
Observability-aware Target Tracking with Range Only Measurement

Demetris Coleman, Shaunak D. Bopardikar, and Xiaobo Tan

Abstract— Often times in nonlinear systems, the control input
can play a significant role in the system’s observability. In
this paper, we investigate the trade-off between observability
and control performance for a mobile robot in target tracking,
when only the distance to the target is measured. The problem
is motivated by practical applications for autonomous robots
when operating in GPS-denied environments. A nonlinear
model predictive control (NMPC) framework is used to address
the dilemma between localization and tracking, by jointly opti-
mizing the tracking performance and an observability metric.
Three measures of estimation performance are considered,
including the determinant of the observability matrix, the
inverse condition number of the observability matrix, and
the trace of the covariance matrix in position estimation. By
tuning the relative importance of the tracking objective and
observation performance, we demonstrate the efficacy of the
proposed NMPC approach. The trade-off is captured through
two examples, one with unicycle dynamics on a plane, the other
based on gliding robotic fish with complex 3D dynamics.

I. INTRODUCTION

An important problem for autonomous robots in GPS-

denied environments is localization and navigation with only

range measurement. This is particularly relevant in the case

of underwater vehicles, which have become valuable for a

myriad applications [1], [2]. In particular, the subset of AUVs

dubbed Underwater Gliders, has shown great promise for

long-term missions [3]–[5]. AUVs, however, have significant

challenges that accompany their operation. These challenges

mainly stem from the underwater environment practically

prohibiting many radio frequency-based solutions to localiza-

tion, navigation, and communication. In addition, techniques

like simultaneous localization and mapping are not always

applicable due to a lack of landmarks.

Advancements in technologies available for the underwater

environment offer several approaches to localization and

navigation [6]. Acoustic modems, such as the micromodem

developed by Woods Whole Oceanographic Institute, can

provide communication and ranging between underwater

vehicles or beacons. Due to the capabilities of acoustic

modems, many researchers began a general study of using

static beacons or surface vehicles as communication and

navigation aids (CNAs) to underwater vehicles [7]–[12]. A

particularly interesting instance of this class of problems

is the single beacon navigation (SBN) problem and its

variants. In the SBN problem, an AUV estimates its position
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using inertial sensors, knowledge of its dynamic model,

and the measurement of its range to a single beacon while

locomoting.

Several works have studied the observability of the SBN

problem using a variety of methods. In [13], the authors

optimize the condition number of the empirical observability

Gramian in path planning to improve observability of a uni-

form flow field. The authors of [14] study the observability

of SBN with the kinematic model of an AUV moving in

the horizontal plane and a static beacon. Using the range

and bearing, the authors give an explanation of when the

position of the vehicle can be found using only measure-

ments of range. The authors in [15] investigate the relative

pose estimation based on range measurements between two

robots moving in a 3D environment. They consider only the

kinematic model. The authors of [16] study the observability

of relative localization of two AUVs equipped with velocity,

depths sensors, and ranging capability. The authors derive

an observability metric and show that the degradation of

localization performance depends on the range between the

vehicles and the angle between the relative velocity vector

and the position vector. In [17], the authors argue that

optimizing measures of the observability Gramian as a sur-

rogate for the estimation performance may provide irrelevant

or misleading trajectories for planning under observation

uncertainty. The authors instead suggest using measures of

the Posterior Fisher Information Matrix. As an example, they

use the trace of the covariance matrix produced by a Kalman

filter.

Most of these works focus on localization, navigation,

or path planning. Comparatively, work on control based on

observability metrics in the context of range measurement

has been limited. The authors of [18] developed a controller

for homing in on a static beacon using range measurements.

The controller was inspired by previous results on observable

paths, but used a heuristic approach based on a covariance

threshold to achieve observable maneuvers. One notable

exception is [19], where the authors present two methods

of greedy-optimal steering control for CNAs. The authors

consider the AUVs as static beacons and use approximate

optimization of the condition number of the observability

Gramian to steer the CNAs improving localization for un-

derwater vehicles.

The work cited above typically has not considered the

relative importance between an observability metric and

a tracking objective. This work differentiates itself from

existing work in this area by studying the application of

observability-based control to the target tracking problem.

