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Observability-aware Target Tracking with Range Only Measurement

Demetris Coleman, Shaunak D. Bopardikar, and Xiaobo Tan

Abstract— Often times in nonlinear systems, the control input
can play a significant role in the system’s observability. In
this paper, we investigate the trade-off between observability
and control performance for a mobile robot in target tracking,
when only the distance to the target is measured. The problem
is motivated by practical applications for autonomous robots
when operating in GPS-denied environments. A nonlinear
model predictive control (NMPC) framework is used to address
the dilemma between localization and tracking, by jointly opti-
mizing the tracking performance and an observability metric.
Three measures of estimation performance are considered,
including the determinant of the observability matrix, the
inverse condition number of the observability matrix, and
the trace of the covariance matrix in position estimation. By
tuning the relative importance of the tracking objective and
observation performance, we demonstrate the efficacy of the
proposed NMPC approach. The trade-off is captured through
two examples, one with unicycle dynamics on a plane, the other
based on gliding robotic fish with complex 3D dynamics.

I. INTRODUCTION

An important problem for autonomous robots in GPS-
denied environments is localization and navigation with only
range measurement. This is particularly relevant in the case
of underwater vehicles, which have become valuable for a
myriad applications [1], [2]. In particular, the subset of AUV
dubbed Underwater Gliders, has shown great promise for
long-term missions [3]-[5]. AUVs, however, have significant
challenges that accompany their operation. These challenges
mainly stem from the underwater environment practically
prohibiting many radio frequency-based solutions to localiza-
tion, navigation, and communication. In addition, techniques
like simultaneous localization and mapping are not always
applicable due to a lack of landmarks.

Advancements in technologies available for the underwater
environment offer several approaches to localization and
navigation [6]. Acoustic modems, such as the micromodem
developed by Woods Whole Oceanographic Institute, can
provide communication and ranging between underwater
vehicles or beacons. Due to the capabilities of acoustic
modems, many researchers began a general study of using
static beacons or surface vehicles as communication and
navigation aids (CNAs) to underwater vehicles [7]-[12]. A
particularly interesting instance of this class of problems
is the single beacon navigation (SBN) problem and its
variants. In the SBN problem, an AUV estimates its position
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using inertial sensors, knowledge of its dynamic model,
and the measurement of its range to a single beacon while
locomoting.

Several works have studied the observability of the SBN
problem using a variety of methods. In [13], the authors
optimize the condition number of the empirical observability
Gramian in path planning to improve observability of a uni-
form flow field. The authors of [14] study the observability
of SBN with the kinematic model of an AUV moving in
the horizontal plane and a static beacon. Using the range
and bearing, the authors give an explanation of when the
position of the vehicle can be found using only measure-
ments of range. The authors in [15] investigate the relative
pose estimation based on range measurements between two
robots moving in a 3D environment. They consider only the
kinematic model. The authors of [16] study the observability
of relative localization of two AUVs equipped with velocity,
depths sensors, and ranging capability. The authors derive
an observability metric and show that the degradation of
localization performance depends on the range between the
vehicles and the angle between the relative velocity vector
and the position vector. In [17], the authors argue that
optimizing measures of the observability Gramian as a sur-
rogate for the estimation performance may provide irrelevant
or misleading trajectories for planning under observation
uncertainty. The authors instead suggest using measures of
the Posterior Fisher Information Matrix. As an example, they
use the trace of the covariance matrix produced by a Kalman
filter.

Most of these works focus on localization, navigation,
or path planning. Comparatively, work on control based on
observability metrics in the context of range measurement
has been limited. The authors of [18] developed a controller
for homing in on a static beacon using range measurements.
The controller was inspired by previous results on observable
paths, but used a heuristic approach based on a covariance
threshold to achieve observable maneuvers. One notable
exception is [19], where the authors present two methods
of greedy-optimal steering control for CNAs. The authors
consider the AUVs as static beacons and use approximate
optimization of the condition number of the observability
Gramian to steer the CNAs improving localization for un-
derwater vehicles.

