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A B S T R A C T

Performance of Automatic Speech Recognition (ASR) systems is known to suffer considerable degradation when
exposed to Far-Field speech data capture. Consequently, far-field ASR has received considerable attention in
recent years. Motivated by our recent work using Curriculum Learning (CL) based strategies to improve Speaker
Identification (SID) under noisy and degraded conditions, this study proposes a novel approach to improve
far-field ASR using CL based approaches. Specifically, we propose using a CL based approach for training a
Bidirectional Long Short Term Memory (BLSTM) based ASR network trained using the Connectionist Temporal
Classification (CTC) objective function. We initiate the training with comparatively easier near-field data, and
include more diverse (difficult) far-field data progressively in the later stages of training. These proposed
approaches are shown to significantly outperform the baseline BLSTM ASR system, and offer relative reductions
in WERs of up to +7.3% and +10.1% for the dev and eval sets of the AMI far-field voice capture corpus.
1. Introduction

A unique attribute of the human learning process is our ability
to grasp a difficult concept by relating it to an already assimilated
and comparatively easier concept. This human learning mechanism has
served as a strong motivation behind a distinct category of Curriculum
Learning (CL) based algorithms in Machine Learning (Bengio et al.,
2009). The use of CL based training strategies have been explored
for a variety of applications such as: to train richer architectures for
Deep Neural Networks (DNN) based Automatic Speech Recognition
(ASR) systems (Amodei et al., 2016), to improve noise robustness of
utomatic speech recognition (ASR) (Braun et al., 2017), to improve
he performance of Speaker Identification (SID) systems in the presence
f severe noise and channel degradations among others (Ranjan et al.,
017; Ranjan and Hansen, 2018). In this current study, we propose
novel framework to improve the performance of end-to-end deep
idirectional Long Short Term Memory Network (BLSTM) based ASR
ystems trained using the Connectionist Temporal Classification (CTC)
bjective function on far-field voice captured speech.
ASR systems experience significant degradation in accuracy when

xposed to far-field speech utterances due to a variety of causes such
s reverberation, background noise, and multiple concurrently active
coustic sources (Swietojanski et al., 2014). Connectionist Temporal
lassification (CTC) based ASR systems have previously been explored

✩ This project was supported by the National Science Foundation (NSF) under Grant Award #1918032 (PI: Hansen), and in part by the University of Texas at
allas from the Distinguished University Chair in Telecommunications Engineering held by J.H.L. Hansen.
∗ Corresponding author.
E-mail addresses: shivesh.ranjan@utdallas.edu (S. Ranjan), john.hansen@utdallas.edu (J.H.L. Hansen).

in Graves et al. (2013). Unlike conventional Deep Neural Networks
(DNN) based ASR systems, the CTC based ASR systems can be trained in
an end-to-end manner without requiring the alignments from an HMM–
GMM system for training. This simplifies the ASR pipeline, albeit with
some degradation in accuracy compared to conventional DNN based
ASR systems (Miao et al., 2015).

Several DNN based approaches have been proposed to improve ASR
accuracy for far-field speech. In Miao and Metze (2015), bottleneck
(BNF) features from a near/far field classifier were used together with
regular acoustic features to improve far-field speech recognition. In
the same work, the authors also proposed a novel Distance Adaptive
training strategy, where BNF features from the near/far field classifier
were used to learn a distance-normalized feature space.

The use of DNNs for far-field ASR was also investigated in Swieto-
janski et al. (2013), where a significant reduction in WER was observed
by employing feature-level concatenation for the multiple channels of
the far-field data. Furthermore, the use of multi-style training using
each of the multiple array channels was also investigated. In Swieto-
janski et al. (2014), the use of Convolutional Neural Networks (CNNs)
for improved far-field speech recognition was investigated. Specifically,
the authors explored using weight sharing, and cross channel pooling
to improve far-field ASR.
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In Qian et al. (2016), several approaches to improve far-field speech
ecognition were examined. The authors investigated jointly training
network to perform both recognition and dereverberation. Further-
ore, the use of model sharing, where some parameters of the far-field
odel were made close to the near-field model by minimizing the mean
quared error (MSE) between the outputs of some hidden layers was
lso considered. Additionally, an environment code aware training was
lso proposed in the same work, wherein BNF features extracted from
network trained to map far-field features to near-field were used as
uxiliary inputs to the ASR system.
In Peddinti et al. (2015a), the use of Time Delay Neural Networks

(TDNN) for far-field speech recognition was explored. Significant re-
duction in WER was observed by using acoustic features and i-Vectors
with a TDNN architecture. Using Room Impulse Responses (RIRs) to
create additional pre-training simulated far-field data for training the
networks was investigated in Peddinti et al. (2015b), Ko et al. (2017).
n Ko et al. (2017), the performance using augmented simulated data
mproved by adding point noise sources.
An approach combining the networks for speech enhancement and

peech recognition was proposed in Ravanelli et al. (2017). The au-
hors explored using a network of DNNs, wherein modules for speech
nhancement and recognition were jointly trained. In this approach, the
peech enhancement loss function also included contributions from the
NN for ASR. This resulted in overall improvements to far-field speech
ecognition.
A student–teacher transfer learning based approach to far-field