We consider an underwater vehicle tasked with tracking
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the CNA using only range measurement. This scenario can

arise in long-duration missions over large areas. The vehicle

could surface frequently to maintain tracking performance

using GPS fixes, but this would consume more energy. An

alternative approach is to use a single surface vessel as a

CNA, allowing the vehicle to surface less often, save energy,

and stay stealthy. It has been heavily reported that traveling

in a straight line toward the target lacks observability when

estimating position using only range measurements [16],

[19], [20]. This can be avoided by maximizing the tracking

control objective together with a metric that serves as a

surrogatefor estimation performance, ultimately benefiting

control performance. In particular, we propose the use of

NMPC to jointly optimize tracking control performance and

an observability metric. We then focus on three different

metrics and investigate their utility and suitability for improv-

ing observability. We further examine the trade-off between

the tracking performance and estimation accuracy as the

weighting function for the two objectives is tuned. Two

examples, a unicycle in 2D space and a gliding robotic fish

in 3D space, are used to illustrate the proposed method.

The rest of this paper is organized as follows. Section

II introduces the problem formulation. Section III reviews

some concepts of observability, examines the metrics used

to optimize observability, and provides analysis for two

example systems. Simulation results are presented in Section

IV followed by concluding remarks in Section V.

II. PROBLEM FORMULATION

In this work, we consider the problem of target tracking

given the measurement of range to the target. The objective

is to find a sequence of control inputs or actions that improve

the observability of the tracker’s location, while simultane-

ously achieving the goal of tracking the target’s position. We

assume that the target’s absolute location is communicated

to the tracker, a good estimate of initial relative position

is given, and the range to the target is measured. We also

assume that the tracker is able to measure or estimate its

own full state vector with the exception of position. Given

the target’s position xta(t), yta(t) in real time, we desire to

minimize the error between the target and tracker positions.

In this work, we propose to optimize observability metrics

along with achieving the tracking objective. We then study

the trade-off between tracking control and optimizing the

observability metric. We define

τe(t) =

[

x− xta(t)
y − yta(t)

]

(1)

as the tracking error between the target and tracker planar

positions (xta, yta) and (x, y). The tracker is a general

nonlinear agent with state X , control input U , dynamics

Ẋ = f(X,U), (2)

and a nonlinear measurement function

h =

[

||τe||
L(X)

]

(3)

where L(X) is the state vector with the exception of the

position. We formulate a constrained optimization problem

as:

min
U

J =

∫ T1

T0

α||τe||
2 + (1− α)Odt

subject to the dynamics (2),

∆Umin ≤ ∆U ≤ ∆Umax

Umin ≤ U ≤ Umax

(4)

where O is a function that measures observability, ∆U is

the vector of control input rates, and α is design parameter

that tunes the relative emphasis between the control objective

and observability metric. Setting α to one reverts to a pure

tracking problem, while α = 0 leads to only optimizing the

observability metric O.

III. OBSERVABILITY METRICS AND ANALYSIS

A. Nonlinear Observability Rank Condition

Before diving into the observability metrics, we briefly

review the concept of the nonlinear observability rank con-

dition. Given a general nonlinear system modeled by

{

x = f(x, u)
y = h(x),

(5)

with state x ∈ Rn, input u ∈ Ri, and output y ∈ Ro,

observability can be studied using the concept of local

weak observability introduced in [21]. By defining the Lie

derivatives of the output vector h(x) as

L0

fh = h,

L1

fh = ∇xhf,

L2

fh = ∇x[L
1

fh]f,

Ln
fh = ∇x[L

n−1

f h]f,

(6)

and the nonlinear observability matrix for the system in Eq.

(5), evaluated at X = x1, can be constructed as

O =











∇xL
0

fh

∇xL
1

fh,
...

∇xL
l
fh











(7)

for some positive integer l. The observability rank condition

for nonlinear systems states that the system (5) is locally

weakly observable at x1 if there exists an input, u, such that

the matrix O(x1, u) is full rank.

B. Observability Optimization Metrics

Following the conventions in [16], we study the observ-

ability of the relative position system in a general sense.

Consider the evolution of the relative position of the system,

Ẋr = Vr, where Vr is the relative velocity of the system that
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can be expressed as a function of the state and control. The

relative state can be expressed as

[

Xr

Vr

]

=









[

xr
yr

]

[

vxr
vyr

]









=









x− xta
y − yta
ẋ− vxta

ẏ − vyta









(8)

This simplifies the analysis by allowing the study of a time-

invariant system rather than a time-varying one.

