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Abstract
Most current speech technology systems are designed to

operate well even in the presence of multiple active speakers.
However, most solutions assume that the number of co-current
speakers is known. Unfortunately, this information might not
always be available in real-world applications. In this study,
we propose a real-time, single-channel attention-guided Con-
volutional Neural Network (CNN) to estimate the number of
active speakers in overlapping speech. The proposed system
extracts higher-level information from the speech spectral con-
tent using a CNN model. Next, the attention mechanism sum-
marizes the extracted information into a compact feature vector
without losing critical information. Finally, the active speakers
are classified using a fully connected network. Experiments on
simulated overlapping speech using WSJ corpus show that the
attention solution is shown to improve the performance by al-
most 3% absolute over conventional temporal average pooling.
The proposed Attention-guided CNN achieves 76.15% for both
Weighted Accuracy and average Recall, and 75.80% Precision
on speech segments as short as 20 frames (i.e., 200 ms). All
the classification metrics exceed 92% for the attention-guided
model in offline scenarios where the input signal is more than
100 frames long (i.e., 1s).
Index Terms: Overlapping speech, source counting, speaker
diarization, speaker counting, cocktail party, self-attention

1. Introduction
Spontaneous conversations often contain segments of overlap-
ping speech (i.e., segments with multiple active speakers). This
phenomena known as cocktail party [1, 2, 3], has been stud-
ied for several decades [4, 5, 6], yet still represents a major
source of error in many speech technology applications such as
Speaker Identification [7, 8, 9] and Automatic Speech Recog-
nition [10]. Many researcher developed systems that can trace
and recognize multiple speakers [8]. However, the majority of
these systems assume that the number of concurrent sources is
known in advance [11, 12, 13], which is not a realistic assump-
tion in most applications. Therefore, a real-time, simple, yet
effective speaker count estimation is needed to bridge the gap
between research and real-world applications [14].

The majority of developed solutions for estimating the max-
imum number of active speakers mimic the process of human
perception. Since humans use spatial information based on the
acoustic signals they receive from their ears, many researchers
calculate the Direction of Arrival (DoA) derived from multi-
channel speech signals to count and localize the number of ac-
tive sources. However, this approach is not practical in scenar-
ios where only a single-channel speech recording is available.
In 2003, Arai [15] proposed the first single-channel speaker
counting system based on modulation characteristics of speech.

He established the estimation algorithm by defining the curve
of “equivalent number of speakers” derived from the region of
modulation frequency between 2 and 8 Hz. He observed that
when a speaker is talking, the speech signal typically has a dis-
tinct modulation spectrum with a peak around 4-5 Hz. However,
as the number of simultaneous speakers increases, the modula-
tion pattern becomes more complex. This approach was not
efficient as it relied on very precise thresholds for an accurate
estimation of simultaneous speakers. The authors in [16] in-
troduced an unsupervised machine learning approach known as
Crowd++, which used agglomerative hierarchical clustering to
estimate the number of speakers in naturalistic audio. In a more
recent study [17], CountNet was proposed which used a super-
vised machine learning method for speaker estimation. In 2019,
Andrei [18] trained several Convolutional Neural Network ar-
chitectures to count the number of active speakers in speech
segments ranging from 100 to 500 frames. The aforementioned
studies demonstrate the capability of Deep Neural Networks in
addressing co-current speaker counting, however, none are ca-
pable of being deployed in real-time applications as they depend
on at at least 2s of speech for an accurate estimation.

In this study, we propose an attention-guided architecture to
count the number of co-current talkers on segments as short as
0.2 sec suitable for real-time applications. The remainder of the
paper is organized as follows. In Sec 2, the problem is outlined.
Sec 3 describes the proposed method in detail. Sec 4 presents
results, finally the conclusions are discussed in Sec 5.

2. Problem setup
Most previous studies [17, 18] have employed simulated over-
lapping speech for speaker counting because naturalistic data,
such as AMI [19], contains only 5-10% of overlap speech [14],
which is not sufficient for training DNNs. For conducting ex-
periments, we generate a simulated dataset consisting of differ-
ent scenarios of multiple active speakers using the same proce-
dure as [11, 12]. The simulated dataset is based on WSJ cor-
pus [20] in which random utterances from random speakers are
summed together with a Signal to Interference Ratio (SIR) cho-
sen randomly between 0-5 dB using a uniform distribution. We
generate a working corpus of 2-speaker and 3-speaker mixture
speech utterances. However, as depicted in Fig 1, labeling is
accomplished by considering speaker activity within each utter-
ance. Since performance of a the Speech Activity Detector is
crucial in counting the active speaker within short segments, we
integrate speech activity detector into speaker-count estimation
by adding a non-speech class at the output. For this purpose,
we add non-speech utterances to the simulated dataset, which
are either silence or environmental noise. Additionally, single-
speaker utterances are also added to the corpus to balance the
final dataset. Based on the generated dataset, our task is a 4-



