
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

FPGA Implementation of a Low Latency and High
SFDR Direct Digital Synthesizer for Resource-
Efficient Quantum-Enhanced Communication

N. Fajar R. Annafianto*,1,2, M.V. Jabir 2, I.A. Burenkov 2, H.F. Ugurdag1, A. Battou2 and S.V. Polyakov2
1Electrical and Electronics Engineering Dept., Ozyegin University, Istanbul, Turkey

2National Institute of Standards and Technology, Maryland, USA
*annafianto.annafianto@ozu.edu.tr

Abstract—A Direct Digital Synthesizer (DDS) generates a
sinusoidal signal, which is a significant component of many
communication systems using modulation schemes. A CORDIC
algorithm offers minimum memory requirement compared to
look-up based and low latency and for this module methods. The
latency depends on the number of iterations, which is
determined by the number of angles in the rotation set.
However, it is necessary to maintain high spectral purity to
optimize the overall system performance. The proposed design’s
implementation generates output with 64% latency reduction
compared to that of the conventional CORDIC design and 72.2
dB SFDR value.

Keywords—FPGA, CORDIC, DDS, SFDR, pipeline, latency.

I. INTRODUCTION
In most modulation schemes for a digital

telecommunication system, a fast and efficient sinusoidal
signal generator is needed. Here we report on an FPGA
implementation of a versatile Coordinate Rotation Digital
Computer (CORDIC) based Direct Digital Synthesizer
(DDS). Most commercial lightwave communication systems
use standard modulation protocols, such as phase-shift keying
(PSK) and frequency-shift keying (FSK), whose
implementation is supported by specialized dedicated
hardware, the rapid expansion of the internet requires
significant improvement in energy and bandwidth efficiency.
Therefore, a new class of communication systems, namely
quantum-measurement enhanced optical communication
systems are being actively pursued. In those systems, a
classical receiver is replaced with a quantum receiver, while
the transmitter remains similar. Recognizing that properties of
quantum measurement are in general different from that of a
classical measurement, more complex modulation schemes
than PSK and FSK turns out to be more beneficial [1]. Digital
synthesis of these signals requires versatile DDS whose
development is reported here. By design, it generates signals
with a nearly-arbitrary combination of phase and frequency
modulations. Many other applications such as software-
defined radio, wireless satellite transceiver, HDTV
transmission, radar communication, etc. can take advantage of
this low latency and re-configurable sine wave generation [2].
Hence, with high spectral purity and low latency, the DDS
accommodates the energy-efficient and rapid response
properties of quantum measurement instruments to optimize
the utilization of the offered opportunity and to maximize the
modulation capabilities.

Many strategies and techniques have been developed to
enhance the area and speed efficiency of CORDIC algorithm.
CORDIC was initially introduced by Jack E. Volder in 1959
to calculate trigonometric functions in the digital hardware
devices [2]. Later, a modified version of CORDIC algorithm

was proposed by John S. Walther with the ability to calculate
circular, hyperbolic, and linear rotation systems [4]. The
motivation to engage this algorithm in the digital platform has
gained popularity since then. Refinements on the efficiency of
implementation have been offered in the level of the algorithm
to reduce the latency and area usage.

In the next section, we provide background information on
several CORDIC techniques that are adopted in this work. In
section III, we explain the implementation of the proposed
method. In section IV, we summarize and compare the results.
Finally, we conclude with an evaluation and discuss the
prospective developments.

II. BACKGROUND
The demand for high-throughput communication has

always existed since its first invention. Various applications
have been developed with the opportunity that current
communication technology has given. The need for the
internet increases over the years and for that reason, many
communication systems have been explored in the level of
algorithm and architecture. Many communication systems use
a modulation scheme that generates sinusoidal signal output.
One popular approach is to use the DDS module that takes the
frequency tuning word (FTW) or frequency control word
(FCW) as input and passes the amplitude of the sinusoidal
signal to the output. Figure 1 shows the general block diagram
of DDS which consists of a phase accumulator, a signal
processor, and a low pass filter. The phase accumulator
defines the frequency of the sinusoidal signal as the increment
of the output phase is dictated by the input FTW, hence the
smaller the input the lower the resulting signal’s frequency
and vice versa. The low pass filter rectifies the signal
processor’s output that contains trivial distortions due to the
techniques being employed. Note that this low pass filter is
typically a component of DAC so some works in literature
show them separately. Here, we focus on the signal processor
that takes phase as the input and generates sinusoidal
amplitude.

