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—— Abstract

In this paper we propose a causal modeling approach to intersectional fairness, and a flexible, task-
specific method for computing intersectionally fair rankings. Rankings are used in many contexts,
ranging from Web search to college admissions, but causal inference for fair rankings has received
limited attention. Additionally, the growing literature on causal fairness has directed little attention
to intersectionality. By bringing these issues together in a formal causal framework we make the
application of intersectionality in algorithmic fairness explicit, connected to important real world
effects and domain knowledge, and transparent about technical limitations. We experimentally
evaluate our approach on real and synthetic datasets, exploring its behavior under different structural
assumptions.
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1 Introduction

The machine learning community recognizes several important normative dimensions of
information technology including privacy, transparency, and fairness. In this paper we
focus on fairness — a broad and inherently interdisciplinary topic of which the social and
philosophical foundations are not settled [11]. To connect to these foundations, we take an
approach based on causal modeling. We assume that a suitable causal generative model
is available and specifies relationships between variables including the sensitive attributes,
which define individual traits or social group memberships relevant for fairness. The model
is a statement about how the world works, and we define fairness based on the model
itself. In addition to being philosophically well-motivated and explicitly surfacing normative
assumptions, the connection to causality gives us access to a growing literature on causal
methods in general and causal fairness in particular.

Research on algorithmic fairness has mainly focused on classification and prediction tasks,
while we focus on ranking. We consider two types of ranking tasks: score-based and learning
to rank (LTR). In score-based ranking, a given set of candidates is sorted on the score
attribute (which may itself be computed on the fly) and returned in sorted order. In LTR,
supervised learning is used to predict the ranking of unseen items. In both cases, we typically
return the highest scoring k items, the top-k. Set selection is a special case of ranking that
ignores the relative order among the top-k.
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rank rank

(a) original ranking. (b) counterfactually fair.

Figure 1 CSRanking by weighted publication count, showing positions of intersectional groups
by department size, large (L) and small (S), and location, North East (N), West (W), South East
(S). Observe that the top-20 in Figure la is dominated by large departments, particularly those
from the West and from the North East. Treating small departments from the South East as the
disadvantaged intersectional group, and applying the techniques described in Section 2 of the paper,
we derive the ranking in Figure 1b that has more small department at the top-20 and is more
geographically balanced.

Further, previous research mostly considered a single sensitive attribute, while we use
multiple sensitive attributes for the fairness component. As noted by Crenshaw [14], it is
possible to give the appearance of being fair with respect to each sensitive attribute such
as race and gender separately, while being unfair with respect to intersectional subgroups.
For example, if fairness is taken to mean proportional representation among the top-k, it is
possible to achieve proportionality for each gender subgroup (e.g., men and women) and for
each racial subgroup (e.g., Black and White), while still having inadequate representation for
a subgroup defined by the intersection of both attributes (e.g., Black women). The literature
on intersectionality includes theoretical and empirical work showing that people adversely
impacted by more than one form of structural oppression face additional challenges in ways
that are more than additive [12, 16, 37, 43].

1.1 Contribution

We define intersectional fairness for ranking in a similar manner to previous causal definitions
of fairness for classification or prediction tasks [10, 26, 30, 36, 55]. The idea is to model the
causal effects between sensitive attributes and other variables, and then make algorithms
fairer by removing these effects. With a given ranking task, set of sensitive attributes,
and causal model, we propose ranking on counterfactual scores as a method to achieve
intersectional fairness. From the causal model we compute model-based counterfactuals to
answer a motivating question like “What would this person’s data look like if they had (or had
not) been a Black woman (for example)?” We compute counterfactual scores treating every
individual in the sample as though they had belonged to one specific, baseline intersectional
subgroup. For score-based ranking we then rank these counterfactual scores, but the same
approach to causal intersectional fairness can be combined with other machine learning tasks,
including prediction (not necessarily specific to ranking).

The choice of a baseline counterfactual subgroup is essentially arbitrary, and there are
other possibilities like randomizing or averaging over all subgroups. We focus on using one
subgroup now for simplicity, but in principle this choice can depend on problem specifics
and future work can investigate dependence on this choice. In fact, our framework allows for
numeric sensitive attributes, like age for example, where treating everyone according to one
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baseline counterfactual is possible even though subgroup terminology breaks down. In this
case we can still try to rank every individual based on an answer to a motivating question
like “What would this person’s data look like if they were a 45-year old Black woman?”

While intersectional concerns are usually raised when data is about people, they also
apply for other types of entities. Figure 1 gives a preview of our method on the CSRankings
dataset [5] that ranks 51 computer science departments in the US by a weighted publication
count score (lower ranks are better). Departments are of two sizes, large (L, with more
than 30 faculty members) and small (S), and are located in three geographic areas, North
East (N), West (W), and South East (S). The original ranking in Figure la prioritizes
large departments, particularly those in the North East and in the West. The ranking in
Figure 1b was derived using our method, treating small departments from the South East as
the disadvantaged intersectional group; it includes small departments at the top-20 and is
more geographically balanced.

We begin with relatively simple examples to motivate our ideas before considering more
complex ones. The framework we propose can, under the right conditions, disentangle
multiple interlocked “bundles of sticks,” to use the metaphor in Sen and Wasow [42] for
causally interpreting sensitive attributes that may be considered immutable. We see this as
an important step towards a more nuanced application of causal modeling to fairness.

1.2 Motivating example: Hiring by a moving company

Consider an idealized hiring process of a moving company, inspired by Datta et al. [15], in
which a dataset of applicants includes their gender G, race R, weight-lifting ability score
X, and overall qualification score Y. A ranking of applicants 7 sorts them in descending
order of Y. We assume that the structural causal model shown in Figure 2a describes the
data generation process, and our goal is to use this model to produce a ranking that is
fair with respect to race, gender, and the intersectional subgroups of these categories. The
arrows in the graph pointing from G and R directly to Y represent the effect of “direct”
discrimination. Under US labor law, the moving company may be able to make a “business
necessity” argument [17] that they are not responsible for any “indirect” discrimination on
the basis of the mediating variable X. If discrimination on the basis of X is considered
unenforceable, we refer to X as a resolving mediator, and denote this case as the resolving
case, following the terminology of Kilbertus et al. [26].

