
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

FPGA Implementation of a Low Latency and High 
SFDR Direct Digital Synthesizer for Resource-
Efficient Quantum-Enhanced Communication 

N. Fajar R. Annafianto*,1,2, M.V. Jabir 2, I.A. Burenkov 2, H.F. Ugurdag1, A. Battou2 and S.V. Polyakov2 
1Electrical and Electronics Engineering Dept., Ozyegin University, Istanbul, Turkey 

2National Institute of Standards and Technology, Maryland, USA 
*annafianto.annafianto@ozu.edu.tr 

Abstract—A Direct Digital Synthesizer (DDS) generates a 
sinusoidal signal, which is a significant component of many 
communication systems using modulation schemes. A CORDIC 
algorithm offers minimum memory requirement compared to 
look-up based and low latency and for this module methods. The 
latency depends on the number of iterations, which is 
determined by the number of angles in the rotation set. 
However, it is necessary to maintain high spectral purity to 
optimize the overall system performance. The proposed design’s 
implementation generates output with 64% latency reduction 
compared to that of the conventional CORDIC design and 72.2 
dB SFDR value.  

Keywords—FPGA, CORDIC, DDS, SFDR, pipeline, latency. 

I. INTRODUCTION 
In most modulation schemes for a digital 

telecommunication system, a fast and efficient sinusoidal 
signal generator is needed. Here we report on an FPGA 
implementation of a versatile Coordinate Rotation Digital 
Computer (CORDIC) based Direct Digital Synthesizer 
(DDS). Most commercial lightwave communication systems 
use standard modulation protocols, such as phase-shift keying 
(PSK) and frequency-shift keying (FSK), whose 
implementation is supported by specialized dedicated 
hardware, the rapid expansion of the internet requires 
significant improvement in energy and bandwidth efficiency. 
Therefore, a new class of communication systems, namely 
quantum-measurement enhanced optical communication 
systems are being actively pursued. In those systems, a 
classical receiver is replaced with a quantum receiver, while 
the transmitter remains similar. Recognizing that properties of 
quantum measurement are in general different from that of a 
classical measurement, more complex modulation schemes 
than PSK and FSK turns out to be more beneficial [1]. Digital 
synthesis of these signals requires versatile DDS whose 
development is reported here. By design, it generates signals 
with a nearly-arbitrary combination of phase and frequency 
modulations. Many other applications such as software-
defined radio, wireless satellite transceiver, HDTV 
transmission, radar communication, etc. can take advantage of 
this low latency and re-configurable sine wave generation [2]. 
Hence, with high spectral purity and low latency, the DDS 
accommodates the energy-efficient and rapid response 
properties of quantum measurement instruments to optimize 
the utilization of the offered opportunity and to maximize the 
modulation capabilities.  

Many strategies and techniques have been developed to 
enhance the area and speed efficiency of CORDIC algorithm. 
CORDIC was initially introduced by Jack E. Volder in 1959 
to calculate trigonometric functions in the digital hardware 
devices [2]. Later, a modified version of CORDIC algorithm 

was proposed by John S. Walther with the ability to calculate 
circular, hyperbolic, and linear rotation systems [4]. The 
motivation to engage this algorithm in the digital platform has 
gained popularity since then. Refinements on the efficiency of 
implementation have been offered in the level of the algorithm 
to reduce the latency and area usage.  

In the next section, we provide background information on 
several CORDIC techniques that are adopted in this work. In 
section III, we explain the implementation of the proposed 
method. In section IV, we summarize and compare the results. 
Finally, we conclude with an evaluation and discuss the 
prospective developments. 

II. BACKGROUND 
The demand for high-throughput communication has 

always existed since its first invention. Various applications 
have been developed with the opportunity that current 
communication technology has given. The need for the 
internet increases over the years and for that reason, many 
communication systems have been explored in the level of 
algorithm and architecture. Many communication systems use 
a modulation scheme that generates sinusoidal signal output. 
One popular approach is to use the DDS module that takes the 
frequency tuning word (FTW) or frequency control word 
(FCW) as input and passes the amplitude of the sinusoidal 
signal to the output. Figure 1 shows the general block diagram 
of DDS which consists of a phase accumulator, a signal 
processor, and a low pass filter. The phase accumulator 
defines the frequency of the sinusoidal signal as the increment 
of the output phase is dictated by the input FTW, hence the 
smaller the input the lower the resulting signal’s frequency 
and vice versa. The low pass filter rectifies the signal 
processor’s output that contains trivial distortions due to the 
techniques being employed. Note that this low pass filter is 
typically a component of DAC so some works in literature 
show them separately. Here, we focus on the signal processor 
that takes phase as the input and generates sinusoidal 
amplitude. 