Fig. 1. General block diagram of DDS

CORDIC provides an efficient implementation in terms of
area utilization, power consumption, and latency. There are
three popular approaches to the realization of DDS: Look-up
table (LUT), polynomial function namely Tylor series
expansion, and CORDIC algorithm [5]. The LUT occupies
memory, namely read-only memory (ROM), to store the
amplitude of the sinusoidal signal. LUTs are computationally
fast, but they require a considerable amount of memory even
when compression techniques are used [6]. The memory
occupancy is mainly based on the width of FTW input and the
width of the output. Indeed, to get higher spectral purity, the
quantization error is minimized by increasing widths of the
output amplitude. For these reasons, memory occupancy
escalates significantly with the greater spectral purity
requirement. In turn, higher memory usage results in higher
power consumption, slower operation, and lower stability [7].
The Taylor series expansion has a complicated
implementation that uses several multipliers/dividers. In
addition, to get higher spectral purity, higher-order terms
should be computed which also means longer latency [5].
CORDIC algorithm calculates sinusoidal amplitude by a set
of rotations. That rotational angles in the set are put in series
and the accumulation of the angles approximates the desired
angle that corresponds to the necessary output, the number of
angles in that set determines the amount of iteration, hence the
latency. Thus, the correct selection of angle set is essential.
The rotational operation is carried out by adders, logic shifters,
and optionally an insignificant amount of memory that makes
implementation and integration easier and simpler [3]. For
these reasons, CORDIC advances in resource utilization and
power consumption.

Spurious Free Dynamic Range (SFDR) defines the
spectral purity of the produced signal. The spectral purity of a
signal is significant for the overall performance of the system.
Since there exists more than one frequency component in a
signal, it is necessary to keep the desired frequency’s
dominance over the spurious components. SFDR implies the
ratio of the power of the desired signal and the second-highest
power of the spur signal. Thus, the higher SFDR the smoother
the output obtained which is preferred and pursued in this
work.

Fig. 2. Rotation mode of CORDIC in DDS with two angular steps

DDS performs the CORDIC algorithm based on rotation
mode. In general, CORDIC has two modes that can be
distinguished by the functionalities: vector mode and rotation
mode. In rotation mode, the initial vector experiences several
rotations in the cartesian coordinate based on the angle set
and reaches the desired vector position that corresponds to the
destination phase. Figure 2 shows the rotation mode with two
phases in the set. In the vector mode, the angular argument is
estimated by using a set of vectors as the reversal of the
rotation mode, where it uses the vectors to approximate the
target angle [5]. However, CORDIC also comes with some

drawbacks. It needs scale factor compensation due to
numerical operations in the algorithm, usually, the final result
is achieved by dividing the scale factor to the output of the
series of rotation. To eliminate this requirement, the initial
vector is arranged such that it has already been regulated (pre-
divided) with the scale factor prior to the calculations.
Secondly, accuracy restriction: the number of rotations and
selection of the series of the angles give an impact on how
close the final angle to the desired angle is [8]. A selection of
angle set with a smaller number of rotations is required. The
following sections describe components in each stage of the
architecture.

A. Conventional CORDIC
The first CORDIC algorithm was proposed by removing

the burdensome cosine and sine functions multiplications with
logic shift operations. The equation (1) gives a rotation of the
initial vector (x, y) to the vector (x’, y’) with the angular
distance of θ.

 [
𝑥′
𝑦′

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑥
𝑦] (1)

 𝜃 = ∑ 𝛼𝑖
𝑏−1
𝑖=0 (2)

 [𝑥′
𝑦′

] = ∏ 𝑐𝑜𝑠𝛼𝑖
𝑏−1
𝑖=0 [

1 −𝑑𝑖tan 𝛼𝑖

𝑑𝑖tan 𝛼𝑖 1
] [

𝑥
𝑦] (3)

As we have mentioned, the angle set of 𝛼𝑖 converges to θ with
any combination of clockwise or counterclockwise rotations,
see equation (2).

 By inserting (2) to (1) and taking 𝑐𝑜𝑠𝛼𝑖 out of the matrix,
we obtain equation (3), where 𝑑𝑖 corresponds to the direction
of rotation at the respective stage i. b is the number of
iterations. 𝑧𝑖 is the remaining phase at stage i. The rotational
direction, given as 𝑑𝑖 = {−1,1} = 𝑠𝑖𝑔𝑛(𝑧𝑖). Our goal is to
establish a recurrent formula for rotations that can be
conveniently calculated on an FPGA.

