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A B S T R A C T

Speaker recognition continues to grow as a research challenge in the field with expanded application in
commercial, forensic, educational and general speech technology interfaces. However, challenges remain,
especially for naturalistic audio streams including recordings with mismatch between train and test data
(i.e., when train or system development data and enrollment/test data or application data are collected from
different sources). Mismatch conditions (Hansen and Hasan, 2015) can be divided into two categories, extrinsic
(channel, noise, etc.) and intrinsic (duration, language, and speaker traits including stress, emotion, Lombard
effect, vocal effort, accent). Here, we investigate speaker recognition for the domain mismatch problem
(intrinsic mismatch) especially for those challenges introduced by NIST (National Institute of Standards and
Technology) SRE (speaker recognition evaluation) in 2016 and 2018. The challenges introduced in NIST
SRE-16 and SRE-18 include language mismatch between train (used for the development of the system) and
enrollment/test (used at the application phase). Here, we develop three alternative speaker embedding systems;
i-vector, t-vector (an improved triplet loss solution), and x-vector. In addition, a number of unsupervised and
supervised (using pseudo labels) methods are also studied for domain mismatch compensation, especially
applied at the back-end level. These include adapted PLDA, adapted discriminant analysis, as well as
score normalization and calibration methods using unlabeled in-domain data. We propose new variations to
discriminant analysis with support vectors (SVDA) as well. These results confirm that SVDA can measurably
improve speaker recognition performance for SRE-16 and SRE-18 tasks respectively by +15% and +8% in terms
of min-Cprimary; and for EER the gains are +14% and +16% respectively, using i-vector speaker embeddings
as the baseline. These advancements offer promising steps toward addressing speaker recognition in naturalistic
audio streams.
1. Introduction

Speaker recognition (SR) is defined as recognizing whether a spe-
cific target speaker is talking during a given speech segment or not
(Sadjadi et al.; Hansen and Hasan, 2015). Here, we focus on the text-
ndependent SR task which does not require any constraint on the
peech content. Approaches proposed for SR have evolved significantly
ver the past few years to overcome the limitations and variations of
raining/in-domain data as well as to provide consistent performance
n naturalistic audio streams (Hansen and Hasan, 2015); however,
hallenges still remain, especially for intrinsic mismatch conditions.
Over the previous two decades, NIST (National Institute of Stan-

ards and Technology) has been organizing SRE (speaker recognition
valuation) tasks regularly to encourage participating sites to focus on
he specific problem of making SR systems robust against realistic data
nd core technology issues (Sadjadi et al.). NIST SRE tasks have covered
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(J.H.L. Hansen).

a wide range of challenges targeting different training and test condi-
tions to make speaker recognition systems effective enough for conver-
sational telephone speech (with limited training data). Also, providing
robust solutions for combination of speaker detection and recognition
tasks under various mismatch conditions (including channel variations,
duration mismatch, and language mismatch).

Challenges organized for speaker recognition evaluation (includ-
ing NIST SRE) had played an important role to lead researchers to
migrate from GMM (Gaussian mixture model)-UBM (universal back-
ground model) (Reynolds et al., 2000) based systems toward i-Vector
and deep learning based solutions (i.e., t-Vector (Zhang et al., 2018),
x-Vector (Snyder et al.), and etc (Bahmaninezhad and Hansen, 2018)).
During this migration, we can also include methods based on: joint
factor analysis (JFA) (Kenny et al., 2007), i-Vector (Dehak et al.,
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2011) solutions with cosine distance scoring or support vector machine
(SVM) classification (Dehak et al., 2011), and i-vector with PLDA
(probabilistic linear discriminant analysis) scoring (Ioffe, 2006; Dehak
t al., 2011) as well. These also include both UBM/i-Vector and DNN/i-
ector, where i-Vector/PLDA had been the state-of-the-art method for
peaker recognition (depending on the data) as well as other speech
reas, such as language recognition. These advancements in SR had
rovided a satisfactory performance on NIST SRE tasks until 2012.
owever, for challenges introduced in the SRE-16 and SRE-18, current
olutions are not sufficiently effective and require further investigation.
ore specifically, the NIST SRE-16 and SRE-18 focused on the domain
ismatch problem (training data used for development had different
anguage sets than those in enrollment/test data which are used at
he application phase; there were handset and microphone mismatch
ptions as well).
Domain mismatch compensation for speaker recognition has been

reviously studied for diverse datasets and tasks (other than SRE-16
nd SRE-18), including (Misra and Hansen, 2018; Garcia-Romero et al.,
014; Misra and Hansen, 2014; Shum et al., 2014; Shon et al., 2017;
ahmaninezhad and Hansen, 2016). For NIST SRE tasks specifically,
ultiple studies have proposed methods to compensate for domain
ismatch. Here, we consider several earlier works on these tasks.
enerally speaking, domain mismatch compensation techniques can be
pplied to speaker recognition systems at different phases: front-end
evel compensation (e.g., MAP – maximum a posterior – adaptation of
MMs model (Colibro et al., 2017), speaker embedding extraction), and
ack-end level (e.g., PLDA adaptation (Snyder et al.)). Fig. 1 represents
n overall block-diagram of an i-vector based speaker recognition
ystem specifying front-end and back-end level processing. From an
lternative viewpoint, domain mismatch compensation methods can be
ategorized into supervised or unsupervised techniques as well. When in-
omain data are unlabeled, pseudo labeling can be integrated into the
ystem to provide for supervised adaptation.
To compensate for the domain mismatch at the speaker-embedding

xtraction level (i.e., front-end), (Colibro et al., 2017) introduced GMM-
VM with Nuisance Attribute Projection (NAP) trained using clustered
nlabeled in-domain data for SRE-16 task. They also studied other
ethods for unsupervised domain mismatch compensation, using in-
omain data for MAP adaptation of GMM models which both were
hown to be effective. In addition, Plchot et al. (2017) proposed train-
ng a speaker classifier neural network for the extraction of d-vectors.
nterestingly, they did not attempt to assign pseudo speaker labels to
he unlabeled data. Borgstrom et al. (2017) applied an unsupervised
ayesian adaptation method and achieved promising results. Snyder
t al. (2017) replaced i-vectors with two new proposed embeddings
hich are derived based on a DNN architecture. They evaluated the
erformance of these embeddings on both SRE-10 and SRE-16 tasks,
lthough the idea is general and not necessarily developed for do-
ain adaptation, experiments show that the discriminative training of
peaker embeddings can help toward domain mismatch compensation
ather than traditional i-vector embeddings. x-vector (Snyder et al.)
hich uses data augmentation as well as PLDA adaptation is among
he top-performing systems for SRE-16 and SRE-18 (where a small
nlabeled in-domain data is provided for the adaptation purpose) tasks.
Overall, the performance of most of these methods has been re-

orted along with other modifications at the back-end level. For x-
ector, the back-end level techniques are shown to directly impact
he superiority of x-Vector over the i-Vector. Therefore, it would be
ifficult to draw a conclusion on how effective front-end level domain
daptation might be, considering the fact that available in-domain data
or SRE tasks is very limited.
To compensate for domain mismatch at the dimension reduction