A mediator X may be considered resolving or not; this decision can be made separately
for different sensitive attributes, and the relative strengths of causal influences of sensitive
attributes on both X and Y can vary, creating potential for explanatory nuance even in
this simple example. Suppose that X is causally influenced by G but not by R, or that the
relative strength of the effect of G on X is larger than that of R. Then, if X is considered
resolving, the goal is to remove direct discrimination on the basis of both R and G, but
hiring rates might still differ between gender groups if that difference is explained by each
individual’s value of X. On the other hand, if X is not considered resolving, then the goal
also includes removing indirect discrimination through X, which, in addition to removing
direct discrimination, might accomplish positive discrimination, in the style of affirmative,
action based on the effect of G on X.

Once the goal has been decided, we use the causal model to compute counterfactual
scores Y — the scores that would have been assigned to the individuals if they belonged to
one particular subgroup defined by fixed values of R and G, while holding the weight-lifting
score X fixed in the resolving case — and then rank the candidates based on these scores. The
moving company can then interview or hire the highly ranked candidates, and this process
would satisfy a causal and intersectional definition of fairness. We analyze a synthetic dataset
based on this example in Section 3 with results shown in Figure 3a.
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(a) Mi (b) Mo (c) Ms (d) My (e) M5

Figure 2 Causal models that include sensitive attributes G (gender), R (race), and A (age),
utility score Y, other covariates X, and a latent (unobserved) variable U.

1.3 Organization of the paper

In Section 2 we introduce notation and describe the particular causal modeling approach
we take, using directed acyclic graphs and structural equations, but we also note that our
higher level ideas can be applied with other approaches to causal modeling. We present
the necessary modeling complexity required for interaction effects in the causal model, the
process of computing counterfactuals for both the resolving and non-resolving cases, and
the formal fairness definition that our process aims to satisfy. In Section 3 we demonstrate
the effectiveness of our method on real and synthetic dataset. We present a non-technical
interpretation of our method, and discuss its limitations, in Section 4. We summarize
related work in Section 5 and conclude in Section 6. Our code is publicly available at
https://github.com/DataResponsibly/CIFRank.

2 Causal intersectionality

In this section we describe the problem setting, and present our proposed definition of
intersectional fairness within causal models and an approach to computing rankings satisfying
the fairness criterion.

2.1 Model and problem setting
2.1.1 Causal model

As an input, our method requires a structural causal model (SCM), which we define briefly
here and refer to [23, 33, 39, 44] for more detail. An SCM consists of a directed acyclic graph
(DAG) G = (V,E), where the vertex set V represents variables, which may be observed
or latent, and the edge set E indicates causal relationships from source vertices to target
vertices. Several example DAGs are shown in Figure 2, where vertices with dashed circles
indicate latent variables.

For V; € V let pa; = pa(V;) CV be the “parent” set of all vertices with a directed edge
into V;. If pa; is empty, we say that V; is exogenous, and otherwise we assume that there
is a function f;(pa;) that approximates the expectation or some other link function, such
as the logit, of V;. Depending on background knowledge or the level of assumptions we are
willing to hazard, we assume that functions f; are either known or can be estimated from
the data. We also assume a set of sensitive attributes A C V| chosen a priori, for which
existing legal, ethical, or social norms suggest that the ranking algorithm should be fair.
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2.1.2 Problem setting

In most of our examples we consider two sensitive attributes, which we denote G and
R, motivated by the example of Crenshaw [14] of gender and race. We let Y denote an
outcome variable that is used as a utility score in our ranking task, and X be a priori
non-sensitive predictor variables. In examples with pathways from sensitive attributes to
Y passing through X we call the affected variables in X mediators. Finally, U may denote
an unobserved confounder. In some settings a mediator may be considered a priori to be a
legitimate basis for decisions even if it results in disparities. This is what Foulds et al. [18]
call the infra-marginality principle, others [10, 30, 36] refer to as path-specific effects, and
Zhang and Bareinboim [55] refer to as indirect effects; Kilbertus et al. [26] call such mediators
resolving variables. We adopt the latter terminology and will show examples of different
cases later. In fact, our method allows mediators to be resolving for one sensitive attribute
and not for the other, reflecting nuances that may be necessary in intersectional problems.

For simplicity of presentation, we treat some sensitive attributes as binary indicators of a
particular privileged status, rather than using a more fine grained coding of identity, but
note that this is not a necessary limitation of the method. Our experiments in Section 3
use models M in Figure 2a and M5 in Figure 2e, but richer datasets and other complex
scenarios such as My also fit into our framework. Sequential ignorability [21, 38, 40, 47] is a
standard assumption for model identifiability that can be violated by unobserved confounding
between a mediator and an outcome, as in M3 in Figure 2¢, or by observed confounding
where one mediator is a cause of another, as in My in Figure 2d. We include these as
indications of qualitative limitations of this framework.

2.2 Counterfactual intersectional fairness

2.2.1 Intersectionality

It is common in predictive modeling to assume a function class that is linear or additive in
the inputs, that is, for a given non-sensitive variable V/:

> fuVh).

Vi€pa;

Such simple models may be less likely to overfit and are more interpretable. However, to

model the intersectional effect of multiple sensitive attributes we must avoid this assumption.