 𝛼𝑖 = arctan (2−𝑖) (4)

 ∏ 𝑐𝑜𝑠𝛼𝑖
𝑏−1
𝑖=0 = 𝐾 (5)

 [𝑥′
𝑦′

] = 𝐾 [
1 −𝑑𝑖 ∗ 2−𝑖

𝑑𝑖 ∗ 2−𝑖 1
] [

𝑥
𝑦] (6)

 𝑧𝑖 = 𝜃 − ∑ 𝛼𝑖

𝑏−1
𝑖=0 (7)

K in the equation (5) is the overall scale factor that can be
pre-calculated to the initial vector (x, y), before entering
iteration. Putting equation (4) and (5) to equation (3), we
obtain the final equation (6). The division by 2𝑖 can be
replaced by an arithmetic shift operator. Thus,
computationally advantageous iterations are written as:

 [
𝑥𝑖+1

𝑦𝑖+1
] = [

1 −𝑑𝑖 ∗ 2−𝑖

𝑑𝑖 ∗ 2−𝑖 1
] [

𝑥𝑖

𝑦𝑖
] (8)

The block diagram in figure 3 shows the three stages (i-1), (i)
and (i+1) of conventional CORDIC as the realization of
equation (8). The multiplexers have +/- tags that determine
the additions or extractions of variables based on the sign of
𝑧𝑖. Note that intersections of lines show the crossing of paths

with no connection between them, this is valid for all
diagrams.

Equation (4) implies an angle in the angle set for the
iteration i. For the sake of simplicity, by selecting 7 iterations
(𝑖 = [0,6]), we obtain the following angle set: {45, 26.565,
14.036, 7.125, 3.576, 1.789, 0.895}. Note that the
conventional CORDIC has 15 iterations. To ensure that 𝑧𝑖 is
approximately 0 at the end for any destination angle 𝜃, the
number of iterations (b in equation (3)) is specified as 15
ranging from 0 to 14. This number is also the accuracy limit
of the digital system which uses variables with a bit width of
16 bits, because shifting more than 15 bits results in 0 in such
a variable, that variable has no impact on the algorithm, the
operations add redundant latency and produce futile
modification on the final output. However, the range of
convergence, that specifies the absolute value of the angle 𝜃,
is 99.882. One uses domain folding technique with 2 blocks
that cover [-90,90) and [90,270). This way any 𝜃 can be
reached by locating an appropriate initial vector.

Fig. 3. Block diagram of Conv DDS

B. Scaling Free CORDIC
As the name implies, scaling-free CORDIC pursues

algorithm to avoid multiplication by scale factor prior to the
final output for fast performance. Scaling-free CORDIC
recognizes one direction of rotation and halting state, meaning
𝑑𝑖 ∈ {0,1} . It rotates counter-clockwise only when 𝑧𝑖 is
greater than the angle at stage i or stays at the current position
otherwise. Thus, 𝑧𝑖 is always a positive number. This makes
the attainable maximum frequency higher as we will see in the
result section. The sine and cosine terms can be simplified
when they are considerably small.

 [𝑤−𝑙𝑜𝑔26

3
] ≤ 𝑗 ≤ 𝑤 − 1 (9)

 [𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

] = [2−𝑖

1 − 2−(2𝑖+1)
] (10)

The approximation in (10) is accurate if the requirement in

(9) is met [4], where w is the bit width. By substituting (10)
and (2) to (1) we obtain:

 [𝑥′
𝑦′

] = ∏ 𝑑𝑖 [1 − 2−(2𝑖+1) −2−i

2−i 1 − 2−(2𝑖+1)
] [

𝑥
𝑦]𝑏−1

𝑖=0 (11)

Then, the recursive formula is given by:

 [
𝑥𝑖+1

𝑦𝑖+1
] = 𝑑𝑖 [1 − 2−(2𝑖+1) −2−i

2−i 1 − 2−(2𝑖+1)
] [

𝑥𝑖

𝑦𝑖
] (12)

Note that (12) has no scale factor unlike in (6). Figure 4
depicts the block diagram of the scaling-free CORDIC
algorithm in stage i.

