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Information exchange requires a measurement of physical states. Because quantum measurements
enable accuracy beyond the classical shot-noise limit, they are successfully used to develop measurement
tools and applications. In particular, quantum-measurement-enhanced strategies are used for the discrim-
ination of nonorthogonal coherent states. The efficient discrimination of these states is crucial for optical
communication networks, that are now approaching the classical limits of the underlying physical systems.
However, quantum-enhanced discrimination strategies demonstrated to date are based on legacy commu-
nication protocols designed for classical measurements and thus provide only a limited advantage. In our
work, we use photon detection times readily available in quantum measurement, but not accessible by
classical means. We measure and use these times to maximize our knowledge about faint nonorthogonal
coherent states. We employ communication strategies designed to benefit most from this knowledge. This
holistic approach in our experiment has resulted in the record low error rates in discrimination of multiple
faint nonorthogonal coherent states carrying energy corresponding to just one photon per bit of transmitted
information. We demonstrate successful discrimination of large alphabets of optical states (4 < M < 16)
beyond the ideal classical shot-noise limit, showing the scalability of quantum-measurement-enabled com-
munication. This experimental work explores unforeseen advantages of quantum measurement on one
hand, and may help address the capacity crunch in modern optical networks caused by the exponential

growth of data exchange on the other.

DOI: 10.1103/PRXQuantum.1.010308

I. INTRODUCTION

The connection between information and physics is now
well established as a result of the progress in information
theory and computer science on one hand [1,2], and quan-
tum physics on the other [3]. The physical embodiment of
information makes communication an inherently physical
measurement problem. Because quantum measurements
can greatly surpass the capabilities of classical measure-
ment, quantum-enhanced communication has resulted in
many research efforts [4-13]. It is remarkable that quan-
tum measurement provides an advantage even when using
communication protocols originally developed for classi-
cal measurement methods and maintains that advantage
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even in the presence of a significant loss, which is common
to all communication channels [14-17]. Because, gener-
ally speaking, the properties of quantum measurements
differ significantly from those of classical measurements,
the advantages offered by quantum measurements cannot
be fully exploited with such legacy protocols. To unleash
the full potential of quantum measurement, the communi-
cation protocol and matching receiver should be designed
together, taking into account their quantum properties.
Coherent states are ideal for practical long-distance
communications because they are easy to prepare and
manipulate and their statistical properties are resilient to
losses. Using an alphabet of multiple coherent states to
encode information can increase the capacity of a com-
munication channel. Therefore, M-ary alphabets are often
used in practical communication links. While it is com-
mon for a classical link to use very long alphabets, cur-
rently there are no experimental demonstrations of quan-
tum receivers beyond M = 4. Furthermore, legacy adap-
tive quantum receivers based on single-photon or photon-
number-resolving detection in predetermined time inter-
vals [14-16] are not optimal [13,18]. The use of photon
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arrival times for receivers was theoretically proposed by
Bondurant in Ref. [6], with cyclic probing strategy at the
receiver. In Ref. [13] it was found that photon detection
times could be used more efficiently if a Bayesian probing
strategy is employed. In Ref. [18], we introduced a class
of communication protocols that take extra advantage of
the detection times and the Bayesian probing strategy, i.e.
the class of protocols designed to optimize the quantum
measurement. The matching of the modulation protocol
and the receiver is particularly advantageous for discrim-
ination of the nonorthogonal coherent states with a low
average number of photons and a large number of states
M in communication alphabets.

Here we experimentally demonstrate a quantum-
inspired communication link and achieve the highest
energy sensitivity to date with extremely faint optical sig-
nals. Energy sensitivity is defined here as the inverse of the
error rate at the receiver for a given energy of an optical
input (smaller error rate means higher sensitivity). Paired
with our communication protocol [18], the time-resolving
receiver exhibits a favorable scaling versus M of the
energy sensitivity for a given energy of the input coherent
state. We report a record energy sensitivity for input opti-
cal energy at the receiver of approximately 3 x 10~'° J/bit
(approximately 1 photon per bit on average) for a range of
alphabet lengths: 4 < M < 16. We achieve unconditional
(that is, as compared to detection efficiency of unity) dis-
crimination of M nonorthogonal coherent states below the
classical uncertainty bound: the shot-noise limit (SNL) of
an optimal classical receiver [19].