tep, Plchot et al. (2017) used LDA with a within-class covariance
correction (WCC) technique, which updates the within-class covariance
matrix using in-domain data. Mismatch compensation at the score
8

calculation and score normalization steps have also been studied in Col-
ibro et al. (2017), where they added replicate copies of in-domain data
to the training set for modeling the classifiers. In addition, Colibro et al.
2017) used the in-domain data in multiple score normalization tech-
iques. Torres-Carrasquillo et al. (2017) not only applied whitening and
mean centralization using in-domain data (both labeled and unlabeled)
but also proposed a multi-stage PLDA adaptation technique (which uses
clustered unlabeled data). They also incorporated in-domain data into
the score normalization step as well. Plchot et al. (2017) normalized
the resulting scores using speaker-dependent s-norm with a cohort
created from training and unlabeled in-domain data. Two studies Lee
et al. (2017), Torres-Carrasquillo et al. (2017) also mentioned the
use of unlabeled data for score calibration. These techniques have all
been proposed to compensate for domain mismatch at the back-end
level and have been shown to be effective for NIST SRE tasks. Other
studies on the SRE tasks that target domain mismatch compensation
include (Madikeri et al., 2016; Rouvier et al., 2016; Lee et al., 2019;
Bhattacharya et al., 2019).

Successful submission at NIST SRE challenges requires fusion of
multiple complementary systems. Most of the studies on NIST SRE tasks
have reported a combination of effective modules that work together. In
some cases, the papers may only report scores on the DEV set or EVAL
set; however, one important issue can be on the generalization from
DEV set toward the EVAL set which has been missed in some reports. In
this study, we present a comprehensive study on back-end level domain
mismatch compensation techniques with emphasizing the contribution
of each of them separately and in combination with other techniques.
In addition, we report both DEV and EVAL scores for throughout and
comprehensive comparison of different compensation techniques and
their generalization capabilities.

Based on our experience for SRE-16 (Zhang et al., 2017) and SRE-
18 (Zhang et al., 2019) tasks, we realized domain adaptation (especially
unsupervised domain adaptation) is a key strategy in achieving ac-
ceptable submission, which is our main focus here. In this study, we
introduce and analyze our proposed solutions for compensating the
domain mismatch problem. We specifically perform domain adaptation
at the back-end level, as (i) in-domain data is very limited to be applied
in the speaker embedding extraction phase, (ii) unlabeled in-domain
data can be risky for integration into the front-end level processing.
Solutions introduced in this study benefit from:

• mean centralization of data with unlabeled in-domain data;
• training LDA/PLDA while limiting the training data to only those
which benefit back-end modeling;

• using SVDA (support vector discriminant analysis)
(Bahmaninezhad and Hansen, 2017) to alleviate the domain
mismatch problem;

• unlabeled in-domain data clustered to be used with LDA/PLDA;
• supervised (using pseudo labels) and unsupervised adaptation of
PLDA;

• using unlabeled data for score calibration and fusion.
Although we provide more detailed explanation and analysis of our

proposed solutions throughout this paper, the main contributions of this
study can be summarized as (1) evaluation of i-Vector, x-Vector, and
t-Vector solutions for both SRE-16 and SRE-18 task, (2) proposed super-
vised and unsupervised SVDA, (3) supervised and unsupervised PLDA
adaptation with different speaker embeddings, (4) score normalization,
calibration and fusion with effective utilization of unlabeled data, and
(5) comprehensive evaluation of each technique for both DEV and
EVAL sets which studies their effectiveness alone, or in combination,
with other compensation methods. We evaluate the performance of our
systems on both SRE-16 and SRE-18 tasks, which target both language
mismatch problem with additional unlabeled data provided for system
development.

In Section 2, we first introduce our speaker embedding systems
developed and evaluated in this study. Section 3 defines the NIST



Speech Communication 129 (2021) 7–16F. Bahmaninezhad et al.

S
f
t
d

2

t
d
t
(
s
j
Z
S
a

2

i

Fig. 1. Block-diagram of i-vector/PLDA speaker recognition.
d

w
l
f
a



RE-16 and NIST SRE-18 tasks specifically. Next, in Section 4, we
ormulate our solutions for compensation of domain mismatch and
heir performance is evaluated in Section 5. Finally, conclusions and
iscussions are provided in Section 6.

. Speaker recognition

Speaker recognition refers to the task of recognizing whether a
arget speaker is talking during a given test segment or not. Here, we
evelop three different speaker recognition systems based on a tradi-
ional UBM/i-Vector (Dehak et al., 2011; Zhang et al., 2017), t-Vector
an improved triplet loss solution, where an additional 𝐿2 constrained
oftmax loss term is introduced to formulate a multi-task learning ob-
ective based speaker embedding system (Zhang and Koishida, 2017a,b;
hang et al., 2018; Li et al., 2017)), and x-vector (Povey et al., 2011;
nyder et al., 2017; Snyder et al.) frameworks. Each of these systems
re described in detail in the following subsections.

.1. UBM/i-vector system

Historically, i-Vector based systems achieve great success not only
n speaker recognition (Dehak et al., 2011; Zhang et al., 2017; Lee
et al., 2017; Sadjadi et al.), but also in language recognition (Bulut
et al., 2017). The block diagram of our baseline i-Vector/PLDA speaker
recognition is shown in Fig. 1. In the i-Vector framework, a channel
and speaker-dependent GMM supervector is factorized as,

𝑀 = 𝑚 + 𝑇𝑤, (1)

where 𝑚 is the UBM speaker and channel-dependent supervector, and
𝑇 is the low rank total variability matrix (TV-matrix) which maps the
high-dimensional GMM supervector into 𝑤, known as i-vector.

i-Vectors are next post-processed using mean centralization, length
normalization (Garcia-Romero and Espy-Wilson, 2011), and LDA (lin-
ear discriminant analysis). Scoring is performed with PLDA (Ioffe,
2006) (the back-end processing is the same for the other two speaker
embeddings as well). Finally, given two i-vectors 𝑤̂1 and 𝑤̂2 at the
recognition phase, we need to determine whether these two belong
to the same speaker (target) or not (non-target) with the following
log-likelihood ratio,

log-likelihood = 𝑙𝑜𝑔
𝑝(𝑤̂1, 𝑤̂2|target)

𝑝(𝑤̂1, 𝑤̂2|non-target)
. (2)

2.2. x-Vector system

The x-Vector has been reported to achieve very effective speaker
recognition performance in recent studies (Snyder et al., 2017; Snyder
et al.). The model is a deep neural network (DNN) based speaker
discriminative framework benefiting from practical techniques such
as data augmentation and statistical pooling. The embeddings are
extracted over the entire utterance instead of at the frame-level. The
9

network is trained with a softmax loss function and corresponding
speaker labels, given by:

𝑠 = − 1
𝑁

𝑁
∑

𝑖=1
log 𝑒𝑊

𝑇
𝑦𝑖
𝑓 (𝐱𝑖)+𝑏𝑦𝑖

∑𝐶
𝑗=1 𝑒

𝑊 𝑇
𝑗 𝑓 (𝐱𝑖)+𝑏𝑗

, (3)

where 𝑁 is the batch size, 𝐶 is the total speaker number in the
training set, 𝑓 (𝐱𝑖) is the output of the embedding layer of the network
(i.e., speaker embedding). Here, 𝑦𝑖 is the corresponding class label, and
𝑊 and 𝑏 are the weights and bias for the last softmax layer of the
network which acts as a classifier.

