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Abstract

In many real-world applications, e.g., monitoring of in-
dividual health, climate, brain activity, environmental
exposures, among others, the data of interest change
smoothly over a continuum, e.g., time, yielding multi-
dimensional functional data. Solving clustering, classi-
fication, and regression problems with functional data
calls for effective methods for learning compact rep-
resentations of functional data. Existing methods for
representation learning from functional data, e.g., func-
tional principal component analysis, are generally lim-
ited to learning linear mappings from the data space
to the representation space. However, in many appli-
cations, such linear methods do not suffice. Hence, we
study the novel problem of learning non-linear represen-
tations of functional data. Specifically, we propose func-
tional autoencoders, which generalize neural network
autoencoders so as to learn non-linear representations of
functional data. We derive from first principles, a func-
tional gradient based algorithm for training functional
autoencoders. We present results of experiments which
demonstrate that the functional autoencoders outper-
form the state-of-the-art baseline methods.
Keywords Representation Learning, Functional Data
Analysis, Functional Gradient Method

1 Introduction

In many real-world applications such as monitoring
of individual health, climate, brain activity, environ-
mental exposures, among others, the data of interest
change smoothly a continuum, e.g. space, time, etc
[30, 4, 16, 15]. In practice, such data are recorded at
regularly or irregularly spaced points along the contin-
uum. An example of such data (See Figure 1) is offered
by accelerometer measurements from the person’s joints
while the person is performing various gestures, e.g., as
part of a choreographed dance sequence. The acceler-
ation of different joints can be naturally modelled by
curves that denote continuous functions of time, yield-
ing multi-dimensional functional data. Since the move-
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Figure 1: A simple example of functional data: Ac-
celerometer data from multiple joints. Applications
such as gesture recognition call for methods for learning
compact representations of such data.

ment of different joints are generally not independent,
the different curves can exhibit complex dependencies.
Because of the increasing availability of functional data
in many domains, there is a growing interest in func-
tional data analysis (FDA) [22, 12, 35].

Functional data motivate the consideration of the
functional counterparts of standard machine learning
problems including clustering, classification, and regres-
sion. However, because functional data are sampled
from a continuum, they are intrinsically infinite di-
mensional. In contrast, the standard machine learn-
ing methods are designed to work with data that are
encoded by finite dimensional feature vectors. Hence,
there is a need for methods to extract and encode the
relevant information from functional data into a finite-
dimensional embedding. Functional principal compo-
nent analysis (FPCA) and its many variants [26, 8, 5,
2, 18] offer examples of this approach to unsupervised
learning of low-dimensional representations of func-
tional data. Such methods generalize the well-known
principal component analysis (PCA) technique to the
functional data setting. However, FPCA methods are
generally limited to learning linear representations of
functional data.

In many real-world applications, each dimension of
the functional data, i.e. each feature function, can be a
complex nonlinear curve. Furthermore, the correlations
across the dimensions can be nonlinear and complex.
Hence, linear representations such as those produced
by FPCA and its variants are inadequate for modeling
functional data [35]. Hence, Rossi et al. [25, 24] in-
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troduced functional radial basis function networks for
regression problems on functional data. Deep neural
networks offer some of the state-of-the-art methods for
learning nonlinear representations of many types of data
[6, 32]. While there has been some work on the theoreti-
cal aspects of the representational power of infinite neu-
ral networks and continuous neural networks [14, 1, 20],
to the best of our knowledge, existing methods for non-
linear representation learning using neural networks fo-
cus primarily on multivariate data. There is little work
on effective methods for learning complex non-linear
representations from functional data.

Against this background, we study the novel
problem of unsupervised learning of compact non-
linear representations of multi-dimensional functional
data. Specifically, we introduce functional autoencoders
(FAE), a novel generalization of the well-known autoen-
coder neural networks to the setting of functional data.
FAE aim to address two key challenges: (i) How to de-
sign a neural network that can learn vector represen-
tation from multidimensional functional data; and (ii)
How to train such a neural network. The major contri-
butions of this paper are as follows:

• We study a novel problem of learning compact non-
linear representations of multi-dimensional func-
tional data;

• We introduce functional autoencoders that gener-
alize the well known neural network autoencoders
to the functional data setting;

• We derive a functional gradient based learning
algorithm to optimize the parameters of FAE so
as to minimize the reconstruction error of the
functional data;

• We present the results of experiments on several
benchmark data sets that demonstrate the effec-
tiveness of the FAE in learning compact nonlinear
representations of functional data.