The work cited above typically has not considered the
relative importance between an observability metric and
a tracking objective. This work differentiates itself from
existing work in this area by studying the application of
observability-based control to the target tracking problem.
We consider an underwater vehicle tasked with tracking
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the CNA using only range measurement. This scenario can
arise in long-duration missions over large areas. The vehicle
could surface frequently to maintain tracking performance
using GPS fixes, but this would consume more energy. An
alternative approach is to use a single surface vessel as a
CNA, allowing the vehicle to surface less often, save energy,
and stay stealthy. It has been heavily reported that traveling
in a straight line toward the target lacks observability when
estimating position using only range measurements [16],
[19], [20]. This can be avoided by maximizing the tracking
control objective together with a metric that serves as a
surrogatefor estimation performance, ultimately benefiting
control performance. In particular, we propose the use of
NMPC to jointly optimize tracking control performance and
an observability metric. We then focus on three different
metrics and investigate their utility and suitability for improv-
ing observability. We further examine the trade-off between
the tracking performance and estimation accuracy as the
weighting function for the two objectives is tuned. Two
examples, a unicycle in 2D space and a gliding robotic fish
in 3D space, are used to illustrate the proposed method.

The rest of this paper is organized as follows. Section
II introduces the problem formulation. Section III reviews
some concepts of observability, examines the metrics used
to optimize observability, and provides analysis for two
example systems. Simulation results are presented in Section
IV followed by concluding remarks in Section V.

II. PROBLEM FORMULATION

In this work, we consider the problem of target tracking
given the measurement of range to the target. The objective
is to find a sequence of control inputs or actions that improve
the observability of the tracker’s location, while simultane-
ously achieving the goal of tracking the target’s position. We
assume that the target’s absolute location is communicated
to the tracker, a good estimate of initial relative position
is given, and the range to the target is measured. We also
assume that the tracker is able to measure or estimate its
own full state vector with the exception of position. Given
the target’s position 2, (t), ¥ (t) in real time, we desire to
minimize the error between the target and tracker positions.

In this work, we propose to optimize observability metrics
along with achieving the tracking objective. We then study
the trade-off between tracking control and optimizing the
observability metric. We define

mo(t) = { ol ] ()

as the tracking error between the target and tracker planar
positions (%4, yte) and (x,y). The tracker is a general
nonlinear agent with state X, control input U, dynamics

X = f(X,0), 2)

and a nonlinear measurement function

=L |

where L(X) is the state vector with the exception of the
position. We formulate a constrained optimization problem
as:

T
min J:/ a7l + (1 — 2)Odt
U Ty

subject to the dynamics (2),

Zxcﬂﬂin S;ZX[] S;ZX(Lnar

U%nn S U>S Lﬁnaw

4)

where O is a function that measures observability, AU is
the vector of control input rates, and « is design parameter
that tunes the relative emphasis between the control objective
and observability metric. Setting « to one reverts to a pure
tracking problem, while o = 0 leads to only optimizing the
observability metric O.

III. OBSERVABILITY METRICS AND ANALYSIS

A. Nonlinear Observability Rank Condition

Before diving into the observability metrics, we briefly
review the concept of the nonlinear observability rank con-
dition. Given a general nonlinear system modeled by

x = f(z,u)
{ y = h(x). ®

with state z € R™, input u € RY, and output y € R°,
observability can be studied using the concept of local
weak observability introduced in [21]. By defining the Lie
derivatives of the output vector h(z) as

LYh = h,

Lih =Vhf,

L3h =V [Lhh)f,
Lth = V. [LF ' h]f,

(6)

and the nonlinear observability matrix for the system in Eq.
(5), evaluated at X = z1, can be constructed as

VaLh
V. Lin,
0= . (7
.l
Vo Lhh

for some positive integer [. The observability rank condition
for nonlinear systems states that the system (5) is locally
weakly observable at x; if there exists an input, u, such that
the matrix O(xy,w) is full rank.

B. Observability Optimization Metrics

Following the conventions in [16], we study the observ-
ability of the relative position system in a general sense.
Consider the evolution of the relative position of the system,
Xr = V,., where V, is the relative velocity of the system that
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can be expressed as a function of the state and control. The
relative state can be expressed as

Ty T — Ttq

{ X, } _ Yr | Y ®)
T Ugr T — UIm
Uyr Y= Uy

This simplifies the analysis by allowing the study of a time-
invariant system rather than a time-varying one.