 
Fig. 1. General block diagram of DDS 



CORDIC provides an efficient implementation in terms of 
area utilization, power consumption, and latency. There are 
three popular approaches to the realization of DDS: Look-up 
table (LUT), polynomial function namely Tylor series 
expansion, and CORDIC algorithm [5]. The LUT occupies 
memory, namely read-only memory (ROM), to store the 
amplitude of the sinusoidal signal. LUTs are computationally 
fast, but they require a considerable amount of memory even 
when compression techniques are used [6]. The memory 
occupancy is mainly based on the width of FTW input and the 
width of the output. Indeed, to get higher spectral purity, the 
quantization error is minimized by increasing widths of the 
output amplitude. For these reasons, memory occupancy 
escalates significantly with the greater spectral purity 
requirement. In turn, higher memory usage results in higher 
power consumption, slower operation, and lower stability [7]. 
The Taylor series expansion has a complicated 
implementation that uses several multipliers/dividers. In 
addition, to get higher spectral purity, higher-order terms 
should be computed which also means longer latency [5]. 
CORDIC algorithm calculates sinusoidal amplitude by a set 
of rotations. That rotational angles in the set are put in series 
and the accumulation of the angles approximates the desired 
angle that corresponds to the necessary output, the number of 
angles in that set determines the amount of iteration, hence the 
latency. Thus, the correct selection of angle set is essential. 
The rotational operation is carried out by adders, logic shifters, 
and optionally an insignificant amount of memory that makes 
implementation and integration easier and simpler [3]. For 
these reasons, CORDIC advances in resource utilization and 
power consumption. 

Spurious Free Dynamic Range (SFDR) defines the 
spectral purity of the produced signal. The spectral purity of a 
signal is significant for the overall performance of the system. 
Since there exists more than one frequency component in a 
signal, it is necessary to keep the desired frequency’s 
dominance over the spurious components. SFDR implies the 
ratio of the power of the desired signal and the second-highest 
power of the spur signal. Thus, the higher SFDR the smoother 
the output obtained which is preferred and pursued in this 
work. 

 
Fig. 2. Rotation mode of CORDIC in DDS with two angular steps 

DDS performs the CORDIC algorithm based on rotation 
mode. In general, CORDIC has two modes that can be 
distinguished by the functionalities: vector mode and rotation 
mode. In rotation mode, the initial vector experiences several 
rotations in the cartesian coordinate based on the angle set 
and reaches the desired vector position that corresponds to the 
destination phase. Figure 2 shows the rotation mode with two 
phases in the set. In the vector mode, the angular argument is 
estimated by using a set of vectors as the reversal of the 
rotation mode, where it uses the vectors to approximate the 
target angle [5]. However, CORDIC also comes with some 

drawbacks. It needs scale factor compensation due to 
numerical operations in the algorithm, usually, the final result 
is achieved by dividing the scale factor to the output of the 
series of rotation. To eliminate this requirement, the initial 
vector is arranged such that it has already been regulated (pre-
divided) with the scale factor prior to the calculations. 
Secondly, accuracy restriction: the number of rotations and 
selection of the series of the angles give an impact on how 
close the final angle to the desired angle is [8]. A selection of 
angle set with a smaller number of rotations is required. The 
following sections describe components in each stage of the 
architecture. 

A. Conventional CORDIC 
The first CORDIC algorithm was proposed by removing 

the burdensome cosine and sine functions multiplications with 
logic shift operations. The equation (1) gives a rotation of the 
initial vector (x, y) to the vector (x’, y’) with the angular 
distance of θ.  

  [
𝑥′
𝑦′

] = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

] [
𝑥
𝑦]       (1) 

                                      𝜃 =  ∑ 𝛼𝑖
𝑏−1
𝑖=0                                 (2) 

 

             [𝑥′
𝑦′

] = ∏ 𝑐𝑜𝑠𝛼𝑖
𝑏−1
𝑖=0 [

1 −𝑑𝑖tan 𝛼𝑖

𝑑𝑖tan 𝛼𝑖 1
] [

𝑥
𝑦]    (3) 

 
As we have mentioned, the angle set of 𝛼𝑖 converges to θ with 
any combination of clockwise or counterclockwise rotations, 
see equation (2). 