peech recognition was proposed in Kim et al. (2017). In that pro-
osed Bridgenet architecture, the authors used a knowledge bridge
etween a teacher network trained on near-field speech, to facilitate
ereverberation by the student network trained on far-field speech
ata. This approach was motivated by knowledge distillation based
echniques (Hinton et al., 2015) where a larger teacher network is used
o train a student network with improved generalization ability.
To improve recognition performance on reverberant speech, in Giri

t al. (2015), a multi-task learning based approach was adopted that
oth classified speech senones and performed feature enhancement. In
ddition, in the same work, the use of room aware features that char-
cterized reverberation was also explored. The room aware features
ere input as auxiliary information to the network. In Himawan et al.
2015), a DNN was used to transform the far-field speech features to
hose corresponding to near-field utterances.
Several beamforming based approaches that utilize audio captured

sing a microphone array have also been proposed to improve the
ecognition accuracy of far-field speech (Khoubrouy and Hansen, 2016;
umatani et al., 2012; Marino and Hain, 2011). In Seltzer et al.
2004), array processing was carried out in a way that maximized
he likelihood of generating correct hypotheses. A tutorial on various
rray processing based techniques for far-field speech recognition is
resented in Kumatani et al. (2012). Also, an investigative study on the
ffectiveness of beamforming techniques for ASR in meeting scenarios
as also presented in Marino and Hain (2011).
Curriculum Learning (CL) based approaches have also been explored

o improve far-field speech recognition: in Chang et al. (2019), Signal-
o-Noise Ratio (SNR) was used as a curriculum criterion to train a
equence-to-sequence (seq2seq) architecture. The work in Braun et al.
2017) had originally explored using SNR to improve ASR accuracy in
oisy conditions. In Zhang et al. (2020), several CL criterion such as
NR, gender, and duration of the utterance were explored to improve
nd-to-end multi-talker ASR.
This current study proposes a novel approach to far-field speech

ecognition using Curriculum Learning (CL). Specifically, we focus on
mproving ASR accuracy using train and test data captured using a
ingle distant microphone (SDM). To this end, we employ the SDM
ataset of the AMI corpus (Carletta, 2006; Hain et al., 2008; Renals
nd Swietojanski, 2017). All CL based approaches require a suitable
124

ifficulty criterion. In Braun et al. (2017), SNR was used for assigning t
ifficulty while training the system for ASR. In Ranjan et al. (2017),
anjan and Hansen (2018), SNR and the difference of Signal-to-Noise-
istortion and Noise-Distortion (SND-ND) values were investigated for
evising CL based strategies for improving Speaker Identification (SID)
n the presence of severe noise and channel distortions. In Marchi et al.
2018), an LSTM network was used to obtain speaker embeddings using
CL based approach.
In this current study, we explore the use of distance information

near vs. far) as a choice for a difficulty criterion for training ASR
ystems. We note that this is different from other CL based approaches
o improve ASR that have used SNR, gender, and utterance-duration as
ifficulty criteria (Braun et al., 2017; Chang et al., 2019; Zhang et al.,
020). We note that the motivation for using distance guided CL is
omewhat similar to using SNR as the difficulty criterion. However,
ince far-field speech recognition is challenging due to several factors
uch as reverberation, background noise, and multiple concurrently
ctive acoustic sources (Swietojanski et al., 2014), the use of distance
nformation for guiding CL can be viewed as encapsulating all these
actors jointly (including SNR). The key contributions of this study are:

1. We propose novel CL based approaches to improve the perfor-
mance of far-field speech recognition where the training and
test data have been captured using a Single Distant Microphone
(SDM). Specifically, we propose 3 related CL based approaches:
CL Data Hop (CL-DH), CL Data Merge (CL-DM), and CL Data
Hop and Merge (CL-DHM) to improve recognition accuracy of
far-field captured speech.

2. We investigate the use of end-to-end CTC based BLSTM acoustic
models for far-field speech recognition.

3. We report results of our proposed CL based approaches on both
dev and eval sets of the AMI distant speech corpus.

In all three CL based approaches: CL-DH, CL-DM and CL-DHM,
raining is initiated with data that is deemed to be comparatively easier.
owever, in CL-DH, only the difficult data is used toward the end of
raining. In our proposed CL-DM based approach for far-field ASR, the
raining set is augmented with more difficult data in the final stages of
raining while also utilizing the easier data. Finally, the CL-DHM based
pproach combines both data hoping and merging, by moving to only
ifficult data from easy data for training, and then including both easy
nd difficult data to obtain the final models.

. Bi-directional LSTM architecture for ASR

Multiple bi-directional LSTM layers can be stacked to obtain a deep
rchitecture. Fig. 1 shows the architecture of the LSTM unit used in this
ork (Miao et al., 2015). In Fig. 1, ⊙ are the multiplicative gates, and
he non-linearities indicated in the figure are hyperbolic tangents, while
𝑡 refers to the input speech feature frame. Also appearing in Fig. 1,
𝑡, 𝑜𝑡, 𝑓𝑡, 𝑐𝑡 are respectively the outputs of the input gate, output gate,
orget gate, and the LSTM memory cell. The figure also shows peephole
onnections from the memory cell 𝑐𝑡 to the various gates which are used
o learn output timings (Miao et al., 2015). The various parameters of
he LSTM unit shown in Fig. 1 can be evaluated as provided in Miao
t al. (2015),

𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 +𝑊𝑖ℎℎ𝑡−1 +𝑊𝑖𝑐𝑐𝑡−1 + 𝑏𝑖), (1)

𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 +𝑊𝑓ℎℎ𝑡−1 +𝑊𝑓𝑐𝑐𝑡−1 + 𝑏𝑓 ), (2)

𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝜙(𝑊𝑐𝑥𝑥𝑡 +𝑊𝑐ℎℎ𝑡−1 + 𝑏𝑐 ), (3)

𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 +𝑊𝑜ℎℎ𝑡−1 +𝑊𝑜𝑐𝑐𝑡 + 𝑏𝑜), (4)

𝑡 = 𝑜𝑡 ⊙ 𝑐𝑡. (5)

For Eqs. (1) through (5), the matrices 𝑊𝑘𝑥, 𝑘 ∈ {𝑖, 𝑓 , 𝑐, 𝑜} represent

he input connections with the corresponding units. Similarly, 𝑊𝑙ℎ, 𝑙 ∈
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Fig. 1. Structure of an LSTM unit.
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Fig. 2. Architecture of the deep BLSTM network used for ASR in this study. Four
bi-directional LSTM layers are stacked together, followed by an affine transform, and
a softmax layer respectively.

{𝑖, 𝑓 , 𝑐, 𝑜} denote the connections between the previous cell states and
the units, and 𝑊𝑚𝑐 , 𝑚 ∈ {𝑖, 𝑓 , 𝑜} represent the diagonal weight matrices
used in the peephole connections. Additionally, 𝜎 and 𝜙 denote the
igmoid and hyperbolic tangent nonlinearities respectively. Also, 𝑏𝑛, 𝑛 ∈
𝑖, 𝑓 , 𝑐, 𝑜} are biases of the respective units. For ASR applications,
everal LSTM layers can be stacked together to form a deep archi-
ecture, followed by an affine transform layer, and a softmax layer
orresponding to the phonemes at the output layer. Finally, the network
an be trained with back-propagation though time (BPTT) (Miao et al.,
015). Fig. 2 shows the architecture of the deep BLSTM network used
n this study.

As can be seen in Fig. 2, four BLSTM layers are stacked together
o form a deep architecture. The network is trained using the CTC
bjective function (Graves et al., 2006). This allows us to train the
etwork in an end-to-end fashion without requiring alignments from
125

n already trained HMM–GMM or DNN based ASR system.
. Curriculum learning based approaches for far-field speech
ecognition

Here, we introduce three CL based approaches for far-field speech
ecognition: CL-DH, CL-DM and CL-DHM. The key step in all three
pproaches is to divide the training data into subsets based on a suitable
ifficulty criterion, and introduce more difficult data sequentially to the
raining algorithm in the later stages. A critical requirement of any CL
ased learning algorithm is measure for assigning the difficulty of the
raining examples, which is introduced next.

.1. Assigning difficulty to the training data

In Braun et al. (2017), SNR values of the utterances were used to
assign difficulty metric for training DNNs for ASR. For SID applications,
the use of SNR information and SND - ND values were investigated
in Ranjan and Hansen (2018), Ranjan et al. (2017). In Marchi et al.
2018), domain information of the query was used as the curriculum
information for training a SID system to extract speaker embeddings
for speaker verification.

In this study, we propose to use the distance information of the
microphone to subject/speaker employed to capture the audio, that is,
far vs. near for assigning difficulty of the training data. Since near-
field speech is comparatively easier to work with than far-field for
ASR systems, as evident by consistent higher accuracy, we argue that
distance information (i.e., near vs. far field) can be used as a suitable
difficulty metric in formulating a CL based training approach for far-
field ASR. It is well known that ASR systems experience significant
degradation in accuracy when exposed to far-field speech utterances
due to a variety of causes such as reverberation, background noise,
and multiple concurrently active acoustic sources (Swietojanski et al.,
2014). We argue that far-field data is comparatively harder to train on
due to the underlying causes behind degradation. Thus, microphone
distance (i.e., near-field or far-field) can be a suitable hardness measure
for training ASR systems.

3.2. CL-DH ‘‘Data-Hop’’ training

In contrast to traditional training of a BLSTM network trained with
the CTC objective function, CL-DH operates differently in the manner
in how it uses training data to estimate the model parameters. More
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specifically, the training data is first arranged into two subsets based
on the difficulty criterion (i.e., near vs. far-field sets). Next, the deep
BLSTM network is trained for ASR using a CTC loss. However, unlike
traditional training where all available data is included, CL-DH uses
only the easy (i.e., near-field) data in the first training phase. After the
network has been trained on easy data for a predetermined number of
iterations, more difficult (i.e., far-field) data is progressively included in
training. At this point, the network trained on the easy data is used as
the initial network when training on far-field data. This gradual shift to
more difficult data and diversity leads to better estimation of the deep
BLSTM ASR network parameters compared to the traditional training
approach.

It has been suggested that CL based approaches can operate in a
manner similar to continuation methods (Bengio et al., 2009; Allgower
and Georg, 2012), where initialization of the optimization set-up with
a simpler, more smoothed version of a non-convex function may lead
the parameter estimation algorithm to a dominant (and better) overall
minimum of the function. In the CL-DH paradigm, this translates to
improved estimation of the deep BLSTM network parameters by letting
the CTC loss to obtain more robust network parameters compared to a
traditional CTC loss based BLSTM training approach. Moreover, it has
also been argued that CL based techniques can also facilitate improved
regularization during network training, thus leading to better model
parameters that are more robust to unseen data (Bengio et al., 2009).
It is hypothesized that our proposed CL-DH approach may also benefit
from increased generalization by employing CL driven network train-
ing. The various steps of CL-DH algorithm are presented in Algorithm
1.