Instead, we generally assume that f; contains non-additive interactions between sensitive
attributes. With rich enough data, such non-linear f; can be modeled flexibly, but to keep
some simplicity in our examples we will consider functions with linear main effects and second
order interactions. That is, if the set pa; of parents of V; includes ¢ sensitive attributes

Aj, Ajy,s ..., Aj, and p non-sensitive attributes X, Xj, .,,... Xj,, , we assume
f (pa (J) + Zﬂl ot + anJ)AJ’ + Z Z ﬁ(J)A A (1)
I=1 r=I+1

The coefficients (or weights) r]l(j ) model the main causal effect on V; of disadvantage

() model the non-additive combination of

on the basis of sensitive attribute A;,, while 7,7,
adversity related to the interactions of A;, and Aj,. For the example the model M; in
Figure 2a with sensitive attributes G and R, mediator X, and outcome Y, we can write (1)

for Y as
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fr(X,6,R) =57 + 80X 407G + 0l R+ ny LRG (2)

For ease of exposition we mostly focus on categorical sensitive attributes, and in that
case (1) can be reparameterized with a single sensitive attribute with categories for each
intersectional subgroup. In the simplest cases then it may appear this mathematical approach
to intersectional fairness reduces to previously considered fairness problems. However, our
framework is not limited to the simplest cases. And even with two binary sensitive attributes
it may be necessary to model the separate causal relationships between each of these and
one or more mediators, which may also be considered resolving or non-resolving separately
with respect to each sensitive attribute. With numeric attributes our framework can include
non-linear main effects and higher order interactions, and in Appendix A.2 we present results
for an experiment with a numeric sensitive attribute.

Our experiments use simpler examples with one mediator so the results are easier to
interpret and compare to non-causal notions of fairness in ranking. Sophisticated models like
Figure 2b, with combinations of resolving and non-resolving mediators, would be more difficult
to compare to other approaches, but we believe this reflects that real-world intersectionality
can pose hard problems that our framework is capable of analyzing. And while identifiability
and estimation are simplified in binary examples, the growing literature on causal mediation
discussed in Section 5 can be used on harder problems.

2.2.2 Counterfactuals

Letting A denote the vector of sensitive attributes and a’ any possible value for these, we
compute the counterfactual Ya. o by replacing the observed value of A with a’ and then
propagating this change through the DAG: any directed descendant V; of A has its value
changed by computing f; (paj) with the new value of a’, and this operation is iterated until
it reaches all the terminal nodes that are descendants of any of the sensitive attributes A.
We interpret these model-based counterfactuals informally as “the value Y would have taken
if A had been equal to a’”

For graphs with resolving mediators we may keep the mediator fixed while computing
counterfactuals. We describe this process in detail for model M in Figure 2a, with both the
resolving and the non-resolving cases. We focus on this model for clarity, but all that we say
in the rest of this section requires only minor changes to hold for other models such as M
without loss of generality, provided they satisfy sequential ignorability [21, 38, 40, 47]. Our
implementation is similar to what Kusner et al. [30] refer to as “Level 3” assumptions, but
we denote exogenous error terms as € instead of U.

We consider the case where Y is numeric and errors are additive

X =fx(G,R)+ €%, Y =fy(X,G,R)+¢€.

with fy given in (2) and fx defined similarly. The case where Y is not continuous fits in
the present framework with minor modifications, where we have instead a probability model
with corresponding link function g so that

E[Y|X,G, Rl =g ' (fv(X,G, R)).

Suppose that the observed values for observation ¢ are (y;, s, gi, i), with exogenous

errors €, €}

s . Since we do not model any unobserved confounders in model M7, we suppress

the notation for U and denote counterfactual scores, for some (¢, ') # (g, r), as:

Y = (Yi)aca = (Yi) (G r) (g )
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If X is non-resolving, then we first compute counterfactual X as @} := fx(g',7’) + €,
substituting (¢’,7’) in place of the observed (g;, ;). Then we do the same substitution while
computing:

}/i/ = fY(x;mg/vr/) =+ 62’/ = fY(fX(g/arl) + 65(39177"/) + 61Y~
If X is resolving, then we keep the observed X and compute:
Yil = fY(xivgl7Tl) + EZY'

If X is semi-resolving, for example resolving for R but not for GG, in which case we compute
counterfactual X as z} := fx(¢’,7;) + €~ and then

Y? = fY(fX(gl,Ti) +€zXﬂg/7TJ) +63/

If the functions fx, fy have been estimated from the data, then we have observed residuals

X .Y

r,r; instead of model errors in the above. Finally, in cases where we model unobserved

confounders U we may also attempt to integrate over the estimated distribution of U as
described in [30].

2.3 Counterfactually fair ranking
2.3.1 Ranking task

We use an outcome or utility score Y to rank a dataset D, assumed to be generated by a
model M from among the example SCMs in Figure 2. If the data contains a mediating

predictor variable X, then the task also requires specification of the resolving status of X.

Letting n = |D|, a ranking is a permutation 7 = (D) of the n individuals or items, usually
satisfying:

To satisfy other objectives, like fairness, we generally output a ranking 7 that is not
simply sorting on the observed values of Y. Specifically, we aim to compute counterfactually
fair rankings.

» Definition 1 (Counterfactually fair ranking). A ranking 7 is counterfactually fair if, for
all possible x and pairs of vectors of actual and counterfactual sensitive attributes a # a,
respectively, we have:

P(+(Yaca(U)) =k | X =x, A = a)
— P(#(Yaca (U)) = k| X = x,A = a) (4)

for any rank k, and with suitably randomized tie-breaking. If any mediators are considered
resolving then the counterfactual Ya o (U) in this definition is computed accordingly, holding
such mediators fized.

This definition is one natural adaptation of causal definitions in the recent literature on
fairness in classification and prediction tasks [10, 26, 30, 36, 55] to the ranking setting. To
satisfy Equation 4, we rank using counterfactuals that treat all individuals or items in the
dataset according to one fixed baseline value a’.

There are other possible definitions relaxing (4), for example using expected rank or
enforcing equality for some but not all values of k. We leave the problems of deriving
algorithms satisfying these and comparing performance to future work.
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2.3.2 Implementation

We use the following procedure to compute counterfactually fair rankings, keeping our focus

on model M in Figure 2a for clarity and readability.

1. For a (training) dataset D, we estimate the parameters of the assumed causal model
M. A variety of frequentist or Bayesian approaches for estimation can be used. Our
experiments use the R package mediation [46] on model M; in Figure 2a.

2. From the estimated causal model we compute counterfactual records on the (training)
data, transforming each observation to one reference subgroup A < a’, we set a’ to be
the disadvantaged intersectional group. This yields counterfactual training data Da. 4.