Figure 1: Data generation procedure.

class classification problem, where each segment is classified as
either non-speech, 1-speaker, 2-speaker, or 3-speaker segment.
The details of the simulated corpus is summarized in Table 1.

3. System design
The speaker-count estimation is generally performed in three
steps: (i) extracting higher-level features from speech that are
related to the number of speakers, (ii) summarizing the frame-
level extracted features into an utterance-level feature vector,
and (iii) classifying the number of speakers in the feature space.
Additionally, since one of the output classes is non-speech, the
proposed system can also be considered as a combined real-
time Speech Activity Detector (SAD) that detects non-speech
segments as short as 0.2 seconds.

The proposed architecture is shown in Fig. 2, where the 2D
Convolutional Neural Network (CNN) is used for higher-level
feature extraction. Next, the extracted feature map, which is a
K ×M matrix with a feature dimension K and the time step
M , is passed to the Temporal aggregation block to be summa-
rized into a feature vector of size K × 1. This block condenses
the information in the feature map across the time dimension.
Finally, a fully connected (FC) network is employed to classify
the feature vectors in the embedding space into one of 4 classes.

The most important block in the proposed architecture is
the temporal aggregation step where the feature map should be
summarized without losing important information. A typical
time aggregation method is to use average pooling over time
dimension which has been used most often in previous studies
[17, 18, 21]. However, if one speaker is active for only a small
portion of the segment, then using temporal averaging may sup-
press that speaker from the feature map, therefore resulting in a
false estimation of the number of active speakers.

For addressing this challenge, we incorporate an attention

Class Train Cross validation Test

Non-speech 5000 500 500
1-speaker 5000 500 500
2-speaker 5000 500 500
3-speaker 5000 500 500

total 20000 2000 2000
Table 1: Number of the utterances in each class.

Figure 2: The proposed speaker counting architecture.

mechanism into the system to perform the temporal aggregation
step. The main concept of attention is to compress all neces-
sary information of an input sequence into a fixed-length vector
[22]. To achieve this, the attention mechanism first finds the
most informative regions in the extracted feature map, then as-
signs reasonable weights to those regions [23]. Therefore, the
model focuses on regions with important elements related to
the number of active speakers [24]. In order to find relevant in-
formation and calculate their corresponding weights, the input
feature map is transformed into two alternate embedding spaces
called (key,value) using two fully connected layers [22]:

K = Wk ×Xfeat (1)
V = Wv ×Xfeat (2)

where, K and V stand for key and value respectively. Wk and
Wv are fully connected layers that perform a linear transforma-
tion of the extracted feature map Xfeat. The attention mech-
anism is a fully connected layer with a trainable input vector
known as query q. Attention finds the most informative regions
in the extracted feature map by comparing the key of each time
step with the query using dot product [22]:

R =
qK√
dk

(3)

where dk is the key dimension and R is the similarity level of
the key and the trained query. Higher values of R reflects the
similarity of the trained query with the key value of that spe-
cific region in the feature map. Once the similarity metric R
is derived, a weight for each region is generated by applying
a Softmax activation function to the similarity metric R. Fi-
nally, the value of the feature map is multiplied by the attention
weights as [22]:

X̂feat = softmax(R)V T . (4)

Here, the X̂feat is the weighted average of the extracted feature
map Xfeat, for which the weights are calculated by the atten-
tion mechanism. Thus, the information in the extracted feature
map is summarized into a feature vector with dimension M×1.
Attention mechanism is a superior technique compared to aver-
age pooling over a time dimension because it assigns higher
weights to more informative regions. After performing the tem-
poral aggregation using attention, the feature vector calculated
at the output of attention is passed to the FC classifier followed
by a Softmax activation function for the final decision.



Figure 3: The training behavior of the proposed architecture.