 By inserting (2) to (1) and taking 𝑐𝑜𝑠𝛼𝑖 out of the matrix, 
we obtain equation (3), where 𝑑𝑖 corresponds to the direction 
of rotation at the respective stage i. b is the number of 
iterations. 𝑧𝑖  is the remaining phase at stage i. The rotational 
direction, given as 𝑑𝑖 = {−1,1} = 𝑠𝑖𝑔𝑛(𝑧𝑖). Our goal is to 
establish a recurrent formula for rotations that can be 
conveniently calculated on an FPGA.  

      𝛼𝑖 =  arctan (2−𝑖)                          (4) 
 

        ∏ 𝑐𝑜𝑠𝛼𝑖
𝑏−1
𝑖=0 = 𝐾                            (5) 

 

          [𝑥′
𝑦′

] = 𝐾 [
1 −𝑑𝑖 ∗ 2−𝑖

𝑑𝑖 ∗ 2−𝑖 1
] [

𝑥
𝑦]               (6) 

 
        𝑧𝑖 =  𝜃 − ∑ 𝛼𝑖

𝑏−1
𝑖=0                           (7) 

 
K in the equation (5) is the overall scale factor that can be 
pre-calculated to the initial vector (x, y), before entering 
iteration. Putting equation (4) and (5) to equation (3), we 
obtain the final equation (6). The division by 2𝑖  can be 
replaced by an arithmetic shift operator. Thus, 
computationally advantageous iterations are written as: 
 

       [
𝑥𝑖+1

𝑦𝑖+1
] = [

1 −𝑑𝑖 ∗ 2−𝑖

𝑑𝑖 ∗ 2−𝑖 1
] [

𝑥𝑖

𝑦𝑖
]             (8) 

 
The block diagram in figure 3 shows the three stages (i-1), (i) 
and (i+1) of conventional CORDIC as the realization of 
equation (8). The multiplexers have +/- tags that determine 
the additions or extractions of variables based on the sign of 
𝑧𝑖. Note that intersections of lines show the crossing of paths 



with no connection between them, this is valid for all 
diagrams. 

Equation (4) implies an angle in the angle set for the 
iteration i. For the sake of simplicity, by selecting 7 iterations 
(𝑖 = [0,6]), we obtain the following angle set: {45, 26.565, 
14.036, 7.125, 3.576, 1.789, 0.895}. Note that the 
conventional CORDIC has 15 iterations. To ensure that 𝑧𝑖 is 
approximately 0 at the end for any destination angle 𝜃, the 
number of iterations (b in equation (3)) is specified as 15 
ranging from 0 to 14. This number is also the accuracy limit 
of the digital system which uses variables with a bit width of 
16 bits, because shifting more than 15 bits results in 0 in such 
a variable, that variable has no impact on the algorithm, the 
operations add redundant latency and produce futile 
modification on the final output. However, the range of 
convergence, that specifies the absolute value of the angle 𝜃, 
is 99.882. One uses domain folding technique with 2 blocks 
that cover [-90,90) and [90,270). This way any 𝜃  can be 
reached by locating an appropriate initial vector. 

 

 
Fig. 3. Block diagram of Conv DDS 

B. Scaling Free CORDIC 
As the name implies, scaling-free CORDIC pursues 

algorithm to avoid multiplication by scale factor prior to the 
final output for fast performance. Scaling-free CORDIC 
recognizes one direction of rotation and halting state, meaning 
𝑑𝑖 ∈ {0,1} . It rotates counter-clockwise only when 𝑧𝑖  is 
greater than the angle at stage i or stays at the current position 
otherwise. Thus, 𝑧𝑖 is always a positive number. This makes 
the attainable maximum frequency higher as we will see in the 
result section. The sine and cosine terms can be simplified 
when they are considerably small.  