The low range of convergence compels domain folding
technique to squeeze the blocks into several extra regions.
Due to the condition in (9), and with bit-width (w in equation
(9)) of 16, where j is i+1, the approximation in (10) only holds
for i between 3 to 14, but after 8th iteration, the logic shifter
of (2i+1) results in more than 17 bits shift. Thus, iterations 8
through 14 have no effect. Similar to the previous argument,
that variable has no further effect on the algorithm, the
operations add more latency and produce no modification on
the output. Therefore, iterations 8 through 14 are omitted, to
reduce latency and redundant area usage. Hence i goes
between 3 to 8. The range of convergence becomes [0,22.5).
The low range of convergence requires extensive use of
domain folding technique. To obtain convergence, 16
domains folding is employed and requires multiplication by
a bothersome factor of 1/√2. Thus, each domain’s distance is
20 degrees which is within the range of convergence.

Fig. 4. Block diagram of Scaling-Free CORDIC

 The argument reduction technique improves the latency of
the method. Particularly, one may jump over several stages by
predicting the output at the end of the skipped stages [4].
Typically, more than one computational path is possible,
particularly at the early stages. This is because the initial
angles are comparatively larger than that of the last stages.
These computational paths can be pre-computed, and the
results can be assigned using multiplexers, probable
combinations of output in the earlier stages are still few and
can be estimated by using multiplexers. Hence the first 3
stages are skipped and the output at the end of the 3rd stage is
obtained. However, the argument reduction technique requires
a variadic scale factor, therefore scale factor multiplication is
not avoided completely [4]. Nonetheless, this technique
reduces a significant amount of latency (from 12 to 9 cycles
as we see in the result section for state machine-based design).
The consequence of not reaching the desired angle due to the
insufficiency of the range of convergence is to repeat iteration
for the rest of the angular gap. The angular gap means the
remaining angle to the desired angle that the range of
convergence couldn’t cover. Thus, double and even triple

latency may occur. Domain folding and the argument
reduction technique are critical in this regard.

The angle set is {36.869/16.26/0, 7.125/0, 1.789, 0.895,
S*0.112} where S is an integer in a range from 0 to 8. The
range of convergence is (-57.57,57.57). Thus, to cover the
entire space, quadrant domain folding is being adopted.
Domain folding occurs at the first stage. The computation of
each phase assumes different strategies.

Friend angles: any group of angles that have identical
magnitude is considered as friend angle [9]. For instance, in
Cartesian coordinate R = 4 + 3i with the phase of 36.869 and
R = 5 with the phase of 0 are friend angle because they have
the same magnitude of 5. Thus, all angles in figure 2 are
friend angles since they all have the same magnitude of 1.
The identical magnitude is essential for the consistency of the
system because different magnitudes impose divergence in
power gains and result in different scale factors that make the
system even more complicated.

Redundant CORDIC: conventional rotator moves vector
in either direction: clockwise or counterclockwise. However,
rotation with a large angular gap may require the next angles
to cover up the unnecessarily extensive jump in a reverse
direction. In those cases, holding the position instead of
rotating is advantageous. Thus, the direction of rotation is
𝑑𝑖 = {−1,0,1}. However, adding one more “direction”, that
is 0 or no angular movement but still regulated with power
gain to attain consistency with the other directions, reduces
the maximum frequency of the design.

Nanorotator: Rotation by sufficiently small angle can be
approximated further. Given 𝑅 = 𝐴 + 𝑆𝑖 , a rotation is
sufficiently small if S<<A, therefore 𝛼 = arctan (𝑆/𝐴) ≈
𝑆/𝐴. The other rotators are the same as previously explained
CORDIC algorithms.

III. IMPLEMENTATION
To ensure the successful outcome of the implementation

we have chosen the workflow depicted in figure 5. We
implement the algorithm as a MATLAB script and simulate
the code, taking the advantage of functions that ultimately are
not feasible in the hardware platform, such as floating-point,
exponent, and numerous available operators. This
implementation reduces design effort and completion time.
Then, we verify the result and evaluate the performance in the
software domain, which gives us an insight into the possible
performance in the hardware domain. We write the register
transfer level (RTL) implementation of the design on Xilinx
ISE using Verilog HDL. Then, we design the testbench to
simulate the program and confirm the functionality. Since all
variables in the hardware are in integer, we fit the hardware
simulation results to that of software simulation for
consistency. The hardware platform we utilized is Xilinx
FPGA with Virtex-6, namely ML605. As a next step, we
verify the hardware’s functionality using an Integrated Logic
Analyzer (ILA). We store and extract the output values from
ILA signal analyzer, compare the results with that of software
simulation, and assess the data for evaluation as shown in
figure 10.