3. For score-based ranking, we sort Ya. o/ in descending order to produce the counterfactually
fair ranking 7(Ya«a’). For learning to rank (LTR), we apply a learning algorithm on
DA a and consider two options, depending on whether the problem structure allows the
use of the causal model at test time: if it does, then we in-process the test data from the
learned causal model before ranking counterfactual test scores, and if it does not, then we
rank the unmodified test data. We refer to the first case as c¢f-LTR and emphasize that
in the second case counterfactually fairness may not hold, or hold only approximately, on
test data.

Proposition 2 below says that this implementation, under common causal modeling
assumptions, satisfies our fair ranking criteria. The proof is in Appendix A.1.

» Proposition 2 (Implementing counterfactually fair ranking). If the assumed causal model M
is identifiable and correctly specified, implementations described above produce counterfactually
fair rankings in the score-based ranking and cf-LTR tasks.

3 Experimental Evaluation

In this section we investigate the behavior of our framework under different structural
assumptions of the underlying causal model on real and synthetic datasets. We quantify
performance with respect to several fairness and utility measures, for both score-based rankers
and for learning to rank.

3.1 Datasets and evaluation measures
Datasets

We present experimental results on the real dataset COMPAS [1] and on a synthetic
benchmark that simulates hiring by a moving company, inspired by Datta et al. [15]. We
also present results on another synthetic benchmark that is a variant of the moving company
dataset, but with an additional numerical sensitive attribute, in Appendix A.2.

COMPAS contains arrest records with sensitive attributes gender and race. We use a
subset of COMPAS that includes Black and White individuals of either gender with at least 1
prior arrest. The resulting dataset has 4,162 records with about 25% White males, 59%
Black males, 6% White females, and 10% Black females. We fit the causal model M/ in
Figure 2a with gender G, race R, number of prior arrests X, and COMPAS decile score Y,
with larger Y predicting higher likelihood of recidivism. In our use of this dataset, we will
rank defendants on Y from lower to higher, prioritizing them for release or for access to
supportive services as part of a comprehensive reform of the criminal justice system.

Moving company is a synthetic dataset drawn from the causal model M; in Figure 2a,
with edge weights: w(G — X) =1, w(R— X) =0, w(G —Y) =0.12, w(R = Y) = 0.08,
and w(X — Y) = 0.8. This dataset is used in the scenario we discussed in our motivating
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example in Section 1.2: Job applicants are hired by the moving company based on their
qualification score Y, computed from weight-lifting ability score X, and affected by gender
G and race R, either directly or through X. Specifically, weight-lifting ability X is lower for
female applicants than for male applicants; qualification score Y is lower for female applicants
and for Blacks. Thus, the intersectional group Black females faces greater discrimination
than either the Black or the female group. In our experiments in this section, we assume that
women and Blacks each constitute a 37% minority of the applicants, and that gender and
race are assigned independently. As a result, there are about 40% White males, 14% Black
females, and 23% of both Black males and White females in the input with 2, 000 records.

Fairness measures

We investigate whether the counterfactual ranking derived using our method is fair with
respect to intersectional groups of interest, under the given structural assumptions of the
underlying causal model. We consider two types of fairness measures: those that compare
ranked outcomes across groups, and those that compare ranked outcomes within a group.
To quantify fairness across groups, we use two common measures of fairness in classification
that also have a natural interpretation for rankings: demographic parity (DP) at top-k and
equal opportunity (EO) at top-k, for varying values of k. To quantify fairness within a group,
we use a rank-aware measure called in-group fairness ratio (IGF-Ratio), proposed by Yang
et al. [49] to surface intersectional fairness concerns in ranking. We report our IGF-Ratio
results in Appendix A.3, and refer the reader to an extended version of this paper [50] for
experiments with other rank-aware fairness measures.

Demographic parity (DP) is achieved if the proportion of the individuals belonging to
a particular group corresponds to their proportion in the input. We will represent DP by
showing selection rates for each intersectional group at the top-k, with a value of 1 for all
groups corresponding to perfect DP.

Equal opportunity (EO) in binary classification is achieved when the likelihood of receiving
the positive prediction for items whose true label is positive does not depend on the values
of their sensitive attributes [19]. To measure EO for LTR, we will take the set of items
placed at the top-k in the ground-truth ranking to correspond to the positive class for that
value of k. We will then present sensitivity (true positives / true positives 4 false negatives)
per intersectional group at the top-k. If sensitivity is equal for all groups, then the method
achieves EO.

WM BM BWF ©BF WM FBM EWF FBF

2 L X qyotas R 2 non-resolving

1 1
) I | [}
o ; ; - 8o
S 2 | | resolving S 2 resolving
'é 14—+ i ' § 1
E I I ol ! K

0 0

2 | " , original 2 original

1 | 1 | 1

0 L bl - o

50 100 200 500 1000 1500
(a) moving company. (b) COMPAS.

Figure 3 Demographic parity on the moving company and COMPAS datasets. X-axis shows the
top-k values of the rankings and Y-axis shows the selection rate while each span of Y-axis represents
different rankings and each color represents an intersectional group. The assumed causal model for
both moving company and COMPAS is M; in Figure 2a.
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Utility measures

When the distribution of scores Y differs across groups, then we may need to sacrifice
score-utility to produce a fair ranking. We evaluate the score-utility of the counterfactual
rankings using two measures, Y -utility loss at top-k, applicable for both score-based ranking
and LTR, and average precision (AP), applicable only for LTR. Both compare a “ground
truth” ranking 7 induced by the order of the observed scores Y to a proposed fair ranking o
(we use o rather than # here to make notation more readable).

We define Y-utility loss at top-k as Li(o) = 1 — Zle Ya(i)/Zle Yri). Yo@) is the
observed score of the item that appears at position ¢ in o, while Y ;) is the observed score
of the item at position ¢ in the original ranking 7. Ly, ranges between 0 (best) and 1 (worst).

Average precision (AP) quantifies, in a rank-compounded manner, how many of the items
that should be returned among the top-k are indeed returned. Recall that 71 denotes the
set of the top-k items in a ranking 7. We define precision at top-k as P, = |71 No1. kl|/k,
where 7 is the “ground truth” ranking and o is the predicted ranking. Then, AP, (o) =
Zle P; x 1o (i) € T1...k]/k, where 1 is an indicator function that returns 1 if the condition
is met and 0 otherwise. AP} ranges between 0 (worst) and 1 (best).