2.3. t-Vector system

Triplet loss is another popular objective function for training face or
speaker verification systems (Schroff et al., 2015; Zhang and Koishida,
2017a). The t-Vector system developed here is a modified solution
from Zhang et al. (2018), with changes in the loss function and the
employed acoustic features. The Inception-resnet-v1 network (Szegedy
et al., 2017) (same as Zhang et al. (2018)) is employed here for speaker
iscriminative training.
Inspired by the success of the softmax loss used in x-Vector models,

e perform a modification at the loss function level for the triplet
oss based system. Specifically, we formulate a multi-task learning
ramework by adding an 𝐿2 normalized softmax loss (𝑠𝐿2

), which is
n upgrade of the original softmax loss:

𝑠𝐿2
= − 1

𝑁

𝑁
∑

𝑖=1
log 𝑒𝑊

𝑇
𝑦𝑖
𝑓 (𝐱𝑖)+𝑏𝑦𝑖

∑𝐶
𝑗=1 𝑒

𝑊 𝑇
𝑗 𝑓 (𝐱𝑖)+𝑏𝑗

, (4)

subject to ‖𝑓 (𝐱𝑖)‖2 = 𝛼, ∀𝑖 = 1, 2,… , 𝑁

where a simple 𝐿2 normalization is applied to the embedding layer
before softmax layer, 𝛼 is a constant that constrains the radius of the
speaker embedding hypersphere. Finally, 𝛼 is set to 24 empirically
in our experiments. With this operation, we are able to better match
acoustic conditions between the training and test process (i.e., a 𝐿2-
norm embedding layer for softmax training, and the same layer for
embedding extraction). The total loss function is an integration of three
components: a triplet loss term 𝑡𝑟𝑖𝑝𝑙𝑒𝑡, a 𝐿2-norm softmax loss term
𝑠𝐿2

, and a regularization term 2 which alleviates the over-fitting
issue during training,

𝑡𝑜𝑡𝑎𝑙 = 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 + 𝜔1𝑠𝐿2
+ 𝜔22. (5)

Practically, we found the 𝜔1 = 0.1 and 𝜔2 = 2𝑒 − 5 result in a good
overall combination for our experiments.

With the update in the loss function, one necessary change is also
made in the triplet sampling module. Previously in Zhang et al. (2018),
we chose a subset of speakers in the training pool for triplet formulation
in each epoch. With the additional 𝑠𝐿2

, it is better to see all the
speakers in one epoch. In our experiments, we always randomly select
segments from all training speakers for the triplet generation and
shuffle to ensure all classes can be seen within one epoch.
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Table 1
Statistics of data used in SRE-16 and SRE-18, with model/segment numbers for
Enrollment and target/nontarget numbers for Trial.
Unlabeled Enrollment Trial

SRE-16

Minor Major DEV EVAL DEV EVAL
200 2272 80/120 802/1202 4828/19312 1986729/1949666

SRE-18

DEV EVAL DEV EVAL
2332 125/175 940/1316 7830/100265 60675/2002332

3. NIST SRE tasks

For developing our systems and evaluation of our proposed methods
for the purpose of domain mismatch compensation, we carried out
experiments based on both NIST SRE-16 and SRE-18 (Sadjadi et al.;
NIST, 2016, 2018). Both target language mismatch problem for speaker
recognition where a small unlabeled in-domain data is provided for
domain adaptation.

There are two training conditions defined for the NIST SRE (16 and
18 specifically) tasks, (1) fixed: using a fixed dataset for training; (2)
open: additional publicly available data are permitted to be used. For
all of our experiments, we only focus on the fixed condition.

3.1. NIST SRE-16

NIST SRE-16 fixed condition includes data from Call My Net corpus,
previous Mixer/SRE data, both landline and cellular Sadjadi et al..
Here, we did not use the Fisher data and Call-My-Net corpus for train-
ing, and at the back-end, we also did not use any of the Switchboard
data.

Data assigned to the development and evaluation sets were col-
lected from the Call-My-Net corpus. Data was collected outside of
North America and consists of two subsets: (1) Major : contains Tagalog
and Cantonese languages, (2) Minor : contains Cebuano and Mandarin
languages. Development data includes data from both minor and ma-
jor language sets; evaluation data only contains data from the major
set (Sadjadi et al.).

Development data includes labeled and unlabeled sets. The labeled
set is only from minor languages; 10 speakers talking Cebuano and
10 speakers talking Mandarin, with each possessing 10 segments. The
unlabeled set has 2272 and 200 calls from major and minor languages,
respectively (this data does not have speaker ID, language, gender, etc
information) (Sadjadi et al.). Statistics for both the development and
evaluation sets are summarized in Table 1. Throughout the remainder
of this paper, we refer to the development set as DEV and evaluation
set as EVAL.

3.2. NIST SRE-18

The NIST SRE-18 as well targets a similar challenge with some
modifications. For the fixed condition, the training data includes all
previous SRE data, consisting of Switchboard, Fisher, VoxCeleb, SITW
(speaker in the wild); and the development set of SRE-16 was allowed
to be used. The task includes two separate parts: CMN2 (Call My Net),
and VAST (Video Annotation for Speech Technology), where for our
study here we mainly focus on the CMN2 part. The CMN2 dataset used
for the development and evaluation purposes contains data with the
Tunisian Arabic language; while the training data is mostly in American
English.

In contrast to SRE-16 where DEV and EVAL sets did not share the
same languages, SRE-18 DEV and EVAL are considered to belong to one
domain (i.e., the language for both are the same). The CMN2 part of
the DEV set includes 25 speakers (with approximately 10 utterances per
speaker). The SRE-18 DEV set also includes in-domain unlabeled data
(no speaker ID, gender, or language labels) with 2332 utterances and
10

speech duration ranging between 10 s to 60 s uniformly.
4. Domain adaptation using unlabeled data

In this section, we review techniques applied specifically at the
back-end level for the purpose of domain mismatch compensation. The
next section includes experimental results for validating each of these
adaptation methods.

4.1. i/t/x-Vector centralization

Mean centralization of the speaker embeddings with in-domain data
is shown to be an effective approach for domain adaptation. For SRE-
16, we used the major data, and for SRE-18 all unlabeled data are used
for centralization processing.