In addition, rather than studying the observability based on

range measurement ||τe(t)||, we use 1

2
||τe(t)||

2, to simplify

computations while keeping the same observability proper-

ties. Taking the system as

{

Ẋr = Vr
h = 1

2
||τe(t)||

2 = x2r + y2r
(9)

the observability matrix becomes

Op =

[

∇L0

fh

∇L1

fh

]

=

[

xr yr
vxr vyr

]

(10)

A necessary and sufficient condition for Op to be full rank

is det(Op) 6= 0. In particular, Op loses rank if both relative

positions are zero or both relative velocities are zero.

We consider two commonly used observability metrics

based on the observability matrix and a more recent metric

using the posterior probability of the estimation error in the

Extended Kalman Filter as proposed in [17]. The metrics

are the inverse condition number of the observability matrix

C−1, the determinant of the observability matrix det(Op),
and the trace of the covariance matrix of the position

estimate. An expression for condition number was derived

in [16] by rewriting Op in polar coordinates as

Op =

[

||Xr|| sin(α) ||Xr|| cos(α)
||Vr|| sin(β) ||Vr|| cos(β)

]

(11)

and defining the variables γ = ||Xr||
||Vr||

and θ = β − α =

(π−arctan(
vyr

vxr
))−(π−arctan( yr

xr
)). The inverse condition

number can be calculated

C−1 =
2γ| sin(θ)|

γ2 + 1 +
√

γ4 + 2γ2 cos(2θ) + 1
. (12)

The determinant can be expressed as

det(Op) = vyrxr − vxryr. (13)

The trace of the estimation error covariance will be based

on an EKF using range measurements. The estimation error

covariance will be denoted by P .

With these three metrics, we define the cost functions Oi

to be used in the optimization problem (4). They are:

O1 = −C−1

O2 = − det(Op)
2

O3 = Tr(P )

(14)

C. Discussion of Metrics

Each of the three metrics have advantages and drawbacks.

The observability matrix is a system property and does not

rely on any particular estimation scheme. So optimizing

metrics related to it should produce a state trajectory that

provides optimal measurements for reconstructing the state,

enhancing performance of any estimation scheme. Using

metrics of the observability matrix requires not only the

relative position information, but also the relative velocity

between the two vehicles. Neither measure of the observabil-

ity matrix accounts for uncertainty in the estimated states.

This could be a problem when using those states in the

optimization.

On the other hand, the EKF would only need the range

measurement and state estimate to obtain an estimation

error covariance, but the covariance evolution depends on

the design of the filter. In addition, the EKF uses repeated

linearization steps in order to estimate the error covariance.

This produces a Gaussian ellipse to estimate the distribution

of possible positions of the tracker, which is in reality a circle

with width given by the variance of the range measurement.

For a static target, maximizing det(Op)
2 alone will result

in an outward spiral. This can be seen by expressing it in

terms of ||Xr||, ||Vr||, and θ as

det(Op) = ||Vr|| · ||Xr|| sin(θ) (15)

For a constant ||Vr||||Xr||, a maximum exists at θ = ±π
2

.

Increasing it further requires maximizing ||Vr||||Xr||. This

outward spiral is actually detrimental to the observability in

the long run since it degrades with range as measured by the

inverse condition number C−1 [16]. If we express C−1 in

terms of ||Xr||, ||Vr||, and θ, we obtain

C−1 =
2||Vr||||Xr||| sin(θ)|

||Xr||2 + ||Vr||2 + Γ

Γ =
√

||Xr||4 + 2(||Vr||||Xr||)2 cos(2θ) + ||Vr||4
(16)

It is clear that C−1 is a sort of normalization of | det(Op)|.
Due to the normalizing factor in the inverse condition num-

ber, the outward spiral may be mitigated. However, when

optimizing the cost function J = α||τe(t)||
2 − (1− α)C−1,

the term −C−1 < 1 has the drawback that for |α||τe(t)||
2|

much greater than |(1 − α)C−1|, there is an increased risk

of poor tracking performance due to the observability metric

having less influence on the resulting control. Minimizing

Tr(P ) potentially faces the same problem, particularly if the

estimation error covariance is small compared to the distance.