Our results demonstrate that the unique properties of
quantum measurement can improve classical communica-
tion in a conceptual way. Here, photon detection times are
used to enable quantum state discrimination experiments
beyond the sensitivity of quantum receivers demonstrated
to date.

II. THE MODULATION SCHEME

To maximize the advantage of quantum measurements
we implement a family of M-ary coherent frequency shift
keying (CFSK) modulation schemes. The CFSK uses M
phase-synchronized top-hat coherent states that differ in
initial phases and frequencies such that detunings and ini-
tial phases between the adjacent states are equal [18].
Each pulse is a coherent state |{) = |a(w;, 6,)) = |a[wy +
(s— 1Aw, (s — 1)Af]), s € 1.M, where the separation
between adjacent symbols in frequency is Aw and the ini-
tial phase separation is Af. The detuning Aw is normalized
by the optical bandwidth of the signal pulses 1/T, there-
fore AwT = 27 corresponds to the minimal detuning of
classically orthogonal states. Thus, our protocol has two
independent optimization parameters: A8 and AwT. Here
we experimentally investigate the case of the frequency
shifts 0 < AwT < 2w, i.e., smaller than the bandwidth

of optical signal pulses. By adapting these parameters
to the properties of quantum measurement employed at
the receiver, one can improve the energy and/or band-
width efficiency of a communication channel. As a result,
our modulation scheme improves the energy sensitivity of
legacy nonorthogonal classical protocols (such as PSK)
while using less channel bandwidth than orthogonal clas-
sical modulation protocols (such as OFSK and PPM). It
also results in lower error probabilities and lower theoret-
ical bounds in comparison to orthogonal modulations [19,
20] when properly optimized and paired with a quantum
receiver [18].

We point out that this modulation scheme can also be
adapted to experimental conditions, i.e., nonideal visibil-
ity of displacement, dark counts at the detector, etc. The
CFSK classical sensitivity limit is the SNL of the opti-
mal classical receiver, see Appendix C for derivation. The
Helstrom bound for nonorthogonal CFSK states is derived
elsewhere (see the Supplemental Material of Ref. [18]).
Unlike legacy modulation schemes developed for classical
receivers this modulation scheme enables the optimization
of a quantum-enhanced communication channel.

I11. THE TIME-RESOLVED QUANTUM
RECEIVER

The CFSK quantum receiver employs an adaptive
displacement followed by a time-resolved single-photon
detection, (Fig. 1). The receiver performs a quantum
measurement by testing if the hypothesized state |8;) =
| B(wn, 6r)) corresponds to the state of the input field |y).
If the hypothesis is correct, and the local oscillator (LO) is
balanced with the signal, i.e., |a|* = | 8|2, the input field is
displaced to the vacuum and no photons can be detected
at the output. In this ideal case, if even a single photon is
detected, the hypothesis fails. The most likely hypothesis
is updated after every photon detection. Then, at f = T, the
current most likely hypothesis represents our best knowl-
edge of the input state s. A time-resolved receiver was
theoretically proposed by Bondurant [6] in 1993. In that
seminal work, hypotheses are probed in a cyclic order
and a photon detection is used as a trigger for a hypoth-
esis change. In a recent work [13], it was theoretically
shown that photon detection times can be used to find
the most probable state of the input field via Bayesian
inference. This Bayesian strategy significantly improves
the energy sensitivity of a quantum receiver. Therefore,
in contrast to a Bondurant receiver where a single-photon
detection excludes the initial hypothesis only, the receiver
using Bayesian inference extracts and uses this additional
temporal information to displace the input state to the
most probable state. Because the CFSK states differ in fre-
quency, the displacement of the input that is based on an
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FIG. 1.