3.2 Score-based ranking

In the first set of experiments, we focus on score-based rankers, and quantify performance
of our method in terms of demographic parity (Figure 3 and 5) and score-based utility, on
mowing company (over 100 executions) and COMPAS.

Synthetic datasets

Recall that, in the moving company example, the goal is to compute a ranking of the
applicants on their qualification score Y that is free of racial discrimination, while allowing
for a difference in weight-lifting ability X between gender groups, thus treating X as a
resolving variable. Figure 3a compares DP of three rankings for the moving company
example: original, resolving, and quotas on R, described below.

Recall that perfect DP is achieved when selection rate equals to 1 for all groups. We
observe that the original ranking, the bottom set of bars in Figure 3a, under-represents
women (WF and BF) compared to their proportion in the input, and that White men (WM)
enjoy a higher selection rate than do Black men (BM). Specifically, there are between 62-64%
White men (40% in the input), 27-28% Black men (23% in the input), 6% White women
(23% in the input), and 3-9% Black women (14% in the input) for k£ = 50, 100, 200.

In comparison, in the counterfactually fair ranking in which X is treated as resolving,
shown as the middle set of bars in Figure 3a, selection rates are higher for the Blacks of both
genders than for the Whites. For example, selection rate for White men is just over 1, while
for Black men it’s 1.5. Selection rates also differ by gender, because weight-lifting ability X
is a mediator, and it encodes gender differences.

Finally, the ranking quotas R, the top set of bars in Figure 3a, shows demographic party
for racial groups when the ranking is computed using representation constraints (quotas) on
race R. This ranking is computed by independently sorting Black and White applicants on Y
and selecting the top individuals from each list in proportion to that group’s representation
in the input. Opting for quotas on race rather than on gender, or on a combination of gender
and race, is reasonable here, and it implicitly encodes a normative judgement that is explicit
in our causal model M; in Figure 2a — that race should not impact the outcome, while
gender may.
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Appendix A.2 describes another synethetic dataset, moving company+age, with three
sensitive attributes: categorical gender G and race R, and numerical age A, with records
drawn from the causal model M3 in Figure 2e. Our results on this dataset further showcase
the flexibility of our framework.

Real datasets

We now present results of an evaluation of our method on a real dataset, COMPAS. Figure 3b
shows demographic parity (DP) of three different rankings: original, resolving, and non-
resolving, discussed below. Recall that in our use of COMPAS defendants are ranked on their
decile score Y from lower to higher, prioritizing them for release or for access to supportive
services. Our goal is to produce a ranking that is free of racial and gender discrimination.
There is some debate about whether the number of prior arrests, X, should be treated as a
resolving variable. By treating X as non-resolving, we are stating that the number of prior
arrests is itself subject to racial discrimination.

We observe that, in the original ranking, shown as the bottom set of bars in Figure 3b,
Whites of both genders are selected at much higher rates than Blacks. Gender has different
effect by race: men are selected at higher rates for Whites, and at lower rates for Blacks.
There are 33-38% White men (25% in the input), 46-49% Black men (59% in the input),
7-8% White women (6% in the input), and 8-10% Black women (10% in the input), for
k = 500, 1000, 1500.

Comparing the original ranking to the counterfactually fair ranking that treats the number
of prior arrests X as a resolving mediator, shown as the middle set of bars in Figure 3b, we
observe an increase in selection rates for Black males and Black females, and a significant
reduction in selection rates for White males. Further, comparing with the counterfactually
fair ranking that treats X as non-resolving, the top set of bars in Figure 3b, we observe
that only Black individuals are represented at the top-500, and that selection rates for all
intersectional groups for larger values of k are close to 1, achieving demographic parity.

We also computed utility loss at top-k, based on the original Y scores (see Section 3.1 for
details). For moving company, we found that counterfactually fair ranking resolving suffers
at most 1% loss across the values of k, slightly higher than the loss of the quotas R ranking,
which is close to 0. For COMPAS, we found that overall utility loss is low in most cases,
ranging between 3% and 8% in the fair ranking resolving, and between 3% and 10% in the
fair ranking non-resolving. The slightly higher loss for the latter case is expected, because
we are allowing the model to correct for historical discrimination in the data more strongly
in this case, thus departing from the original ranking further.

3.3 Learning to rank

We now investigate the usefulness of our method for supervised learning of counterfactually
fair ranking models. We use ListNet, a popular Learning to Rank algorithm, as implemented
by Ranklib!. ListNet is a listwise method — it takes ranked lists as input and generates
predictions in the form of ranked lists. We choose ListNet because of its popularity and
effectiveness (see additional information about ListNet and other predictive ranking models
in [32] and [34], respectively).

We conduct experiments in two regimes that differ in whether to apply our method as a
preprocessing fairness intervention on the test set (see Implementation in Section 2). In both
regimes, we make the training datasets counterfactually fair. Specifically, we first fit a causal

! https://sourceforge.net/p/lemur/wiki/RankLib/
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Figure 4 Equal opportunity on moving company with k = 200. X-axis shows the treatments:
training & test on fair rankings with X as resolving (resolving cf-LTR) and non-resolving (non-
resolving cf-LTR); training on fair rankings & test on unmodified rankings with X as resolving
(resolving LTR) and non-resolving (non-resolving LTR). Y-axis shows the ratio of sensitivity between
each counterfactually fair treatment and the original ranking. Intersectional groups are denoted by
different colors. Solid boxes correspond to cf-LTR variants. All results are over 50 training/test
pairs.

model M on the training data, then update the training data to include counterfactually fair
values of the score Y and of any non-resolving mediators X, and finally train the ranking
model R (e.g., ListNet) on the fair training data. We now have two options: (1) to run R
on the unmodified (biased) test data, called LTR in our experiments, or; (2) to preprocess
test data using M, updating test with counterfactually fair values for the score Y and for
any non-resolving mediators X, before passing it on to R, called c¢f-LTR.