However, det(Op)
2 = ||Vr||

2||Xr||
2 sin2(θ) will grow and

shrink relative to ||τe(t)||
2. This is an advantage because it

will not be dominated due to the position error growing large,

but it can be a drawback since the metric will vanish along

with the tracking error.

D. Unicycle Analysis

The unicycle model is used to model various vehicles

moving on a 2-D plane. It also provides simple dynamics,

allowing more intuitive insight into the different metrics.
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Therefore, to show the efficacy of the proposed approach, we

take the unicycle model with relative position whose state is

[xr, yr, ψ] and has the system model






















Ẋ =





u1 cos(ψ)− vxta

u1 sin(ψ)− vyta

u2





h =

[

||τe(t)||
ψ

]

(17)

The inputs are both the speed, u1, and the turn rate, u2, as

opposed to assuming constant speed as in previous work [13],

[19]. Replacing ||τe(t)|| with 1

2
||τe(t)||

2 and constructing the

observability matrix as described in Section III-A, with terms

up to L3

fh, yields

O =

























xr yr 0
0 0 1

u1 cos (ψ)− vxta
u1 sin (ψ)− vyta

. . .

0 0 0
−u1 u2 sin (ψ) u1 u2 cos (ψ) . . .

0 0 0
−u1 u2

2 cos (ψ) −u1 u2
2 sin (ψ) . . .

0 0 0

























(18)

where the ellipsis represent non-zero terms that are inconse-

quential to the rank of O. It is easy to see that a non-zero

speed and turn rate will render the system observable, but

beyond this, there is no clear design strategy to pick the

control law. According to section III-B, we can optimize

the observability using the relative speed and position from

row 1 and 3 of columns 1 and 2. This is because only

∇L0

fh and ∇L1

fh are needed to construct the observability

matrix in Eq. (10) and its accompanying metrics. Then

vxr = u1 cos (ψ)− vxta
and vyr = u1 sin (ψ)− vyta

.

E. Gliding Robotic Fish Analysis

Next, we take the model of a gliding robotic fish.

Particulars of the robot and its dynamics are de-

scribed in detail in [22]–[24]. Its state vector X =
[x, y, z, v1, v2, v3, ω1, ω2, ω3, rij ]

T , consists of the position

bi = [x, y, z]T of the robot, the 3×3 rotation matrix R from

the body frame to the inertial frame with elements rij , and

the body-fixed linear velocity vb = [v1, v2, v3]
T and angular

velocity ωb = [ω1, ω2, ω3]
T . After replacing the elements of

the vector bi with the relative positions xr, yr, and zr = z,

the kinematic model is given by
{

ḃi = Rvb − [vxta
, vyta

, 0]T

Ṙ = Rω̂b

(19)

where ω̂b is a skew symmetric matrix ωb. The structure of

the velocity dynamics is given by
















v̇1
v̇2
v̇3
ω̇1

ω̇2

ω̇3

















=

















fv11 + av1r31u1 + fv12u3 + fv13u
2
3

fv21 + av2r32u1 + fv21u3 + fv22u
2
3

fv31 + av3r33u1 + fv32u3 + fv33u
2
3

fω11 + fω12u3
fω21 + aω2

r33u2
fω31 + aω2

r32u2 + fω32u3

















(20)

where ui are control inputs, av1, av3 and aω2
are constants,

and fvij and fωij are nonlinear functions of the state

vector. The measurement function in this case is actually

h(x) = [||bi||, zr, v1, v2, v3, ω1, ω2, ω3, rij ]. Replacing ||bi||
with ||bi||

2 and constructing the observability matrix leads

to

O =

[

∇L0

fh

∇L1

fh

]

with

∇L0

f =





xr yr zr ...

0 0 1 ...

0 0 0 I15





∇L1

f =










∑3

i=1
r1ivi − vxta

∑3

i=1
r2ivi − vyta

∑3

i=1
r3ivi ...

0 0 0 ...
...

...
...

...

0 0 0 ...











Because zr and other state variables are measured, the

columns associated with them are all linearly independent

and will not cause the observability matrix to lose rank.