Algorithm 1: CL-DH "Data-Hop" for robust far-field speech
recognition.
1 Partition the training data 𝑑𝑎𝑙𝑙 into 2 distinct subsets 𝑑𝑁𝐹 , and
𝑑𝐹𝐹 corresponding to near and far-field data respectively.

2 Initialize the deep BLSTM network parameters randomly.
3 Initialize an empty current dataset 𝑑𝑐𝑢 ← ∅
4 Choose a suitable value for 𝑛𝑘, the number of iterations per new
data subset.

5 for k=NF:FF do
6 𝑑𝑐𝑢 ← 𝑑𝑘
7 for l=1:𝑛𝑘 do
8 Use the current deep BLSTM network and 𝑑𝑐𝑢 to obtain

updated network parameters using the CTC loss and
BPTT.

9 end
10 end
11 Use the deep BLSTM network trained after the last iteration as
the final network for far-field ASR.

3.3. CL-DM ‘‘Data-Merge’’ training

Our proposed CL-DM algorithm differs from the previously pre-
sented CL-DH algorithm in the manner in which the second, and more
difficult metric based set containing far-field data gets included in
training. Specifically, after updating the deep BLSTM network with a
pre-determined number of iterations using the near-field data, both
near and far-field data are included in second stage training. Thus,
the second stage of CL-DM is similar to a traditional multi-condition
training approach using both near and far-field data.

We hypothesize that initiating the training with comparatively eas-
ier near-field data, and subsequently adding far-field data would lead
to a more robust deep BLSTM network parameter set compared to
traditional multi-condition training using both near and far-field data.
Algorithm 2 presents the details of our proposed CL-DM approach.
126
Algorithm 2: CL-DM "Data-Merge" for robust far-field speech
recognition.
1 Partition the training data 𝑑𝑎𝑙𝑙 into 2 distinct subsets 𝑑𝑁𝐹 , and
𝑑𝐹𝐹 corresponding to near and far-field data respectively.

2 Initialize the deep BLSTM network parameters randomly.
3 Initialize an empty current dataset 𝑑𝑐𝑢 ← ∅
4 Choose a suitable value for 𝑛𝑘, the number of iterations per new
data subset.

5 for k=NF:FF do
6 𝑑𝑐𝑢 ← 𝑑𝑐𝑢 ∪ 𝑑𝑘
7 for l=1:𝑛𝑘 do
8 Use the current deep BLSTM network and 𝑑𝑐𝑢 to obtain

updated network parameters using the CTC loss and
BPTT.

9 end
10 end
11 Use the deep BLSTM network trained after the last iteration as
the final network for far-field ASR.

3.4. CL-DHM ‘‘Data Hop & Merge’’ training

Next, we combine the essential steps of CL-DH and CL-DM ap-
proaches in what we term the ‘‘CL Data Hop and Merge’’ (CL-DHM)
strategy. Here, training is first initiated with the easiest subset, next, as
in CL-DH, only the more difficult data is used for several iterations to
train the ASR model. Lastly, the training uses both easy and difficult
data to obtain the final model, similar to the method that was carried
out for the CL-DM strategy. This approach was also inspired by a
recent CL based approach used for SID, where training was carried out
respectively on easy, difficult, and then both easy and difficult data
combined (Marchi et al., 2018). Algorithm 3 presents our proposed
CL-DHM data hop and merge based approach for robust far-field ASR.

Algorithm 3: CL-DHM "Data Hop & Merge" for robust far-field
speech recognition.
1 Partition the training data 𝑑𝑎𝑙𝑙 into 2 distinct subsets 𝑑𝑁𝐹 , and
𝑑𝐹𝐹 corresponding to near and far-field data respectively.

2 Initialize the deep BLSTM network parameters randomly.
3 Initialize an empty current dataset 𝑑𝑐𝑢 ← ∅
4 Choose suitable values for 𝑛𝑘, the number of iterations per new
data subset 𝑑𝑘.

5 for k=NF:FF:NF ∪ FF do
6 𝑑𝑐𝑢 ← 𝑑𝑘
7 for l=1:𝑛𝑘 do
8 Use the current deep BLSTM network and 𝑑𝑐𝑢 to obtain

updated network parameters using the CTC loss and
BPTT.

9 end
10 end
11 Use the deep BLSTM network trained after the last iteration as
the final network for far-field ASR.

3.5. Baseline BLSTM CTC loss based ASR systems

The baseline systems corresponding to the CL-DH, CL-DM and CL-
DHM based approaches are formulated using deep BLSTM networks
trained with the CTC loss. For a one-to-one comparison, for CL-DH, the
corresponding baseline is a deep BLSTM network trained with far-field
data. Similarly, for the CL-DM approach, the corresponding baseline
system is trained on both near and far-field data together in a standard
multi-condition set up. The same baseline as that used for comparing
the CL-DM approach is used for benchmarking the CL-DHM systems.
More details about the various set-ups are presented in Section 5. Next,

we consider the far-field speech corpus.
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Table 1
Composition of the train, dev and eval subsets of the AMI
Corpus. Only far-field (SDM) versions of dev and eval data
have been used for evaluations reported in this study.
Data set Number of utterances

train 108221
dev 13059
eval 12612

4. AMI corpus

For experiments reported in this study, we have used the AMI cor-
pus (Carletta, 2006) which has approximately 100 h of speech recorded
in meeting scenarios. The audio was captured using both near-field and
far-field microphones (using 8 microphone circular array). For the far-
field scenario, we only use the data from a Single Distant Microphone
(SDM) for both training and testing. The near-field data, referred to as
the Individual Headset Microphone (IHM) in the corpus, consists of the
same utterances as those found in the SDM set. The AMI corpus has
been widely used for far-field ASR, and continues to be used in several
other speech applications such as speech enhancement (Mirsamadi and
Hansen, 2019; Trinh and Mandel, 2020; Grezes et al., 2020).

