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Abstract—Speech technology systems such as Automatic Speech
Recognition (ASR), speaker diarization, speaker recognition, and
speech synthesis have advanced significantly by the emergence of
deep learning techniques. However, none of these voice-enabled sys-
tems perform well in natural environmental circumstances, specif-
ically in situations where one or more potential interfering talkers
are involved. Therefore, overlapping speech detection has become
an important front-end triage step for speech technology applica-
tions. This is crucial for large-scale datsets where manual labeling
in not possible. A block-based CNN architecture is proposed to
address modeling overlapping speech in audio streams with frames
as short as 25 ms. The proposed architecture is robust to both: (i)
shifts in distribution of network activations due to the change in
network parameters during training, (ii) local variations from the
input features caused by feature extraction, environmental noise, or
room interference. We also investigate the effect of alternate input
features including spectral magnitude, MFCC, MFB, and pykno-
gram on both computational time and classification performance.
Evaluation is performed on simulated overlapping speech signals
based on the GRID corpus. The experimental results highlight the
capability of the proposed system in detecting overlapping speech
frames with 90.5% accuracy, 93.5% precision, 92.7% recall, and
92.8% Fscore on same gender overlapped speech. For opposite
gender cases, the network scores exceed 95% in all the classification
metrics.

Index Terms—1-D CNN, binary classifier, co-channel speech
detection, cocktail party problem, convolutional neural network,
overlapping speech detection, residual learning, simultaneous
speaker detection, speech modeling, speech separation.

I. INTRODUCTION

THE cocktail party problem was first introduced by Colin
Cherry in 1953 [1], which has triggered research in a range

of areas that after almost 70 years are still active [2], [3]. A
core part of the cocktail party phenomena are spontaneous con-
versations, where multiple speakers are talking. In [1], Cherry
studied the human auditory system ability to selectively focus
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on one talker/conversation at a time, while ignoring interfering
sources. This contributed to a theory for selective attention
and early “filter” models for multi-speaker cocktail party com-
munications [4]–[6]. The cocktail party problem as depicted
in Fig. 1 is a psychoacoustic phenomena, which refers to the
remarkable ability of the human auditory system to selectively
attend, recognize and extract meaningful information from a
complex auditory signal, where interfering sounds are produced
by competing talkers [7]–[9].

Over the past decade, there has been increasing interest in for-
mulating solutions with the same auditory capabilities as humans
by employing both engineered signal processing disciplines
and machine learning techniques. Almost all state-of-the-art
speech technologies such as Automatic Speech Recognition
(ASR), speaker diarization, speaker identification and speech
synthesis systems operate effectively when the input is a clean
single speaker signal. In contrast, these systems degrade rapidly
in real world naturalistic scenarios, especially in existence of
an interfering talker [10]–[12]. Therefore, detecting overlap-
ping speech segments and extracting meaningful information
from them remains a challenging task, and is an active field
of research in both signal processing and machine learning
communities.

Speech is a highly non-stationary signal consisting of a se-
quence of sounds called phonemes. The time variations of these
sounds result in a very wide dynamic range of multiple frequency
components as shown in Fig. 1. Therefore, time-frequency
analysis techniques have been developed to study the frequency
components of speech signal as a function of time. Short Time
Fourier Transform (STFT) has historically been the most popu-
lar time-frequency analysis technique, which reveals important
features/structures of the speech signal. Fundamental frequency,
formants, Mel Frequency Cepstral Coefficients (MFCCs), spec-
tral centroid, spectral flux, spectral density, spectral envelope,
etc. are among important STFT-based spectral features, which
characterize different aspects of speech, and could help advance
overlapping speech research.

It is well known that the structure of a speech signal can be
adversely degraded by the presence of a simultaneous talker.
Therefore, the presence of a co-current talker can be identified
by observing potential deviations in speech structure/features.
Many studies have used manually designed features such as:
Spectral Autocorrelation Peak Valley Ratio (SAPVR) [13], har-
monicity [14], zero crossing rate, kurtosis [15], Non-negative
Matrix Factorization (NMF)-based speaker-specific energy es-
timation [16], [17], Spectral analysis of frequency modulated
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Fig. 1. Single speaker speech waveforms are shown in red, blue, green and yellow colors. Their corresponding spectrograms are also shown with the same color
code. As depicted in this figure both the temporal and spectral structure of the speech signals are degraded by the presence of competing talkers.

sub-bands (SFM) [18], and pyknogram [19], [20] to detect over-
lapping speech segments within an audio stream. However, these
features are hand crafted and may not necessarily be the optimal
representation for the degraded speech. Also, these features are
directly estimated from the speech waveform and can not learn
from the data. Therefore, they have the potential to be very fragile
in noisy, competing speaker conditions. Thus, incorporating
Deep Neural Networks (DNNs) for modeling a single speaker
speech could be a more effective way for classifying single
speaker versus overlapping speech segments.

Some studies such as [21]–[23] have recently applied DNN
architectures to address the classification of overlapping speech
segments. In [21], the authors used a Long Short-Term Memory
(LSTM) network to address overlapping speech detection for
the AMI corpus [24]. The network was trained based on several
features such as: kurtosis, spectral flux, harmonicity and MFCC,
which results in 76% accuracy in detecting overlapping speech
segments. However, since AMI is a real meeting scenario corpus,
it is not balanced in terms of the ratio between the number of
overlapping and non-overlapping speech samples. As reported
in [23], AMI only contains approximately 5–10% overlapping
speech, which may not be sufficient for training a neural network
model without overfitting the data.