4.2. LDA

The block-diagram in Fig. 1 shows that after extracting i-Vectors
(as an example), mean-centralization and length-normalization, usually
LDA is used to reduce the dimension size of the resulting i-vectors as
well as improve the discriminating ability of the speaker classes. We
examine that incorporating in-domain data into the LDA processing can
be effective for all i-Vectors, t-Vectors, and x-Vectors. However, LDA is
a supervised approach, and adding in-domain data for training the LDA
requires some form of pseudo labels for them, which we estimated with
the method described in the following subsection.

4.2.1. Clustering of unlabeled data
For compensating the domain mismatch, the use of unlabeled in-

domain data becomes very important. There are several stages where
we can use unlabeled data, such as LDA/PLDA training, and calibration;
however, most of them require labeled data. Therefore, performing a
speaker clustering of the unlabeled data is required there. After cluster-
ing unlabeled data, we can simply use the ‘‘estimated’’ speaker labels
for each utterance with supervised methods. The clustering approach
we applied here is similar to the method that we used in our 2015
NIST LRE i-Vector challenge (Bahmaninezhad and Hansen, 2018). With
these labels, we incorporate the in-domain information from unlabeled
data to train both LDA and PLDA. In fact, in the experiments, this
simple operation improves the LDA/PLDA baseline performance for the
development set. In practice, we train a gender identification sub-task
using previous SRE data before speaker clustering, and then apply a
simple K-means algorithm over the gender-dependent subsets, finally,
we pool these two subsets together. Throughout our experiments, we
found that this can provide more accurate speaker clustering and
greater benefits for subsequent LDA and PLDA training.

4.3. Dimension reduction and domain adaptation with SVDA

In this sub-section, we describe discriminant analysis via support
vectors (Bahmaninezhad and Hansen, 2017). Here, we modify the
SVDA framework for adaptation to the domain of interest.

SVDA is a variation of LDA, where both can be used for discriminant
analysis, and optimize the Fisher criterion (Fisher, 1936). LDA uses
all samples of all classes to calculate the between and within class
covariance matrices, as:

𝑆𝑏 =
𝐶
∑

𝑐=1
𝑛𝑐 (𝜇𝑐 − 𝜇)(𝜇𝑐 − 𝜇)𝑇 (6)

𝑆𝑤 =
𝐶
∑

𝑐=1

∑

𝑘∈𝑐
(𝑥𝑘 − 𝜇𝑐 )(𝑥𝑘 − 𝜇𝑐)𝑇 , (7)

However, SVDA only uses the support vectors to calculate the
between and within class covariance matrices. More specifically, if we
define 𝑤𝑐1𝑐2 =

∑𝑙
𝑖=1 𝑦𝑖𝛼𝑖𝑥𝑖 as the optimal direction to classify two classes

𝑐 and 𝑐 by a linear SVM (𝑦 represents target value (+1 for first class,
1 2 𝑖
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-1 for second class) of learning pattern 𝑥𝑖, 𝛼𝑖 is its coefficient), then the
etween class covariance matrix will be updated as,

𝑏 =
∑

1≤𝑐1≤𝑐2≤𝐶
𝑤𝑐1𝑐2𝑤

𝑇
𝑐1𝑐2

. (8)

lso, let 𝑋̂ = [𝑥̂1, 𝑥̂2,… , 𝑥̂𝑁̂ ] be all the support vectors and 𝑁̂ represents
heir total number. Next, the within class covariance matrix will be
ormulated as,

𝑤 =
𝐶
∑

𝑐=1

∑

𝑖∈𝐼𝑐

(𝑥̂𝑖 − 𝜇̂𝑐)(𝑥̂𝑖 − 𝜇̂𝑐)𝑇 (9)

here 𝐼𝑐 includes the index of support vectors in class 𝑐, and 𝜇̂𝑐 denotes
he mean of them. Finally, similar to LDA, the optimum transforma-
ion 𝐴̂ will contain the 𝑘 eigenvectors corresponding to the 𝑘 largest
igenvalues of 𝑉 −1

𝑤 𝑉𝑏.
For training the SVM, two strategies can be adopted; (i.e., 1-VS-
and 1-VS-Rest (Bahmaninezhad and Hansen, 2017)). Data for the
omain of interest can be easily integrated into this framework, both
upervised and unsupervised. In the supervised adapted SVDA, first, the
n-domain data needs to be clustered (if they are unlabeled), then they
ill be treated similar to other speaker classes; in another experiment,
e considered all unlabeled data as belonging to only one single
lass and used it with a 1-VS-1 strategy. On the other hand, unsuper-
ised adapted SVDA does not perform clustering. In every iteration of
VM, unlabeled in-domain data are added to the rest class with no
nformation on their labels. Algorithm 1 summarizes our proposed 1-
S-Rest SVDA. Other advantages of our proposed SVDA includes: SVDA
inds the discriminatory directions using the boundary structure of the
lasses, and also the SVM is a well-known method for small sample size
roblem (Gu et al., 2010).
Algorithm 1 Algorithm for adapted-SVDA 1-VS-Rest.
C ← Number of speaker classes
X, Y ← i/t/x-vectors, and their labels
N ← Number of all support vectors
𝛾 ← Regularizer parameter 0 ≤ 𝛾 ≤ 1, and here is set to 0.05.
for 𝑖 = 0 to 𝐶 do

𝑋𝑐𝑢 = 𝑋𝑖 concatenate 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑
𝑌𝑐𝑢 = 𝑌𝑖 concatenate 𝑍𝑒𝑟𝑜𝑠(0, 𝑙𝑒𝑛(𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑒𝑑))
𝑚𝑜𝑑𝑒𝑙 = 𝑠𝑣𝑚𝑡𝑟𝑎𝑖𝑛(𝑌𝑐𝑢, 𝑋𝑐𝑢)
𝐼𝑖 = index of SVs for class 𝑖
𝐼𝑗 = index of SVs for unlabeled data
𝑤 = 𝑆𝑉 𝑠(𝐼𝑖) − 𝑚𝑒𝑎𝑛(𝑆𝑉 𝑠(𝐼𝑖))
𝑉 𝑤 = 𝑉 𝑤 +𝑤𝑇 ∗ 𝑤
𝑤 = 𝑆𝑉 𝐶𝑜𝑒𝑓 (𝐼𝑖) ∗ 𝑆𝑉 𝑠(𝐼𝑖) + 𝑆𝑉 𝐶𝑜𝑒𝑓 (𝐼𝑗) ∗ 𝑆𝑉 𝑠(𝐼𝑗)
𝑉 𝑏 = 𝑉 𝑏 +𝑤𝑇 ∗ 𝑤

end for
Vw = (1 − 𝛾)𝑉𝑤 + 𝛾 𝑡𝑟𝑎𝑐𝑒(𝑉𝑤)

𝑁−𝐶
return eigenvectors corresponding to the k largest eigenvalues of
𝑉𝑏𝑎 = 𝛾𝑉𝑤𝑎

As stated earlier, we perform the adapted SVDA with a 1-VS-1
trategy, which is summarized in Algorithm 2. We experimented with
wo different scenarios, (1) all in-domain data are counted as belonging
o one speaker class, and (2) we use the pseudo labels estimated from
ur clustering approach.