Fig. 5. Workflow

Here, we describe the stages of our implementation:

Stage 1: The 8 domains folding technique retains resource
efficiency for the system. Additionally, the higher maximum
frequency is achieved using one-directional rotations. Folding
the coordinate space into several domains leads to a smaller
convergence range, but when the number of domains reaches
or exceeds 16, complicated operations such as multiplication
by 1/√2 are required. Thus, we use 8 domains division to
ensure simplicity. The assignment of the initial vector can be
done by trivial swapping between imaginary and real parts and
negation as we see in table 1. The angular range of each
domain is 45 which is within the convergence range of the
angle set in the counterclockwise direction: it enables one-
directional rotation for the next stage.

Table 1. Eight domain folding coordinate assignment

Domain X Y
0-45 X Y
45-90 Y X

90-135 -Y X
135-180 -X Y
180-225 -X -Y
225-270 -Y -X
270-315 Y -X
315-360 X -Y

Stage 2: the first rotation yields 3 phase options with

angles {36.869, 16.26, 0}. All rotation coefficients have the
same magnitudes that imply the same power gain/scale
factor. We use coefficients, with an angular magnitude of
1.5625. Hence, R = 1.25 + 0.9375i for phase of 36.869
degrees, R = 1.5 + 0.4375i for phase of 16.26 degrees, and R
= 1.5625 for phase of 0 degrees. The equation (12) is
modified to benefit the hardware implementation for the
above three angles such as:

 [

𝑥1

𝑦1
] = [1 + 2−2 −1 + 2−4

1 − 2−4 1 + 2−2] [
𝑥0

𝑦0
] (13)

 [

𝑥1

𝑦1
] = [2−1 + 1 −2−1 + 2−4

2−1 − 2−4 2−1 + 1
] [

𝑥0

𝑦0
] (14)

 [
𝑥1

𝑦1
] = [2−1 + 1 + 2−4

2−1 + 1 + 2−4]
𝑇

[
𝑥0

𝑦0
] (15)

Equations (13), (14), and (15) can be implemented with just
logic shifter and adder.

 Resource sharing eliminates redundancy in resource
usage. In figure 6, we use 6 logic shifters as some operators
share the same logic shifter’s output. The switching rules for
the multiplexers are shown as numbers {0,1,2}, where {0,1,2}
encodes the jump angle {36.87,16.26,0}, respectively. The
architecture of stage 2 is somewhat heavy, which may impact
the maximum frequency of the hardware implementation.
Thus, having a one-directional rotation approach shortens the
longest path of the architecture, and in our case, we have 3
rotational options instead of 6 in the regular mode, which
shrinks the area usage and improves the speed of this segment.

Fig. 6. Stage 2 block diagram

Stage 3: in this stage, we adopt redundant CORDIC to
eliminate several rotations and guarantee convergence
provided by remaining angles in the set. The coefficients of
this rotator have an angular magnitude of 1.0078125: R = 1 +
0.125i for a phase of 7.125 degrees, and R = 1.0078125 for a
phase of 0 degrees. Equation (12) turns into:

 [
𝑥2

𝑦2
] = [1 −𝑑 ∗ 2−3

𝑑 ∗ 2−3 1
] [

𝑥1

𝑦1
] (16)

 [
𝑥2

𝑦2
] = [1 + 2−7

1 + 2−7]
𝑇

[
𝑥1

𝑦1
] (17)

Evidently, hardware domain implementation of equations (16)
and (17) requires just 2 logic shifters per coordinate. The
direction 𝑑 in (16) can be {-1,1}. The rotation by 0 degrees
(described by Eq. 17) is equivalent to a no-rotation choice.
Such redundancy is tolerable because we end up with three
jumping options similar to that of the previous stage. No
degradation in the maximum frequency of the design results
from this architecture. The coefficients in stages 2 and 3
ensure consistency of scale factor as the friend angle’s
condition is fulfilled.

 The block diagram for this stage in figure 7 shows 4
multiplexers where two of them have the tag numbers. 0
indicates the halting condition for no rotation of the current
vector. Note that the appropriate power gain is imposed. 1
indicates either clockwise or counterclockwise rotation set by
the sign of active phase z.