In addition, rather than studying the observability based on
range measurement ||7.(t)||, we use %||7.(¢)]|?, to simplify
computations while keeping the same observability proper-
ties. Taking the system as

XTZVT
9
{ h=3lm ()] = 22 + g2 ®

the observability matrix becomes

Vﬁgh}:{xr yr}

O = [ vLhh (10)

Vgr  Uyr

A necessary and sufficient condition for O, to be full rank
is det(O,) # 0. In particular, O,, loses rank if both relative
positions are zero or both relative velocities are zero.

We consider two commonly used observability metrics
based on the observability matrix and a more recent metric
using the posterior probability of the estimation error in the
Extended Kalman Filter as proposed in [17]. The metrics
are the inverse condition number of the observability matrix
C~1, the determinant of the observability matrix det(O,),
and the trace of the covariance matrix of the position
estimate. An expression for condition number was derived
in [16] by rewriting O,, in polar coordinates as

Xr|[sin(@) || Xr|| cos(a)

0, = | IXls 1
P L Wsin) (vilieoss) ] Y
and defining the variables v = ‘|‘|§7“||| and 0 = f —a =

7w —arctan(—==)) — (7 —arctan (L T. The inverse condition
v xrTr
number can be calculated

. 29 sin(6)|

= . (12)
Y2+ 1+ /v + 292 cos(20) + 1
The determinant can be expressed as
det(Op) = vyr&y — Varyr. (13)

The trace of the estimation error covariance will be based
on an EKF using range measurements. The estimation error
covariance will be denoted by P.

With these three metrics, we define the cost functions O;
to be used in the optimization problem (4). They are:

0, =-C"1
Oq = —det(0,)? (14)
O3 = Tr(P)

C. Discussion of Metrics

Each of the three metrics have advantages and drawbacks.
The observability matrix is a system property and does not
rely on any particular estimation scheme. So optimizing
metrics related to it should produce a state trajectory that
provides optimal measurements for reconstructing the state,
enhancing performance of any estimation scheme. Using
metrics of the observability matrix requires not only the
relative position information, but also the relative velocity
between the two vehicles. Neither measure of the observabil-
ity matrix accounts for uncertainty in the estimated states.
This could be a problem when using those states in the
optimization.

On the other hand, the EKF would only need the range
measurement and state estimate to obtain an estimation
error covariance, but the covariance evolution depends on
the design of the filter. In addition, the EKF uses repeated
linearization steps in order to estimate the error covariance.
This produces a Gaussian ellipse to estimate the distribution
of possible positions of the tracker, which is in reality a circle
with width given by the variance of the range measurement.

For a static target, maximizing det(O,)? alone will result
in an outward spiral. This can be seen by expressing it in
terms of || X,||, [|V.||. and 6 as

det(Op) = [V ]| - [| X7 ][ sin(6) (15)

For a constant ||V,|[||X,||, a maximum exists at 6 = 7.
Increasing it further requires maximizing ||V,.||||X||. This
outward spiral is actually detrimental to the observability in
the long run since it degrades with range as measured by the
inverse condition number C~! [16]. If we express C ! in
terms of || X,||, [|V.||. and 6, we obtain

_ 2[Val[lIX [ sin(0)]
X |2 + (Ve[ + T
L = VXA + 2V (11X )2 cos(26) + [V, ]*

C—l
(16)

It is clear that C~* is a sort of normalization of | det(O,)|.
Due to the normalizing factor in the inverse condition num-
ber, the outward spiral may be mitigated. However, when
optimizing the cost function J = a|7.(t)||*> — (1 — a)C 1,
the term —C'~! < 1 has the drawback that for ||| (¢)||?|
much greater than |(1 — a)C~1|, there is an increased risk
of poor tracking performance due to the observability metric
having less influence on the resulting control. Minimizing
Tr(P) potentially faces the same problem, particularly if the
estimation error covariance is small compared to the distance.
However, det(0,)? = ||[V;|[?||X.,||? sin®(0) will grow and
shrink relative to ||7(¢)||?. This is an advantage because it
will not be dominated due to the position error growing large,
but it can be a drawback since the metric will vanish along
with the tracking error.