.4. PLDA

Here, we perform PLDA adaptation with two different methods,
i.e., supervised and unsupervised adapted PLDA (Garcia-Romero and
cCree, 2014; Garcia-Romero et al., 2014)), details are provided in the
ollowing description.
For both supervised and unsupervised PLDA adaptation, 𝛤 and 𝛬

parameters, representing the between-class and within-class covari-
ance matrices respectively (Garcia-Romero and McCree, 2014) of PLDA
11
Algorithm 2 Algorithm for adapted-SVDA 1-VS-1.
C ← Number of speaker classes
X, Y ← i/t/x-vectors, and their labels
N ← Number of all support vectors
𝛾 ← Regularizer parameter 0 ≤ 𝛾 ≤ 1, and here is set to 0.05.
𝑚𝑜𝑑𝑒𝑙 = 𝑠𝑣𝑚𝑡𝑟𝑎𝑖𝑛(𝑌 ,𝑋)
𝑉 𝑤 ← Initialize to Zero
for 𝑖 = 0 to 𝐶 do

𝐼𝑖 = index of SVs for class 𝑖
𝑤 = 𝑆𝑉 𝑠(𝐼𝑖) − 𝑚𝑒𝑎𝑛(𝑆𝑉 𝑠(𝐼𝑖))
𝑉 𝑤 = 𝑉 𝑤 +𝑤′ ∗ 𝑤

end for
Vw = (1 − 𝛾)𝑉𝑤 + 𝛾 𝑡𝑟𝑎𝑐𝑒(𝑉𝑤)

𝑁−𝐶
𝑉 𝑏 ← Initialize to Zero
for 𝑖 = 0 to 𝐶 − 1 do

for 𝑗 = 𝑖 + 1 to 𝐶 do
𝑋𝑐𝑢 = 𝑋𝑖 concatenate 𝑋𝑗
𝑌𝑐𝑢 = 𝑌𝑖 concatenate 𝑌𝑗
𝑚𝑜𝑑𝑒𝑙 = 𝑠𝑣𝑚𝑡𝑟𝑎𝑖𝑛(𝑌𝑐𝑢, 𝑋𝑐𝑢)
𝐼𝑖 = index of SVs for class 𝑖
𝐼𝑗 = index of SVs for class 𝑗
𝑤 = 𝑆𝑉 𝐶𝑜𝑒𝑓 (𝐼𝑖) ∗ 𝑆𝑉 𝑠(𝐼𝑖) + 𝑆𝑉 𝐶𝑜𝑒𝑓 (𝐼𝑗) ∗ 𝑆𝑉 𝑠(𝐼𝑗)
𝑉 𝑏 = 𝑉 𝑏 +𝑤𝑇 ∗ 𝑤

end for
end for
return eigenvectors corresponding to the k largest eigenvalues of
𝑉𝑏𝑎 = 𝛾𝑉𝑤𝑎

model, need to be updated using the in-domain data. In the supervised
adapted PLDA approach, the in-domain data are first clustered (the
unlabeled data for SRE-16 & SRE-18 are in-domain data) and when
their pseudo labels are estimated, we can perform the traditional PLDA
on them. The 𝛬 and 𝛤 parameters of the supervised adapted PLDA are
then interpolated as,

𝛤𝑎𝑑𝑎𝑝𝑡 = 𝛼𝛤𝑖𝑛 + (1 − 𝛼)𝛤𝑜𝑢𝑡,
𝛬𝑎𝑑𝑎𝑝𝑡 = 𝛼𝛬𝑖𝑛 + (1 − 𝛼)𝛬𝑜𝑢𝑡.

(10)

Here, 𝛤𝑖𝑛 and 𝛬𝑖𝑛 are the between class and within class covariance
matrices for the in-domain data, 𝛤𝑜𝑢𝑡 and 𝛬𝑜𝑢𝑡 are the same covariance
matrices but calculated from out-domain data. In our experiments, we
used (1 − 𝛼) = 0.85.

For unsupervised adapted PLDA, the in-domain data are not clus-
tered first (if they are unlabeled; or their actual labels will not be used
if they are labeled). Here, mean and variance of all in-domain data are
calculated and used for adapting the PLDA covariance matrices as,

𝛤𝑎𝑑𝑎𝑝𝑡 = Γ𝑜𝑢𝑡 + 𝛽𝑏𝑆,
𝛬𝑎𝑑𝑎𝑝𝑡 = Λ𝑜𝑢𝑡 + 𝛽𝑤𝑆,

(11)

here 𝛽𝑏 determines the scale for updating the between class covari-
nce toward the excess variance in a particular direction, and 𝛽𝑤
s the same but for updating within class covariance matrix. In our
xperiments, we set 𝛽𝑏 = 0.2 and 𝛽𝑤 = 0.6. In addition, 𝑆 corresponds
o the eigenvalues of adaptation-data (in-domain data) total-covariance
n PLDA space (Snyder et al.).

.5. Score normalization, calibration and fusion

NIST evaluates the performance of each team based on the act-
primary metric. To this end, score calibration is essential. Here, we
xamine multiple options to prepare scores before fusion, using PAV
alibration from the BOSARIS toolkit (Brümmer and De Villiers, 2013)
rained with DEV or DEV+Unlabeled to calibrate the scores; or simply
inear score fusion of the s-norm scores. Score normalization, specifi-
ally s-norm, is used when generating the PLDA score, with an adaptive
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Fig. 2. Flow diagrams of CRSS back-end classifiers (Zhang et al., 2019).

ohort selection scheme followed by a top score selection (Sturim
nd Reynolds, 2005). In particular, cohorts were selected from the
nlabeled DEV set for CMN2 partition in SRE18, and unlabeled DEV
et in SRE16.
In order to predict final scores, we combine our multiple single

ystems. We accomplish this by building a fused model by training a
ogistic regression model. Let 𝑥 = {𝑥1, 𝑥2,… , 𝑥𝑛} be a feature vector by
concatenating each single system score, where the target variable 𝑦 is
Bernoulli random variable for which the probability of occurrence is
ependent on the prediction given in Eq. (12). Regression coefficients 𝜔
re estimated using maximum likelihood estimation. Scores from every
ingle system are combined with the estimated coefficients to obtain
he fusion score 𝑦̂.

(𝑦 = 1|𝑥, 𝜔) = 1
1 + exp

(

−𝜔𝑇 𝑥
) (12)

𝑦̂ = 𝜔𝑇 𝑥, (13)

When the linear weights are learned, the calibrated DEV scores
and calibrated EVAL scores are integrated as the final scores to the
evaluation.

4.6. Overview of back-end level domain adaptation

Fig. 2 shows the flow diagram of our back-ends with incorporating
domain-adaptation methods. Although we carry out experiments on
various combinations of domain adaptation techniques (together or
separately), this figure summarizes the two different pipelines we find
out to be successful and used for our submission to the challenge as
well.