4. Experiments, Results, and discussion
Dataset – the generated dataset explained in Sec 2 is used for
evaluating performance of speaker count estimation. Although
higher-level feature extraction is performed in the proposed sys-
tem shown in Fig 2, we do not use the raw waveform for train-
ing the network. The reason behind this is that the time do-
main waveforms are dense and using them directly for network
training is not computationally efficient. Thus, we extract Log
Mel FilterBank (LMFB) features for network training. In order
to extract LMFB features, we first apply a pre-emphasis filter
y(t) = x(t)−0.97x(t−1) to boost the high frequencies. Next,
we calculate 512-dim magnitude spectra computed over a frame
size of 25 ms with 10 ms frame shift with 16kHz sampling fre-
quency. The energy of each frame is also derived. A set of 40
triangular filterbanks are applied on the energy of the frames.
The logarithm output is the LMFB features.

Evaluation metrics – for evaluating the effectiveness of the
proposed system, we use evaluation metrics based on the con-
fusion matrix using Accuracy, Weighted Accuracy, Precision,
Recall, and F-score. Accuracy is the ratio between the num-
ber of correct predictions divided by the total number of speech
segments. Weighted Accuracy is Accuracy calculated within
each class and it is equal to the average Recall. Precision ex-
presses the ratio of the correct predictions in each class to the
total number of predicted segments for that class. Conversely,
Recall is measured as the ratio of correct predictions to the total
number of segments within each class. F-score is another useful
measure defined as the harmonic mean of Recall and Precision.

Model – the hyper-parameters of the network are learned
using the cross validation set. The choice of 8 2D convolutional
layers with 128 output channels, kernel size of 5*5, and 2 FC
layers with 256 neurons each is optimum. The ReLU activa-
tion function is used between all layers. Also, the layers are
initialized using Kaiming initialization [25]. The output of the
classifier is passed to a Softmax activation function for the final
decision. The network parameters are updated by the gradients
of Negative Log Likelihood Loss using a Stochastic Gradient
Descent (SGD) optimizer with an initial learning rate tuned to

20 frames Accuracy Precision Recall F-score

Average pool. 73.85% 73.18% 73.85% 73.51%
Attention 76.15% 75.80% 76.15% 75.97%

100 frames Accuracy Precision Recall F-score

Average pool. 90.80% 90.81% 90.80% 90.80%
Attention 92.15% 92.16% 92.15% 92.15%

Table 2: Weighted average classification scores for temporal
Average pooling and Attention method on speaker counting.

0.01. The training process is completed by performing the early
stopping [26]. The maximum number of epochs is set to 500,
batch size set to 128, and the learning rate is decreased by a
factor of 0.7 if the cross validation loss improvement is less
than 0.001 for two successive epochs. The early stopping is
performed if no improvement is observed on the validation set
once the learning rate is decayed six times. The Training and
cross validation loss and Accuracy of the network with the se-
lected hyper-parameters are shown in Fig 3, which depicts the
ability of the network to generalize to the unseen data samples
in the development phase. Also, the scheduler which performs
the early stopping terminates the training session after complet-
ing 120 epochs where the model convergences to the optimum
local minima.

Results and discussion – as mentioned in Sec 3, in the
proposed method, we focus on the temporal aggregation block,
which takes the extracted feature map and summarizes its infor-
mation into a feature vector. The motivation behind this is that
we estimate the number of classes on speech segments with a
duration range of 0.2-1 sec. Since, each segment has only one
label, the temporal dimension of the feature map must be sum-
marized into a single vector. As a baseline, the conventional
temporal Average pooling is performed to squeeze the feature
map into a feature vector. The results of the experiments with
Average pooling is presented in Table 2. Experiments are per-
formed on speech segments with 20 and 100 frame duration
(i.e, 200ms to 1s). The baseline achieves 73.85 % Weighted
Accuracy which is the same as average Recall, and 73.18% av-
erage precision over 4 classes for 20-frame input speech. The
F-score is 73.51% for the real-time classification. However, if
the speech context increases by adding more frames, the classi-
fication performance improves by a great extent. For 100-frame
speech segments, the baseline performance exceeds 90% for all
classification metrics.

Next, the effect of attention mechanism is evaluated for
speaker counting. As inferred from Table 2, attention mecha-
nism boosts speaker count estimation by almost 2-3% absolute
across all classification metrics for both real-time (20 frames)
and offline (100 frames) scenarios. The Attention-guided fea-
ture vector is a condensed version of the feature map combining
important information across the speech segment. Hence, the
attention-guided network is able to achieve 76.15% Weighted
Accuracy and average Recall, 75.80% average Precision, and
75.97% F-score. All the classification metrics exceed 92% for
the attention-guided model in offline scenarios.