Note that the c¢f-LTR setting shows the effectiveness of our method for the disadvantaged
intersectional groups, in that the performance of the model is compareble across groups,
while LTR setting shows the performance of a ranking model on biased test data. Similar to
score-based ranking, we also consider two structural assumptions of the underlying causal
model: resolving and non-resolving for each setting above.

We quantify performance of our method in terms of equal opportunity (EO) and average
precision (AP) (see Section 3.1), on moving company over 50 training/test pairs. Figure 4
shows performance of the ranking model (e.g., ListNet) in terms of equal opportunity on
moving company, comparing four settings produced from above options: resolving cf-LTR,
non-resolving cf-LTR, resolving LTR, and non-resolving LTR. Recall that a method achieves
equal opportunity (EO) if sensitivity is equal across groups. Note that sensitivity is affected
by groups’ representation in the data, meaning that higher sensitivity for a group might be
due to its limited representation in the top-k rankings (lower positives) rather than the better
treatment in the model (higher true positives). Thus, to reduce the effect of imbalanced
representation across groups, we present semsitivity ratio: the ratio of the sensitivity at each
setting above (with the fairness treatment on training, or on both training and test data) to
the sensitivity of the original ranking model (without any fairness intervention) in Figure 4.

Note that the original ranking model achieves high sensitivity for all intersectional groups
(0.9, 0.9, 0.95, and 1 for White men, Black men, White women, and Black women, respectively)
and so can be seen as achieving EO within gender groups, because their representation at
the top-k is similar. As shown in Figure 4, performance of the fair ranking models (e.g., the
cf-LTR variants in the left two columns for resolving and non-resolving X respectively), in
which both the training and the test data are counterfactually fair, is comparable to the
original ranking model in terms of sensitivity, with the medians of all boxes close to the
sensitivity ratio of 1.
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The resolving variants (e.g., resolving cf-LTR and LTR columns in Figure 4) show lower
sensitivity for women, likely because women are selected at lower rates since X is treated
as resolving for gender). The LTR variants (e.g., resolving and non-res LTR columns in
Figure 4) show lower sensitivity for women because the test dataset is unmodified in this
set of experiments. Finally, when the fairness intervention is applied on both training and
test datasets (e.g., resolving and non-res cf-LTR columns in Figure 4), it leads to better
sensitivity for women.

We also quantified utility as average precision (AP) in evaluating supervised learning
of counterfactually fair ranking models. For moving company, AP is 77% for the original
ranking model when unmodified ranking are used for training and test. For counterfactually
fair training data with non-resolving X (weight-lifting), AP on unmodified test (non-res
LTR) is 27% but it increases to 91% when test data is preprocessed (non-res cf-LTR). For
counterfactually fair training data with resolving X, AP is 68% for unmodified test (resolving
LTR) and 83% when test is preprocessed (resolving cf-LTR).

4 Discussion

This work aims to mitigate the negative impacts of ranking systems on people due to
attributes that are out their control. In this section we anticipate and discuss concerns that
may arise in the application of our method.

There are objections to modeling sensitive attributes as causes rather than considering
them to be immutable, defining traits. Some of these objections and responses to them are
discussed in [33]. In the present work we proceed with an understanding that the model is a
simplified and reductive approximation, and support for deploying an algorithm and claiming
it is fair should require an inclusive vetting process where formal models such as these are
tools for inclusively achieving consensus and not for rubber stamping or obfuscation.

There are many issues outside the scope of the present work but which are important
in any real application. Choices of which attributes are sensitive, which mediators are
resolving (and for which sensitive attributes), the social construction and definitions of
sensitive attributes, choices of outcome/utility or proxies thereof, technical limitations in
causal modeling, the potential for (adversarial) misuse are all issues that may have adverse
impacts when using our method. We do stress that these are not limitations inherent to our
approach in particular, rather, these concerns arise for virtually any approach in a sensitive
application. For an introductions to these issues, including a causal approach to them,
see [4, 29].

Further, like any approach based on causality, our method relies on strong assumptions
that are untestable in general, though they may be falsified in specific cases. Sequential
ignorability in particular is a stronger assumption in cases with more mediating variables, or
with a mediator that is causally influenced by many other variables (observed or unobserved).
Such cases increase the number of opportunities for sequential ignorability to be violated for
one of the mediators or by one of the many causes of a heavily influenced mediator.

Finally, intersectional fairness is not a purely statistical or algorithmic issue. As such,
any technical method will require assumptions at least as strong as the causal assumptions
we make. In particular, there are normative and subtle empirical issues embedded in any
approach to fairness, such as the social construction of sensitive attributes, or the choice
of which mediators may be considered resolving in our framework. For these reasons we
believe the burden of proof should fall on any approaches assuming the world (causal model)
is already less unfair or that fairness interventions should be minimized, for example by the
use of resolving variables.
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5 Related Work

Intersectionality. From the seeds of earlier work [13], including examples that motivated
our experiments [14], intersectional feminism has developed into a rich interdisciplinary
framework to analyze power and oppression in social relations [12, 43]. We refer especially to
the work of Noble [37], and D’Ignazio and Klein [16], in the context of data and information
technology. Other recent technical work in this area focuses on achieving guarantees across
intersectional subgroups [20, 24, 27|, including on computer vision tasks [7], or makes
connections to privacy [18]. These do not take a causal approach or deal with ranking
tasks. In our framework, intersectionality does not simply refer to a redefinition of multiple
categorical sensitive attributes into a single product category or inclusion of interaction terms,
as was done in recent work [20, 24, 27]. Specific problems may imply different constraints or
interpretations for different sensitives attributes, as shown in the mowving company example,
where a mediator (e.g., weight-lifting ability) may be considered resolving for one sensitive
attribute but not for another.

Causality and fairness. A growing literature on causal models for fair machine learning [10,
26, 30, 36, 55] emphasizes that fairness is a normative goal that relates to real world (causal)
relationships. One contribution of the present work is to connect intersectionality and fair
ranking tasks to this literature, and therefore to the rich literature on causal modeling.
Some recent work in causal fairness focuses on the impact of learning optimal, fair policies,
potentially under relaxations of standard causal assumptions that allow interference [28, 35].
Some of the most closely related work uses causal modeling to analyze intersectional fairness
from a philosophical standpoint [6] or in a public health setting [22], but these are focused
on foundations and interpretation, rather than on implementation or machine learning tasks.