Time-resolving quantum receiver. The signal pulse |,) is displaced at a 99:1 beam splitter (BS) with the adaptive local

oscillator |8}, whose parameters depend on the hypothesized most probable input state h and followed with a single-photon detector
(SPD). Colors represent frequency detunings. The displaced signal for the correct hypothesis nulls the output, whereas an incorrect
hypothesis results in a temporal fringe with the probability density of a photon detection varying in time, uniquely for each pair of |1;)
and |8;). Each detection time #;, k € 1..f, is used to find the posterior hypothesis A;. Inset: an M = 8 CFSK alphabet schematically
depicted in a complex phase diagram starting at the beginning of a symbol pulse. In the rotating frame of the first state, other states
revolve around the origin at different rates, represented by the length of arrows.

incorrect hypothesis results in a fringe in time, whose tem-
poral features differ for different signal-LO pairs. There-
fore, the probability density to detect a photon varies in
time, and, consequently, the photon detection times contain
information about the input state.

In this work, we experimentally implement a time-
resolved quantum receiver and demonstrate its below shot-
noise performance. The receiver calculates the Bayesian
probabilities of all M possible alphabet states to be the
input state, ¢,(m), m = 1..M. Upon each photon detection
at fx, kK = 1, the alphabet state with the highest Bayesian
probability Z, (m) is used as a new hypothesis h;. The
LO is adjusted to [By,) to displace the most probable
state to vacuum. Before the first photon is detected, the
a priori probabilities are equal for all states, {p = 1/M
at fp = 0. Simulations show that the final error rate does
not depend on the initial hypothesis, so kg can be ran-
dom. The Bayes’ rule to recursively calculate a poste-
riori probabilities ¢, (m) based on a priori probabilities
G, (m) is

V(tr, tr—1,m, hx_1) &y, (m)
Z;J:I B(tr, tr—1,J s Be—1) 8, ()

gfk (m) = (1 )

The Bayesian likelihood N (#, fx—1,m, hx_1) that the signal
input state is m, is the probability density to detect a pho-
ton at #; if the previous photon is detected at f;_; and the
displacement is h;_;. Because the input and the LO are
coherent states, the field at the detector is a modulated
coherent state described by a nonhomogeneous Poisson

process [21]

R(tg, tr_1,m, hg_1) =

—Jik | ntm by, T/ T

[(n(m, hi_1,5))/Tle (2)
The time-dependent Poisson parameter is the instanta-
neous mean photon number at the detector (n(m,h,1))
divided by the signal pulse duration 7. For each m, we
assume that the two interfering CFSK states are |a[wy +
(m—1Aw,(m —1)A8]) and |Blwy+ (h— 1)Aw, (h —
1)A6]). We obtain

(n(m,h,t)) = 2T no{l — cos[(h — m)(Awt + AB)]},

where ng is the mean photon number in the signal pulse
and 7 ~ 1 is the transmittance of the unbalanced beam
splitter. Note that ® depends on |h — m|, rather than on m
and h separately.

To illustrate Bayesian inference with M =4 CFSK
optimized for maximal sensitivity of the time-resolving
quantum receiver, suppose that the initial state of the
LO corresponds to hypothesis hy = 1, and the first pho-
ton is detected at #;. We compute theoretical a posteriori
Bayesian probabilities {; (m) that the input signal is in
state m conditioned on the arrival time f; of the first
photon by substituting R(#,0,|1 —m]) in (1). In Fig. 2
we show theoretical a posteriori Bayesian probabilities
{1, (m) that the input signal is in state m conditioned on the
arrival time f; of the first photon. We see that probabilities
{4 (2) - - - £, (4) have a very distinct oscillatory dependence
on photon detection time thanks to temporal fringing at
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FIG. 2. The a posteriori Bayesian probabilities ;, (m) that the

signal is in the state m conditioned on the first photon detection
at #; when the initial hypothesis is set to hp = 1. The M =4
CFSK modulation is optimized for maximum energy sensitivity
of the receiver. A@ = 1.96, AwT = m, ny = 2, assuming ideal
displacement and detector.