However, the columns associated with the planar position

are not gauranteed to have full rank. In this case, the only

non-zero rows can be compressed as

Op =

[

xr yr
∑3

i=1
r1ivi − vxta

∑3

i=1
r2ivi − vyta

]

(21)

This is the same as the observability matrix Op in section

III-B with vxr =
∑3

i=1
r1ivi−vxta

and vyr =
∑3

i=1
r2ivi−

vyta
. Like the unicycle model, ∇L2

f and beyond will show

the functions of the input in these columns, but these are

system-specific and much more complicated functions that

are not as straightforward to find conditions for making the

observability matrix retain full rank. On the other hand,∇L0

f

and ∇L1

f are sufficient to construct the observability metrics

O1(−C
−1) and O2(− det(Op)

2).

IV. SIMULATION STUDY

A. Unicycle Example

In simulation, the target is represented by a predefined

time-dependent trajectory (xta(t), yta(t)). The range be-

tween the target and the unicycle, and the unicycle heading

are measured. The measurements are corrupted with additive,

zero mean, Gaussian noise and an EKF is used to estimate

the position. For fair comparison between the different cases,

the noise distribution is held constant for each simulation by

setting the random number generator. The optimization prob-

lem in Eq. (4) is then solved using the MATLAB nonlinear

model predictive control toolbox [25]. The controller uses

the estimated position along with the measurement of the

other state (heading) as feedback. We assume that the future

target trajectory is known over the optimization horizon of

1 second with a 0.2 s time step and that the unicycle’s

initial state is known. The unicycle has a maximum velocity

( u1) of 0.3m
s

to mimic the speeds of underwater gliders and

limited turn rate (u2) of π
4

rad

s
. Inputs have rate constraints of
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|u̇1| < 0.1m
s2

and |u̇2| <
π
6

rad

s2
. For analysis, we show plots

of the paths produced along with tables giving statistics on

the norm of the estimation error, given by the difference

between the true position and EKF estimate, and the norm

of the tracking error τe as defined in Eq. (1).

TABLE I

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O1 (NAMELY,

−C−1) WITH UNICYCLE MODEL AND STATIC TARGET

α =0.02 α =0.05 α =0.5

estimation error (m) max 0.6366 0.4996 0.3530

estimation error (m) mean 0.1413 0.1492 0.0518

tracking error (m) min 0.3012 0.2979 0.2557

tracking error (m) mean 2.0173 2.2304 0.9942

Figure 1 shows the resultant paths taken by the unicycle

tracking a static target using O = O1 (namely,−C−1) and

Table I shows the associated statistics for the norm of the

estimation and tracking errors. Because the inverse condition

number is upper-bounded by 1, α needs to be fairly small

(� 1) in order to have an effect when the distance is

large. This can be seen with the difference in trajectories

produced. When the tracking error and inverse condition

number are equally weighted, the unicycle follows a straight

line to the target initially. Though the unicycle is able to

quickly approach the target and estimate its position well,

this behavior could pose a problem if the initial position is

inaccurate or the estimate diverges before the tracking error

is small enough for the observability metric to influence the

control behavior. When the weight α is small, the initial

trajectory goes outward before closing in and circling the

target. Placing more emphasis on the tracking error (larger

α) leads to faster convergence to the target in time. Table I

shows that increasing α leads to a smaller average and min-

imum tracking error. It also shows that, counterintuitively,

the estimation error is smaller when the tracking error and

the metric are equally weighted. This is likely due to the

fact that smaller range generally leads to better estimation

performance. In addition, the unicycle spends more time in

its performing the circling behavior.

TABLE II

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O2 (NAMELY,

− det(Op)2) WITH UNICYCLE MODEL AND STATIC TARGET

α =0.3 α =0.4 α =0.5

estimation error (m) max 0.6783 0.7746 1.5059

estimation error (m) mean 0.2230 0.2391 0.2808

tracking error (m) min 0.0594 0.0055 0.0039

tracking error (m) mean 3.3466 2.1224 1.8357

Figure 2 shows the resultant paths taken by the unicycle

tracking a static target using O = O2 (namely, − det(Op)
2).

This metric scales with the tracking error, so α can be

much closer to equally weighted. Small changes away from

equal importance can drastically change the vehicle behavior

compared to the metrics. This has the added benefit, that it

will not be dominated by the tracking error as a consequence

0 5 10

y(m)

-2

0

2

4

6

8

10

x
(m

)

x-y position

a=0.02

a=0.05

a=0.5

target

start

Fig. 1. Paths generated from tracking a static target by optimizing problem
(II) with O = O1 (namely, −C−1) and weight parameter of 0.5 (solid
black), 0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.