                                 [𝑤−𝑙𝑜𝑔26

3
] ≤ 𝑗 ≤ 𝑤 − 1         (9) 

 

                               [𝑠𝑖𝑛𝜃
𝑐𝑜𝑠𝜃

] = [ 2−𝑖

1 − 2−(2𝑖+1) 
]                  (10) 

 
The approximation in (10) is accurate if the requirement in 

(9) is met [4], where w is the bit width. By substituting (10) 
and (2) to (1) we obtain: 

 

         [𝑥′
𝑦′

] = ∏ 𝑑𝑖 [1 − 2−(2𝑖+1) −2−i

2−i 1 − 2−(2𝑖+1)
] [

𝑥
𝑦]𝑏−1

𝑖=0    (11) 

 
Then, the recursive formula is given by: 
 

            [
𝑥𝑖+1

𝑦𝑖+1
] = 𝑑𝑖 [1 − 2−(2𝑖+1) −2−i

2−i 1 − 2−(2𝑖+1)
] [

𝑥𝑖

𝑦𝑖
]     (12) 

 
Note that (12) has no scale factor unlike in (6). Figure 4 
depicts the block diagram of the scaling-free CORDIC 
algorithm in stage i. 

The low range of convergence compels domain folding 
technique to squeeze the blocks into several extra regions. 
Due to the condition in (9), and with bit-width (w in equation 
(9)) of 16, where j is i+1, the approximation in (10) only holds 
for i between 3 to 14, but after 8th iteration, the logic shifter 
of (2i+1) results in more than 17 bits shift. Thus, iterations 8 
through 14 have no effect. Similar to the previous argument, 
that variable has no further effect on the algorithm, the 
operations add more latency and produce no modification on 
the output. Therefore, iterations 8 through 14 are omitted, to 
reduce latency and redundant area usage. Hence i goes 
between 3 to 8. The range of convergence becomes [0,22.5). 
The low range of convergence requires extensive use of 
domain folding technique. To obtain convergence, 16 
domains folding is employed and requires multiplication by 
a bothersome factor of 1/√2. Thus, each domain’s distance is 
20 degrees which is within the range of convergence.   

     

 
Fig. 4. Block diagram of Scaling-Free CORDIC 

 The argument reduction technique improves the latency of 
the method. Particularly, one may jump over several stages by 
predicting the output at the end of the skipped stages [4]. 
Typically, more than one computational path is possible, 
particularly at the early stages. This is because the initial 
angles are comparatively larger than that of the last stages. 
These computational paths can be pre-computed, and the 
results can be assigned using multiplexers, probable 
combinations of output in the earlier stages are still few and 
can be estimated by using multiplexers. Hence the first 3 
stages are skipped and the output at the end of the 3rd stage is 
obtained. However, the argument reduction technique requires 
a variadic scale factor, therefore scale factor multiplication is 
not avoided completely [4]. Nonetheless, this technique 
reduces a significant amount of latency (from 12 to 9 cycles 
as we see in the result section for state machine-based design). 
The consequence of not reaching the desired angle due to the 
insufficiency of the range of convergence is to repeat iteration 
for the rest of the angular gap. The angular gap means the 
remaining angle to the desired angle that the range of 
convergence couldn’t cover. Thus, double and even triple 



latency may occur. Domain folding and the argument 
reduction technique are critical in this regard. 

The angle set is {36.869/16.26/0, 7.125/0, 1.789, 0.895, 
S*0.112} where S is an integer in a range from 0 to 8. The 
range of convergence is (-57.57,57.57). Thus, to cover the 
entire space, quadrant domain folding is being adopted. 
Domain folding occurs at the first stage. The computation of 
each phase assumes different strategies.  

Friend angles: any group of angles that have identical 
magnitude is considered as friend angle [9]. For instance, in 
Cartesian coordinate R = 4 + 3i with the phase of 36.869 and 
R = 5 with the phase of 0 are friend angle because they have 
the same magnitude of 5. Thus, all angles in figure 2 are 
friend angles since they all have the same magnitude of 1. 
The identical magnitude is essential for the consistency of the 
system because different magnitudes impose divergence in 
power gains and result in different scale factors that make the 
system even more complicated. 

Redundant CORDIC: conventional rotator moves vector 
in either direction: clockwise or counterclockwise. However, 
rotation with a large angular gap may require the next angles 
to cover up the unnecessarily extensive jump in a reverse 
direction. In those cases, holding the position instead of 
rotating is advantageous. Thus, the direction of rotation is 
𝑑𝑖 = {−1,0,1}. However, adding one more “direction”, that 
is 0 or no angular movement but still regulated with power 
gain to attain consistency with the other directions, reduces 
the maximum frequency of the design.  