the detector. Therefore, the choice of h; strongly depends
on the photon detection time. For the ideal displacement
to vacuum the a posteriori probability for the hypothesis
under test &, (1) = 0. Different optimization goals can lead
to different time dependences. The a posteriori Bayesian

lh, ;-m|=0

probabilities for legacy nonorthogonal protocols are mono-
tonic, cf. Ref. [13], thus detection times do not influence
the choice of a posterior hypothesis. Beyond this idealistic
receiver model, Bayesian strategies can adapt to exper-
imental imperfections. In practice, (n(m,h,t)) contains
contributions due to imperfect interference, background,
and dark counts.

The unique feature of this quantum receiver is that
it adapts right after a photon detection at the SPD. All
experimentally demonstrated receivers to date instead
use predefined measurement stages of fixed duration and
a decision-making tree. If we precomputed a decision-
making tree, we would require MT/dt + (MT/dt)? +
.o 4 (MT/dty memory nodes, where df is the tem-
poral resolution of the receiver and f is the maximal
number of photons that are expected during a signal
pulse duration. Instead, we precompute and store values
of V(#, tr_1, |he_1 — m]), using just M(T/df)?/2 mem-
ory nodes. For example, for M =8 and T/dtf = 64, we
store 16 384 precomputed values. When the SPD clicks,
the photon detection time f; selects a Bayesian like-
lihood for each hypothesis using triangular (f; > #_1)
probability matrices (Fig. 3). To further optimize com-
putations, we normalize R (#,fx_1, |hx—1 — m|) such that
max [R(#, fr_1, |hg_1 — m|)] = 1. The bright areas seen in
Fig. 3 correspond to a high likelihood of the particu-
lar hypothesis. Typically, for instance, it is likely that a
click results in a change of the hypothesis. However, in

lh, ;—m| =6

FIG. 3. The Bayesian likelihood ¥ (#, fx—1, |hx—1 — m|) that the input state is |n), m € 1..M as a function of the current photon
detection time #;, previous photon detection time #;_; < f, and the current state of the LO h;_;, for an M = 8 CFSK protocol. A
photon detection at time #; leads to an update of posterior probabilities &, (m) that the input state is m. To aid real-time calculations,
we renormalize likelihood functions such that max [R(#, tr_1, |hr—1 — m|)] = 1.
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a practical system with noise, detecting a photon may
lead to no hypothesis change, particularly when the inter-
val # —t;_y is large. This effect can be seen in Fig. 3
(|Ax—1 — m| = 0), where low values of the likelihood func-
tion correspond to a hypothesis change. High values mean
that the hypothesis should not be changed, and for our
receiver this happens only when #z_1 2 Oand #; S T.

In stark contrast to detection schemes used in prior
M-ary quantum state discrimination experiments [14,15],
this time-resolved strategy allows testing of an uncon-
strained number of hypotheses f and allocates the optimal
time to probe each hypothesis. In addition, it alleviates
the need for photon-number-resolved detection, cf. Ref.
[15]. This strategy can be adopted for other nonorthogo-
nal encoding protocols, such as phase-shift keying (PSK),
quadrature amplitude modulation, etc. Theoretically, the
time-resolved strategy is the most energy-sensitive detec-
tion method known to date for these communication
protocols.