D. Unicycle Analysis

The unicycle model is used to model various vehicles
moving on a 2-D plane. It also provides simple dynamics,
allowing more intuitive insight into the different metrics.
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Therefore, to show the efficacy of the proposed approach, we
take the unicycle model with relative position whose state is
[, Yr, 1] and has the system model

uy cos(y) — vy, ,

X = Ul Sin(dj) — Uyt
" 17
IRREAGH ]
e [ I

The inputs are both the speed, u;, and the turn rate, us, as
opposed to assuming constant speed as in previous work [13],
[19]. Replacing ||7.(t)|| with ||z (¢)||* and constructing the
observability matrix as described in Section III-A, with terms
up to ﬁ?h, yields

Ly Yr 0

0 0 1

Ut €08 (6) — ayy w1 S0 () — Uy, ..

o_ 0 0 0
- —uq ug sin (1) ujug cos () ...

0 0 0

—uj ug? cos (v)  —ujgug? sin(v) ...

0 0 0

(18)
where the ellipsis represent non-zero terms that are inconse-
quential to the rank of O. It is easy to see that a non-zero
speed and turn rate will render the system observable, but
beyond this, there is no clear design strategy to pick the
control law. According to section III-B, we can optimize
the observability using the relative speed and position from
row 1 and 3 of columns 1 and 2. This is because only
VL}h and VLh are needed to construct the observability
matrix in Eq. (10) and its accompanying metrics. Then
Vg = U1 €OS (V) — Ug,, and vy, = uy sin (¢Y) — vy, .

E. Gliding Robotic Fish Analysis

Next, we take the model of a gliding robotic fish.
Particulars of the robot and its dynamics are de-
scribed in detail in [22]-[24]. Its state vector X =
[z,y, 2, v1, V2, V3, w1, w2, w3, 7|7, consists of the position
b; = [x,y,2]T of the robot, the 3 x 3 rotation matrix R from
the body frame to the inertial frame with elements r;;, and
the body-fixed linear velocity vy, = [v1,v2,v3]7 and angular
velocity wy = [w1, wa,ws]?. After replacing the elements of
the vector b; with the relative positions z.., y,, and z, = z,
the kinematic model is given by

1 T
bi = R,Ub - [’Uxta ? Uyta ’ 0]
R = Ry,
where @y, is a skew symmetric matrix wp. The structure of

the velocity dynamics is given by

(19)

U1 fo11 + avirsiur + for2us + for3ud

U fo21 + avarsaus + foorus + fo22u3

v | | fost + awsrasur + fusous + fussud 20)
Wio| o fo11 + forous

W fu21 + au,T33U2

Ws fusl + aw,T32u2 + fuzaus

where u; are control inputs, a,1, a,3 and a,,, are constants,
and f,;; and f,;; are nonlinear functions of the state
vector. The measurement function in this case is actually

h(z) = [l[bil], 27, v1, va, v3, w1, wa, w3, 745]. Replacing |[b;]
with ||b;||?> and constructing the observability matrix leads
to
0
O_ VL:h
VLih
with
Ly Yr Zr
VL£y=1 0 0 1 ..
0 0 0 I
1 _
VL; =
S TN Ve Yoiy T2V~ Vg Doy T
0 0 0
0 0 0

Because 2z, and other state variables are measured, the
columns associated with them are all linearly independent
and will not cause the observability matrix to lose rank.
However, the columns associated with the planar position
are not gauranteed to have full rank. In this case, the only
non-zero rows can be compressed as

Ly Yr

DA T~ Ve, Doy T2l Uy,
This is the same as the observability matrix O, in section
III-B with vy, = Z?:l 13V — Ug,, and vy, = Z?:l ToiU; —
Vy,.- Like the unicycle model, VL'?C and beyond will show
the functions of the input in these columns, but these are
system-specific and much more complicated functions that
are not as straightforward to find conditions for making the
observability matrix retain full rank. On the other hand,Vﬁ'}
and V[,}c are sufficient to construct the observability metrics
O1(—=C71) and Oa(— det(0,)?).

0, - 1)

IV. SIMULATION STUDY
A. Unicycle Example

In simulation, the target is represented by a predefined
time-dependent trajectory (z:4(t), ¥1a(t)). The range be-
tween the target and the unicycle, and the unicycle heading
are measured. The measurements are corrupted with additive,
zero mean, Gaussian noise and an EKF is used to estimate
the position. For fair comparison between the different cases,
the noise distribution is held constant for each simulation by
setting the random number generator. The optimization prob-
lem in Eq. (4) is then solved using the MATLAB nonlinear
model predictive control toolbox [25]. The controller uses
the estimated position along with the measurement of the
other state (heading) as feedback. We assume that the future
target trajectory is known over the optimization horizon of
1 second with a 0.2 s time step and that the unicycle’s
initial state is known. The unicycle has a maximum velocity
(up) of 0.3% to mimic the speeds of underwater gliders and

limited turn rate (uz) of 7 %. Inputs have rate constraints of
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41| < 0.12% and |us| < . For analysis, we show plots
of the paths produced along with tables giving statistics on
the norm of the estimation error, given by the difference
between the true position and EKF estimate, and the norm
of the tracking error 7. as defined in Eq. (1).