0 5 10

y(m)

-2

0

2

4

6

8

x
(m

)

x-y position

a=0.3

a=0.4

a=0.5

target

start

Fig. 2. Paths generated from tracking a static target by optimizing problem
(II) with O = O2 (namely, − det(Op)2) and weight parameter of 0.5 (solid
black), 0.4 (red dash dot), and 0.3 (blue dashed), for the unicycle example.

of distance, providing a certain robustness, if the position

estimation scheme diverges. When this happens, the unicycle

will still produce maneuvers that help lower the estimation

error. This can be seen by the fact that the unicycle does

not travel in a straight-line path even when the two cost

elements are equally weighted. It also has the drawback that

as the position error shrinks, so does the observability metric.

Table II shows that more emphasis on the metric (smaller α)

leads to a smaller estimation error, but at the cost of tracking

error converging slower.

Figure 3 shows the resultant paths taken by the unicycle

tracking a static target using O = O3 (namely, Tr(P )). Like

the inverse condition number, O3 can become overpowered

by the tracking error. This behavior could pose a problem
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Fig. 3. Paths generated from tracking a static target by optimizing problem
(II) with O = O3 (namely, Tr(P )) and weight parameter of 0.5 (solid
black), 0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.

TABLE III

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O3 (NAMELY,

Tr(P )) WITH UNICYCLE MODEL AND STATIC TARGET

α =0.02 α =0.05 α =0.5

estimation error (m) max 0.3664 0.5093 0.9413

estimation error (m) mean 0.1197 0.0954 0.0812

tracking error (m) min 0.6909 0.5119 0.3233

tracking error (m) mean 2.3329 1.5494 1.0285

if the initial position is inaccurate or the estimate diverges

and the tracking error dominates the observability metric.

This can be seen when the tracking error and trace of the

covariance matrix are equally weighted. The unicycle follows

a straight line path until it gets close to the target, which

produces a tight circle around the target. When α � 1, the

tracking error converges slower with increasing weight on the

observability metric, while the steady-state circling behavior

around the target increases in magnitude. Table III shows

that larger α leads to a larger maximum estimation error and

smaller tracking error.

TABLE IV

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O1 (NAMELY,

−C−1) WITH UNICYCLE MODEL AND MOVING TARGET

α =0.02 α =0.05 α =0.5

estimation error (m) max 1.6683 0.9789 0.9435

estimation error (m) mean 0.6362 0.2265 0.1590

tracking error (m) min 3.1623 0.1418 0.027

tracking error (m) mean 5.4270 2.4693 0.9526

Figures 4-6 show the resultant paths taken by the unicycle

tracking a moving target using O = O1 (i.e., −C−1),

O = O2 (i.e., − det(Op)
2), and O = O3 (i.e., Tr(P )),

respectively. Tables IV-VI show the mean and maximum

estimation error and the mean and minimum tracking error

for each method. Generally, the data shows a similar trend
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Fig. 4. Paths generated from tracking a static target by optimizing problem
(II) with O = O1 (namely, −C−1) and weight parameter of 0.5 (solid
black), 0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.
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Fig. 5. Paths generated from tracking a static target by optimizing problem
(II) with O = O2(− det(Op)2) and weight parameter of 0.5 (solid black),
0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.

as for the static case. However, using O3 highlights the

potential problem of the tracking objective dominating the

observability objective. When equally weighted, the scheme

based on O3 initially tracks the target well, but the estimation

and tracking error both diverge and are unable to recover.

A similar situation happens for O = O2, but the unicycle

is able to keep the error from increasing indefinitely. With

O = O1, the unicycle is able to avoid the divergence all

together. When more weight is placed on the any of the

observability metrics, tracking error grows, but the estimation

error is kept low.

B. Gliding Robotic Fish Example

Simulations with the gliding robotic fish are carried out in

an identical fashion to that of the unicycle with the exception

of system being used to track the target. Figure 7 and Table

4212



-25 -20 -15 -10 -5 0 5

y(m)

-10

-5

0

5

10
x

(m
)

x-y position

a=0.02

a=0.05

a=0.5

target

start

Fig. 6. Paths generated from tracking a moving target by optimizing
problem (II) with O = O3(Tr(P )) and weight parameter of 0.5 (solid
black), 0.05 (red dash dot), and 0.02 (blue dashed), for the unicycle example.