Nanorotator: Rotation by sufficiently small angle can be 
approximated further. Given 𝑅 = 𝐴 + 𝑆𝑖 , a rotation is 
sufficiently small if S<<A, therefore 𝛼 = arctan (𝑆/𝐴) ≈
𝑆/𝐴. The other rotators are the same as previously explained 
CORDIC algorithms.  

III. IMPLEMENTATION 
To ensure the successful outcome of the implementation 

we have chosen the workflow depicted in figure 5. We 
implement the algorithm as a MATLAB script and simulate 
the code, taking the advantage of functions that ultimately are 
not feasible in the hardware platform, such as floating-point, 
exponent, and numerous available operators. This 
implementation reduces design effort and completion time. 
Then, we verify the result and evaluate the performance in the 
software domain, which gives us an insight into the possible 
performance in the hardware domain.  We write the register 
transfer level (RTL) implementation of the design on Xilinx 
ISE using Verilog HDL. Then, we design the testbench to 
simulate the program and confirm the functionality. Since all 
variables in the hardware are in integer, we fit the hardware 
simulation results to that of software simulation for 
consistency. The hardware platform we utilized is Xilinx 
FPGA with Virtex-6, namely ML605. As a next step, we 
verify the hardware’s functionality using an Integrated Logic 
Analyzer (ILA). We store and extract the output values from 
ILA signal analyzer, compare the results with that of software 
simulation, and assess the data for evaluation as shown in 
figure 10. 

 

 
Fig. 5. Workflow 

Here, we describe the stages of our implementation: 

Stage 1: The 8 domains folding technique retains resource 
efficiency for the system. Additionally, the higher maximum 
frequency is achieved using one-directional rotations. Folding 
the coordinate space into several domains leads to a smaller 
convergence range, but when the number of domains reaches 
or exceeds 16, complicated operations such as multiplication 
by 1/√2 are required. Thus, we use 8 domains division to 
ensure simplicity. The assignment of the initial vector can be 
done by trivial swapping between imaginary and real parts and 
negation as we see in table 1. The angular range of each 
domain is 45 which is within the convergence range of the 
angle set in the counterclockwise direction: it enables one-
directional rotation for the next stage. 

Table 1. Eight domain folding coordinate assignment 

Domain X Y 
0-45 X Y 
45-90 Y X 

90-135 -Y X 
135-180 -X Y 
180-225 -X -Y 
225-270 -Y -X 
270-315 Y -X 
315-360 X -Y 

  
Stage 2: the first rotation yields 3 phase options with 

angles {36.869, 16.26, 0}. All rotation coefficients have the 
same magnitudes that imply the same power gain/scale 
factor. We use coefficients, with an angular magnitude of 
1.5625. Hence, R = 1.25 + 0.9375i for phase of 36.869 
degrees, R = 1.5 + 0.4375i for phase of 16.26 degrees, and R 
= 1.5625 for phase of 0 degrees. The equation (12) is 
modified to benefit the hardware implementation for the 
above three angles such as: 

 
              [

𝑥1

𝑦1
] = [1 +  2−2 −1 +  2−4

1 −  2−4 1 +  2−2 ] [
𝑥0

𝑦0
]             (13) 

 
               [

𝑥1

𝑦1
] = [ 2−1 +  1 −2−1 +  2−4

2−1  −  2−4 2−1 +  1
] [

𝑥0

𝑦0
]         (14) 

 

                       [
𝑥1

𝑦1
] = [2−1  +  1 +  2−4

2−1  +  1 +  2−4]
𝑇

[
𝑥0

𝑦0
]               (15) 

 
Equations (13), (14), and (15) can be implemented with just 
logic shifter and adder. 



 Resource sharing eliminates redundancy in resource 
usage. In figure 6, we use 6 logic shifters as some operators 
share the same logic shifter’s output. The switching rules for 
the multiplexers are shown as numbers {0,1,2}, where {0,1,2} 
encodes the jump angle {36.87,16.26,0}, respectively. The 
architecture of stage 2 is somewhat heavy, which may impact 
the maximum frequency of the hardware implementation. 
Thus, having a one-directional rotation approach shortens the 
longest path of the architecture, and in our case, we have 3 
rotational options instead of 6 in the regular mode, which 
shrinks the area usage and improves the speed of this segment. 