TABLE I
SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O; (NAMELY,
—C*l) WITH UNICYCLE MODEL AND STATIC TARGET

a =002 | «a=005 | =05

estimation error (m) max 0.6366 0.4996 0.3530
estimation error (m) | mean 0.1413 0.1492 0.0518
tracking error (m) min 0.3012 0.2979 0.2557
tracking error (m) mean 2.0173 2.2304 0.9942

Figure 1 shows the resultant paths taken by the unicycle
tracking a static target using O = O; (namely,—C~!) and
Table I shows the associated statistics for the norm of the
estimation and tracking errors. Because the inverse condition
number is upper-bounded by 1, o needs to be fairly small
(<« 1) in order to have an effect when the distance is
large. This can be seen with the difference in trajectories
produced. When the tracking error and inverse condition
number are equally weighted, the unicycle follows a straight
line to the target initially. Though the unicycle is able to
quickly approach the target and estimate its position well,
this behavior could pose a problem if the initial position is
inaccurate or the estimate diverges before the tracking error
is small enough for the observability metric to influence the
control behavior. When the weight « is small, the initial
trajectory goes outward before closing in and circling the
target. Placing more emphasis on the tracking error (larger
«) leads to faster convergence to the target in time. Table I
shows that increasing « leads to a smaller average and min-
imum tracking error. It also shows that, counterintuitively,
the estimation error is smaller when the tracking error and
the metric are equally weighted. This is likely due to the
fact that smaller range generally leads to better estimation
performance. In addition, the unicycle spends more time in
its performing the circling behavior.

TABLE I
SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O2 (NAMELY,
— det(Op)?) WITH UNICYCLE MODEL AND STATIC TARGET

a=03 | a=04 | a=05

estimation error (m) max 0.6783 0.7746 1.5059
estimation error (m) | mean 0.2230 0.2391 0.2808
tracking error (m) min 0.0594 0.0055 0.0039
tracking error (m) mean 3.3466 2.1224 1.8357

Figure 2 shows the resultant paths taken by the unicycle
tracking a static target using O = Oy (namely, — det(O))?).
This metric scales with the tracking error, so « can be
much closer to equally weighted. Small changes away from
equal importance can drastically change the vehicle behavior
compared to the metrics. This has the added benefit, that it
will not be dominated by the tracking error as a consequence

X-y position
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Fig. 1. Paths generated from tracking a static target by optimizing problem
(II) with O = O; (namely, —C~1) and weight parameter of 0.5 (solid
black), 0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.

Xx-y position

vim)

Fig. 2. Paths generated from tracking a static target by optimizing problem
(ID) with O = Oz (namely, — det(Op)?) and weight parameter of 0.5 (solid
black), 0.4 (red dash dot), and 0.3 (blue dashed), for the unicycle example.

of distance, providing a certain robustness, if the position
estimation scheme diverges. When this happens, the unicycle
will still produce maneuvers that help lower the estimation
error. This can be seen by the fact that the unicycle does
not travel in a straight-line path even when the two cost
elements are equally weighted. It also has the drawback that
as the position error shrinks, so does the observability metric.
Table II shows that more emphasis on the metric (smaller o)
leads to a smaller estimation error, but at the cost of tracking
error converging slower.

Figure 3 shows the resultant paths taken by the unicycle
tracking a static target using O = O3 (namely, Tr(P)). Like
the inverse condition number, O3 can become overpowered
by the tracking error. This behavior could pose a problem
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Fig. 3. Paths generated from tracking a static target by optimizing problem
(I1) with O = O3 (namely, Tr(P)) and weight parameter of 0.5 (solid
black), 0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.