Based on our preliminary experiments, we propose performing do-
main mismatch compensation using either of the pipelines shown in
Fig. 2. In other words, domain mismatch is either compensated with
SVDA or with adapted PLDA model (which can be supervised adapted
PLDA or unsupervised adapted PLDA). In the latter case, scoring can
be replaced with s-norm scoring as well. Mean centralization, length
normalization and LDA are shared between the two pipelines.

5. Experiments

5.1. Experimental setup

For the UBM/i-Vector framework, we extract 60-dimensional fea-
tures (20-D MFCC and 𝛥+𝛥𝛥) on a 25 ms window, with a shifting size of
10 ms. Non-speech frames are discarded using an energy-based speech
activity detection (SAD). In addition, cepstral mean normalization is
12

applied with a 3-second sliding window. 2048-mixture full covariance
Table 2
Corpora used in the speaker embedding system training.
Dataset Copora Min-Utt/Spk System

D1 SRE04-08, SWB 1 i-vec
D2 D1+Mixer 6 8 t-vec
D3 D2 + SRE-10 + VoxCeleb 8 x-vec

Table 3
Number of speakers/segments used for training front-end and back-end processing
within our speaker recognition system for this study.
System Front-end Back-end

i-vector 5756/57273 3794/36410
x-vector 13437/169135 3794/36422
t-vector 5969/132777 3794/36422

UBM and total variability matrix are trained for 600-dimensional i-
vector extraction. Next, LDA is used to reduce the dimension of the
i-Vectors to 400-D.

In our study, we used the standard Kaldi x-vector recipe to train
our baseline x-Vector based system. The input feature vector is a 24-
dimensional filter-bank from a 25-ms frame length analysis window,
these features are then mean-normalized over a 3-s sliding window.
Non-speech segments are removed using an energy-based SAD, though
other more advanced SAD methods such as Combo-SAD (Sadjadi and
Hansen, 2013) or TO-Combo-SAD (Sadjadi and Hansen, 2013; Ziaei
t al., 2014) could also be used for noisy data. The DNN configuration
s described in detail in Snyder et al.. The resulting x-vectors are 512
imensional, which are then reduced to 150-D with LDA.
In the t-vector framework, high-resolution filter bank features are

dopted for system development. At the frequency axis, 96-dimensional
og mel filter bank features are extracted from a 32-ms analysis speech
rame, with a 50% overlap between neighboring frames. Non-speech
ortions of the utterance are removed using an energy-based SAD. To
eal with long-duration samples in the training data, we uniformly
egment the speech utterances into 12-second chunks without overlap,
hich is equivalent to the 750-dimensional feature set along the time
xis as the input to the network. To estimate the embedding at the
tterance level, we perform segment level embedding averaged in
equential order, in order to obtain the t-Vector. Here, we extract
28-dimensional t-vectors, which are then reduced to 80-D with LDA.
Table 2 summarizes the data used for training each of our developed

peaker embedding systems for both SRE-16 and SRE-18 tasks.
Here, SWB includes all Switchboard II phase 2 & 3 and Switch-

oard Cellular Part 1 & 2 corpora. D2 and D3 listed in Table 2 are
ugmented by 3-folds after convolving with far-field Room Impulse
esponses (RIRs), or by adding noise from the MUSAN corpus (Snyder
t al., 2015). The Kaldi x-vector recipe is adopted for this portion of
ur processing. A speaker filtering criterion is applied to the training
ataset as well for t-vector and x-vector feature extraction. For example,
min-utt/spk stands for the filtering process that all speakers with less
han 8 utterances and less than 500 frames per utterance were excluded
or training.
For training the back-end, no augmentation has been applied, our

reliminary experiments showed that no gain can be obtained by
ncluding augmented data at the back-end training. The out-of-domain
LDA is also trained on only previous SRE data. SVDA, LDA, and
LDA all share the same data. In the experiments where unlabeled data
re included in the training of SVDA, LDA, and PLDA, it is explicitly
entioned in the paper. Statistics of the data used for training front-end
nd back-end stages are summarized in Table 3.
NIST provided scoring software to the participating sites in SRE-16

nd SRE-18 to calculate the equal error rate (EER), minimum primary
ost (min-Cprimary), and actual primary cost (act-Cprimary). For SRE-
6, the software reports both equalized (i.e., false alarm and false reject
ounts were equalized over various partitions) and unequalized scores.
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Table 4
Ground truth labels (GT) for unlabeled data comparing against pseudo labels estimated
with clustering method (CL) in SRE-16 with i-vector/PLDA configuration.
SVDA LDA PLDA DEV EVAL

EER (%) min-C EER (%) min-C

✕ GT GT 17.25/16.76 0.71/0.67 12.64/12.77 0.79/0.8
✕ ✕ ✕ 15.59/16.08 0.70/0.67 12.42/12.68 0.8/0.81
✕ CL CL 16.12/16.34 0.71/0.67 12.4/12.51 0.79/0.79

Table 5
SVDA domain adaptation with i-vector/PLDA for SRE-16 and SRE-18 tasks.
SVDA DEV EVAL

EER (%) min-C EER (%) min-C

SRE-16

No SVDA 15.59/16.08 0.7/0.67 12.33/12.55 0.79/0.8
1-VS-1 (all 1 class) 15.77/16.05 0.7/0.65 10.75/11.04 0.7/0.69
1-VS-1 (CL labels) 15.89/16.32 0.71/0.67 12.33/12.53 0.8/0.8
1-VS-Rest 15.57/15.95 0.66/0.62 10.56/10.91 0.69/0.68

SRE-18

No SVDA 12.17 0.73 12.89 0.78
1-VS-1 (all 1 class) 10.23 0.7 11.66 0.72
1-VS-1 (CL labels) 12.07 0.74 12.85 0.77
1-VS-Rest 12.01 0.72 12.92 0.78

In our experiments, we report both equalized/unequalized scores as
well. Details on these criteria are provided in Sadjadi et al., NIST (2016,
2018).

5.2. Experimental results

5.2.1. Ground truth labels VS Pseudo labels
Here, we perform experiments to validate how different ways of

using unlabeled data can affect the speaker recognition performance.
Fig. 3 shows the histogram of both minor and major data for the SRE-
16, with ground truth labels as well as the labels estimated with our
clustering approach. Table 4 presents the results achieved with ground
truth labels vs if we use clustering labels.

The results in Table 4 show that using ground truth labels not
only does not improve performance but also degrades the scores (for
EVAL specifically). This problem originates from the fact that every
speaker has a very small number of samples. Based on the presented
histogram for the ground truth and pseudo labels; the latter achieves
better performance because there are more samples in each cluster
even-though there are errors in labeling. Therefore, we can conclude
that having a sufficient number of samples for training LDA and PLDA
is important, and with the provided unlabeled data it is better to have
either unsupervised adaptation or employ pseudo labels. Throughout
the remainder of the experiments, we set aside and never use ground
truth labels for the unlabeled data.