 
Fig. 6. Stage 2 block diagram 

Stage 3: in this stage, we adopt redundant CORDIC to 
eliminate several rotations and guarantee convergence 
provided by remaining angles in the set. The coefficients of 
this rotator have an angular magnitude of 1.0078125: R = 1 + 
0.125i for a phase of 7.125 degrees, and R = 1.0078125 for a 
phase of 0 degrees. Equation (12) turns into: 

          [
𝑥2

𝑦2
] = [ 1 −𝑑 ∗ 2−3

𝑑 ∗ 2−3 1
] [

𝑥1

𝑦1
]               (16) 

 

                              [
𝑥2

𝑦2
] = [1 +  2−7

1 +  2−7]
𝑇

[
𝑥1

𝑦1
]                     (17) 

 
Evidently, hardware domain implementation of equations (16) 
and (17) requires just 2 logic shifters per coordinate. The 
direction 𝑑 in (16) can be {-1,1}. The rotation by 0 degrees 
(described by Eq. 17) is equivalent to a no-rotation choice. 
Such redundancy is tolerable because we end up with three 
jumping options similar to that of the previous stage. No 
degradation in the maximum frequency of the design results 
from this architecture. The coefficients in stages 2 and 3 
ensure consistency of scale factor as the friend angle’s 
condition is fulfilled.  

 The block diagram for this stage in figure 7 shows 4 
multiplexers where two of them have the tag numbers. 0 
indicates the halting condition for no rotation of the current 
vector. Note that the appropriate power gain is imposed. 1 
indicates either clockwise or counterclockwise rotation set by 
the sign of active phase z. 

 

 
Fig. 7. Stage 3 block diagram 

Stage 4: Starting at this, the residual angle gap’s range is 
3.58 which is within the range of convergence of the 
remaining angle in the set. Hence this stage requires no 
redundant CORDIC rotation: 𝑑 = {−1,1}. In this stage, we 
adopt conventional CORDIC architecture at the 5th iteration. 
The coefficient is R = 1 + 0.03125i for a phase of 1.789 
degrees, and the hardware compatible computation is given by 
equation (18):  

          [
𝑥𝑖+1

𝑦𝑖+1
] = [ 1 −𝑑 ∗ 2−𝑗

𝑑 ∗ 2−𝑗 1
] [

𝑥𝑖

𝑦𝑖
]               (18) 

 
The hardware implementation requires two shifters, figure 8. 
On this stage i = 2 and j = 8. 

Stage 5: we reuse conventional CORDIC architecture 
similar to the previous stage but with R = 1 + 0.015625 for a 
phase of 0.895 degrees. The hardware compatible 
computation is also given by equation 18, but here i = 3 and j 
= 6. The block diagram is identical to that of stage 4, figure 8.  

 
Fig. 8. Stage 4 and 5 block diagrams 

Stage 6 (last stage): We left with residual angle gap’s 
range of 0.875. For this reason, the rotator takes advantage of 
nanorotator approximation with non-constant, adaptive 
scaling coefficient: R = 1+ (S * 0.001953125i) for variadic 
phase, where S ∈ [0,8]. Thus, considering the allowed values 
of S, the range of convergence is (-0.895, 0.895). The 
hardware compatible version of the coefficient is given in 
equation (19) and its architecture is shown in figure 9. The 
stage 6 implementation requires extra modules: a scale 
decoder and an attenuation block.  

 



 
Fig. 9. Stage 6’s block diagram 

 
                [

𝑥5

𝑦5
] = [ 1 −𝑑 ∗ 2−9 ∗ 𝑆

𝑑 ∗ 2−9 ∗ 𝑆 1
] [

𝑥4

𝑦4
]         (19) 

  
The scale decoder block determines the magnitude of the 

adaptive coefficient of S using the remaining phase, to make 
the residual of Z as close to 0 as possible. 9 combinations of S 
are obtained, see table 2. 