Consequently, [22] used artificially generated overlapping
speech to train their CNN network. The CNN was trained based
on FFT, MFCC and spectral envelope extracted from 25, 100,
and 500 ms audio segments. Their system achieved 74–80%
accuracy on different frame size features. The authors also
reported F-score, which is the harmonic mean of the precision

and recall to be 72% for a 25 ms frame length and 80% for longer
duration frames.

In this study, we build on our previous work [25] and use
a CNN-based architecture to resolve the overlapping speech
detection problem on frame level segments as short as 25 ms. We
also explore the effect of alternate features such as spectral mag-
nitude, pyknogram, Mel Filter-Banks (MFB) and MFCC on the
performance of overlapping speech detection, considering both
computation time and classification measures. The contributions
of this study are threefold:
� Proposing a block-based high performance 1-D CNN ar-

chitecture for frame-level overlapping speech detection.
Compared to our previous work [25], the convolutional
layers are replaced by processing blocks performing max
pooling and normalization steps in addition to the convo-
lutional layers.

� Evaluating the performance of the proposed overlapping
speech detection on different input spectral features con-
sidering both classification measures and processing time.

� Analyzing the effect of increasing network depth on per-
formance of the introduced model by employing skip con-
nections and residual learning.

The remainder of the paper is organized as follows. We
present the problem formulation, generating overlapping speech
mixtures, and extracting spectral features in Section II. Details of
the proposed CNN architectures are explained in Section III. We
report on the experimental procedures and results in Section IV.
The results are discussed in Section V, and finally the conclusion
is presented in the last section.
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Fig. 2. Overlapping speech dataset generation pipeline.

II. OVERLAPPING SPEECH DETECTION

A. Dataset Design

In this study, we generate the overlapping speech utterances
based on the GRID corpus, which is a multi-speaker, sentence-
based corpus used in monaural speech separation and recog-
nition challenge [26]. This corpus contains 34 speakers, 16
female and 18 male speakers, each providing 1000 sentences,
which have been frequently used in several overlapping speech
detection and separation studies [16], [19], [27], [28].

For generating overlapping speech, random utterances from
random speakers are selected. Next, Speech Activity Detection
(SAD) is performed on the train/test utterances to remove all
silent portions. In order to generate an audio mixture consistent
with naturalist data, two scenarios are considered for simulating
the mixtures. These scenarios are depicted in Fig. 2. In the first
scenario, the longer utterance is cut so that its length matches the
shorter utterance, then they are summed with a random Signal
to Interference Ratio (SIR) uniformly distributed between 0 to
5 dB. In the second scenario, the shorter utterance is zero padded
to match the length of the longer utterance before summing
with a random SIR. Thus, each generated mixture file is either
entirely overlapping speech or contains segments of both single-
speaker and overlapping speech. We also include utterances that
are entirely single-speaker speech to balance the final dataset.
Also, we consider same-gender and opposite-gender speech
mixtures. Therefore, we create three datasets for Male-Male,
Male-Female, and Female-Female mixed speech signals. For
each dataset, we have generated 20 h of mixed data for the
training set, 3 h for development, and 2 h mixtures for the test
set.1 Also, speakers used for generating the test set are separate
from those used in training and development sets.

1The corpus generated here will be shared with the speech community.

B. Acoustic Features

Speech is a non-stationary signal and its statistics changes
over time. However, it is assumed that on a short-time scale,
speech can be considered stationary. This is the reason for
framing the speech signal into 20–30 ms segments. There is
a trade-off between the length of each frame and its quality. In
the longer duration frames, the stationary assumption may be
violated, while in short frames, the number of samples may not
be sufficient for estimating a reliable spectrum. Also, a time
domain speech signal is not the most efficient choice to train the
network due to the data sequence length. Accordingly, we use a
set of spectral-based features that are more suitable in analyzing
differences between single-speaker and overlapping speech seg-
ments. Prior to extracting spectral features, a pre-emphasis filter
with its coefficient set to 0.97 is applied to the speech to boost
the magnitude of high frequencies resulting in a more overall
balanced spectrum.

1) Spectral Magnitude: is a 256-dim feature vector calcu-
lated using a 512-dim Short Time Fourier Transform (STFT)
computed over a 25 ms Hamming window with a 10 ms frame
shift. The spectral magnitude is the most basic spectral feature,
which estimates active frequencies in each frame.

2) Mel FilterBank (MFB): is a 40-dim feature vector cal-
culated by applying filterbanks to the power spectrum of the
speech signal. In contrast to a linear frequency scale (Hz), the
Mel scale is more discriminative in lower frequencies and less
discriminative in higher frequencies, resulting in an improved
resolution at lower frequencies. This is depicted in Fig. 3(A)(B).
The filterbank consists of 40 triangular filters with center fre-
quencies distributed along the Mel scale, which helps capture
energy at each critical frequency band and approximates the
overall spectral shape.

