Network based on only

non-contiguous counties.

Total Deaths Total confirmed cases
Beta SE Beta SE
Network lagged confirmed case rate (ta-1) .0020 ***  (.001) 0020 ***  (.001)
A network lagged confirmed case rate (ta-1 - tn) .0004 (.000) .0029  H** (.000)
Spatially lagged confirmed case rate (tn.1) 0013 ***  (.000) 0019  ***  (.000)
A spatially lagged confirmed case rate (ts.1 - tn) .0006  *** (.000) 0022  H** (.000)
Confirmed case rate (t,-1) 0019  ***  (,000) 0011 ***  (.000)
Economic disadvantage 0407  ** (.015) .0219 * (.009)
% 65 and older 0178 ** (.007) -.0296 ***  (.005)
Above avg. NHW -3566 ***  (.059) -2207  ** 0 (L040)
Above avg. NHB 1820 ** (.058) 1716 ** (.062)
Above avg. Hispanic .0779 (.068) 3276 *** (L055)
% Urban population 0062 ***  (,001) 0026 ***  (.001)
Two week time period (ref. 4/1-4/14)
4/15-4/28 .0136 (.067) 0514 (.040)
4/29-5/12 .0564 (.068) 0714 (.046)
5/13-5/26 -1305 f (.067) 1552 ** (.052)
5/27-6/9 -.1949  ** (.072) 2130 *** - (L.057)
6/10-6/23 -4107  ** (L078) 3662 *** - (L080)
6/24-7/7 -5675  *x o ((141) 5164 *** 0 (L.078)
7/8-7/21 -7066  *** o ((127) 6784 ***  (.087)
7/22-8/4 -5932  ** ((142) 7961 *** - ((110)
8/5-8/18 -5011  **  ((135) 8969  ***  ((116)
Constant -11.9407 ***  (.180) -7.9712  ***  ((115)
In(alpha) -4806  ***  (L072) -5905 ***  (L051)
State-level variance 3090 Hx* (.087) 1007 F** (.031)
County-level variance 4873 Hk* (.048) 2042 (.021)

Notes: Exposure = County race-specific population 2014-2018, ACS 5-year estimates; NHB = Non-Hispanic

Black; ***p <.001; ** p <.01; *p<.05; T p<0.10

disadvantage have significant and considerable causal effects on the total number of deaths by

COVID-19. The results of these causal analyses demonstrate the vulnerability of elderly and those

economically disadvantages to COVID-19.
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Table 6. Estimates and statistical significance of the causal effects of county-level characteristics on deaths
by COVID-19.

Covariate Balancing Propensity Score Weighting (CBPSW)

Estimate SE Z-value P-value
Network lagged confirmed case rate .003 .000 45.937 <0.001
Economic disadvantage 282 12 2.512 .012
Percent 65 and older 438 .009 46.881 <0.001
At least 25% NHB -2.095 .084 -25.040 .000
At least 25% Hispanic .003 .000 18.067 .000
Percent urban population .031 .001 36.574 .000
Spatially lagged confirmed case rate .001 .000 4.129 .000
Inverse Probability of Treatment Weighting (IPTW)

Estimate SE Z-value P-value
Network lagged confirmed case rate .003 .000 13.391 .000
Economic disadvantage 353 .054 6.590 .000
Percent 65 and older 438 .009 47.331 <0.001
At least 25% NHB -2.100 .084 -25.015 .000
At least 25% Hispanic .003 .000 18.285 .000
Percent urban population .031 .001 38.371 <0.001
Spatially lagged confirmed case rate .001 .000 8.497 .000
Super Learner

Estimate SE Z-value P-value
Network lagged confirmed case rate .003 .000 13.132 .000
Economic disadvantage 335 .076 4418 .000
Percent 65 and older 440 .009 46.767 <0.001
At least 25% NHB -2.100 .090 -23.403 .000
At least 25% Hispanic .003 .000 17.861 .000
Percent urban population .031 .001 42.346 <0.001
Spatially lagged confirmed case rate .001 .000 6.739 .000