Table 2. Remaining angle range for S 

Range S Range S 
(0, 0.0988] 0 (0. 4998, 0.5987] 5 

(0. 0988, 0.1977] 1 (0. 5987, 0.6976] 6 
(0. 1977, 0.2966] 2 (0. 6976, 0.7965] 7 
(0. 2966, 0.3955] 3 (0.7965, 0.895] 8 
(0. 3955, 0.4998] 4   

 
The attenuation block in figure 9 depicted as a triangular 

block with “S” tag, multiplies the adaptive scale S to the 
shifted coordinate variables X and Y as defined in equation 
19. Here, we use a regular multiplier.  

Finally, we put all the stages in series and complete the 
implementation of the design. Given the combination of 
coefficients of all stages, the cumulative scale factor is K = 
1.5757. Hence, we modify the initial vector in stage 1 by pre-
dividing the values by this scale factor, which eliminates the 
other extra multipliers/dividers. 

IV. RESULTS 
We evaluate the design’s performance by measuring the 

latency, resource usage, logic operator utilization, SFDR, and 
maximum frequency. These parameters provide trade-off 
considerations for a target application with specific 
requirements. For the sake of comparison, we provide values 
for three different CORDIC-based DDS implementations with 
and without a pipeline in the architecture. These are 
conventional CORDIC, modified scaling-free CORDIC [3], 
and our proposed design. 

Table 3 shows resource utilization based on the number of 
registers, LUTs, LUT-FF pairs, and RAM for a given target 
device. Here, the LUTs are the slice logic which is not 
necessarily using memory. We use ROM as memory: here its 
usage is measured in bits. In the table, CORDIC represents the 
conventional CORDIC (it stores 15 phases for the angle set 
and assumes 16 bits of variable’s width). SF-CORDIC stands 
for modified scaling free CORDIC algorithm. The “P” next to 
the algorithm’s name indicates the pipelined version. The 
initiation interval of every pipelined algorithm is 1, meaning 
the module can take input every clock cycle with no extra 
delay. 

Table 3. Resource utilization 

Algorithm Register LUT LUT-FF ROM 
CORDIC 97 827 97 240 

CORDIC P 1349 2671 905  
SF-CORDIC 63 489 61 96 

SF-CORDIC P 336 835 309  
Proposed 174 713 142  

Proposed P 218 497 166  

 
Table 4 presents the utilization of logic operators. Mult, 

Add, Comp, Mux, and Shift stand for the multiplier, adder, 
comparator, multiplexer, and logic shifter. All these logic 
operators run with variables with 16 bits variables. The logic 
shifter accepts the variadic length of shift argument.  

Table 4. Logic operator usage 

Algorithm Mult Add  Register Comp Mux Shift 
CORDIC 1 7 5 4 21 2 

CORDIC P 1 100 65 19 60  
SF-CORDIC  10 6 14 58 4 

SF-CORDIC 
P 

 28 63 19 49  

Proposed 2 16 31 20 42  
Proposed P 2 24 68 22 32  

 
In Table 5, the values of SFDR are specified in dB. We 

compute the SFDR by fetching the results obtained from ILA 
signal analyzer in the MATLAB platform. Iteration in table 5 
indicates the number of rotations, this number is equal to the 
number of phases in the set. Latency is specified in the number 
of clock cycles. It represents the overall delay due to iterations 
and additional strategies such as domain folding and argument 
reduction techniques.  

Table 6 lists the maximum frequency in MHz if 
implemented of a Xilinx Virtex-6 FPGA. The first column 
shows the maximum frequency for state-machine (SM) based 
DDS and the second one lists that of the pipelined version. 

Table 5. SFDR, iteration and overall latency 

Algorithm SFDR iteration Latency 

CORDIC 92.7394 15 17 

SF-CORDIC 56.8218 6 9 
Proposed 72.2068 5 6 

 
Table 6. Maximum Frequency 

Algorithm Max frequency Max Frequency P 

CORDIC 180.245 235.100 

SF-CORDIC 229.512 354.547 

Proposed 212.562 250.395 
 



 
 
Fig. 10. ILA analyzer 

In terms of resource utilization proposed design advances 
on pipeline based in all parameters and modified SF CORDIC 
is ahead on SM based in all parameters except for memory 
usage. Conventional CORDIC occupies the largest memory 
usage due to numerous angles in the set. Although it uses no 
memory for the pipelined version, the high number of 
iterations makes the increment of the other resources 
enormous. Memory is no longer needed because every stage 
is implemented separately and is active simultaneously, hence 
each stage is pre-assigned with a constant angle. SM based 
modified SF CORDIC has the lowest resource as compared to 
our design, but its pipeline based is behind the proposed 
design since it employs more iterations than ours. Our SM 
based design virtually doesn’t need iteration because each 
stage employs a different type of rotator, which makes the 
resource usage close to that of pipeline-based design. To no 
surprise, our design occupies the smallest area and provides 
an energy consumption advantage.  