3) Mel Frequency Cepstral Coefficient (MFCC): is a 39-dim
feature vector calculated as MFCCs and their first and second
derivatives. Extracting MFCC is the same as MFB features with
three additional steps. First, the log of the filterbank output is
derived. Second, a Discrete Cosine Transform (DCT) is applied
to the log of filterbank energies in order to decorrelate them
across the channels, and achieve a more compressed representa-
tion of the filterbank energies. Third, keeping the first 13 spectral
envelope-type elements of the DCT coefficients and discarding
higher order elements. It is well known that MFCC features
are very successful in many speech processing technology sys-
tems compared to MFB features since their coefficients are
uncorrelated.

4) Teager-Kaiser Energy-Based Pyknogram: is a 120-dim,
spectral-based feature vector. Pyknogram enhances the speech
spectrogram by performing an AM-FM (Amplitude-Frequency
Modulation) analysis, which decomposes the speech spectral
sub-bands into amplitude and frequency components. As shown
in [29], a linear combination of several AM-FM signals can
represent the speech signal as:

x[n] = A[n] cos(ω[n]), (1)

where A and ω are time varying amplitude and frequency terms
used to represent the overall speech signal x. By calculating
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Fig. 3. Alternate feature representations, (A): 256-dim spectrogram, (B) 40-dim Mel-FilterBank, (C) 13-dim MFCC, and (D) 120-dim Pyknogram representations
of single speaker speech and multiple speaker speech.

amplitude A and frequency ω as a function of time n, we can
estimate the pyknogram representation of the speech signal. This
procedure is carried out in two steps: first, disintegrating the
speech signal into multiple components using a bandpass filter-
bank, where each component carries information in a subband
frequency of the original speech signal. Second, decomposing
each subband signal into frequency and amplitude partitions
using an energy estimation operator.

The logarithmically spaced gammatone filterbank is chosen as
the bandpass filter due to its similarity with the human auditory
system e.g., cochlea. Next, the energy of each bandpass signal is
estimated using the Teager-Kaiser Energy Operator (TEO) [19],
[30]. The relation between the energy of each subband signal
and its corresponding amplitude and frequency elements can be
described by [30], [31]:

Eteo(xi[n]) ∝ A2
iω

2
i = x2

i [n]− xi[n− 1] ∗ xi[n+ 1], (2)

ωi[n] =
1

2π
cos

(
1− Eteo(xi[n]− xi[n− 1])

Eteo(xi[n])

)
, (3)

A[n] =

√
Eteo(xi[n])

sin2(2πω[n])
, (4)

where Eteo is the estimated energy using TEO for the subband
signal xi, Ai, and ωi are the amplitude and frequency belonging
to subband i.

TEO is very effective in estimating the energy of the signal
for two reasons [32], [33]: first, it uses only a window of three
time-domain samples to estimate the energy, which implies
excellent temporal resolution in capturing energy fluctuations
in the signal. Second, the energy is estimated in a nonlinear
manner, which makes it quite suitable for processing speech
due to the non-linearity of speech energy distribution across
the frequency domain (energy of voiced phonemes are more
concentrated in lower frequencies, while constant phonemes of
speech have more energy in high frequencies). After deriving

ω[n] and A[n], a short-time estimate value for the dominant
frequency in each subband can be calculated as:

fω(t, i) =

∑n+T
t ωi[n]A

2
i [n]∑n+T

t A2
i [n]

, (5)

where t, i andT represent the tth frame, the ith filterbank, and the
number of samples per frame. Finally, if the extracted frequen-
cies are aligned with their corresponding filterbank bandwidth,
they are selected as resonant peaks of pyknogram.

III. NETWORK ARCHITECTURE DESIGN

In this section, we develop and configure three 1-D Convolu-
tional Neural Network (CNN) architectures to perform overlap-
ping speech detection. The fundamental elements of the designs
including the number of layers, kernel size, channel size of the
convolutional layers, and learning rate are taken into account for
classification of multi-talker speech segments. The architectures
of the proposed 1-D CNNs are depicted in Fig. 4.

Model-1: Fig. 4(a) shows the structure of the “1-D CNN”
model. This structure is simply formed by stacking six convo-
lutional layers followed by 2 Fully Connected (FC) layers. The
1-D CNN model was proposed in our previous work [25], which
has proven to be very effective in achieving the state-of-the-art
overlapping speech detection on frames as short as 25 ms.
As discussed in [25], all hyperparameters are tuned using the
development set resulting in an optimum choice of six 1-D
convolutional layers. Each layer has a 128 input and output
channel size except for the first layer which has 1 input channel
to match the input data. Hyperbolic tangent (tanh) is used as
the activation function between the convolutional layers. Subse-
quently, the extracted features in all channels are concatenated
into one dimension and submitted to the first FC layer with 128
hidden neurons and the Rectified Linear Unit (ReLU) activation
function. The second FC serves as the final layer of the network
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Fig. 4. Proposed architectures for overlapping speech detection. (a) 1-D CNN model consisting of several 1-D convolutional layers, with the output layer followed
by two Fully Connected (FC) layers and a sigmiod activation function to derive the final decision. (b) the simple 1-D convolutional layers are replaced by designed
building blocks; input is fed into a 1-D convolutional layer to adjust channel size; output of this layer is submitted to J blocks having the same structure. (c) and
(d) are the building blocks used in the Block-based CNN architecture. Block (d) is a Res-n block with a skip connection and a dropout layer to avoid overfitting.

with an output size of 1 and a sigmoid activation function to
yield the output probability of each class.