IV. EXPERIMENTAL IMPLEMENTATION

Figure 4 shows the experimental setup to test the quan-
tum receiver for the time-resolved coherent-state discrim-
ination method. The continuous-wave laser at 633 nm is
attenuated and sent via fiber to a 99:1 fiber beam splitter

preparation
>
o
=

Signal fiber

A2es

PID( SERSEESCENNS

Laser é . I
633 nm

FIG. 4. Experimental implementation of an M-ary CFSK
receiver. The light from a 633-nm laser is split 99:1 on an FBS
and sent to the signal and LO preparation stages. We prepare
CFSK and LO states by simultaneous frequency and phase mod-
ulation implemented with a double-pass AOM. The displacement
is performed by interfering the input state with the LO on another
99:1 FBS. The displaced signal is sent to an SPD. The FPGA
registers the times of photon detections, runs the discrimination
algorithm and generates rf pulses to control the AOMs. The setup
is interferometrically stabilized using a counter-propagating laser
at 795 nm, analog photodiode (PD), a piezo mirror, and a stand-
alone lock (PID). PBS, polarization beam splitter; /2 and A /4,
half- and quarter-wave plates. The input of the quantum receiver
is connected to the output of the signal fiber with a fiber mating
sleeve.

e e e e P

(FBS) to generate the LO and the signal pulse, respec-
tively. Each of the two beams undergoes state prepara-
tion with a double-pass acousto-optical modulator (AOM).
AOMs are driven by controllable sine waves at approx-
imately 80 MHz, synthesized by a digital-to-analog con-
verter (DAC) controlled with a field programmable gate
array (FPGA). Both the input signal and the LO are cou-
pled back into the fiber. The signal at the fiber mating
sleeve is defined as the input to the receiver, see Fig. 4.
The receiver is comprised of LO and a 99:1 FBS for state
displacement followed by an SPD, whose electronic output
is connected to the FPGA for time tagging of the detec-
tion and Bayesian inference. To characterize the energy
sensitivity of quantum state discrimination, we measure
the system efficiency of the quantum receiver from the
input. Optical losses amount to 11.4(5)%, and the SPD
[22] detection efficiency is 84.0(3)% (measured relative to
a trap detector [23], see Appendix A), resulting in a system
efficiency of 74.5(6)%.

The pair 0f 99:1 FBSs in Fig. 4 defines a Mach-Zehnder
interferometer, whose relative path length is interferomet-
rically stabilized. The stabilization is implemented with a
counter-propagating laser at 795 nm frequency stabilized
to a rubidium atomic line, a photodiode, and a piezo mirror
controlled with stand-alone locking electronics. The signal
from the SPD is used to set the locking point close to the
minimum of the 633-nm fringe. To lock, the stabilization
laser is switched on with a dedicated AOM and the FPGA
sends identical frequencies to both the signal and LO arms
of the Mach-Zehnder interferometer. To discriminate, the
stabilization laser is switched off, and the FPGA executes
the adaptive discrimination algorithm. The duty factor of
the signal pulses is < 50%. The observed visibility of the
interferometer reaches 99.7%. To set the average number
of photons per symbol in a signal pulse and the intensity of
the LO, one of the two interferometer paths is blocked and
the count rate on the SPD is measured.

We generate M = 4,6,8,12, and 16 CFSK states. We
adjust the CFSK parameters AwT and A@# such that
the quantum-measurement advantage maximizes energy
sensitivity through numerical simulation, see Table 1 in
Appendix B. In addition, we optimize the power of the
LO for best error correction, not for the best displacement
of the signal state to vacuum with the correct hypothesis,
cf. Refs. [13,16]. The adjacent coherent states are shifted
by Aw = 2w x 7629 rad/s. The dimensionless detuning
AT is controlled by choosing the appropriate duration of
signal pulses.