Fig. 7. Stage 3 block diagram

Stage 4: Starting at this, the residual angle gap’s range is
3.58 which is within the range of convergence of the
remaining angle in the set. Hence this stage requires no
redundant CORDIC rotation: 𝑑 = {−1,1}. In this stage, we
adopt conventional CORDIC architecture at the 5th iteration.
The coefficient is R = 1 + 0.03125i for a phase of 1.789
degrees, and the hardware compatible computation is given by
equation (18):

 [
𝑥𝑖+1

𝑦𝑖+1
] = [1 −𝑑 ∗ 2−𝑗

𝑑 ∗ 2−𝑗 1
] [

𝑥𝑖

𝑦𝑖
] (18)

The hardware implementation requires two shifters, figure 8.
On this stage i = 2 and j = 8.

Stage 5: we reuse conventional CORDIC architecture
similar to the previous stage but with R = 1 + 0.015625 for a
phase of 0.895 degrees. The hardware compatible
computation is also given by equation 18, but here i = 3 and j
= 6. The block diagram is identical to that of stage 4, figure 8.

Fig. 8. Stage 4 and 5 block diagrams

Stage 6 (last stage): We left with residual angle gap’s
range of 0.875. For this reason, the rotator takes advantage of
nanorotator approximation with non-constant, adaptive
scaling coefficient: R = 1+ (S * 0.001953125i) for variadic
phase, where S ∈ [0,8]. Thus, considering the allowed values
of S, the range of convergence is (-0.895, 0.895). The
hardware compatible version of the coefficient is given in
equation (19) and its architecture is shown in figure 9. The
stage 6 implementation requires extra modules: a scale
decoder and an attenuation block.

Fig. 9. Stage 6’s block diagram

 [

𝑥5

𝑦5
] = [1 −𝑑 ∗ 2−9 ∗ 𝑆

𝑑 ∗ 2−9 ∗ 𝑆 1
] [

𝑥4

𝑦4
] (19)

The scale decoder block determines the magnitude of the

adaptive coefficient of S using the remaining phase, to make
the residual of Z as close to 0 as possible. 9 combinations of S
are obtained, see table 2.

Table 2. Remaining angle range for S

Range S Range S
(0, 0.0988] 0 (0. 4998, 0.5987] 5

(0. 0988, 0.1977] 1 (0. 5987, 0.6976] 6
(0. 1977, 0.2966] 2 (0. 6976, 0.7965] 7
(0. 2966, 0.3955] 3 (0.7965, 0.895] 8
(0. 3955, 0.4998] 4

The attenuation block in figure 9 depicted as a triangular

block with “S” tag, multiplies the adaptive scale S to the
shifted coordinate variables X and Y as defined in equation
19. Here, we use a regular multiplier.

Finally, we put all the stages in series and complete the
implementation of the design. Given the combination of
coefficients of all stages, the cumulative scale factor is K =
1.5757. Hence, we modify the initial vector in stage 1 by pre-
dividing the values by this scale factor, which eliminates the
other extra multipliers/dividers.

IV. RESULTS
We evaluate the design’s performance by measuring the

latency, resource usage, logic operator utilization, SFDR, and
maximum frequency. These parameters provide trade-off
considerations for a target application with specific
requirements. For the sake of comparison, we provide values
for three different CORDIC-based DDS implementations with
and without a pipeline in the architecture. These are
conventional CORDIC, modified scaling-free CORDIC [3],
and our proposed design.

Table 3 shows resource utilization based on the number of
registers, LUTs, LUT-FF pairs, and RAM for a given target
device. Here, the LUTs are the slice logic which is not
necessarily using memory. We use ROM as memory: here its
usage is measured in bits. In the table, CORDIC represents the
conventional CORDIC (it stores 15 phases for the angle set
and assumes 16 bits of variable’s width). SF-CORDIC stands
for modified scaling free CORDIC algorithm. The “P” next to
the algorithm’s name indicates the pipelined version. The
initiation interval of every pipelined algorithm is 1, meaning
the module can take input every clock cycle with no extra
delay.

Table 3. Resource utilization

Algorithm Register LUT LUT-FF ROM
CORDIC 97 827 97 240

CORDIC P 1349 2671 905
SF-CORDIC 63 489 61 96

SF-CORDIC P 336 835 309
Proposed 174 713 142

Proposed P 218 497 166

Table 4 presents the utilization of logic operators. Mult,

Add, Comp, Mux, and Shift stand for the multiplier, adder,
comparator, multiplexer, and logic shifter. All these logic
operators run with variables with 16 bits variables. The logic
shifter accepts the variadic length of shift argument.