Model-2: For the second model, we design blocks consisting
of a convolutional layer, layer normalization, ReLU activation
function, and a max pooling layer. This means that the main
difference between Model-1 and Model-2 is the addition of
normalization and max pooling in each layer of the network.
The details of the blocks used in Model-2 is depicted in Fig. 4(b)
with block Fig. 4(c).

Considering that all blocks have the same design with the same
input and output size, we apply a convolutional layer on the input
to adjust for feature dimension so that it matches the dimensions
of the first block. The first convolutional layer has 256 output
channels with a kernel size of 3 and stride of 1 sample followed
by a ReLU activation function. Padding is also employed on the
input in order to maintain the same dimension size. In each block,
the convolutional layer has an input and output channel size of
256, kernel size of 3, and stride of 1. The second step of each
block is to normalize the output of the convolutional layer. There
are two reasons for using layer normalization here: first, it speeds
up the overall learning process. Second, layer normalization
can help with reducing “internal covariate shift” defined as the
change in distribution of network activations due to the change
in network parameters during training [34]. Put differently, by
employing layer normalization, the outputs of each layer are
“whitened” - (i.e., linearly transformed to have zero means and
unite variances). Therefore, layer normalization helps fix the
distribution of the input data for each block, which alleviates
the effect of internal covariate shift. Layer normalization solves
this problem by forcing the deeper layers to learn the underlying
structure of the data by themselves and more independently

of the weights which are learned in the shallower layers. We
normalize the features over both feature dimension and channels
as follows:

LN(Y ) =
Y − E[Y ]

V ar(Y ) + ε
∗ γ + β, (6)

E[Y ] =
1

MC

∑
MC

Y, (7)

V ar(Y ) =
1

MC

∑
MC

(Y − E[Y ])2, (8)

where Y is the output of the convolutional layer, γ and β ∈
R1×C are learned parameters, M is the size of the feature and
C represents the number of channels.

The next step in the proposed processing block is to submit the
normalized features into a max pooling layer to progressively
reduce the dimension of the features. As a consequence, the
amount of trainable parameters is decreased, which prevents
overfitting the data. Finally, the output of the final block is passed
to two FC layers with the same parameters as in Model 1 for the
final decision (see Fig. 4(b)).

Model-3: Inspired by the skip connections used in
ResNet [35], we modify the designed basic block shown in
Fig. 4(c) by adding skip connections as depicted in Fig. 4(d).
In ResNet usually one or two convolutional layers are used in
each block. Thus, in our setting, if one convolutional layer is used
the block is denoted as Res-1, and if two convolutional layers
are used the block is named Res-2. The processing steps denoted
by the dashed line in Fig. 4(d) is performed only in Res-2. In
Res-1, we use only one convolutional layer and perform layer
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normalization, where the normalized output is then summed
with the input through a skip connection path. Next, ReLU
activation and max pooling operations are employed.

The motivation behind using skip connections in this study
lies behind the deterioration we witnessed in results from
stacking more blocks in Model-2. Therefore, with using skip
connections along with a deeper network (through stacking
additional blocks), we want to explore the following question:
Is the decrease in the performance caused by data and gradient
vanishing in the deeper layers of the network?

In some studies [36], the success of deep neural network is
accredited to the depth of the network. As explained in [37],
front-end layers of the network generally learn basic features,
while as we consider deeper layers, each layers learn more
complex features. In applications where the underlying structure
of the data is not very complicated, the performance of the
shallow and deep network should be similar (i.e, their functions
may be repetitive). In contrast, if the data has a high degree of
complex structure, deeper networks produce a more balanced
comprehensive feature or higher context structure that represent
all details of the data.

Residual learning is an effective way to train deep models us-
ing skip connections. Assume that the general block in Fig. 4(c)
learns the mapping function H(x) in the convolutional layer
right before the max pooling layer as:

H(xj−1) = ReLU(LN(Wjxj−1 +Bj)), (9)

where Wj and Bj are the weight and bias matrix of the con-
volution layer j, and LN represents a layer normalization step.
With the introduction of skip connections, the network needs
only learn F (x) as:

F (xj−1) = H(xj−1)− xj−1 (10)

and then the final mapping H(x) is calculated as:

H(xj−1) = F (xj−1) + xj−1 =

ReLU(LN(Wjxj−1 +Bj) + xj−1).
(11)

Since F (x) is a simpler function compared to H(x), the net-
work is able to more effectively characterize the model training
structure. Also, the skip connection provides a path for the input
data toward deeper blocks, thereby preventing data vanishing for
deeper layers. Also, the vanishing gradients problem is solved by
constructing ensembles of many short networks together, instead
of preserving the gradient flow throughout the entire network.

IV. EXPERIMENTAL RESULTS

In this section, we investigate the performance for different
overlapping speech detection architectures shown in Fig. 4 using
classification metrics. We also analyze the effect of alternate hy-
perparameters, as well as input features on overall performance.