The resulting FAE and the optimization techniques
introduced in this paper can be used to design
deep neural networks for functional data classification,
scalar/functional response regression, functional data
compression, and functional data clustering.

2 Functional Representation Learning

We begin by introducing useful notations and problem
definition before proceeding to give the details of FAE.

Notations. Throughout the paper, we de-
note P -dimensional functional data by x =
[x1(t), x2(t), . . . , xP (t)] ∈ HP , where H denotes the
functional space, a subspace of the square-integrable

Figure 2: The functional autoencoder takes multi-
variate functional data as input and outputs a recon-
struction of it. The first layer realizes a mapping from
the functional space to vector space and the last layer
performs a mapping from the vector space into the func-
tional space. Multiple vector space to vector space
transformations can be included between the first and
the last layers.

functional space L2. xj ∈ Hj , j = 1, . . . , P is a function
and each xj can have its own arity. X = {x1, . . . ,xn}
is the set of n samples of functional data. We use
y = [y1, . . . , yd] ∈ Rd to denote the d-dimensional
encoding, and Y = {y1, . . . ,yn} to denote the encod-
ings of the entire set. Subscripts j, k denote nodes
in the neural network and i will be used to identify
samples. Superscript l indexes the layers of the the
neural network. We use s to denote training iteration.

Problem Definition. The unsupervised nonlinear
multi-dimensional functional representation learning
problem is formally defined as follows:

Given X = {x1,x2, . . . ,xn} with xi as a multidimen-
sional functional data, i.e., xi ∈ HP , learn a non-linear
function f that can encode xi as a d-dimensional vector,
i.e., yi = f(xi).

2.1 Functional Autoencoder. An autoencoder is
constructed by learning an encoder φ, i.e., a mapping
from a P -dimensional vector-valued input space RP to
a d-dimensional representation space Rd; and a decoder
ψ, i.e., a mapping from the representation space Rd to a
P -dimensional vector-valued output space so as to min-
imize over the training set, a measure of the reconstruc-
tion error, e.g., mean squared error, of the output with
respect to input. FAE, the functional counterpart of the
autoencoder, is specified by two mappings, φ (encoder)
and ψ (decoder), where the encoder is a mapping from a
P -dimensional functional space to d-dimensional vector
space and the decoder maps d-dimensional vector space
back to the P -dimensional functional space as follows:
φ : HP → Rd and ψ : Rd → HP so as to minimize the
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reconstruction error:

(2.1) φ, ψ = argmin
φ,ψ
‖x− (ψ ◦ φ) x‖2 .

The resulting finite dimensional encoding of functional
data makes it possible to apply existing machine learn-
ing algorithms on downstream tasks e.g., clustering,
classification. An illustration of the FAE framework is
shown in Figure 2.

We encode multi-dimensional functional data x into
y, by generalizing the weights and scalar inner product
in the original autoencoder by functional weights w ∈ H
and inner product for real functions in L2 space. The

activation of the k-th node in the first hidden layer O
(1)
k ,

is given by
(2.2)

O
(1)
k = σ

(
P∑
j=1

〈
xj(t), w

(1)
k,j(t)

〉)
= σ

(
P∑
j=1

∫
τj

xj(t)w
(1)
k,j(t)dt

)

where τj is the domain of xj(t), and σ(·) is the activation
function. The framework can accommodate any of the
widely used activation functions e.g., linear, tanh and

ReLU. It is straightforward to additional layers O
(l)
k

(l > 1) to learn more complex nonlinear encodings of
the input data.

The decoder maps the finite dimensional vector
encoding of the functional data back to functional space
using the functional weights. Specifically, the outputs of

the nodes in the output layer O
(l)
j (t) ∈ Hj , j = 1, . . . , P

are calculated by

(2.3) x̂j(t) = O
(l)
j (t) =

∑
k

O
(l−1)
k w

(l−1)
j,k (t).

At the output nodes, we use linear activation function.
Once trained, the functional weights of the FAE decom-
pose functional input and reveal the mode of variations
in the data.