V. RESULTS AND DISCUSSION

We characterize our quantum receiver with M =
4,6,8,12, and 16 alphabets. Properties of our quan-
tum receiver are illustrated using the M =8 case.
Figure 5 shows the experimental error probability Pg in
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(a) Measured performance (green points) below the SNL of the optimal classical receiver (solid red line) is unconditionally

nonclassical. This is seen for a range of approximately 0.5 to approximately 2.5 photons/bit. For comparison, we also include the SNL
adjusted to the same system efficiency as our receiver (dashed red line). Also shown is the HB and the HB of an 8-PSK protocol and
the SNL for 8-PSK as indicated. (b) Measured sensitivity is plotted as a ratio to the SNL (red horizontal line). Error bars correspond

to one standard deviation.

discriminating between eight CFSK states as a function
of the mean photon number per bit, np = ng/ log, M for
the protocol optimized for maximum energy sensitivity,
AwT = m rad and A8 = 2.55 rad. Also shown is the SNL
for the ideal classical detection, along with SNL scaled
to our system efliciency of approximately 74.5%, and the
Helstrom bound (HB) [24].

We see that our receiver performs better than an ideal
classical receiver for the input energies between approxi-
mately 0.5 and approximately 2.5 photons per bit with a
maximum sensitivity improvement of 3.2(2) dB. In com-
paring our result to an optimal classical receiver with the
same system efficiency, we observe > 6-dB improvement.
Because the CFSK protocol family includes the legacy
PSK communication protocol as a special case, it is pos-
sible to use our unified framework to compare the energy
sensitivities of the two. Notably, this demonstrates an
unprecedentedly high energy sensitivity of a communica-
tion link. To this end, our measured error rate is lower than
the quantum sensitivity limit or HB of an M = 8 PSK pro-
tocol by more than one standard deviation between 1 and 2
photons per bit as seen in Fig. 5. The experimental sensitiv-
ity of our receiver saturates at higher input energies. This is
because in our implementation the effective switching time
after a photon detection is about 1us. This inactive time is
mainly due to the speed of sound in the AOMs. The more
photons are received during discrimination, the longer the
total inactive time of our adaptive circuit is, contributing
to the observed saturation in sensitivity. Error rate charts

vs ny and comprehensive sensitivity comparisons for other
alphabet lengths are presented in Appendix B.

A single-photon measurement naturally provides detec-
tion times for each photon, this information is fundamen-
tally unavailable classically. Therefore, to fully access the
quantum-measurement advantage, legacy encodings cre-
ated for classical measurement are not optimal. This work
features both the quantum receiver and a matching commu-
nication protocol and demonstrates its advantages. Unlike
PSK, whose classical and quantum-enabled sensitivities
rapidly decrease with M, a quantum measurement in con-
junction with the CFSK can significantly reverse this trend.
We present the dependence of the observed symbol error
rate on the length of the alphabet keeping the energy per
bit at np = 1, Fig. 6. All the observed error rates are below
the corresponding SNLs. The observed energy sensitivity
of our M = 4 protocol at n, ~ 1 is approximately 3 dB
better than the best experimentally reported sensitivity for
any M > 2 quantum receiver. The observed dependence
on M is favorable to classical, and quantum theoretical
limits of a PSK protocol. We note that our experimen-
tally acquired discrimination errors for CFSK with M > 8
are lower than the corresponding quantum discrimination
error bounds (Helstrom bounds) [24] of PSK. Particu-
larly, the observed error rate for M = 12 and 16 is more
than 3 dB below the PSK HB for the same alphabet. The
observed decrease of experimental sensitivity with M can
be partially explained by the switching time, whose sig-
nificance increases with M, because longer alphabets may
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FIG. 6. The time-resolved receiver’s scalability with M. The
experimentally measured symbol error rate of the CFSK quantum
receiver with the input of 1 photon/bit for protocols optimized for
maximal energy sensitivity vs the alphabet length (green filled
circles). Labeled are the ideal SNL, the SNL for a receiver with
74.5% system efficiency, and the HB, along with the SNL and
HB of the PSK protocol. The best experimental sensitivity for
the M = 4 PSK protocol reported to date [15]—blue star. Same
for PPM [17}—purple star. Error bars correspond to one standard
deviation. All connecting lines are guides for an eye.

require a larger number of photon detections for accurate
discrimination.