Evaluation metrics: we evaluate performance of the pro-
posed overlapping speech detection models on datasets gener-
ated from the GRID corpus. Accuracy is a widely used metric
for classification problems, and is defined as the ratio of the
correct predictions divided by the total number of samples.
Nevertheless, accuracy is not sufficient for scenarios where the

dataset is not balanced in terms of the number of data samples
belonging to each class. As a consequence, for unbalanced
datasets, it is more useful to consider how many samples are
mis-classified within each class. This can be achieved by using
other measures defined based on the confusion matrix such as
precision, recall, and F-score. Precision and recall are frequently
used to evaluate performance of the system for classification.
Precision reflects the ratio of the correctly detected overlapping
segments to the total number of detected overlapping segments
and is defined as follows:

Precision =
TP

TP + FP
, (12)

where TP (True Positive) represents the correctly classified
overlapping speech frames, and FP (False Positive) represents
the single-speaker speech frames which are mis-classified as
overlapping speech. On the other hand, recall is the ability of the
model to find all the overlapping frames in the dataset, measured
as the ratio of correctly detected overlapping segments to the
total number of actual overlapping segments, defined as follows:

Recall =
TP

TP + FN
, (13)

where FN (False Negative) represents the actual overlapping
speech frames which are mis-classified as single-speaker speech.
The harmonic mean of precision and recall is reflected by the
F-score defined as:

F − score =
2× precision× recall

recall + precision
, (14)

A validation set is used for hyperparameter tuning. Models are
trained with 100 epochs using a Binary Cross Entropy (BCE)
loss and Stochastic Gradient Descent (SGD) optimizer [38]. The
initial value of the learning rate is tuned to 0.001, with a 50%
decay if no improvement is observed in the cross validation loss
for three successive epochs.

1) Results for Model-1: the first model is based on 1-D CNN
model in Fig. 4(a), which serves as the primary system in
this study, and therefore considered as the baseline. The 1-D
CNN model is trained with a range of alternate input features.
The motivation behind this set of experiments is to determine
which spectral features are more effective for training a high
performing classifier.

The hyperparameters of the network are tuned to ensure that
network has a viable initial setup for the overlapping speech
detection task prior to experiments with the alternative input
features. The hyperparameters are regulated based on the devel-
opment set. In order to reduce the overall number of experiments
and computational cost of hyperparameter optimization, we
first tune the number of layers, then the channel size of each
convolutional layer. Eventually, we tune the learning rate. Our
experiments show that 6 layers of convolutional layers, with
128 output channels and a learning rate of 0.001 are the best
choices for the hyperparameters. The training loss and cross
validation loss of the network with the selected hyperparameters
are shown in Fig. 5 (left). As shown, 100 epochs is sufficient for
training the network. In addition, the validation loss, represented
in red, is very close to the training loss as the epoch count
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Fig. 5. Training loss and cross validation loss associated with the tuned hyperparameters of 1-D CNN model (Model-1). Also, Accuracy and F-score of Model-1 in
development phase using cross validation dataset are plotted.

TABLE I
THE PERFORMANCE OF 1-D CNN MODEL (MODEL-1) ON OVERLAPPING

SPEECH DETECTION. M-M, F-F, AND M-F STAND FOR OVERLAPPING SPEECH

GENERATED BASED ON MALE-MALE, FEMALE-FEMALE,
AND MALE-FEMALE SPEAKERS

increases, indicating the generalization power of the network
to speech samples not seen in the training phase. The right plot
in Fig. 5 shows the accuracy and F-score of Model-1 in the
development phase, confirming that after 100 epochs, the model
attains a stable performance in classifying overlapping speech
frames.

Subsequent to hyperparameter tuning, four independent net-
works are trained, with the same selected hyperparameters based
on four alternate input spectral features. The performance of
each network is summarized in Table I.

For the experiments, three sets of overlapping speech data
based on the GRID corpus are prepared (refer to Table I). The
first dataset, tagged as M-M, contains mixed speech utterances
in which both speakers are male. The second dataset, shown

Fig. 6. Processing time per epoch (in second) for training 1-D CNN model
(model-1) based on different input features. Spec stands for spectral magnitude,
and Pykno stands for pyknogram. For example, the processing time for training
1-D CNN model with MFCC is 218 s per epoch.

as F-F, consists of overlapping speech signals from two female
speakers, and in the M-F dataset, one of the speakers is male
while the other is female. As inferred from the table, classi-
fication of overlapping speech segments for opposite gender
mixtures is easier than the same gender mixtures. This is due
to the difference in the vocal tract physiology and fundamental
frequency, and their harmonics, which exists in speech between
male and female speakers. However, for all three datasets, the
model trained on pyknogram achieves the best performance
compared to other features in terms of both accuracy and F-score.
MFCC achieves the second best performance compared to other
input features.

Additionally, Fig. 6 illustrates the processing time per epoch
for training the network based on alternative features. As noted
earlier, spectral magnitude is a 256-dim feature vector which
is highly redundant in information content. The experiments
show that processing spectral magnitude requires significantly
longer processing time compared to other features without im-
provement in classification. In contrast, the 120-dim pyknogram
feature vector achieves the best overall performance at the cost
of more processing time compared with either the 40-dim MFB
or 39-dim MFCC feature sets.
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TABLE II
THE PERFORMANCE OF BLOCK-BASED CNN MODEL WITH BASIC BLOCK FOR OVERLAPPING SPEECH DETECTION WITH ALTERNATE HYPERPARAMETERS.