To assess performance, the entire corpus is divided into train, dev,
nd eval subsets. Separate versions of these subsets exist for the near-
ield (IHM) and far-field (SDM) cases to train and test the corresponding
ear/far field utterances. Table 1 presents the data partition of the
rain, dev and eval subsets of the AMI corpus used in this study. For
he experiments in this study, performance is only reported for far-field
SDM) versions of the dev and eval data. Only for training, near-field
IHM) and far-field (SDM) data have been used as indicated in the
orresponding training descriptions.
The entire train set corresponds to approximately 75 h of speech

ata. Furthermore, to carry out BLSTM training, approximately 10%
f the train set of the AMI corpus was randomly set aside as a cross-
alidation set to monitor the training.

. Experiments, results & discussion

.1. Baseline deep BLSTM CTC loss based ASR systems

For the baseline systems corresponding to the CL-DH and CL-DM
ased approaches, we have used the Eesen toolkit (Miao et al., 2015).
pecifically, for the baseline corresponding to the CL-DH based ap-
roach, referred to as system B-1 in this study, 40-dim log-Mel filter-
ank features together with delta and delta–delta are used as input
o the deep BLSTM network. Thus, the final input to the network is
20-dim. We use the Switchboard recipe available with Eesen, albeit
ith some modifications, to train the baseline systems. The language
odel was trained using both Switchboard and AMI text materials. The
aseline system corresponding to the CL-DH approach has 4 BLSTM
ayers with 320 cells per layer in each direction. The last layer is a
oftmax layer with 46 outputs preceded by an affine transform layer.
nless otherwise stated, the same architecture has been used in all
xperiments reported in this study. We kept the learning rate the same
s in the Switchboard recipe, with an initial value of 0.00004. As
entioned previously, approximately 10% of the training data was set
side as a held-out set to monitor the training. The maximum number
f iterations was set at 20.
For the baseline corresponding to the CL-DH approach, referred to

s system B-1 in this work, the deep BLSTM network is trained with
ar-field (SDM) data only. We note that while the baseline system B-
is trained on far-field data only, the corresponding CL-DH system

s first exposed to near-field, and subsequently to far-field data. Our
otivation for comparing CL-DH with B-1 baseline is only to show that
erformance can be improved by moving to difficult data (FF) from
asier data (Near-field) in the CL paradigm.
127
able 2
escription of the baseline systems corresponding to the CL-DH approach (system B-1),
L-DM and CL-DHM approaches (system B-2).
Baseline system No of BLSTM layers Mem. cells per dir. BLSTM trained on

B-1 4 320 FF
B-2 4 320 NF + FF

The Eesen recipe stops training when the relative improvement falls
below a predefined threshold. For the baseline corresponding to the
CL-DM and CL-DHM approaches, the deep BLSTM network was trained
with both near and far field data in every iteration. Thus, this baseline is
a standard multi-condition trained network with both near and far-field
data. Table 2 highlights the architectural details of the two baseline
systems B-1 and B-2 used in this study.

5.2. CL-DH based far-field ASR systems

For the CL-DH based far-field ASR system, first the BLSTM network
is trained with the comparatively easier near-field (IHM) data for a
certain number of iterations as outlined in Alg. 1. Next, the BLSTM
network obtained using the near-field (IHM) data is used as the initial
network for training the final network with the more difficult far-field
(SDM) data. As can be observed in Alg. 1, the number of iterations 𝑛𝑘
used for training with a particular data set (i.e., near-field or far-field)
can have an impact on performance of the final ASR system. This issue
is examined in more detail in Section 5.5.

5.3. CL-DM based far-field ASR systems

For the CL-DM based far-field ASR system, first the BLSTM network
is trained with the comparatively easier near-field (IHM) data for a
predetermined number of iterations as outlined in Alg. 2. Next, the
BLSTM network obtained using the near-field IHM data is used as the
initial network for training the final BLSTM ASR network with both
easy (IHM) and difficult (SDM) data. As can be observed in Alg. 2,
the number of iterations 𝑛𝑘 used for training with a particular data
set (i.e., near-field or near-field + far-field) can have an impact on the
performance of the final ASR system. This is investigated in more detail
in Section 5.5.

5.4. CL-DHM based far-field ASR systems

For the CL-DHM based far-field ASR system, first the BLSTM net-
work is trained with comparatively easier near-field (IHM) data for a
predetermined number of iterations as outlined in Alg. 3. Next, the
BLSTM network obtained using the near-field IHM data is used as the
initial network for training with a few iterations on only the more
difficult far-field (SDM) data. In the last step, the final BLSTM ASR
network is trained with both easy (IHM) and difficult (SDM) data. As
can be observed in Alg. 3, the number of iterations 𝑛𝑘 used for training
with a particular dataset also impacts on the performance of the final
ASR system, which is considered in the next section.