Given n samples of functional data X =
{x1, . . . ,xn}, we aim to train the FAE to optimally re-
construct the input. The training objective is given by:

(2.4)

L (Ω) =
1

2n

n∑
i=1

‖xi − x̂i‖22

=
1

2n

n∑
i=1

P∑
j=1

‖xi,j(t)− x̂i,j(t)‖22

=
1

2n

n∑
i=1

P∑
j=1

∫
τj

(xi,j(t)− x̂i,j(t))2
dt

where Ω is the collection of all functional weights.

2.1.1 FAE generalizes the AutoEncoder. The
FAE is a functional generalization of autoencoder to
directly handle functional data. FAE replaces the scalar
weights of the autoencoder with functional weights
and scalar inner product by functional inner product.
Thus, the standard autoencoder is a special case of the
proposed FAE.

2.1.2 Connection to FPCA. As pointed out in [3],
an one-layer autoencoder with a linear activation func-
tion essentially behaves like the PCA. A similar rela-
tionship holds between the FAE and functional PCA.
The FPCA is a special case of FAE when the FAE uses
linear activation functions in the hidden layer and the
functional weights are constrained to be orthonormal.

2.2 A Learning Algorithm for FAE. Unlike in the
case of conventional neural networks where both the
objective function is a real-valued function of the real-
valued parameters (weights), in the FAE, the objective
function is replaced by a functional, or function of model
parameters that are real-valued functions. To perform
gradient back-propagation to train an FAE, we need to
evaluate the functional gradient of the objective func-

tional w.r.t the weight functions, ∂L(Ω)

∂w
(l)
a,b(t)

, which mea-

sures a change in a functional in response to a change
in a function on which the functional depends. We turn
to the calculus of variation [21], a field of mathematical
analysis, for evaluating functional gradients. Addition-
ally, we extend the Adam optimizer [11], a state-of-the-
art method for optimizing the parameters of a standard
neural network with vector valued inputs and weights,
to the functional setting.

2.2.1 Functional Derivatives. For simplicity, we
show the gradient derivation for the FAE with a single
hidden layer. However, it is quite straightforward to
generalize the derivation to a multi-layer FAE. To train
the FAE with one hidden layer, one can derive the
following by chain rule:

(2.5)
∂L(Ω)

∂w
(2)
j,k(t)

=
∂L(Ω)

∂O
(2)
j (t)

∂O
(2)
j (t)

∂w
(2)
j,k(t)

(2.6)
∂L(Ω)

∂w
(1)
k,j(t)

=
P∑
j′=1

〈
∂L(Ω)

∂O
(2)
j′ (t)

,
∂O

(2)
j′ (t)

∂O
(1)
k

〉
·
∂O

(1)
k

∂w
(1)
k,j(t)

The fundamental problem is to determine a suitable
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function f(x) ∈ H such that

(2.7)

f(x) = arg min
f(x)∈H

J [f ]

J [f ] : =

∫ b

a

L (x, f(x), f ′(x)) dx,

under some appropriate boundary conditions. The min-
imizers of an objective function defined on a finite-
dimensional vector space are characterized as critical
points, where the gradient of the objective function van-
ishes. The calculus of variations provides an analogous
construction in the case of the functional space. The
gradient of the functional in Eq.( 2.7) is given by [21]

(2.8) ∇J [f ] =
∂L(x, f, f ′)

∂f
− d

dx

(
∂L(x, f, f ′)

∂f ′

)
,

where f ′ = df(x)/dx and

(2.9)
∂af b(x)

∂f(x)
= b · af b−1(x),

where a, b are constants.
In light of the above, it is easy to show the first term

in Eq. (2.5) is given by:

(2.10)
∂L(Ω)

∂O
(2)
j (t)

= −
(
xj(t)−O(2)

j (t)
)

:= δ(2)(t)

and the second term in Eq.(2.5) is given by:

(2.11)
∂O

(2)
j (t)

∂w
(2)
j,k(t)

=
∂

∂w
(2)
j,k(t)

d∑
k′=1

O
(1)
k′ w

(2)
j,k′(t) = O

(1)
k .