5.2.2. SVDA for adaptation
In this subsection, we perform experiments for evaluating the effec-

tiveness of SVDA in domain adaptation. Table 5 summarizes results for
i-Vector/PLDA solution for both SRE-16 and SRE-18. Three different
SVDA variations have been applied: (1) 1-VS-1 strategy where all
unlabeled in-domain data are considered to belong to one cluster; (2) 1-
VS-1 where unlabeled data has been clustered first and their clustering
(CL) labels used there; and (3) 1-VS-Rest where all unlabeled data are
added to the rest class.

Results show that for SRE-16, SVDA achieves +15% and +14%
improvement in terms of min-Cprimary and EER respectively. For SRE-
18 as well, +8% and +16% improvement were achieved with SVDA
in terms of min-Cprimary and EER, respectively. For both SRE-16 and
SRE-18, SVDA has been shown to be effective for domain adaptation. In
13
Table 6
Supervised VS Unsupervised PLDA, for SRE-16 and SRE-18.
Adapted PLDA SRE-18 SRE-16

DEV EVAL DEV EVAL

EER (%) min-C EER (%) min-C EER (%) min-C

i-vector

✕ 12.17 0.73 12.89 0.78 12.33/12.55 0.79/0.8
Supervised 15.28 0.78 15.56 0.8 13.93/13.98 0.85/0.84
Unsupervised 14.86 0.73 16.04 0.76 13.96/14.23 0.8/0.8

x-vector

✕ 11.4 0.78 11.23 0.77 15.32/15.56 0.99/0.99
Supervised 10.34 0.64 11.05 0.65 14.96/15.74 0.97/0.98
Unsupervised 8.82 0.54 9.64 0.56 8.37/8.29 0.6/0.61

t-vector

✕ 13.34 0.88 13.87 0.87 17.2/16.15 0.99/0.99
Supervised 11.04 0.76 12.57 0.78 13.16/12.76 0.92/0.93
Unsupervised 9.5 0.53 9.62 0.67 9.17/9.32 0.7/0.72

Table 7
Using data of interest, in-domain data in LDA, SVDA, and PLDA for x-vector, i-vector
and t-vector, evaluated on both SRE-16 and SRE-18.
SVDA LDA PLDA SRE-18 SRE-16

DEV EVAL EVAL

EER (%) min-C EER (%) min-C EER (%) min-C

i-vector

✕ ✕ ✕ 12.17 0.73 12.89 0.78 12.42/12.68 0.79/0.81
✓ ✕ ✕ 12.01 0.71 12.92 0.78 10.66/10.95 0.69/0.69
✓ ✓ ✕ 10.76 0.7 12.34 0.76 10.69/11.02 0.69/0.69
✓ ✕ ✓ 12.27 0.71 13.05 0.78 12.58/12.77 0.82/0.83
✓ ✓ ✓ 10.91 0.69 12.41 0.76 10.69/10.97 0.7/0.7
✕ ✓ ✕ 11.15 0.73 12.35 0.75 12.32/12.56 0.77/0.78
✕ ✓ ✓ 11.41 0.72 12.47 0.76 12.4/12.51 0.79/0.79
✕ ✕ ✓ 12.54 0.72 13.06 0.78 12.79/12.95 0.82/0.83

t-vector

✕ ✕ ✕ 13.34 0.88 13.87 0.87 17.2/16.15 0.99/0.99
✓ ✕ ✕ 11.93 0.7 10.45 0.74 13.12/12.86 0.89/0.94
✓ ✓ ✕ 11.71 0.7 10.4 0.73 12.98/12.91 0.94/0.97
✓ ✕ ✓ 9.79 0.57 9.96 0.66 10.01/10.29 0.71/0.72
✓ ✓ ✓ 9.84 0.57 9.99 0.66 10/10.23 0.7/0.72
✕ ✓ ✕ 13.7 0.89 14.55 0.9 22.43/21.43 0.99/0.99
✕ ✓ ✓ 9.52 0.54 9.65 0.67 9.23/9.36 0.71/0.73
✕ ✕ ✓ 9.49 0.52 9.61 0.67 9.23/9.33 0.7/0.72

x-vector

✕ ✕ ✕ 11.4 0.78 11.23 0.77 15.32/15.56 0.99/0.99
✓ ✕ ✕ 8.86 0.61 8.67 0.58 11.45/11.14 0.86/0.89
✓ ✓ ✕ 8.89 0.65 8.72 0.59 13.36/12.91 0.99/0.99
✓ ✕ ✓ 8.7 0.54 9.96 0.57 8.71/8.46 0.58/0.59
✓ ✓ ✓ 8.66 0.55 9.88 0.56 8.63/8.36 0.58/0.59
✕ ✓ ✕ 16.97 0.87 13.93 0.86 29.36/27.24 1/1
✕ ✓ ✓ 8.55 0.54 9.37 0.56 8.45/8.23 0.62/0.63
✕ ✕ ✓ 8.8 0.54 9.63 0.56 8.42/8.32 0.6/0.61

SRE-16, SVDA with 1-VS-Rest strategy and in SRE-18, SVDA with 1-VS-
1 (where all unlabeled data are considered to belong to only 1 class) is
shown to achieve the better performance comparing against the other
SVDA strategies. SVDA with 1-VS-1 and using clustering labels do not
provide any improvement. After clustering, the number of samples in
each cluster is still small and does not provide an informative structure
of the in-domain data, and all samples can be chosen as the support
vectors. Therefore, we expect to achieve equivalent performance to
LDA, and results also confirm the same. In addition, for SRE-18 be-
cause unlabeled data are in the same domain as EVAL set, the mean
normalization already is helping; however, for SRE-16 because mean
normalization does not provide sufficient adaptation, improvement
with SVDA is more clear. Therefore, based on these results, for the
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Table 8
Score normalization (S-Norm) with supervised PLDA adaptation for x,t,i-vectors
evaluated on SRE-18 task.
S-Norm DEV EVAL

EER (%) min-C act-C EER (%) min-C act-C

i-vector

✕ 15.57 0.8 0.91 16.51 0.81 0.87
✓ 13.25 0.72 0.95 14.19 0.77 1.01

x-vector

✕ 10.21 0.62 1.11 10.78 0.64 0.99
✓ 8.68 0.59 0.78 9.37 0.61 1.08

t-vector

✕ 10.8 0.72 2.2 11.7 0.74 1.67
✓ 9.79 0.6 0.7 10.52 0.68 0.93

following experiments, 1-VS-Rest is used for domain adaptation in SRE-
16; and 1-VS-1 (all unlabeled data share the same cluster) is applied for
SRE-18.

5.2.3. Adapted PLDA
In this section, we compare supervised and unsupervised PLDA

adaptation methods for SRE-18 and SRE-16 tasks with i-Vector, t-
Vector, and x-Vector embeddings. Results are summarized in Table 6.
Here, SVDA is not applied, in order to measure only the effectiveness
of adapted PLDA.