As we show, switching to quantum receivers allows
classical communication at the much lower power lev-
els compatible with quantum networks and can eliminate
the need for optical amplifiers. Therefore, our approach
enables the coexistence of classical communication chan-
nels with entanglement-distribution and quantum-key-
distribution channels in the same fiber, giving rise to a
simple, unified quantum-+classical network architecture.

VI. CONCLUSIONS

To conclude, we experimentally study a telecommuni-
cation encoding designed from the ground up for quantum
measurement of nonorthogonal coherent states. We build
a time-resolving quantum M > 4 receiver with a record
sensitivity at low signal energies, using off-the-shelf com-
ponents. In addition, we assess the sensitivity scalability

with the alphabet length M for our communication pro-
tocol, and show that it scales favorably compared with
legacy coherent protocols, such as PSK.

In general, quantum measurement can improve commu-
nication channel capacity beyond the classical limits. To
this end, both the measurement scheme and a clever encod-
ing play an important role. Our effort shows that quan-
tum measurements can indeed offer valuable, heretofore
unforeseen advantages for telecommunications leading to
revolutionary improvements in channel resource use. The
channel resource use offered by this work can be improved
even further, up to the Holevo capacity limit [25]. This
work can be used as a cornerstone for the development
of even more efficient methods to communicate classically
with the help of quantum measurements.
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APPENDIX A: SYSTEM-EFFICIENCY
EVALUATION

Our single-photon detector is a commercial avalanche
photodiode-based photon counting module [22]. We cal-
ibrate its detection efficiency using a calibrated light-
trapping detector [23] with a detection efficiency of
98.5(1)%. We use the same light-trapping detector com-
bined with commercial optical power meters to calibrate a
set of optical attenuators. Attenuators are used to reduce
the power of a HeNe laser beam to approximately 10°
photons per second to avoid saturation and nonlinearity at
the SPD. The measured detection efficiency of the SPD is
84.0(3)%. We measure a total transmittance of 88.6(5)%
for the optical components of the receiver. The transmit-
tance is obtained by measuring the optical power at the
optical coupler of the SPD and dividing it by the optical
power measured at the signal fiber output, see Fig. 3 of
the paper. The optical power at the signal fiber output is

TABLEI. Parameters and performance of quantum M -ary CFSK receivers. Sensitivity comparison: lower values are better.
M AT, A6, Pe/PSiL", Pe /PS54 s Pe/PL, Pe/Piig',
rad rad dB dB dB
4 (4 1.96 —7.3(4) —10.6(4) —7.6(4)
6 T 235 —4.5(2) —8.1(3) —10.8(5) i
8 i 2.55 —-3.1(2) —7.1(3) —12.2(3) —0.2(1)
12 422 1.67 —1.0(2) -3.7(2) —10.7(2) —4.6(2)
16 [ 2:55 —0.3(2) —2.6(2) =79(1) —5.2(1)
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adjusted to take into account a —14.3-dB Fresnel reflec-
tion at the fiber-to-air interface. The system efficiency of
74.5(6)% is given by the product of optical transmittance
and SPD detection efficiency.

APPENDIX B: THE RECEIVER PERFORMANCE
FOR M =4,6,12, AND 16

We measure a discrimination error probability of CFSK
quantum receivers for M = 4, 6, 12, and 16 with the proto-
col parameters adjusted for maximal energy sensitivity, see
Table 1. Figure 7 shows the experimental error probability
in discriminating between M-ary CFSK states as functions
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of the mean photon number per bit, np = ng/ log, M. Note
that classical and nonclassical energy sensitivity limits of
the PSK protocol saturate with M. For M = 8,12, and 16,
the PSK HB is above the experimentally obtained values
for our receiver. The comparison between the measured
sensitivity and theoretical bounds is presented in Table I.