We then have:

(2.12)
∂O

(2)
j (t)

∂O
(1)
k

=
∂
∑d
k′=1O

(1)
k′ w

(2)
j,k′(t)

∂O
(1)
k

= w
(2)
j,k(t)

It then follows that:

(2.13)

∂O
(1)
k

∂w
(1)
k,j(t)

=
∂σ
(∑P

j′=1

∫
τj′
xj′(t)w

(1)
k,j′(t)dt

)
∂w

(1)
k,j(t)

= σ′ ·
∂
∫
τj
xj(t)w

(1)
k,j(t)dt

∂w
(1)
k,j(t)

= σ′ · xj(t)

where σ′ = ∂σ(h)/∂h. Combing the preceding results,
we have:

∂L(Ω)

∂w
(2)
j,k(t)

=
1

n

n∑
i=1

O
(1)
i,k δ

(2)
i,j (t)(2.14)

∂L(Ω)

∂w
(1)
k,j(t)

=
n∑
i=1

δ
(1)
i,k · σ

′ · xi,j(t)(2.15)

where δ
(1)
k is defined as

(2.16)

δ
(1)
k =

P∑
j=1

〈
δ

(2)
j (t), w

(2)
j,k(t)

〉
=

P∑
j=1

∫
τj

δ
(2)
j (t)w

(2)
j,k(t)dt.

Note that since δ
(1)
k ∈ R, the derivatives propagate

consistently when we add additional hidden layers that
implement additional mappings between vector spaces.

2.2.2 Functional Adam Optimizer To extend the
Adam optimizer [11] to the functional setting, we main-
tain exponential moving averages of the first and second
order moments of the functional gradients. Let m(t) and
v(t) be the first and second order moment function es-
timates, the exponential moving average steps become:

m
(l)
s,j,k(t) = β1m

(l)
s−1,j,k(t) + (1− β1)

∂L(Ωs−1)

∂w
(l)
s−1,j,k(t)

(2.17)

v
(l)
s,j,k(t) = β2v

(l)
s−1,j,k(t) + (1− β2)

(
∂L(Ωs−1)

∂w
(l)
s−1,j,k(t)

)2

(2.18)

where β1 and β2 are hyper-parameters. The bias
correction steps in functional Adam optimizer can be
written as:

m̂s(t) = ms(t)/ (1− βs1)(2.19)

v̂s(t) = vs(t)/ (1− βs2)(2.20)

Finally, the functional weights are updated by:

(2.21) w
(l)
s,j,k(t) = w

(l)
s−1j,k(t)− γ ·

m̂
(l)
s,j,k(t)√

v̂
(l)
s,j,k(t) + ε

.

2.2.3 Training an FAE The training of FAE with
one hidden layer is summarized in Algorithm 1. The
inputs to the algorithm are multi-dimensional functional
data and the desired dimensionality d of the encoding
to be learned. The functional weights are initialized to
random functions as follows:

(2.22) w(t) =
b∑

k=1

ckφk(t)

where cks are random coefficients and φk(t)s are the set
of known basis functions, e.g. b-spline, Fourier among
others. Thereafter, the algorithm iterates between feed-
forward pass and back-propagation weight update pass
until the specified termination criterion is satisfied. Fi-
nally, the encoding is obtained by the encoder portion of
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Algorithm 1: Training FAE using Adam
optimizer

Input: Multi-variate functional data
X ∈ HP×n, dimension of embedding d

Output: embedding representation Y ∈ Rn×d
1 Initialize functional weights using Eq.(2.22) ;
2 Initialize iteration counter s = 0;
3 Initialize all m0(t) = 0, v0(t) = 0;
4 Feed-forward pass using Eq.(2.2) and Eq.(2.3);
5 while s ≤ max iteration and not converged do
6 s = s+ 1;

7 Compute δ(2)(t) using Eq.(2.10);

8 Compute ∂L(Ω)

∂w
(2)
s,j,k(t)

using Eq.(2.14);

9 Compute δ(1)(t) using Eq.(2.16);

10 Compute ∂L(Ω)

∂w
(1)
s,k,j(t)

using Eq.(2.15);

11 Compute all m̂
(l)
s,k,j(t) using Eq.(2.17,2.19);

12 Compute all v̂
(l)
s,k,j(t) using Eq.(2.18,2.20);

13 Update all functional weights by Eq.(2.21);
14 Feed-forward pass using Eq.(2.2) and

Eq.(2.3);
15 Evaluate objective function Eq.(2.4);

16 end
17 Compute encoding Y by Eq.(2.2)

FAE. It is straightforward to generalize the algorithm to
work with an FAE with multiple layers, e.g., by stack-
ing multiple such autoencoders or inserting additional
hidden layers.