ACCURACY-CV IS ACCURACY MEASURED ON CROSS VALIDATION DATASET. ACCURACY-TT IS ACCURACY MEASURED ON THE TEST DATASET

Based on their results, pyknogram and MFCC achieved better
overall classification performance, however, according to Fig. 6,
the processing time per epoch for MFCC is 218 seconds, while it
is 530 seconds for pyknogram. This indicates greater efficiency
of MFCCs in detecting co-existing talker in speech segments,
which comes from the compactness of the feature. MFCC carries
all the required information for detecting overlapping speech in
a 39-dim feature vector, whereas pyknogram requires a 120-dim
vector. Deduced from Table I, in most occasions, MFCC either
accomplishes the same performance as pyknogram, or lags by
at most 1%, which is tolerable for frame-level overlapping
speech detection. Deciding between using MFCC or pyknogram
depends substantially on the end application. For real-time ap-
plications, MFCC is clearly the best choice, in price of lower
accuracy compared to pyknogram. However, for off-line pro-
cessing, pyknogram provides slightly better accuracy.

2) Results for Model-2: this architecture consists of the
Block-based CNN model Fig. 4(b) with the Basic block in
Fig. 4(c). Having added the normalization and max pooling
layers, we choose to tune the hyperparameters of Model-2
independently from the first model as a means of finding the best
parameter combinations for improved performance. Motivated
by the efficiency of MFCCs in Model-1, we tune the second
model by training the network on MFCC features derived from
the Male-Male dataset. Classification results for alternate hyper-
parameters are reported in Table II.

The first column of Table II presents the number of basic
blocks Fig. 4(c) used in the network. In the first five experiments,
the number of the blocks are varied from two to six, while the rest
of the hyperprameters are kept constant. Based on classification
performance, the best number of blocks is selected for this
architecture. Next, other hyperparameters are tuned. According
to Table II, 4 blocks with 256 channels, and a kernel size of 3
is the best combination of hyperparameters for this structure.
However, the choice between the learning rate is yet to be
decided. Considering classification performance on both cross
validation and test datasets, the network trained with a learning

rate of 0.001 achieves the best overall performance compared
with a learning rate 0.01 and 0.0001. A small learning rate
increases the training time for convergence to an optimal local
minimum. On the other side, a large learning rate causes larger
steps in the training process which increases the probability
of converging to a poor local minimum. Thus, we adjust the
learning rate to 0.001 to sustain the converging process with the
goal of an effective local minimum on both cross validation and
test datasets.

Based on the chosen hyperparameters for Model-2, a set of
experiments using all input spectral features derived from M-M,
F-F, and M-F datasets are carried out and reported in Table III.

A comparison of the results from Table III and Table I, shows
that block based 1-D CNN (Model-2) is superior compared to the
1-D CNN model (Model-1). With employing a more compact
feature set such as MFCC, Model-2 achieves better classification
performance compared to Model-1. This confirms the effec-
tiveness of using layer normalization and max pooling layers.
By standardizing the output of each block, layer normalization
assures that the input distribution of the upcoming blocks are
consistent during parameter updating. This stabilizes training
and also fortifies the network against variations in the input fea-
tures and their successive learned mappings. Alternatively, max
pooling is a down-sampling step that replaces a filter-lengthed
sub-array with its maximum value. The maximum value can
generally be considered as a statistics summary of that sub-array.
The main advantage of pooling layers is that the network depends
more on an approximate of the mapped features, rather than
focusing on their exact forms. As a consequence, the network
is more robust to local variations from input features for each
block. According to all the aforementioned facts, both layer
normalization and pooling components boost performance of
overlapping speech detection by 9% absolute improvement for
the challenging same gender overlapping speech datasets.

3) Results for Model-3: the block shown in Fig. 4(d) is
designed to examine if stacking more blocks while using skip
connections is able to improve the performance of Model-2. As
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TABLE III
THE PERFORMANCE OF MODEL-2 ON OVERLAPPING SPEECH DETECTION.

M-M, F-F, AND M-F STAND FOR OVERLAPPING SPEECH FROM MALE-MALE,
FEMALE-FEMALE, AND MALE-FEMALE SPEAKERS

stated in Section III, depending on the number of convolutional
layers used in Res-n block, Res-1 and Res-2 are introduced.
Res-1 is the exact same architecture used in Model 2 except
for the additional skip connection (i.e., summing the input of
each block with its output right after layer normalization step).
Furthermore, in Res-2, some added steps such as one additional
1-D convolutional layer, layer normalization, ReLU activation
function, and a dropout layer are performed. In order to study the
effect of introducing the skip connection on classification per-
formance, we use the same hyperparameters values for Model-3
as used in Model-2.

In the first set of experiments, we investigate the effect of
stacking further blocks in Model-3 by training 12 networks
independently. In the first six networks, a block-based CNN
model with Res-1 block are trained by stacking 2, 4, 6, 8,
10, 12 blocks in the architecture. For the other six networks,
a block-based CNN model with Res-2 block are employed to
study the effect of increasing the depth of the network for the
same overall number of blocks. Performance of overlapping
speech detection is illustrated in Fig. 7. As inferred from the
plots, Model-2 is more capable of classifying overlapping speech
segments compared to both Res-1 and Res-2 blocks in Model-3.
The only case where Model-3 outperforms Model-2 is when
there are only two blocks of Res-1 in the network architecture.
However, employing a larger number of layers (i.e., four to
twelve layers), the skip connections begin to degrade overall
performance.