TABLE III
SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O3 (NAMELY,
Tr(P)) WITH UNICYCLE MODEL AND STATIC TARGET

a =002 | =005 | a=0.5

estimation error (m) max 0.3664 0.5093 0.9413
estimation error (m) | mean 0.1197 0.0954 0.0812
tracking error (m) min 0.6909 0.5119 0.3233
tracking error (m) mean 2.3329 1.5494 1.0285

if the initial position is inaccurate or the estimate diverges
and the tracking error dominates the observability metric.
This can be seen when the tracking error and trace of the
covariance matrix are equally weighted. The unicycle follows
a straight line path until it gets close to the target, which
produces a tight circle around the target. When o < 1, the
tracking error converges slower with increasing weight on the
observability metric, while the steady-state circling behavior
around the target increases in magnitude. Table III shows
that larger «v leads to a larger maximum estimation error and
smaller tracking error.

TABLE IV
SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O1 (NAMELY,
—C~1) WiTH UNICYCLE MODEL AND MOVING TARGET

a =002 | =005 | =05

estimation error (m) max 1.6683 0.9789 0.9435
estimation error (m) | mean 0.6362 0.2265 0.1590
tracking error (m) min 3.1623 0.1418 0.027
tracking error (m) mean 5.4270 2.4693 0.9526

Figures 4-6 show the resultant paths taken by the unicycle
tracking a moving target using O = 0O; (ie, —C™1),
O = O3 (e, —det(0,)?), and O = O3 (ie., Tr(P)),
respectively. Tables IV-VI show the mean and maximum
estimation error and the mean and minimum tracking error
for each method. Generally, the data shows a similar trend
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Fig. 4. Paths generated from tracking a static target by optimizing problem
(Il) with O = O; (namely, —C~1) and weight parameter of 0.5 (solid
black), 0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.
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Fig. 5. Paths generated from tracking a static target by optimizing problem
(I) with O = O2(— det(Op)?) and weight parameter of 0.5 (solid black),
0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.

as for the static case. However, using Os highlights the
potential problem of the tracking objective dominating the
observability objective. When equally weighted, the scheme
based on Os initially tracks the target well, but the estimation
and tracking error both diverge and are unable to recover.
A similar situation happens for O = O., but the unicycle
is able to keep the error from increasing indefinitely. With
O = Oy, the unicycle is able to avoid the divergence all
together. When more weight is placed on the any of the
observability metrics, tracking error grows, but the estimation
error is kept low.

B. Gliding Robotic Fish Example

Simulations with the gliding robotic fish are carried out in
an identical fashion to that of the unicycle with the exception
of system being used to track the target. Figure 7 and Table
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Fig. 6. Paths generated from tracking a moving target by optimizing

problem (II) with O = O3(Tr(P)) and weight parameter of 0.5 (solid
black), 0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.

TABLE V
SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O2 (NAMELY,
— det(Op)?) WITH UNICYCLE MODEL AND MOVING TARGET

TABLE VI
SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O3 (NAMELY,
Tr(P)) WITH UNICYCLE MODEL AND MOVING TARGET

a =002 | «a=0.05 | =05
estimation error (m) max 0.6449 0.4694 359
estimation error (m) | mean 0.1641 0.1277 16.49
tracking error (m) min 0.4182 0.3646 0.0827
tracking error (m) mean 2.6441 1.8114 11.22
121 -
= =a=04 7 - “w, \
—===23=0.6
1or a=0.7 4

a=03 | a=04 | a=05

estimation error (m) max 1.4734 2.2962 6.9132

estimation error (m) | mean 0.3542 0.5762 2.2937

tracking error (m) min 0.0827 0.3646 0.2188
tracking error (m) mean 3.5718 1.7745 4.12

VIII show the resultant path for the gliding robotic fish
model, tracking error statistics, and estimation error statistics
when problem (4) is solved using O = Os. Though the
glider moves in three dimensions, we still only consider
the tracking error 7, defined in (1). The planar paths are
qualitatively similar to that of the unicycle model, but the
weight parameter has a much larger effect on the minimum
distance to the target. Another difference from the unicycle
results is that the target is not at the center of the steady-
state circular behavior. The trend of the tracking error also
follows a similar pattern. The estimation error, however, does
not. This is likely due to the fact that higher weight on the
tracking error allows the robot to get closer to the target
which generally provides better estimation error so long as
the relative position is not zero.