SM based Conventional CORDIC has the least overall 
logic operators, while the proposed design compares 
positively to the modified pipelined SF CORDIC. The 
pipelined version of conventional logic uses significantly 
more logic operators compared to the SM based one because 
15 iterations that run on a set of resources are expanded into 
15 identical sets of resources. The same explanation holds for 
the close figures of logic operator usage in the SM based and 
pipeline-based version of the proposed design. Here, the 
synthesize tool optimizes the resource allocation by 
substituting shifter by a concatenation operator due to constant 
bit shifting. Consequently, the number of logic shifters may 
not be the same as shown in the block diagrams. 

Low latency is desired to enhance the throughput and 
efficiency of the communication system because delay in the 
system slows down quantum feedback - a bottleneck and great 
challenge for quantum-enhanced communication systems. 
With a latency of just 6 clock cycles, the proposed design is 
superior to the other algorithms. Although the number of 
iterations of modified SF-CORDIC is very close to that of the 
proposed design, there is an extra delay of 3 clock cycles due 
to a required additional compensation to the rotation. 

The modified SF CORDIC has the highest maximum 
frequency due to one-directional rotation. Our design has a 
moderate maximum frequency for its implementation. The 
conventional CORDIC achieves the highest SFDR value due 
to the high number iteration.  

Our design achieves moderate SFDR yet the lowest 
latency, with approximately 20 dB SFDR and 64% latency 
reductions compared to that of the conventional CORDIC 
design. 

V. CONCLUSION 
In conclusion, we report a new memory free low latency 

DDS architecture. Memory-free low latency DDS architecture 
is being pursued. Generally, complex value computations 
could be employed to calculate the trigonometric equation, but 
those calculations are computationally difficult and energy 
inefficient. To avoid calculation-related inefficiencies, the 
common approach is to use a LUT with phase being the input 
and amplitude being the output. However, the quantization of 
the LUT limits both the modulation capabilities and the SFDR 
of the signal. Therefore, to generate a desired smooth radio-
frequency signal small-step quantization is needed, requiring 
a larger LUT. The LUT requirement leads to an increase in 
memory use and may lead to the reduction of the maximum 
frequency of the FPGA design which would also limit 
modulation capabilities. On the other hand, CORDIC 
technique offers low complexity and memory-free 
trigonometric calculation approach, with the expense of extra 
latencies to complete the computation. We use a pipelined 
approach to shorten latency even more. Thus, in our design, 
the sinusoidal wave amplitude is obtained every cycle, thus 
maximizing our modulation capabilities. To make a quantum 
measurement enhanced transceiver, we choose the modulation 
scheme which includes choosing the number of states M, the 
frequency, and the initial phase detuning between the adjacent 
states and other communication parameters. All M states are 
being prepared in parallel at all times, and the active output 
state is picked according to the encoding and measurement 
protocols. Because M could be quite large (up to 16 in our 
implementation) the low-resource usage DDSs are essential 
for this purpose. In communication links, sensitivity is often 
measured as the probability to receive an erroneous symbol 
with certain energy at the receiver. Classical receivers have a 
sensitivity limit known as the standard quantum limit (SQL). 
This limit arises from the inevitable shot noise on the idealized 
classical receiver scheme - a homodyne measurement 
followed by a perfect detector with no noise of its own and 
with the 100% detection-efficiency. The SQL is accessible 
only through quantum measurement. With the help of the 
described DDS, we have implemented a quantum-
measurement telecommunication testbed and demonstrated 
that the sensitivity of a telecommunication channel is better 
than SQL for many different modulation protocols, including 
quantum-measurement specific modulation protocols, 
described elsewhere [10]. 

A specific target application for this DDS is to build a 
quantum measurement enhanced transceiver. Particularly, we 
intend to use modulation schemes that require a simultaneous 
phase and frequency modulation. Our novel design achieves 
the shortest latencies, maximizes modulation capabilities, and 
uses the minimal footprint compared to other CORDIC-based 
DDSs. 
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