One reason for the performance loss of Model-3 with Res-2
block in detecting overlapping speech frames could be due to
the overfitting problem caused by adding extra convolutional

Fig. 7. Effect of increasing depth of network by stacking more blocks in the
architecture for overlapping speech detection.

layer in each block. This increases the network’s parameters and
capacity, which results in poor generalization to the test dataset.
Therefore, the network tends to “memorize” the samples in the
training set instead of learning the underlying patterns belonging
to each class. This also can be verified by comparing the results
for Res-1 and Res-2 in Model-3. Res-1 achieves better accuracy
and F-score compared to Res-2 due to the smaller model size.

Alternatively, Res-1 block also falls behind Model-2 for all
classification measure. As noted in Section III, the motivation
behind designing a Res-n block was to determine if a deeper
network will boost performance. For this reason, we employed
skip connections to insure the stability in optimization and
also prevent data vanishing in deeper layers. The experiments
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TABLE IV
THE PERFORMANCE OF MODEL-3 WITH RES-1 BLOCK ON OVERLAPPING

SPEECH DETECTION. M-M, F-F, AND M-F STAND FOR OVERLAPPING SPEECH

FROM MALE-MALE, FEMALE-FEMALE, AND MALE-FEMALE SPEAKERS

performed here proved that patterns needed for classifying a
single-speaker speech versus multi-speaker frames may not be
as complex, and can be learned by a small model with 4 to 6
layers. In this case, adding skip connections in each block might
impact the quality of the learned patterns adversely.

We also report results of Model-3 with a Res-1 block on M-M,
F-F, M-F datasets in Table IV for comparison with Model-2
and Model-1. Model-3 performs better than Model-1 in distin-
guishing multi-talker speech frames. For example, on the M-M
dataset, Model-1 achieves 81.3% accuracy using pyknogram.
Model-3 scores 89.7% accuracy using the same features result-
ing in an +8.4% absolute improvement. This is true for other
scores as well, +9.6% improvement in precision, and +5.6%
improvement in F-score. Comparing Tables I and IV, we observe
that pyknogram features achieve recall of 91.5% for Model-1,
and 92.0% for Model-3. Since, recall is the ability of the model
to find all overlapping segments, this observation indicates that
the first model is able to classify 91.5% of overlapping frames in
the test dataset, however, the low precision makes the first model
vulnerable to confusing single-speaker frames with overlapping
speech. In other words, Model-1 has a high false alarm rate that
can be problematic in many real world applications. For MFCC
features, Model-3 improves recall by +2.1%, reinforcing the fact
that a stronger classifier is able to compensate for a weak feature.

The pattern of results is repeated for the F-F dataset as well.
Accuracy is improved by +6.8% for MFCC, +5.6% for MFB,
+7.2% for pyknogram and +7.1% for spectral magnitude in
Model-3 compared to Model-1. Precision is also boosted by
+7.1% for MFCC, +6.8% for MFB, +7.5% for both pyknogram,
and spectral magnitude. Model-3 improves the recall score of

Model-1 by +1.4% for MFCC, -0.3% for MFB, +1.5% for
pyknogram, and +1.7% for spectral magnitude.

The third dataset known as M-F, has the same advancement
trend in the results. Model-3 achieves 95% accuracy with 96.7%
precision and 95.8% recall for pyknogram indicating almost a
+5% overal improvement compared to Model-1.

V. DISCUSSION

To the best of our knowledge, previous overlapping speech
detection systems such as [19], [21], [22] were designed to per-
form well on long segments of speech. In [19], an unsupervised
energy-based approach was proposed, which requires an input
speech segment of no less than 2 seconds for reliable overlapping
speech classification. In [21] a supervised LSTM-based network
was introduced that achieved 76% accuracy on the AMI corpus,
which is a real scenario meeting corpus with different duration
overlapping speech segments. The most recent work [22] used a
CNN-based network to address distinguishing multi-talker seg-
ments on 25, 100, and 500 ms segments. The reported accuracy
for the 25 ms frames was 74% with 72% recall. The best accuracy
of their proposed system was 80% on 500 ms input segments.

In contrast to these previously proposed techniques, we pro-
posed a 1-D CNN-based network in [25] to classify 25 ms
overlapping speech frames with an accuracy of 85%, recall of
91% and precision of 87%. Building on our previous work, in
this study we extended the network architecture in order to boost
the accuracy and precision of the overlapping speech classifier
on 25 ms frames. We used our previous work [25] as the baseline
in this study. This baseline was presented as Model-1 here.