For x-Vector and t-Vector embeddings unsupervised adapted PLDA
achieves consistent improvement over supervised adapted PLDA and
original PLDA. However, for i-Vector, adapted PLDA does not provide
any improvement. As it is shown in Snyder et al., augmenting extractor
r PLDA does not improve the performance for the i-Vector/PLDA
peaker recognition; however, they are very effective for x-Vectors.
he discriminative training of x-Vectors and t-Vectors benefit from
ugmentation techniques is shown here, and further improved with
14

S

LDA adaptation. i-Vectors for unlabeled data are not accurate as they
ave different languages, and i-Vectors trained on only clean (with-
ut any augmentation) data, cannot predict the embeddings properly.
herefore, using unlabeled data for adapting the PLDA is shown to
egrade performance in the scoring stage. The front-end training and
ifferences between i-Vector, t-Vector, and x-Vector representations are
eflected in these scores.

.2.4. Adaptation results for SRE-16 and SRE-18
In this section, we use in-domain data along with alternate back-

nd blocks; LDA, SVDA, and PLDA. Results are summarized in Table 7.
ll systems use in-domain data first for centralization: major data is
sed for SRE-16 and unlabeled data for SRE-18. For t-Vector and x-
ector, unsupervised PLDA is used where ✓is set for PLDA. LDA needs
abeled data for training; therefore, when ✓is on for LDA, the clustered
nlabeled data is added to the training set. For SRE-16, 1-VS-Rest SVDA
s used and unlabeled data are added to the rest class; for SRE-18 1-VS-1
VDA (where all unlabeled data are considered to belong to only one
lass) is used.
The scores for all experiments confirm that domain adaptation

t the back-end level is promising, and especially for x-Vectors and
-Vectors, the improvement is more obvious. For i-Vector as well,
VDA is shown to be effective, specifically for SRE-16 where mean
entralization is not adequate for domain adaptation. In the i-Vector
ramework, discriminant analysis and dimension reduction techniques
uch as SVDA and LDA are shown to be more effective in compensating
he domain mismatch rather than the PLDA. However, for x-Vectors
nd t-Vectors higher gains are achieved by adapting PLDA; however,
VDA still results in better scores. For x-Vector embedding in the SRE-
8 task, with SVDA domain adaptation, the EER on the EVAL set is
.67%, and with an adapted PLDA it is 9.63% which confirms that

VDA is a promising approach to compensate for domain mismatch.
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Table 9
Calibration and fusion results where calibration is performed using different data for both SRE-16 and
SRE-18. UnLab. refers to in-domain unlabeled data.
Calib. DEV EVAL

EER (%) min-C act-C EER (%) min-C act-C

SRE-16

DEV 13.81/14.66 0.58/0.55 0.59/0.56 9.41/9.49 0.67/0.66 0.87/0.99
UnLa.+DEV 14.24/14.98 0.59/0.56 0.61/0.58 9.37/9.43 0.65/0.64 0.71/0.81

SRE-18

DEV 5.63 0.37 0.39 7.14 0.49 0.53
UnLa.+DEV 5.72 0.37 0.38 7.14 0.49 0.53
S-NORM 6.79 0.42 0.43 7.63 0.49 0.5
5.2.5. Score-normalization with S-norm
In this section, the effectiveness of score normalization along with

i-vector, t-vector, and x-vector embeddings are studied in terms of EER,
min-Cprimary and act-Cprimary for SRE-18. Results are reported in
Table 8. The results show that score normalization is effective for all
speaker embeddings and in terms of all EER, min-Cprimary and act-
Cprimary costs. S-norm incorporates unlabeled data and normalizes the
scores which make the fusion of the single systems as well easier; as we
can skip the calibration phase when scores are normalized.

5.2.6. Calibration and fusion
Here, we perform experiments to validate the effectiveness of using

in-domain data for calibration. When fusing multiple systems, it is
necessary to calibrate the scores first or perform a normalization step.
Here, in two experiments we calibrated the scores, one with the DEV
set, and the other with the unlabeled in-domain set (which they have
been clustered first, and then a trial set designed for them). For the
second experiment, we did not calibrate the scores, instead, we employ
normalized scores for fusion.

For the purpose of highlighting fusion benefits, we use all single
systems we developed for our submissions to NIST SRE-16 and SRE-
18. Details of these systems are provided in Zhang et al. (2017, 2019).
Results for this evaluation are reported in Table 9. For SRE-16 where
DEV and EVAL set also have different language sets, the difference
between calibrating with only DEV or DEV+Unlabeled data is more
obvious. Incorporating in-domain data for calibration helps achieve
a closer act-Cprimary cost to min-Cprimary. However, for SRE-18,
calibrating with DEV or DEV+in-domain data does not have much of
an impact because the DEV set shares the same language sets with
EVAL. For SRE-18 as well, the results confirm that score normalization,
especially for the EVAL set, performs well. The scores confirm that
the fusion of multiple complementary systems significantly outperforms
any single system performance.

6. Conclusion

In this study, we have considered multiple domain adaptation meth-
ods for speaker recognition with a focus on the NIST SRE-16 and
SRE-18 tasks. We developed three alternate speaker embeddings here, i-
Vector, t-Vector, and x-Vector. We explored the use of new discriminant
analysis with support vectors (SVDA) solution, with new advancements
from our previous methods. We evaluated the 1-VS-Rest SVDA strategy
for domain adaptation. In addition, a new version of SVDA studied for
speaker recognition using unlabeled data; 1-VS-1 where all unlabeled
data is considered to belong to one cluster, and 1-VS-1 where unlabeled
in-domain data were clustered. Results confirmed that SVDA improves
speaker recognition for SRE-16 and SRE-18 by +15% and +8% in terms
of min-Cprimary respectively; and in terms of EER +14% and +16%
respectively, with i-Vector speaker embeddings. Mean centralization,
SVDA, LDA, PLDA, calibration, score normalization, and fusion are
phases that we incorporated in-domain data. We developed an effective
configuration for each of these steps to properly use the in-domain data.
Generally speaking, mean centralization simply provides an effective
15
technique to improve the performance on mismatch data. In addition,
unsupervised adaptation is shown to be more effective than the super-
vised ones (when pseudo labels were incorporated). Assigning labels
to in-domain data not only introduces error and negatively affects the
performance but also makes speaker clusters smaller and less beneficial
when included in LDA/PLDA; pooling all in-domain data together with
unsupervised PLDA is shown to perform well for NIST SRE tasks. Using
in-domain data with pseudo labels in score calibrations provides a
promising solution for domain adaptation.

The results suggest effective steps toward improving domain adap-
tation for robust speaker recognition. As an insight toward further
improvements on domain mismatch compensation for speaker recog-
nition, we suggest incorporating in-domain data at the front-end mod-
eling. At the same time, the methods presented in this paper are
applicable to other tasks which suffer from the domain mismatch
problem; such as, language recognition or dialect identification tasks
where data are recorded under mismatch conditions.
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