Discussion

This study found that an area’s population exposure to COVID-19 in the area’s commuting
network contributes to higher local levels of confirmed COVID —19 cases and deaths, above and
beyond the area’s socioeconomic disadvantage, age composition, urban status, and racial and

ethnic composition. Importantly, the local effect of network exposure to COVID —19 cases is
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robust to controlling for spatial contiguity to COVID-19 cases exposure, and to controlling for
prior local levels of COVID-19 exposures. The causal effect estimates of the network and spatial
lag variables are consistent with the previous estimates. These results have important implications
for future research and policy. They showed that, during this pandemic, places have been
significantly affected by their residents’ exposures to infection through their commuting networks
across the country. This indicates that policies that focus on local level mitigation and prevention
efforts are more effective when complemented by similar efforts in the many extra-local connected
places across the states and the country.

Given the growing research suggesting that vulnerable populations are less able to work
remotely and engage in physical distancing during this pandemic, our results also indicate the acute
need for work level protections, such as providing paid sick days, increasing minimal wages,
providing health safety equipment to essential workers, to assisting with childcare for working
parents who have to work while the schools are closed or in remote mode. These necessary
provisions will not only help save the lives and health of workers who cannot afford to socially
distance themselves from their work environments, but they have the great potential to spillover
and improve the fates of whole communities that their workers go back home to.

As expected, an area’s socioeconomic disadvantage contributed to both higher death rates
and cases relative to the local population. The area’s concentration of whites was associated with
a protective effect against both infection cases and COVID-19 deaths. The concentration of
minorities, both above average share of Hispanics and non-Hispanic Blacks was associated with
higher rates of confirmed cases, consistent with a large body of work that has documented the

many challenges associated with COVID-19 risk that burden minority communities, including the
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higher likelihood to be in frontline occupations and in other low paid occupations that have little

flexibility and cannot be easily be transitioned to remote work format.?

Limitations.

These data come with several limitations. The analytical focus was on counties in part due
to restrictions regarding the COVID-19 data availability across the country. To the extent that the
data access and granularity expands in future months, analyses at more local levels will be very
valuable. Still, analyses on other important transmittable diseases like influenza have examined
place-to-place transmission patterns for geographic units as large as states and counties (Bozick
& Real, 2015) with important lessons that have inspired further research.

The network measures used in this study were limited by the data access constraints to
information updated on an annual basis, and thus they do not capture the fast-occurring changes
during this ongoing pandemic. While these measures captured the commuting network prior the
pandemic, those links have likely been weakened by layoffs or remote work transitions. Still, the
information on the COVID-19 rates within the commuting network was captured as it changed
over time. Given that the pandemic likely contributed to weakening rather than strengthening pre-
existing commuting links across places, the fact that nevertheless we still see strong effects
suggests to us that adjustments in the future to these data to reflect the rapid changes in

employment status will likely reveal even stronger effects of commuting exposures to COVID-19.

3 https://www.brookings.edu/research/to-protect-frontline-workers-during-and-after-covid-19-we-must-define-

who-they-are/
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Implications and Future Directions.

Many businesses across the country have restricted their employment during the COVID-
19 pandemic, some have even closed temporarily or permanently, while others allowed employees
to work remotely for the purpose of “social distancing” and in the hope of “flattening the curve”
(Bartik et al., 2020). Understanding how these mobility changes and restrictions contribute to
containing the COVID-19 transmission is an important next step for future research. Moreover, it
is known that some population groups are more likely to be in occupations (e.g., health care
providers, grocery workers, bus drivers, meatpacking workers) that have been on the frontlines in
the fight against COVID-19, unable to comply with social distancing recommendations and
policies. Understanding how workplace networks and risk transmission differentially affect
disadvantaged and minority populations is of great importance in future research. Importantly, also
understanding the types of workplace connections and other social network-based distancing
strategies (Block et al., 2020) that can work best to contain the pandemic risk without further

isolating the most vulnerable populations and communities is essential.
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