Ranking and fairness. While the majority of the work on fairness in machine learning
focuses on classification or risk prediction, there is also a growing body of work on fairness and
diversity in ranking [2, 8, 9, 31, 45, 48, 49, 51, 52, 53], including a recent survey [54]. Yang
et al. [49] consider intersectional concerns, although not in a causal framework. The authors
observe that when representation constraints are stated on individual attributes, like race
and gender, and when the goal is to maximize score-based utility subject to these constraints,
then a particular kind of unfairness can arise, namely, utility loss may be imbalanced across
intersectional groups. Barnabo et al. [3] study similar problem through explicitly modeling
the trade-off between utility and fairness constraints. In our experiments we observed a
small imbalance in utility loss across intersectional groups (1-5%) and will investigate the
conditions under which this happens in future work. Finally, Wu et al. [48] apply causal
modeling to fair ranking but estimates scores from observed ranks, uses causal discovery
algorithms to learn an SCM, and does not consider intersectionality, while the present work
considers the case when scores are observed and the SCM chosen a priori.

6 Conclusion

Our work builds on a growing literature for causal fairness to introduce a modeling framework
for intersectionality and apply it to ranking. Experiments show that this approach can be
flexibly applied to different scenarios, including ones with mediating variables, and the results
compare reasonably to intuitive expectations we may have about intersectional fairness for
those examples. The flexibility of our approach and its connection to causal methodology
makes possible a great deal of future work including exploring robustness of rankings to
unmeasured confounding [25] or uncertainty about the underlying causal model [41].
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Future technical work can relax some assumptions under specific combinations of model
structures, estimation methods, and learning task algorithms. For example, we have shown in
experiments that the LTR task (without in-processing) with ListNet works reasonably well,
but future work could identify the conditions when this insensitivity of a learned ranker to
counterfactual transformations on the training data guarantees that counterfactual fairness
will hold at test time, perhaps with explicit bounds on discrepancies due to issues like
covariate shift. We proposed ranking on counterfactual scores, treating everyone as a member
of the disadvantaged intersectional group, but there are other possible fair strategies. For
any fixed baseline intersectional group, for example the most advantaged one, if we compute
counterfactuals and treat everyone as though they belong to that fixed group, we would also
achieve intersectional counterfactual fairness. The same is true if we treat everyone based on
the average of their counterfactual values for all intersectional subgroups. Future work may
explore whether any of these choices have formal or computational advantages, making them
preferable in specific settings.
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A  Appendix

A.1 Proof of Proposition 2

Proposition 2 (Implementing counterfactually fair ranking) If the assumed causal model M is
identifiable and correctly specified, implementations described above produce counterfactually
fair rankings in the score based ranking and cf-LTR tasks.

Proof of Proposition 2. The proof is essentially by construction, but we provide more detail
now for model M;. Fixing a baseline intersectional subgroup (go, 7o), the counterfactual
training data in our implementation will use Y(g gy« (go,ro), €ither by ranking these for score
based ranking or training a predictive model for LTR. We wish to show that

P(f-(Y(GyR)“(g,r)) =k | X =z, (Gv R) = (g,?‘)) (5)

is unchanged under all counterfactual transformations, denoted by Y(g gy« (4, if the
causal model has been correctly specified. First, we consider the case where the functions
fx, fy are known. If X is resolving, then

(Yi) (@, R)(go.r0) = f¥ (Tir go,m0) + €]

for all 4. In this case the conditional distribution of these scores (5) is invariant under
counterfactual transformations (g,r) < (¢’,7') because z; is held fixed, (¢’,r') will be
substituted with the fixed baseline values (go,79), and the error term is exogenous and
in particular its distribution does not change under transformations of (g,r). If X is not
resolving then we use

(Y3)(G.R)—(go,r0) = Jv (Fx(g0,70) + €5, g0,70) + €]

Under counterfactual transformations (g,7) < (¢’,7’) all of the inputs above stay fixed
except for the error terms, and, as before, these errors do not depend on (g, r) so the training
data scores have the desired distributional invariance. The semi-resolving case is similar.

For score based ranking 7 sorts the counterfactual scores, denoted by (Yi)(a R)(go,m0)"
Since the distributions of these scores are unchanged under counterfactual transformations as
we just established, the probability for any score to equal a given rank k is also unchanged,
hence 7 is a counterfactually fair ranking. In cf-LTR, at test time the test data is first
transformed to the intervened version DE‘Z;SfR) —(go,70) before inputting to 7. As before, the
distribution of the predicted rank for observation ¢ under any counterfactual transformation
(G,R) < (¢',7") is fixed to that of the distribution under (G, R) < (go,70), which depends
only on the exogenous errors.

Finally, we relax the assumption that the functions fx, fy are known. Since we have
assumed the causal model is identifiable and correctly specified (in particular, it satisfies
sequential ignorability in cases where the model has mediators), these functions can be
estimated on the (training) data via any appropriate causal inference method. Hence,
counterfactually fair ranking condition will hold approximately due to plug-in estimation
€rror. <

A.2 Additional experimental results: score-based ranking

In this section, we show evaluation results of using our method on a more complicated data
under a different causal model: a synthetic dataset with three sensitive attributes and one of
them is a continuous or numeric attribute (e.g., age) under an assumed causal model M in
Figure 2e.
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Mowving company + age is a variant of moving company dataset with 10,000 records
drawn from the causal model M5 in Figure 2e, with three sensitive attributes: gender G,
race R, and age A, with edge weights w(G — X) = 0.95, w(R — X) =0, w(A — X) = 0.05,
w(G@—=Y)=01,wR—-Y)=01,wA—-Y)=0.1,and w(X - Y)=0.7. Age A affects
the weight-lifting ability score X and the qualification score Y in a piece-wise linear fashion,
with X and Y decreasing for ages A above some thresholds. Specifically, the effect of age on
X is negligible for ages below 45, then slightly negative, and more strongly negative above
age 55. The mean age for White and Black individuals are 35 and 45 respectively. We use
this dataset to showcase the applicability of our framework to cases with more than two
sensitive attributes, and to cases where sensitive attributes may be continuous.