The baseline was trained using MFCCs with final training and
cross validation loss shown in Fig. 5. Model-1 achieves good
generalization power for the development set with a cross vali-
dation loss close to that seen for the training loss in Fig. 5(left).
It is also worth noting that the used Binary Cross Entropy (BCE)
cost correlates well with the classification measures. This can
be inferred from Fig. 5(right), where peaks in cross validation
loss match valleys for the accuracy and F-score, suggesting that
a higher BCE cost will result in lower accuracy and F-score.
Model-1 is evaluated using alternate input features such as:
spectral magnitude, MFB, MFCC, and pyknogram. Based on the
evaluation metrics in Table I, pyknogram and MFCC achieved
the best scores. However, based on Fig. 6, processing time per
epoch for network training with MFCC was 218 sec, whereas it
was 530 sec for pyknogram. Since MFCC is a compact 40-dim
feature vector compared to the 120-dim pyknogram, it reduced
the processing time by almost 60% in the training phase, while
achieving competitive performance compared to pyknogram.
Although, Model-1 was successful in retrieving most of the
overlapping speech frames with a recall of 89.1% for Male-
Male mixtures, 90.7% for Female-Female mixtures, and 91.7%
for Male-Female mixtures based on MFCCs, it showed lower
precision and accuracy for all noted datasets. Low precision
suggests a high false alarm rate, which may be undesired in
many applications. This motivated us to expand the capacity of
Model-1 to improve both the precision score and accuracy of
overlapping speech detection.
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Fig. 8. The ROC and precision-recall curves for the proposed architectures. The networks are trained based on MFCC and pyknogram features extracted from
male-male dataset.

Model-2 was introduced as a block-based CNN architecture
Fig. 4(b) with the basic block in Fig. 4(c) to boost precision
and accuracy of the first model. Model-2 consisted of one
1-D convolutional layer for adjusting the number of channels
followed by several identical blocks each performing: a 1-D
convolutional layer, layer normalization, ReLU activation func-
tion and max pooling layer. The number of used blocks is a
very important hyperparameter affecting both processing time
and the evaluation metrics. Finally, the output of the last block
was submitted to two FC layers with a sigmoid activation for
the final decision. The hyperparameters in Model-2 were tuned
based on cross validation and test scores reported in Table II.
For a fair comparison between Model-2 and Model-1, the same
experiments were conducted for Model-2, and were presented
in Table III. The results confirmed that Model-2 was effective in
improving accuracy and precision of Model-1, achieving 90.3%
accuracy, for MFCCs based on Male-Male dataset, whereas
accuracy for Model-1 is 81.3% in the same feature set, indicating
a +9% absolute improvement. Precision was also increased by
+9.1% from 84.2% to 93.3% for MFCCs derived from M-M
dataset, resulting in less false alarms while detecting multi-talker
speech frames. Table III shows similar improvement for all three
datasets. The best numbers for Model-2 belongs to Male-Female
mixtures with over 95% accuracy, precision and recall. The
success of Model-2 can be attributed to the layer normalization
and max pooling layers, leading to a smoother optimization
landscape, a more stable training process, and a model more
robust to variations of parameters distribution.

Model-3 was proposed in an effort to explore impact of
network depth on classification performance. In the block-based

CNN architecture, a Res-n block as shown in Fig. 4(d) was em-
ployed. Parameter “n” in Res-n was determined by the number
of the convolutional layers used in each block. Skip connections
in Model-3 helped addressing vanishing input data problem for
deeper layers, which are responsible for learning more complex
features. We used the same hyperparameter values from Model-2
for Model-3 to investigate the effect of using skip connections
on the final evaluation metrics. Fig. 7 presents the effect of
increasing network depth on overlapping detection accuracy,
precision, recall and F-score. In these figures, Model-2 and
Model-3 with Res-1 blocks and Res-2 blocks were considered
with different numbers of blocks in their architectures. As con-
veyed from Fig. 7, Model-3 with Res-2 block underperforms
the Res-1 block, which could be the result of overfiting caused
by increasing the capacity of the model. Also, Res-1 Model-3
lags behind Model-2 in classifying overlapping frames by 2%
in accuracy, 0.9% precision, and 1% recall.

Finally, Fig. 8 presents the Receiver Operating Characteristics
(ROC), and pecision-recall curve for MFCC feature (top) and
pyknogram (bottom), extracted from Male-Male mixtures. In
these two feature sets, both Model-3 and Model-2 outperform
Model-1 while their difference is more perceptible for MFCCs
compared to pyknogram.

VI. CONCLUSION

In this study, we proposed block-based CNN architectures for
addressing the problem of overlapping speech detection. Our
focus was to classify single versus multi-talker speech in seg-
ments as short as 25 ms. Furthermore, we explored the effects of
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using alternate input features such as spectral magnitude, MFB,
MFCC, and pyknogram on both final classification performance,
and computational time. The proposed architecture was shown
to be robust to local deviations of input features, and achieved
the best classification results with 90.5% accuracy, 93.5% pre-
cision, 92.7% recall, and 92.8% Fscore for MFCC feature on
the same gender overlapping speech mixtures. Additionally,
using pyknogram features improved classification slightly in
price of higher processing time. It is worth mentioning that an
important aspect of choosing the right feature for overlapping
speech detection is based on the application in hand. For those
application where detecting all overlapping segments is crucial,
while some false alarms can be tolerated, a feature with higher
recall is desired even if precision and accuracy are low. For
real-time applications, MFCC is the best option because of
the required processing time and computational cost is lowest
compared to other features. Therefore, the choice between these
features is dictated by available online computing resources. We
demonstrated that using pyknogram can provide better classifi-
cation accuracy in applications where off-line processing is al-
lowed. This proposed frame-based model architecture with such
a high accuracy, precision and recall could eventually provide
an effective solution for the overlapping speech detection and
make this a pre-processing step for most of speech technology
systems designed for real-world applications.
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