TABLE V

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O2 (NAMELY,

− det(Op)2) WITH UNICYCLE MODEL AND MOVING TARGET

α =0.3 α =0.4 α =0.5

estimation error (m) max 1.4734 2.2962 6.9132

estimation error (m) mean 0.3542 0.5762 2.2937

tracking error (m) min 0.0827 0.3646 0.2188

tracking error (m) mean 3.5718 1.7745 4.12

VIII show the resultant path for the gliding robotic fish

model, tracking error statistics, and estimation error statistics

when problem (4) is solved using O = O2. Though the

glider moves in three dimensions, we still only consider

the tracking error τe defined in (1). The planar paths are

qualitatively similar to that of the unicycle model, but the

weight parameter has a much larger effect on the minimum

distance to the target. Another difference from the unicycle

results is that the target is not at the center of the steady-

state circular behavior. The trend of the tracking error also

follows a similar pattern. The estimation error, however, does

not. This is likely due to the fact that higher weight on the

tracking error allows the robot to get closer to the target

which generally provides better estimation error so long as

the relative position is not zero.

Figure 8 and Table VII show the resultant path for the

gliding robotic fish model, tracking error statistics, and esti-

mation error statistics when problem (4) is solved using O =
O1. The paths generated from the inverse condition number

all share similar geometry and the asymmetric steady-state

behavior around the target is even more drastic. The mean

of the tracking error still follows expected trend, but the

minimum is skewed by the asymmetry. The estimation error

is kept small, but does not follow intuitive trend as in the

unicycle example.

TABLE VI

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O3 (NAMELY,

Tr(P )) WITH UNICYCLE MODEL AND MOVING TARGET

α =0.02 α =0.05 α =0.5

estimation error (m) max 0.6449 0.4694 35.9

estimation error (m) mean 0.1641 0.1277 16.49

tracking error (m) min 0.4182 0.3646 0.0827

tracking error (m) mean 2.6441 1.8114 11.22

Fig. 7. Paths generated from tracking a static target by optimizing problem
(II) with O = O2 (namely, − det(Op)2) and robotic fish model. Weight
parameters are of 0.4 (solid black), 0.6 (red dash dot), and 0.7 (blue dashed),
for robotic fish example.

V. CONCLUSION AND FUTURE WORK

In this work, we studied the trade-off between observ-

ability and control performance for a mobile robot in target

tracking, with only distance measurement by jointly optimiz-

ing the tracking cost and an observability metric. The trace

of the covariance matrix in position estimation, determinant

of the observability matrix, and inverse condition number of

the observability matrix were chosen as metrics to compare.

The pros and cons of each metric were discussed and a

relationship was shown between the metrics derived from

the observability matrix. Simulation studies were carried

out for a unicycle model and the dynamics of a gliding

robotic fish. All three metrics are shown to be capable of

providing satisfactory tracking performance while preventing

estimation divergence, when the weights are properly cho-

sen. Investigating the effect of relative importance between

tracking performance and observability revealed that care

should be taken when using the covariance and the inverse

condition number. The weight α should be � 1 to account

for large distances. The determinant scales relative to the

tracking error and will work for arbitrary distance when

equally weighted.

In the future, we plan to study the feasibility of this method

when taking into account the delays in communication and

range measurements. We also plan to identify more efficient

solutions to enable real-time implementation when dealing
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Fig. 8. Paths generated from tracking a static target by optimizing problem
(II) with O = O1 (namely, −C−1) and robotic fish model. Weight
parameters are of 0.5 (solid black), 0.4 (red dash dot), and 0.2 (blue dashed),
for robotic fish example.

TABLE VII

SIMULATION RESULTS BASED ON OBSERVABILITY METRIC O1 (NAMELY,

−C−1) WITH GLIDING ROBOTIC FISH MODEL AND STATIC TARGET

α =0.4 α =0.6 α =0.7

estimation error (m) max 0.4116 0.4730 .3709

estimation error (m) mean 0.1734 0.1012 .1758

tracking error (m) min 0.1475 0.8437 0.5170

tracking error (m) mean 4.1080 3.4323 2.8236

with richer dynamical systems such as the gliding robotic

fish. Finally, field experiments involving an autonomous

surface vehicle and a gliding robotic fish will be conducted

to validate the findings in this work.
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