Figure 5 shows the performance of our methods in terms of demographic parity on moving
company+age (over 100 executions), focusing on three different rankings: original, resolving,
and quotas R. Recall that moving company+age includes a continuous sensitive attribute
age in addition to gender and race. We present selection rates for two age groups, younger
(age < 45) and older (age > 45) in Figure 5a, and at each age in Figure 5b. We observe
that in the original ranking, the bottom set of bars in Figure 5a, younger applicants are
selected at a higher rate compared to older applicants within each intersectional group. For
example,young White males and young Black males are both selected at higher rate than
their older counterparts old White males and old Black males. Further, selection rates for
racial and gender groups differ in the original ranking. For example, White males are selected
at a much higher rate than other intersectional groups. These disparities in selection rates
are preserved in the quotas R ranking, shown as the top set of bars in Figure 5a. Recall
that the goal for moving company+age is to compute a ranking of the applicants that is free
of racial and age discrimination while allowing for a difference in weight-lifting ability X
between gender groups, thus treating X as resolving variable. In the counterfactually fair
ranking resolving, the middle set of bars in Figure 5a, we observe an increase in selection
rates for Black males, and also note that the age of the applicants does not materially affect
their selection rates.

Figure 5b presents selection rates for each value of age, for each intersectional group on
gender and race, at the top-200. Observe that the original ranking, shown in the bottom set
of lines, exhibits a disparity in selection rates between the Black and the White applicants

for all age values, and that selection rates drop substantially for all groups around age > 50.

The quotas R ranking, the top set of lines in Figure 5b, reduces the disparity in selection
rates between racial groups (e.g., there is no gap between the lines for White males and
Black males for any age), but it still shows a disparity by age, meaning that selection rates
drop for all groups around age > 50, just as they did in the original ranking. Finally, the
counterfactually fair ranking resolving, shown as the middle set of lines in Figure 5b, reduces
disparities in selection rates by both race and gender.

We also computed utility loss at top-k, based on the original Y scores (see Section 3.1 for
details). For moving company+age, the loss of the counterfactually fair ranking resolving
and of the quotas R ranking is at most 1% across the values of k.

A.3 Additional experimental results: rank-aware fairness measures

In this section, we report evaluation results of using a rank-aware fairness measure called
in-group fairness ratio (IGF-Ratio) on moving company, moving company+age, and
COMPAS. In-group fairness ratio (IGF-Ratio) is the simpler of two in-group fairness measures
proposed in [49]. It captures an important intersectional concern that arises when an input
ranking must be re-ordered (and thus suffer a utility loss) to satisfy some fairness or
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Figure 5 Demographic parity on the moving company+age dataset. The X-axis shows the top-k
values of the rankings for (a) and shows the value of the attribute age A for (b). For both subplots,
the Y-axis shows the selection rate, while each span of Y-axis represents different rankings and each
color represents an intersectional group. The assumed causal model is M5 in Figure 2e. Figure 5a
shows the results for the binarized attribute age A according to a threshold: younger (Y): age < 45
and older (O): age > 45.

diversity constraint. Specifically, IGF-Ratio compares the amount of re-ordering within each
intersectional groups, and considers a ranking fair if the corresponding loss is balanced across
groups. Let us denote by 71, the set of the top-k items in 7. For a given intersectional
group g and position k, IGF-Ratiog (T, g) is the ratio of lowest score of any item from g in
71..., and the highest score of an item from g not in 71 ;. IGF-Ratio requires non-negative
scores and ranges from [0, 1], with higher values implying better in-group fairness. To make
the scores non-negative, we increase the values of ¥ by |min(Y")].

Table 1 shows the results of in-group fairness ratio (IGF-Ratio) in counterfactually fair
score-based ranking derived using our method on moving company (over 100 executions),
moving company+age (over 100 executions), and COMPAS. To compute this measure, we
cannot have any ties in the ranking. For COMPAS, we broke the ties by Y-score by randomly
permuting the items within an equivalence class by score. Recall that IGF-Ratio ranges
between 0 and 1 and that a higher value is better, since it indicates that the ratio of the
score of the lowest-scoring selected item among the top-k and of the highest-scoring item not
among the top-k is close to 1. Observe that most IGF-Ratio values are close to 1, meaning
that there is only a limited amount of re-ordering of individuals within each intersectional
group. Further, in-group fairness loss in terms of IGF-Ratio is balanced among intersectional
groups in all cases, while some groups (e.g. White males) face a slightly lower but acceptable
IGF-Ratio in the fair ranking non-resolving.

Table 1 IGF-Ratio on moving company, moving company+age, and COMPAS. A higher value is
better: it indicates that the ratio of scores of the lowest-scoring selected item among the top-k£ and
of the highest-scoring item not among the top-k£ is close to 1. In the table, k12,3 = 50, 100, 200 for
moving company (n = 2000) and moving company+age (n = 10,000), and k12,3 = 500, 1000, 1500
for COMPAS (n = 4162). N/A is used when a particular intersectional group is not represented
among the top-k.

k1 k2 ks
WM | BM | WF | BF | WM | BM | WF | BF | WM | BM | WF | BF
non-res 098 | 094 | 093 | 094 | 0.96 | 0.95 | 0.91 | 0.92 | 0.94 | 0.94 | 0.89 | 0.89
resolving | 0.95 | 0.95 | 0.98 | 0.98 | 0.93 | 0.93 | 0.96 | 0.96 | 0.92 | 0.92 | 0.93 | 0.94
non-res 0.82 0.9 0.99 | 0.99 0.8 099 | 099 | 098 | 0.99 | 0.98 | 0.99 | 0.97
resolving | 0.99 | 0.99 | 0.99 | 0.94 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
non-res N/A | 1.00 | N/A | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
resolving | N/A | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

Dataset Ranking

moving company

moving company+age

COMPAS
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