APPENDIX C: M-ARY CFSK SHOT-NOISE LIMIT

Consider an M-ary alphabet {s,} of rectangular
sinusoidal pulses defined for times 0 < ¢t < T. For the M-
ary CFSK, the frequency separation Aw and the initial
phase shift Af determine the degree to which one can
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FIG. 7. Experimentally measured sensitivity of M = 4, 6,12, 16 CFSK quantum receivers. The SNL is shown with a solid red line,
the same classical limit adjusted to the experimental system efficiency of our receiver is shown with a dashed red line. The HB is
shown with a solid black line. For further comparison, SNLs and HBs of corresponding M -ary PSK protocols are shown with solid
and dashed blue lines, respectively. Insets: ratios of measured sensitivities to the SNL. Error bars correspond to one standard deviation

statistical uncertainties.
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discriminate among the M possible transmitted signals.
We define correlation coefficients y,; as a measure of
the similarity (or dissimilarity) between a pair of signal
waveforms:

T
P i — f sm(Osi()di/E,
0

= cos[(m — D (AwT/2 + AB)]sinc[(m — DAwT/2],
(Ch)

where & = fUT s2 (f)dt is the energy of a signal pulse. Note
that all CFSK signals have the same energy.

The optimal classical receiver discriminates the input
state by finding the largest cross-correlation between the
received vector r and each of the M nonorthogonal signal
vectors {s,} [19]:

Cr,sp)=r-8, m=12,... M. (C2)
For the transmitted signal j and the communication

channel corrupted by additive white Gaussian noise the
received signal waveform can be written as

1 () = s; (1) + m; (1), (C3)
where n; (£) is additive white Gaussian noise with a power-
spectral density Np/2 W/Hz. Thus, the cross-correlations
read

C(ry,5m) = Es¥Vjm +

ENo /21, (C4)

where n;, = fDT n; (s (D)dt//ENy /2 is Gaussian noise
with zero mean and unit variance. Note that noise com-
ponents i, of the CFSK symbols are not independent
because of the nonzero correlations y,,;. To simplify our
numerical simulations, it is convenient to find an orthonor-
mal basis {¢} for {s,}, whose components are comprised of
phase-coherent superpositions of the alphabet states, using
a Gram-Schmidt orthogonalization procedure. In general,
noise cannot be represented in the basis {¢}. However, we
are only interested in the noise components that yield a
nonzero correlation with {s,,}. Therefore, for the purposes
of calculating cross-correlations we write

M
C(tj,5m) = E¥jm + VENo/2 Y smimjiy  (C5)
i=1

where s5,,; = fDTSm (H)g;(H)dt are the Gram-Schmidt coeffi-
cients for a set of signal vectors {s,,}, and n;; are orthogonal
(independent) components of the Gaussian noise with a
zero-mean and unit variance.

When the only noise in the system is shot noise, one can
write Eq. (C5) in a dimensionless form as

M
C(rj, Sm) = 4/ Z(H)}t}m =+ Z Smiljis (C6}
i=l1

where (n) is an average number of photons in a received
signal.

To make a discrimination decision, one selects the m that
maximizes the correlation C(r;, s,s). To find the error prob-
ability of the optimal classical receiver in the shot-noise
limit, we perform Monte Carlo simulations using coherent
states” parameters of a CFSK alphabet for a range of input
energies from 1 to 10 photons per symbol at the receiver
and for CFSK parameters from Table . We count errors
in discrimination when the sent symbol j is different from
the received symbol m (N;,) assuming equal probability
for all symbols of the alphabet j = 1,2,...,M. Then, the
best classically attainable discrimination probability can be
approximated as

M
1
CFSK
Poni = MN ZM‘#W
i=l

where N is total number of trials. We perform the simu-

lation until ZM:I N;+m reaches a certain value Ny The

accuracy of th{s simulation is given by the standard devi-
ation ,/Ng. These probabilities are presented in Figs. 57
as classical bounds with error bars at one standard devia-
tion. Connecting lines that represent the SNL in Figs. 5 and

7 are based on linear fits of error probability logarithms.
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