Figure 8 and Table VII show the resultant path for the
gliding robotic fish model, tracking error statistics, and esti-
mation error statistics when problem (4) is solved using O =
O1. The paths generated from the inverse condition number
all share similar geometry and the asymmetric steady-state
behavior around the target is even more drastic. The mean
of the tracking error still follows expected trend, but the
minimum is skewed by the asymmetry. The estimation error
is kept small, but does not follow intuitive trend as in the
unicycle example.

o target
gL W start
6L

E

= a4t
2_
0,
2

Fig. 7. Paths generated from tracking a static target by optimizing problem
(I with O = O2 (namely, — det(Op)?) and robotic fish model. Weight
parameters are of 0.4 (solid black), 0.6 (red dash dot), and 0.7 (blue dashed),
for robotic fish example.

V. CONCLUSION AND FUTURE WORK

In this work, we studied the trade-off between observ-
ability and control performance for a mobile robot in target
tracking, with only distance measurement by jointly optimiz-
ing the tracking cost and an observability metric. The trace
of the covariance matrix in position estimation, determinant
of the observability matrix, and inverse condition number of
the observability matrix were chosen as metrics to compare.
The pros and cons of each metric were discussed and a
relationship was shown between the metrics derived from
the observability matrix. Simulation studies were carried
out for a unicycle model and the dynamics of a gliding
robotic fish. All three metrics are shown to be capable of
providing satisfactory tracking performance while preventing
estimation divergence, when the weights are properly cho-
sen. Investigating the effect of relative importance between
tracking performance and observability revealed that care
should be taken when using the covariance and the inverse
condition number. The weight a should be < 1 to account
for large distances. The determinant scales relative to the
tracking error and will work for arbitrary distance when
equally weighted.

In the future, we plan to study the feasibility of this method
when taking into account the delays in communication and
range measurements. We also plan to identify more efficient
solutions to enable real-time implementation when dealing
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8. Paths generated from tracking a static target by optimizing problem
with O = O (namely, —C~1) and robotic fish model. Weight

parameters are of 0.5 (solid black), 0.4 (red dash dot), and 0.2 (blue dashed),
for robotic fish example.

TABLE VII

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O; (NAMELY,

—C*l) WITH GLIDING ROBOTIC FISH MODEL AND STATIC TARGET

a=04 | =06 | a=07

estimation error (m) max 04116 0.4730 .3709
estimation error (m) | mean 0.1734 0.1012 1758
tracking error (m) min 0.1475 0.8437 0.5170
tracking error (m) mean | 4.1080 3.4323 2.8236

with richer dynamical systems such as the gliding robotic
fish. Finally, field experiments involving an autonomous
surface vehicle and a gliding robotic fish will be conducted
to validate the findings in this work.

[1]

[2]

[6]

[7]

[8]

REFERENCES

J. Wu, R. C. Bingham, S. Ting, K. Yager, Z. J. Wood, T. Gambin,
and C. M. Clark, “Multi-AUV motion planning for archeological
site mapping and photogrammetric reconstruction,” Journal of Field
Robotics, vol. 36, no. 7, pp. 1250-1269, 2019.

S. B. Williams, O. Pizarro, M. Jakuba, and N. Barrett, “AUV benthic
habitat mapping in south eastern tasmania,” in Field and Service
Robotics.  Springer, 2010, pp. 275-284.

H. Stommel, “The Slocum Mission,” Oceanography, vol. 2, no. 1, pp.
22-25, 1989.

J. Sherman, R. E. Davis, W. Owens, and J. Valdes, “The autonomous
underwater glider “Spray”,” IEEE Journal of Oceanic Engineering,
vol. 26, no. 4, pp. 437-446, 2001.

J. Sliwka, B. Clement, and I. Probst, “Sea glider guidance around a
circle using distance measurements to a drifting acoustic source,” in
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on. 1EEE, 2012, pp. 94-99.

L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and
localization: A review,” IEEE Journal of Oceanic Engineering, vol. 39,
no. 1, pp. 131-149, 2013.

A. S. Gadre and D. J. Stilwell, “A complete solution to underwater
navigation in the presence of unknown currents based on range
measurements from a single location,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 1EEE, 2005, pp. 1420-
1425.