Table 4. Logic operator usage

Algorithm Mult Add Register Comp Mux Shift
CORDIC 1 7 5 4 21 2

CORDIC P 1 100 65 19 60
SF-CORDIC 10 6 14 58 4

SF-CORDIC
P

 28 63 19 49

Proposed 2 16 31 20 42
Proposed P 2 24 68 22 32

In Table 5, the values of SFDR are specified in dB. We

compute the SFDR by fetching the results obtained from ILA
signal analyzer in the MATLAB platform. Iteration in table 5
indicates the number of rotations, this number is equal to the
number of phases in the set. Latency is specified in the number
of clock cycles. It represents the overall delay due to iterations
and additional strategies such as domain folding and argument
reduction techniques.

Table 6 lists the maximum frequency in MHz if
implemented of a Xilinx Virtex-6 FPGA. The first column
shows the maximum frequency for state-machine (SM) based
DDS and the second one lists that of the pipelined version.

Table 5. SFDR, iteration and overall latency

Algorithm SFDR iteration Latency

CORDIC 92.7394 15 17

SF-CORDIC 56.8218 6 9
Proposed 72.2068 5 6

Table 6. Maximum Frequency

Algorithm Max frequency Max Frequency P

CORDIC 180.245 235.100

SF-CORDIC 229.512 354.547

Proposed 212.562 250.395

Fig. 10. ILA analyzer

In terms of resource utilization proposed design advances
on pipeline based in all parameters and modified SF CORDIC
is ahead on SM based in all parameters except for memory
usage. Conventional CORDIC occupies the largest memory
usage due to numerous angles in the set. Although it uses no
memory for the pipelined version, the high number of
iterations makes the increment of the other resources
enormous. Memory is no longer needed because every stage
is implemented separately and is active simultaneously, hence
each stage is pre-assigned with a constant angle. SM based
modified SF CORDIC has the lowest resource as compared to
our design, but its pipeline based is behind the proposed
design since it employs more iterations than ours. Our SM
based design virtually doesn’t need iteration because each
stage employs a different type of rotator, which makes the
resource usage close to that of pipeline-based design. To no
surprise, our design occupies the smallest area and provides
an energy consumption advantage.

SM based Conventional CORDIC has the least overall
logic operators, while the proposed design compares
positively to the modified pipelined SF CORDIC. The
pipelined version of conventional logic uses significantly
more logic operators compared to the SM based one because
15 iterations that run on a set of resources are expanded into
15 identical sets of resources. The same explanation holds for
the close figures of logic operator usage in the SM based and
pipeline-based version of the proposed design. Here, the
synthesize tool optimizes the resource allocation by
substituting shifter by a concatenation operator due to constant
bit shifting. Consequently, the number of logic shifters may
not be the same as shown in the block diagrams.

Low latency is desired to enhance the throughput and
efficiency of the communication system because delay in the
system slows down quantum feedback - a bottleneck and great
challenge for quantum-enhanced communication systems.
With a latency of just 6 clock cycles, the proposed design is
superior to the other algorithms. Although the number of
iterations of modified SF-CORDIC is very close to that of the
proposed design, there is an extra delay of 3 clock cycles due
to a required additional compensation to the rotation.

The modified SF CORDIC has the highest maximum
frequency due to one-directional rotation. Our design has a
moderate maximum frequency for its implementation. The
conventional CORDIC achieves the highest SFDR value due
to the high number iteration.

Our design achieves moderate SFDR yet the lowest
latency, with approximately 20 dB SFDR and 64% latency
reductions compared to that of the conventional CORDIC
design.