The weighted accuracy for Average pooling over time



Figure 4: The Precision and Recall for individual classes per different number of input frames using attention-guided CNN model.

Figure 5: Comparing Weighted Accuracy per input frames for
temporal Average pooling and Attention mechanism.

(baseline) and Attention is plotted for varying input speech du-
ration in Fig 5. Attention-guided CNN outperforms the Av-
erage pooling method for every duration of the input except
for 50-frame speech, which achieves the same performance as
the baseline. Since the chosen number of consecutive frames
from the recording is random, the test set of 50-frame input
speech might be probably selected from a rather easy portion
of the dataset, therefore the superiority of the attention mech-
anism may not be fully revealed. However, for the challeng-
ing task of real-time speaker counting (20-30 frames), Atten-
tion consistently outperforms basic temporal Average pooling.
Fig 4 depicts performance of attention-guided CNN for individ-
ual classes in the real-time scenario (20-frame). According to
this figure, Precision and Recall for non-speech achieves a per-
fect score, confirming the validity of the proposed solution also
achieves effective Speech Activity Detector (SAD). Precision
and Recall of the 2-speaker class is the lowest, because those
segments are potentially confused with the 3-speaker class, es-
pecially if the speakers have the same gender and age. However,
both Precision and Recall for the 2-speaker class exceeds 50%
which is twice the rate for random guess for a 4-class classifica-
tion task. Also, the model is able to retrieve most single speaker
segments with a Recall score close to 1. As expected, both
Precision and Recall improves among all classes by increasing
test duration (i.e., number of input frames). In conclusion, the
experiments demonstrate the effectiveness of Attention mecha-
nism in estimating the active speaker count for various speech
duration in a multi-speaker scenarios.

Since each speaker count estimation algorithm in the lit-
erature is designed for a particular application, they usually
consider specific assumptions to maximize different criteria.
For example, the unsupervised Crowd++ [16] was an Android-
based solution implemented in smartphones and tablet com-
puters, and was tested on data collected from those devices.

Crowd++ was designed to address the specific challenges faced
in smartphones such as phone’s location e.g., in or out of a
pocket or bag, and the distance between the speakers and smart-
phones. In Crowd++, the authors attempted to find a rough es-
timate of the number of speakers in non-overlap speech record-
ings, and they used Error Count Distance (ECD) to evaluate
their method. They showed that Crowed++ can estimate the
speaker count with ECD of 1 manifesting that the estimated
speaker count is usually one speaker less or more than the actual
number of speakers. Since our proposed Attention-guided CNN
is designed to estimates the exact number of co-current active
speakers in overlap speech as a pre-processing step for speech
separation and other speech technology systems, in our context,
ECD of 1 is considered as a false and unreliable speaker count
estimate. Also, CountNet [17] is a probabilistic model that uses
Maximum A Posteriori (MAP) to estimate the number of active
speakers. Since CountNet formulates the source count estima-
tion as a regression problem, the authors used Mean Absolute
Error (MAE) for evaluating the performance. Their goal was
to find the closest estimate with the highest probability for the
number of co-current speakers. However, as mentioned previ-
ously, in our application, we formulate this problem as a clas-
sification task, and maximize CrossEntropyLoss to find the ex-
act number of speakers. Therefore, no matter how close the
output estimate is to the actual number of speakers, if it is not
exactly the same, we consider the estimated speaker count as
an incorrect estimation, and those examples are reflected in the
backpropagation process to update the network parameters for
optimizing the model to estimate the precise co-current speaker
count.

5. Conclusion
In this study, we proposed an attention-guided Convolutional
Neural Network for real-time, single-channel, speaker count es-
timation in multi-speaker cocktail-party scenario. The proposed
system includes three components: first a CNN model extracts
higher-level information from spectral features of speech. Sec-
ond, a temporal aggregation block is modeled using an atten-
tion mechanism, and third, a non-linear classifier was formu-
lated using a fully connected network. All three elements of
the proposed architecture are trained end-to-end by optimizing
the log-likelihood loss of the classes. The proposed attention-
guided method achieves almost 3% absolute improvement over
the conventional average pooling on segments as short as 20
frames (200ms) with 76.15% Weighted Accuracy and aver-
age Recall, 75.80% Precision, and 75.97% F-score. Our pro-
posed solution achieves 92% across all classification metrics on
speech segments longer than 1 second.
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