Demo Track Paper

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

MLINSPECT: A Data Distribution Debugger
for Machine Learning Pipelines

Stefan Grafberger Shubha Guha
AIRLab AIRLab
University of Amsterdam University of Amsterdam

s.grafberger@uva.nl s.guha@uva.nl

ABSTRACT

Machine Learning (ML) is increasingly used to automate impactful
decisions, and the risks arising from this wide-spread use are gar-
nering attention from policymakers, scientists, and the media. ML
applications are often very brittle with respect to their input data,
which leads to concerns about their reliability, accountability, and
fairness. While bias detection cannot be fully automated, computa-
tional tools can help pinpoint particular types of data issues.

We recently proposed mlinspect, a library that enables light-
weight lineage-based inspection of ML preprocessing pipelines. In
this demonstration, we show how mlinspect can be used to detect
data distribution bugs in a representative pipeline. In contrast to
existing work, mlinspect operates on declarative abstractions of
popular data science libraries like estimator/transformer pipelines,
can handle both relational and matrix data, and does not require
manual code instrumentation. The library is publicly available at
https://github.com/stefan-grafberger/mlinspect.

ACM Reference Format:

Stefan Grafberger, Shubha Guha, Julia Stoyanovich, and Sebastian Schelter.
2021. MLINSPECT: A Data Distribution Debugger for Machine Learning
Pipelines. In Proceedings of the 2021 International Conference on Management
of Data (SIGMOD °21), June 20-25 2021, Virtual Event, China. ACM, New
York, NY, USA, 4 pages. https://doi.org/10.1145/3448016.3452759

1 INTRODUCTION

Machine Learning (ML) is increasingly used to automate decisions
that impact people’s lives in domains as varied as credit and lending,
medical diagnosis, and hiring. The risks and opportunities arising
from the wide-spread use of predictive analytics are garnering much
attention from policymakers, scientists, and the media [9].

Detecting data distribution bugs with mlinspect. The correct-
ness and reliability of ML models critically depend on their training
data. Pre-existing bias, such as under- or over-representation of
particular groups in the training data [2], and technical bias, such as
skew introduced during data preparation [7, 8], can heavily impact
performance. We refer to these problems collectively as data distri-
bution bugs. In this demonstration, our goal is to help data scientists

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD 21, June 20-25, 2021, Virtual Event, China.

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06...$15.00
https://doi.org/10.1145/3448016.3452759

2736

Sebastian Schelter
AIRLab
University of Amsterdam
s.schelter@uva.nl

Julia Stoyanovich
New York University
stoyanovich@nyu.edu

diagnose and mitigate data distribution bugs that arise during pre-
processing steps in an ML pipeline, and contribute to technical bias.
Such issues are often neglected in fair-ML research, which mostly
focuses on learning algorithms applied to static datasets [3].

Data distribution bugs are difficult to catch. In part, this is be-
cause different pipeline steps are implemented using different li-
braries and abstractions, and the data representation often changes
from relational data to matrices during data preparation. Further,
preprocessing often combines relational operations on tabular data
with estimator/transformer pipelines [5], a composable and nestable
abstraction for operations on array data, which originates from
scikit-learn and has been adopted by popular libraries like SparkML
and Tensorflow Transform. Tracing problematic featurised entries
back to the pipeline’s initial human-readable input is tedious work.

Due to the time pressures in their day-to-day activities, most data
scientists will not make an effort to instrument their code manually
as required by model management systems [10, 11], and to debug
it regularly for data-related issues. In response to this problem, we
proposed mlinspect [4], a library that offers automated inspec-
tion for code natively written with popular data science libraries like
scikit-learn and pandas. mlinspect identifies data distribution bugs
in Python-based ML pipelines that combine relational operations
on tabular data and estimator/transformer pipelines for feature
encoding on matrix data. Our library extracts logical query plans,
modeled as directed acyclic graphs (DAGs) of preprocessing opera-
tors, and automatically instruments these operators at runtime to
detect data distribution bugs.