3 Experiments

We proceed to describe the experiments we designed to
evaluate the effectiveness of the proposed FAE for rep-
resentation learning from functional data. The exper-
iments aim to answer the following research questions:
1) Can the FAE be effectively trained using the pro-
posed Functional Adam Optimizer? 2) How does the
encoding learned by FAE compare with those obtained
using the state-of-the-art baseline methods?

3.1 Experimental Setup.

3.1.1 Baseline Methods. We compare FAE with
the following representative baselines:

• parAE exploits multiple standard autoencoder
(AE) neural networks [7] in parallel where each
AE learns an encoding from one of the functional
features, independently from others. The individ-
ual encodings are added together to obtain the joint

encoding for the multi-dimensional functional data.

• CONVAE is based on the convolutional neural
network [13]. We adopt one convolution layer with
kernel size P × t following the setup in [10] where
t is a hyperparameter. It is followed by a linear
transformation layer to obtain the encoding from
the functional data. The decoder part of CONVAE
consists of two linear layers and a reshape layer for
reconstruction.

• LSTMAE is based on two unidirectional long
short-term memory (LSTM) [27] layers, one for
encoding and the other for decoding. The decoder
reconstructs the input in reverse order.

• FPCA [22] is the functional principal component
analysis and the encoding of the functional data is
obtained from the principal component scores.

3.1.2 Data Sets. We report the results of our exper-
iments on a synthetic data and several publicly available
real-world data sets.
Synthetic Data. To generate a P−dimensional syn-
thetic data containing C clusters, we first generate C
template functions on each dimension and then the ac-
tual samples will be obtained by adding noise to the
template functions. Specifically, for a given set of ba-
sis functions φk(t), k = 1, . . . , b, a set of P -dimensional
random coefficient vectors are drawn from multivariate
normal distribution,

αk ∼ N (0,ΣP×P ) , k = 1, . . . , b,(3.23)

where ΣP×P is a P × P covariance matrix and it char-
acterizes the correlation among feature functions. The
template function for the j−th dimension is then ob-
tained by f̃j =

∑b
k=1 αk,jφk(t), j = 1, . . . , P , and αk,j

is the j−th element of the vector αk. Samples in the
same cluster are produced by modifying the template
function to incorporate two sources of variability: The
first controls the perturbation of the curve; and the
second simulates observation error. For perturbing the
curve, we add Gaussian noise to the coefficients of the
template function:

α′k,j = αk,j +N (0, β1 · |αk,j |) .(3.24)

To simulate observation error, we add Gaussian noise
to the function value at each sampling point. Thus, the
j-th feature function of a sample is obtained by

(3.25) xj(t) =
b∑

k=1

α′k,jφk(t) +Nt(0, β2), j = 1 . . . , P,
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Algorithm 2: Synthetic data generation

Input: Number of features P , a set of basis
functions [φ1(t), . . . , φb(t)], number of
clusters C, samples in each cluster
[n1, . . . , nC ]

Output: Synthetic data X
1 Initialize empty X;
2 for c = 1, . . . , C do
3 Generate random covariance matrix ΣP×P ;
4 Generate template vectors αk by Eq.(3.23);
5 for i = 1, . . . , nC do
6 for j = 1, . . . , P do
7 Generate perturbed coefficients α′k,j

by Eq.(3.24);
8 Generate feature function xj by

Eq.(3.25);

9 end
10 xi ← [x1(t), . . . , xp(t)];
11 X← [X,xi]

12 end

13 end

where with a slight abuse of notation, we use Nt to
denote that the value is drawn independently at each
t, and β1, β2 to control the magnitude of the noise.
The synthetic data generation process is summarized
by Algorithm 2. The algorithm accepts the number of
features, number of clusters, number of samples in each
cluster etc. as input. For each cluster, the algorithm
first defines the template function; Samples from each
cluster are drawn after applying curve perturbation to
the template coefficients and observation noise.
Real-world Data. The real-world data sets are sum-
marized as follows: AWR [36] is an Electromagnetic
Articulograph (EMA) data set which contains the data
measured from the movement of the tongue and lips dur-
ing speech. CharTraj [37] contains the 2-dimensional
movement of a pen as well as pen tip force from natural
handwriting. PM2.5 [17] is a data set containing the
PM2.5 data for the US Embassy in Beijing. UWave [19]
contains accelerometer-based data obtained from a set
of gestures. The specification of the data sets used in
the experiment is provided in Table 1.