V. CONCLUSION
In conclusion, we report a new memory free low latency

DDS architecture. Memory-free low latency DDS architecture
is being pursued. Generally, complex value computations
could be employed to calculate the trigonometric equation, but
those calculations are computationally difficult and energy
inefficient. To avoid calculation-related inefficiencies, the
common approach is to use a LUT with phase being the input
and amplitude being the output. However, the quantization of
the LUT limits both the modulation capabilities and the SFDR
of the signal. Therefore, to generate a desired smooth radio-
frequency signal small-step quantization is needed, requiring
a larger LUT. The LUT requirement leads to an increase in
memory use and may lead to the reduction of the maximum
frequency of the FPGA design which would also limit
modulation capabilities. On the other hand, CORDIC
technique offers low complexity and memory-free
trigonometric calculation approach, with the expense of extra
latencies to complete the computation. We use a pipelined
approach to shorten latency even more. Thus, in our design,
the sinusoidal wave amplitude is obtained every cycle, thus
maximizing our modulation capabilities. To make a quantum
measurement enhanced transceiver, we choose the modulation
scheme which includes choosing the number of states M, the
frequency, and the initial phase detuning between the adjacent
states and other communication parameters. All M states are
being prepared in parallel at all times, and the active output
state is picked according to the encoding and measurement
protocols. Because M could be quite large (up to 16 in our
implementation) the low-resource usage DDSs are essential
for this purpose. In communication links, sensitivity is often
measured as the probability to receive an erroneous symbol
with certain energy at the receiver. Classical receivers have a
sensitivity limit known as the standard quantum limit (SQL).
This limit arises from the inevitable shot noise on the idealized
classical receiver scheme - a homodyne measurement
followed by a perfect detector with no noise of its own and
with the 100% detection-efficiency. The SQL is accessible
only through quantum measurement. With the help of the
described DDS, we have implemented a quantum-
measurement telecommunication testbed and demonstrated
that the sensitivity of a telecommunication channel is better
than SQL for many different modulation protocols, including
quantum-measurement specific modulation protocols,
described elsewhere [10].

A specific target application for this DDS is to build a
quantum measurement enhanced transceiver. Particularly, we
intend to use modulation schemes that require a simultaneous
phase and frequency modulation. Our novel design achieves
the shortest latencies, maximizes modulation capabilities, and
uses the minimal footprint compared to other CORDIC-based
DDSs.

ACKNOWLEDGMENT
This work is partially supported by National Science

Foundation USA through ECCS 1927674.

REFERENCES
[1] I.A. Burenkov, M.V. Jabir, N.F.R. Annafianto, A. Battou, and S.V.

Polyakov, "Experimental Demonstration of Time Resolving Quantum
Receiver for Bandwidth and Power Efficient Communications", Proc.
of CLEO Conf. on Laser Science to Photonic Applications, California,
USA, 2020.

[2] P. Saravanan and S. Ramasamy, "Sine/cos generator for direct digital
frequency synthesizer using pipelined CORDIC processor," Proc. of

Fourth International Conference on Computing, Communications and
Networking Technologies (ICCCNT), pp. 1-6, Tiruchengode, 2013.

[3] R. Xin, X. Zhang, H. Li, Q. Wang, and Z. Li, "An Area Optimized
Direct Digital Frequency Synthesizer Based on Improved Hybrid
CORDIC Algorithm," Proc. of Int. Workshop on Signal Design and Its
Applications in Communications, pp. 243-246, Chengdu, China, 2007.

[4] Y. Xue and Z. Ma, "Design and Implementation of an Efficient
Modified CORDIC Algorithm," Proc. of IEEE Int. Conf. on Signal and
Image Processing (ICSIP), pp. 480-484, Wuxi, China, 2019.

[5] M.M. Anas, R.S. Padiyar, and A.S. Boban, "Implementation of Cordic
Algorithm and Design of High Speed Cordic Algorithm," Proc. of Int.
Conf. on Energy, Communication, Data Analytics and Soft Computing
(ICECDS), pp. 1278-1281, Chennai, India, 2017.

[6] Y.S. Gener, S. Gören, and H.F. Ugurdag, "Lossless Look-Up Table
Compression for Hardware Implementation of Transcendental

Functions," Proc. of IFIP/IEEE Int. Conf. on Very Large Scale
Integration (VLSI-SoC), pp. 52-57, Cuzco, Peru, 2019.

[7] W. Shuqin, H. Yiding, Z. Kaihong, and Y. Zongguang, "A 200MHz
Low-Power Direct Digital Frequency Synthesizer Based on Mixed
Structure of Angle Rotation," Proc. of IEEE Int. Conf. on ASIC, pp.
1177-1179, Changsha, China, 2009.

[8] K. Maharatna, S. Banerjee, E. Grass, M. Krstic, and A. Troya,
"Modified Virtually Scaling-Free Adaptive CORDIC Rotator
Algorithm and Architecture," in IEEE Trans. on Circuits and Systems
for Video Technology, vol. 15, pp. 1463-1474, 2005.

[9] M. Garrido, P. Källström, M. Kumm, and O. Gustafsson, "CORDIC II:
A New Improved CORDIC Algorithm," in IEEE Tran. on Circuits and
Systems II: Express Briefs, vol. 63, pp. 186-190, 2016.

[10] I.A. Burenkov, O.V. Tikhonova, and S.V. Polyakov, "Quantum
Receiver for Large Alphabet Communication," Optica, vol. 5, pp. 227-
232, 201