Q. Chen, K. You, and S. Song, “Cooperative localization for au-
tonomous underwater vehicles using parallel projection,” in 2017 13th

TABLE VIII

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O2 (NAMELY,

[9]

[10]

(11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

4214

— det(Op)?) WITH GLIDING ROBOTIC FISH MODEL AND STATIC

TARGET
a=02 | a=04 | a=05
estimation error (m) max 0.6353 0.3757 .6091
estimation error (m) | mean 0.1204 0.1337 .1092
tracking error (m) min 3.9519 2.3574 1.1152
tracking error (m) mean | 6.8256 3.6380 2.4190

IEEE International Conference on Control & Automation (ICCA).
IEEE, 2017, pp. 788-793.

A. Bahr, J. J. Leonard, and M. F. Fallon, “Cooperative localization
for autonomous underwater vehicles,” The International Journal of
Robotics Research, vol. 28, no. 6, pp. 714-728, 2009.

Y. Huang, Y. Zhang, B. Xu, Z. Wu, and J. A. Chambers, “A new
adaptive extended Kalman filter for cooperative localization,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 54, no. 1, pp.
353-368, 2017.

M. E Fallon, G. Papadopoulos, J. J. Leonard, and N. M. Patrikalakis,
“Cooperative AUV navigation using a single maneuvering surface
craft,” The International Journal of Robotics Research, vol. 29, no. 12,
pp. 1461-1474, 2010.

P. Baccou and B. Jouvencel, “Homing and navigation using one
transponder for AUV, postprocessing comparisons results with long
base-line navigation,” in Proceedings 2002 IEEE International Con-
ference on Robotics and Automation (Cat. No. 02CH37292), vol. 4.
IEEE, 2002, pp. 4004-4009.

B. T. Hinson, M. K. Binder, and K. A. Morgansen, “Path planning
to optimize observability in a planar uniform flow field,” in 2013
American Control Conference. 1EEE, 2013, pp. 1392-1399.

A. Ross and J. Jouffroy, “Remarks on the observability of single
beacon underwater navigation,” in Proc. Intl. Symp. Unmanned Unteth.
Subm. Tech, 2005.

G. Antonelli, F. Arrichiello, S. Chiaverini, and G. S. Sukhatme, “Ob-
servability analysis of relative localization for AUVs based on ranging
and depth measurements,” in 2010 IEEE International Conference on
Robotics and Automation. 1EEE, 2010, pp. 4276-4281.

F. Arrichiello, G. Antonelli, A. P. Aguiar, and A. Pascoal, “An
observability metric for underwater vehicle localization using range
measurements,” Sensors, vol. 13, no. 12, pp. 16 191-16215, 2013.
M. Rafieisakhaei, S. Chakravorty, and P. Kumar, “On the use of the
observability gramian for partially observed robotic path planning
problems,” in 2017 IEEE 56th Annual Conference on Decision and
Control (CDC). 1IEEE, 2017, pp. 1523-1528.

B. Ferreira, A. Matos, and N. Cruz, “Single beacon navigation:
Localization and control of the MARES AUV,” in OCEANS 2010
MTS/IEEE SEATTLE. 1IEEE, 2010, pp. 1-9.

J. D. Quenzer and K. A. Morgansen, “Observability based control in
range-only underwater vehicle localization,” in 2014 American Control
Conference. 1EEE, 2014, pp. 4702—4707.

X. S. Zhou and S. I. Roumeliotis, “Robot-to-robot relative pose
estimation from range measurements,” IEEE Transactions on Robotics,
vol. 24, no. 6, pp. 1379-1393, 2008.

R. Hermann and A. Krener, “Nonlinear controllability and observ-
ability,” IEEE Transactions on Automatic Control, vol. 22, no. 5, pp.
728-740, 1977.

D. Coleman, M. Castanon, and X. Tan, “Backstepping-based trajectory
tracking for underwater gliders,” in ASME 2019 Dynamic Systems
and Control Conference. American Society of Mechanical Engineers
Digital Collection, 2019, paper 9028.

F. Zhang, “Modeling, design and control of gliding robotic fish,”
Dissertation, Michigan State University. Electrical Engineering, 2014.
D. Coleman and X. Tan, “Backstepping control of gliding robotic
fish for trajectory tracking in 3D space,” in 2020 American Control
Conference (ACC). 1EEE, 2020, pp. 3730-3736.

“Matlab optimization toolbox,” 2020.