3.2 Convergence of the learning algorithm To
answer research question 1, we train an FAE on each
data set with the functional variant of the standard gra-
dient descent (GD) and the proposed functional exten-
sion of the Adam optimizer and empirically demonstrate
their convergence. In this experiment, we set d to 10,
and use batch update. Due to space constraints, a sub-

Table 1: Key Statistics of the Data Sets. C denotes
the number of clusters in the functional data. T is the
length of the functional data.

Data set P n C T

(1) Synthetic 10 500 5 100
(2) AWR 9 300 25 144
(3) CharTraj 3 1436 20 182
(4) PM2.5 8 1571 6 24
(5) UWave 3 896 8 315
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(a) Synthetic
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Figure 3: Empirical convergence of the optimization
algorithms on the FAE.

set of the results are shown in Figure 3.
We observe that the objective functional evaluated

on the training data gradually decreases with training
iterations for both functional GD and the functional
Adam optimizer. We observe that the functional exten-
sion of the Adam optimizer is more efficient than the
functional variant of standard GD.

The actual run time of the full-batch functional
Adam update iteration (based on a MATLAB imple-
mentation on a 3.3GHz Intel Core i5 hardware) is shown
in Table 3. The total number of training iterations un-
til convergence is usually around a couple hundreds (See
Figure 3). We conclude that the functional Adam opti-
mizer is fast enough for practical use.

3.3 Clustering Performance To answer research
question 2, we extract representations from functional
data using the aforementioned methods and use them
in a clustering task. In each case, the dimensionality
d of the representation is set to 20. The resulting 20-
dimensional embeddings of the functional data are clus-
tered using the standard K-means clustering algorithm.
The clustering performance is evaluated using standard
metrics such as clustering accuracy, normalized mutual
information (NMI), and purity. We report performance
metrics averaged over 20 independent trials in Table 2.

We observe that the two functional approaches
FPCA and FAE outperform the other baseline methods
parAE, CONVAE, and LSTMAE with in terms of
clustering performance. The parAE treats the sampling
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Table 2: Performance evaluated by K-means clustering on the representation extracted from functional data
using different representation learning methods. Boldface figures are used to denote the best performers when
they outperform others significantly (threshold set at 0.05).

Data set Metric parAE CONVAE LSTMAE FPCA FAE(ours)

Acc 0.6576 ± 0.0503 0.8469 ± 0.1429 0.7117 ± 0.1246 0.8703 ± 0.1472 0.9555 ± 0.1087
Synthetic NMI 0.5705 ± 0.0494 0.9046 ± 0.0885 0.6173 ± 0.1048 0.9225 ± 0.0879 0.9742 ± 0.0631

Purity 0.6604 ± 0.0452 0.8900 ± 0.1021 0.7369 ± 0.0869 0.9100 ± 0.1021 0.9700 ± 0.0733

Acc 0.5838 ± 0.0398 0.5395 ± 0.0274 0.4798 ± 0.0314 0.7370 ± 0.0437 0.7787 ± 0.0518
AWR NMI 0.7022 ± 0.0210 0.6754 ± 0.0161 0.6408 ± 0.0161 0.8581 ± 0.0223 0.8694 ± 0.0261

Purity 0.6155 ± 0.0375 0.5682 ± 0.0249 0.5152 ± 0.0281 0.7812 ± 0.0356 0.8117 ± 0.0411

Acc 0.4498 ± 0.0240 0.4755 ± 0.0342 0.2724 ± 0.0089 0.4700 ± 0.0399 0.5302 ± 0.0333
CharTraj NMI 0.5195 ± 0.0117 0.5988 ± 0.0221 0.3571 ± 0.0034 0.6043 ± 0.0274 0.6333 ± 0.0274

Purity 0.4881 ± 0.0164 0.5216 ± 0.0272 0.2914 ± 0.0086 0.5175 ± 0.0296 0.5720 ± 0.0251

Acc 0.3014 ± 0.0111 0.2735 ± 0.0141 0.3688 ± 0.0370 0.3877 ± 0.0348 0.4258 ± 0.0132
PM2.5 NMI 0.2154 ± 0.0072 0.0595 ± 0.0026 0.2434 ± 0.0197 0.2134 ± 0.0163 0.2802 ± 0.0319

Purity 0.5122 ± 0.0059 0.4994 ± 0.0045 0.5539 ± 0.0143 0.5535 ± 0.0107 0.5862 ± 0.0151