5.5. Determining optimal number of iterations for CL based approaches

For the CL-DH based far-field ASR systems, we experimented with
several values of 𝑛𝑘 from Alg. 1 for training using easy near-field IHM
data. For the second stage of both CL-DH and CL-DM based approaches,
we did not vary the number of iterations and made use of the EESEN
recipe’s typical stopping criterion for terminating the training. To this
end, Table 3 shows WERs obtained on the dev subset of the AMI
corpus using the CL-DH based approach for different values of 𝑛𝑘. We
investigated three values for the number of iterations on the easy (near-

field) IHM data: 3, 6, and 9. Thus, these set of experiments were aimed
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Table 3
WER obtained by our proposed CL-DH based approach on
dev set of the AMI corpus for varying iteration count on the
easy (near-field) data.
No. of iterations, 𝑛𝑘 on
easy (NF) data

WER (%) on dev

3 65.5
6 65.5
9 64.4

Table 4
WER obtained by our proposed CL-DM based approach on
dev set of AMI corpus for varying iteration count on the easy
(near-field) data.
No. of iterations, 𝑑𝑘 on
easy (NF) data

WER on dev

3 61.4
6 60.9
9 61.1

at exploring the sensitivity to the number of iterations in the first step
of our 2-step training strategy for CL-DH.

As can be seen from Table 3, increasing the number of iterations
from 3 to 9 had a positive impact on performance of our proposed
CL-DH based approach as evident by a reduction in WER on the dev
set. However, no reduction in WER was observed when increasing the
number of iterations from 3 to 6, suggesting that our proposed CL-DH
based approach is not very sensitive to the number of iterations on the
easy data set as long as we employ at least a few iterations on the
easier dataset in stage 1. We also observed that increasing the num-
ber of iterations beyond 9 did not offer any significant improvement
compared to the CL-DH based approach trained with 9 iterations. We
report performance for the two CL-DH based approaches CL-DH1 and
CL-DH2 trained with 6 and 9 iterations respectively.

Next, we examine the effect of the number of iterations on the CL-
DM based approaches. To this end, Table 4 also shows WERs on the
dev set of the AMI corpus, for three CL-DM based systems with 3, 6,
and 9 iterations respectively on the easy (near-field) data

From results in Table 4, it is observed that increasing the number
of iterations 𝑛𝑘 on the easy (near-field) IHM data in the first step
of our proposed CL-DM based approach has a positive impact on
performance when the number of iterations is increased from 3 to 6.
This is substantiated by a small reduction in WER on the dev set of
the AMI corpus for the corresponding BLSTM networks. However, there
is a slight loss in performance as marked by a small increase in WER
on the dev set, when the number of iterations is further increased to
9. This points out that increasing the number of iterations beyond a
certain value may not offer any additional improvements. For the CL-
DM experiments reported in this study corresponding to the CL-DM
approach, we report the results of two systems: CL-DM1 and CL-DM2
with 6 and 9 iterations respectively on the easy (near-field) IHM data.
We did not observe any additional improvements by increasing the
number of iterations on the easy, near-field data beyond 9.

We also investigated the effect of the number of iterations on the
difficult data on our proposed CL-DHM based approach. To this end,
Table 5 shows results on the dev set of the AMI corpus obtained by
the CL-DHM systems with 3, 6 and 9 iterations on the difficult (far-
field, SDM) data. For all three systems, the network was first trained
with 9 iterations on the easy (IHM) data before being trained only on
difficult data in the 2nd stage. All systems were trained on both near
and far-field data in the last step to obtain the final models.

As can be observed from Table 5, our proposed CL-DHM based
approach is not very sensitive to the number of iterations on the
difficult data in the second step. However, there is a slight degradation
marked by a small increase in WER, as the number of iterations is
increased to 9 from 3. The performance for all three systems is generally
128
Table 5
WER obtained by our proposed CL-DHM based approach on
dev set of the AMI corpus for varying iterations on the
difficult (far-field) data.
No. of iterations, 𝑑𝑘 on
difficult (far-field) data

WER on dev

3 61.4
6 61.7
9 61.7

Table 6
Comparison of WER on the dev and eval sets of the AMI corpus obtained by the CL-
DH1 and CL-DH2 systems trained with 6 and 9 iterations respectively on the easy
(near-field) data, and the far-field data, compared against the baseline system B-1
trained with far-field data. For the baseline, and for CL approaches (in the last stage of
training), maximum number of iterations was kept at 20, but in practice, the training
was observed to stop before 20 iterations due to the stopping criterion used.
ASR system No. iter. (easy data) Max No. Iter. WER

dev eval

Baseline B-1 NA 20 66.6 71.0
CL-DH1 6 26 65.5 69.1
CL-DH2 9 29 64.4 68.0

Fig. 3. Relative reduction in WER for our proposed CL-DH approach based systems:
CL-DH1 and CL-DH2 compared against the baseline system B-1 (trained on far-field
data) on the dev and eval sets of the AMI corpus.

similar. These results also indicate that for practical considerations, it
is reasonable to use 3 iterations on the difficult data for our proposed
CL-DHM based approach.