Acc 0.5950 ± 0.0389 0.5639 ± 0.0419 0.3695 ± 0.0164 0.6870 ± 0.0607 0.7208 ± 0.0698
UWave NMI 0.5003 ± 0.0191 0.4983 ± 0.0119 0.3002 ± 0.0155 0.6563 ± 0.0224 0.6569 ± 0.0239

Purity 0.6152 ± 0.0291 0.5863 ± 0.0269 0.4117 ± 0.0143 0.7183 ± 0.0469 0.7406 ± 0.0510

points as individual features and hence is oblivious to
the smoothness of the functions. Furthermore, because
it processes each functional feature independently of the
others, it fails to model the correlation between features.
We note that the performance of LSTMAE suffers from
the fairly long length of the sequence (T ) combined with
limited number of samples available.

Among the two methods that are specifically de-
signed for functional data, FAE outperforms FPCA,
with the differences in performance being especially
striking in the case of CharTraj, PM2.5, and UWave
data. The observed superiority of FAE over FPCA can
be explained by FAE’s ability to model nonlinearity of
each functional variables as well as nonlinear interac-
tions between the functional variables.

3.4 Parameter Analysis Determining the suitable
number of hidden nodes and hidden layers in neural
network models in practice is challenging and often
relies on a process of trial and error. Hence, we
empirically examined how the performance of FAE
varies as a function of the number of hidden nodes and
the number of hidden layers.

Number of Hidden Nodes To test the sensitivity
of clustering performance to the number of hidden
nodes, we set the number of hidden layers to 1, tune
the embedding dimensionality from 10, 20, 50, 100,
and report the mean results from 20 independent runs.
Because of space constraints, only a subset of results
is reported in Figure 4. In the case of Synthetic data
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Figure 4: The effect of embedding dimensionality on
clustering performance.

we also report results with the number of hidden nodes
set to 3 and 5 (the actual number of basis functions
is 12). We note that the clustering performance on
the Synthetic data improves when d approaches 10 and
decreases when d > 10. We conjecture that the the
needed modeling capacity is achieved around d = 10 and
the addition of more hidden nodes may in fact adversely
impact the performance due to over-fitting.

Number of Hidden Layers To examine the sensitiv-
ity of clustering performance to the number of hidden
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Figure 5: The effect of number of hidden layers on
clustering performance.

Table 3: Running time per functional Adam update
iteration.

Dataset (1) (2) (3) (4) (5)

time (s) 0.24 0.16 0.56 0.86 0.53

layers, we set the embedding dimensionality to 10 and
experiment with the number of hidden layers ranging
from 1 to 4. Due to space constraints, only a subset of
the results is shown in Figure 5. The results show that
the performance improves as we increase the number
of hidden layers from 1 to 2 and starts to decrease as
additional hidden layers are added. This is consistent
with the expectation that the optimal performance is
achieved when the modeling capacity approaches that
necessary to capture the variability and nonlinearity
present in the data.

4 Summary and Discussion

In many real-world applications, e.g., monitoring of in-
dividual health, environmental exposures, among oth-
ers, the data of interest change smoothly over a con-
tinuum, e.g., time, yielding multi-dimensional func-
tional data. Solving clustering, classification, and re-
gression problems with functional data calls for effec-
tive methods for learning compact non-linear represen-
tations of functional data. To address this need, we
introduced the unsupervised multi-dimensional nonlin-
ear functional representation learning problem. We pro-
posed the functional autoencoder, a generalization of
the autoencoder from the vector space to the functional
setting. We derived from first principles, a functional
gradient based optimization algorithm for training non-
linear functional autoencoders. We extended the Adam
optimizer, a state-of-the-art method for training neu-
ral networks, to the functional setting. The results of
experiments show that the FAE outperforms the state-
of-the-art baselines in terms of clustering performance.
We note that the concepts and techniques introduced
in this paper, including functional weights, functional
weight update rules, and functional Adam optimizer can

be used for designing functional variants of neural net-
works for functional data classification, functional data
regression, and related tasks.

Some promising directions for future work include
extensions to the functional setting of contrastive au-
toencoders [23], denoising autoencoders [34], etc; reg-
ularization schemes for functional weight updates to
minimize overfitting; functional variants of attention
mechanisms, e.g. [33, 9] to identify important feature
functions as well as informative segments in the curves;
and functional generalizations of graph neural networks
[38, 31, 28, 29].
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