We observed that for all our proposed CL based approaches, the loss
function decreased faster in comparison to the corresponding baseline
systems. This is in line with other works that have reported faster
reduction in loss function when CL is used (Bengio et al., 2009; Amodei
et al., 2016).

5.6. Results & discussion

We first investigate performance of our proposed CL-DH based
approaches for far-field speech recognition. To this end, Table 6 shows
performance of our two CL-DH systems: CL-DH1 (with 6 iterations on
the easy, NF data) and CL-DH2 (with 9 iterations on the easy, NF data)
compared against the baseline system B-1 trained on only the far-field
data. The table shows results for both dev and eval subsets of the AMI
corpus.

Fig. 3 shows the relative reduction in WER achieved by our pro-
posed CL-DH approach. Specifically, the WER reduction achieved by
the CL-DH1 and CL-DH2 systems compared against the baseline system
B-1 (trained on only far-field data) is shown.
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Table 7
Comparison of WER on the dev and eval sets of the AMI corpus obtained by the
CL-DM1 and CL-DM2 systems trained with 6 and 9 iterations respectively on the easy
(near-field) data, and the far-field data, compared against a baseline system trained
with both near and far-field data. For the baseline, and for CL approaches (in the last
stage of training), maximum number of iterations was kept at 20, but in practice, the
training was observed to stop before 20 iterations due to the stopping criterion used.
ASR system No. iter. (easy data) Max No. iter. WER

dev eval

Baseline B-2 NA 20 65.7 73.2
CL-DM1 6 26 60.9 66.1
CL-DM2 9 29 61.1 65.9

Fig. 4. Relative reduction in WER for our proposed CL-DM approach based systems:
L-DM1 and CL-DM2 compared against the baseline system B-2 (trained on near and
ar-field data) on the dev and eval sets of the AMI corpus.

As seen in Fig. 3, CL-DH2 (trained with 9 iterations on the easy,
ear-field data in the first stage), consistently outperforms the CL-DH1
ystem (trained with 6 iterations on the near-field data) on both dev
nd eval subsets of the AMI corpus. The reductions in WER for the
val set are more compared to the dev set, with CL-DH1 and CL-DH2
ffering relative reduction in WER of +2.67% and +4.22% respectively.
Performance of our proposed CL-DM based approaches are investi-

gated in Table 7. To this end, WERs of CL-DM1 and CL-DM2 systems
are compared against a baseline Bidirectional LSTM based ASR system,
B-2, trained with both near and far-field data. The results are shown
for both dev and eval sets of the AMI corpus.

Comparing results of the baseline systems B-1, B-2 from Tables 5
and 6 respectively, we observe that including both near and far-field
data in training improves performance on dev set of the AMI corpus,
as expected. However, a noticeable loss in performance on the eval set
is marked by an increase in WER as experienced by the baseline system
B-2.

Fig. 4 shows the relative reductions in WER achieved by our pro-
posed CL-DM approaches. Specifically, WER reduction achieved by
CL-DM1 and CL-DM2 systems compared against the baseline system B-2
(trained on near and far-field data) is shown.

As seen in Fig. 4, CL-DM2 (trained with 9 iterations on the easy,
near-field) data in the first stage, achieves a similar reduction in WER
as the CL-DM1 system (trained with 6 iterations on the near-field data)
on both dev and eval subsets of the AMI corpus. This is different
from what was observed for the CL-DH based systems, where CL-
DH2 outperformed CL-DH1 system consistently. On dev set of AMI
corpus, CL-DM1 and CL-DM2 reduced the WER by +7.30% and +7.00%
respectively. The relative reductions in WER for the eval set of the AMI
corpus were +9.69% and +9.97% respectively for the CL-DM1 and CL-
DM2 systems. Similar to what was observed for the CL-DH approach,
compared to the dev set of the AMI corpus, the relative reductions in
129
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Table 8
Comparison of WER on the dev and eval sets of the AMI corpus obtained by the
CL-DHM1 and CL-DHM2 systems trained with 6 and 9 iterations respectively on the
easy (near-field) data, and difficult (far-field) data, compared against a baseline system
trained with both near and far-field data. For the baseline, and for CL approaches
(in the last stage of training), maximum number of iterations was kept at 20, but in
practice, the training was observed to stop before 20 iterations due to the stopping
criterion used.
ASR system No. iter. (difficult data) Max No. Iter. WER

dev eval

Baseline B-2 NA 20 65.7 73.2
CL-DHM1 6 35 61.7 65.9
CL-DHM2 9 26 61.7 65.8

Fig. 5. Relative reduction in WER for our proposed CL-DHM approach based systems:
CL-DHM1 and CL-DHM2 compared against the baseline system B-2 (trained on near
and far-field data) on the dev and eval sets of the AMI corpus.

WER are higher for the eval set. Overall, these results demonstrate the
effectiveness of our proposed CL-DM approach at improving the ASR
accuracy of the CTC trained deep BLSTM network.

Table 8 shows performance of our proposed CL-DHM based ap-
roaches: CL-DHM1 (trained with 6 iterations) and CL-DHM2 (trained
ith 9 iterations) respectively on dev and eval sets of the AMI corpus.
hese results can be compared against the multi-condition baseline
ystem B-2, trained on near-field and far-field data combined.
From Table 8, it is observed that our proposed CL based approaches

L-DHM1 and CL-DHM2, are both effective in reducing WERs com-
ared to a traditional multi-condition baseline. Also, the improvement
n performance achieved with the CL-DH approach is similar to what
as observed for the CL-DM approach (from Table 7).
Fig. 5 shows the relative reduction in WER achieved by our pro-

osed CL-DHM approach. Specifically, the reductions in WER achieved
y the CL-DHM1 and CL-DHM2 systems compared against the baseline
ystem B-2 (trained on near and far-field data) are shown.
As seen, both CL-DHM2 (trained with 9 iterations on difficult far-

ield data in step 2) and CL-DHM1 (trained with 6 iterations on far-field
ata in step 2), achieve similar reductions in WER as the CL-DM based
ystems on both dev and eval subsets of the AMI corpus, compared to
aseline system B-2. On the dev set of the AMI corpus, both CL-DHM1
nd CL-DHM2 reduced WER by +6.08% each. The relative reductions
n WER for the eval set of the AMI corpus are +9.97% and +10.10%
or the CL-DHM1 and CL-DHM2 systems respectively.
Fig. 6 shows the cross-validation (CV) token accuracy of the baseline

-2 compared against our proposed CL-DM1 and CL-DM2 systems. The
nitialization phase (on NF data) of the two CL based systems are not
hown, since the system B-2 initiates training with entire data.
As can be seen from Fig. 6, the baseline system’s training saturates
uicker and stops at iteration 11 with 62.46% classification accuracy.
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However, the two CL based systems CL-DM1 and CL-DM2 are able to
achieve 68.04% and 68.62% classification accuracy respectively as the
training were able to continue for more iterations before saturating.
We hypothesize that our CL based systems achieve higher accuracy
due to better local minima by using distance as a difficulty criterion
in training.

6. Conclusion

This study has proposed novel Curriculum Learning based ap-
proaches for robust far-field speech recognition using CTC trained
deep bidirectional LSTM networks. The proposed CL based algorithms
operate by initializing training with easier data and gradually include
more difficult data as training progresses. We hypothesized this ap-
proach of gradually increasing training data diversity leads to better
estimation of the model parameters for far-field speech recognition.
Our proposed CL-DH and CL-DM based approaches were first trained
on the comparatively easier near-field data, and then on far-field, and
a combination of near and far-field data respectively.

We also proposed combining the elements of CL-DH and CL-DM
algorithms in the CL-DHM approach, wherein the training progressed
with including easy (near-field), to difficult (far-field), to both easy and
difficult data in training. We reported performance of our proposed
CL-DH, CL-DM and CL-DHM approaches on both dev and eval sets
of the AMI corpus. All three CL based approaches were shown to
significantly outperform the corresponding CTC trained BLSTM ASR
baseline networks.

On the dev set of the AMI corpus, our proposed CL-DM based
approach offered a relative reduction of +7.3% in WER compared to
a standard multi-condition baseline system trained on both near and
far-field data. Compared to the CL-DHM approach, the CL-DM strategy
gave comparable, albeit superior, performance on the dev set of the
AMI corpus. On the eval set of the AMI corpus, our proposed CL-DHM
approach reduced the WER by +10.10% (relative) compared to the
aseline multi-condition system. However, on the eval set of the AMI
orpus, the performance of both CL-DM and CL-DHM approaches were
enerally similar, with both offering close to +10% relative reduction
n WER.
While we have shown our CL-based approaches to be effective for

raining deep BLSTM based ASR systems trained with the CTC objective
130
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function, CL based approaches have also been shown to work for
encode–decoder architectures in Speech Translation (Kano et al., 2017).
Therefore, we believe our proposed CL based approaches can also work
on more advanced attention based encoder–decoder architectures such
as ESPnet (Watanabe et al., 2018), and other advanced approaches
sing transformers (Karita et al., 2019). We also note that while the
MI corpus has near-field and far-field versions of the same data, this
ay not be the case for many real-life datasets. In such cases, our
roposed CL based approaches can still be used provided there is some
ccess to near-field data from another corpus. We note that matched
ear and far-fields data for the same utterance is not a requirement of
ur CL based algorithms. Furthermore, similar CL based approaches can
lso be devised using other criterion such as Word Error Rate (WER).
n such a CL guided approach, training data can be assigned WER bins,
nd a CL based approach can then use WER guided bins in training,
tarting with lowest WER data.
Moreover, CL based approaches have also been used for improved

peaker recognition in scenarios where multiple layers of difficulty are
resent in the data (Ranjan and Hansen, 2018; Marchi et al., 2018).
imilar strategies can also be explored to improve far-field ASR that
ould potentially utilize multi-layered difficulty-graded data.
This study has, therefore, demonstrated the merits of adopting

urriculum learning based strategies for training deep BLSTM based
SR systems trained with the CTC objective function. Future work
ill explore using our proposed CL-based approaches to improve per-
ormance of ASR systems under other domain mismatch scenarios.
nother direction of future work would be to extend the proposed
pproaches using advanced architectures such as Conformer (Gulati
t al., 2020) and ESPnet (Watanabe et al., 2018). The proposed ap-
roaches presented in this work can also be extended for use in other
cenarios such as the Chime challenges, where data from both binaural
nd array microphones are available (Barker et al., 2018). Another
venue for future work could be to explore the use of automated
urriculum learning based approaches that can learn from data without
human-assigned difficulty criterion for improving far-field speech

ecognition (Graves et al., 2017; Narvekar et al., 2020).
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