Demonstration scenario. We provide a web-based interface where

attendees can edit ML pipeline code for a representative healthcare

use case. They can visualize the pipeline and view intermediate op-

erator outputs based on mlinspect’s abstract representation of the

pipeline. Attendees will detect data distribution bugs by examining

histograms of operator outputs, and rewrite the code interactively

to fix the highlighted issues. In summary:

e We showcase the automatic detection of data distribution bugs
in native ML pipelines.

e We show how to quickly examine the effects of different data
transformations using our inspection techniques.

o We demonstrate how data scientists can interactively use mlin-
spect to find and fix data distribution bugs.

https://github.com/stefan-grafberger/mlinspect
https://doi.org/10.1145/3448016.3452759
https://doi.org/10.1145/3448016.3452759

Demo Track Paper

The mlinspect library is publicly available at https://github.
com/stefan-grafberger/mlinspect. We are already using the library
to teach data science students about the importance of data prepro-
cessing, making data distribution debugging part of their method-
ological toolkit (see https://dataresponsibly.github.io/rds).

2 OVERVIEW OF MLINSPECT

In the following, we provide a brief overview of mlinspect [4],
our recently proposed library for the lightweight lineage-based
inspection of ML preprocessing pipelines implemented in Python.

Core ideas. mlinspect extracts logical query plans, modeled as
directed acyclic graphs (DAGs) of preprocessing operators, from
ML pipelines that use popular libraries like pandas and scikit-learn.
We support code that combines relational operations on dataframes
and estimator/transformer pipelines on matrix data for feature en-
coding. This DAG is used to automatically instrument the code and
trace the impact of operators on properties like the distributions of
sensitive groups in the data. In this way, mlinspect empowers data
scientists to automatically check their ML pipeline code for data
distribution bugs without requiring changes to the code. Impor-
tantly, mlinspect implements a library-independent interface to
propagate annotations such as tuple lineage across operators from
different libraries, and introduces only constant overhead per tuple
flowing through the DAG. Thereby, mlinspect offers a general
runtime for pipeline inspection.

Figure 1 gives an example of this: mlinspect identifies a se-
lection operation in the Python code that potentially changes the
age distribution in the data. It instruments the operator and com-
putes the distribution change between the inputs and the outputs
of the operator, and warns the data scientist if the change exceeds
a specified threshold.

Dataflow representation. Data preparation pipelines that use
common declarative abstractions, such as pandas data slicing, scikit-
learn’s ColumnTransformer in combination with estimator/trans-
former pipelines or SparkML pipelines, have a natural DAG repre-
sentation [6]. In our case, the data sources in this DAG are typically
comprised of relational data. The data flowing through the DAG
are either collections of relational tuples, or tensors. The operators
are either relational operators like join, selection, and projection
(consuming relational data and producing relational data), stan-
dard feature encoders like one-hot-encoders (consuming relational
data and producing vectors), or standard ML preprocessing opera-
tions like normalization or concatenation (consuming vectors and
producing vectors).

We extract the DAG for the preprocessing pipeline at runtime
during a single execution of the pipeline, and conduct all of the
instrumentation necessary for inspection beforehand. At runtime,
we use Python’s inspect module to identify relevant function
calls. We then construct an intermediate representation (IR) of the
pipeline using this information and the abstract syntax tree (AST)
as basis. Finally, we build up the DAG using this IR.

Instrumentation. The main idea behind our instrumentation is
to offer a simple library-independent interface to propagate anno-
tations such as the lineage of tuples across operators from different
libraries. We model this with so-called inspections. Each inspection

2737

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

age
60

60
20
20

zip
123

123
456
123

60
60

20

zip
123
123
123

data = data[data.zip == 123]

age distribution: 50% / 50% age distribution: 66% / 33%

Figure 1: Example: mlinspect identifies relational and ML
preprocessing operations in Python code, and instruments
them with inspections that check for data distribution bugs.

retains a fixed-size state that is invoked once for each DAG opera-
tor, and is reset after each operator. The inspection has access to
the output tuples of the operator and the corresponding annotated
inputs. It annotates the output tuples, and can optionally annotate
the logical operator in the DAG with the computed result, such as
a histogram of the outputs.

Backends for popular ML libraries. mlinspect uses the seman-
tics of preprocessing operations of popular Python frameworks like
scikit-learn and pandas. mlinspect delegates the captured function
calls to the library-specific backend based on module information.

Inspections and checks. Inspections serve as basis for detecting
issues in ML pipelines. They annotate the extracted DAG with
information like computed histograms for different DAG nodes.
On top of the extracted and annotated DAG, we provide checks, a
rule-based approach to verify constraints on the DAG, for example
by comparing the change in the histograms to a threshold.

Our lineage-based annotation propagation approach enables
different categories of automatic inspections and checks. Fairness
is one of them: mlinspect can be used to detect operators that
introduce or amplify under-representation issues. It can also check
for legal restrictions on the usage of demographic features. ML models
may also perform particularly badly for specific demographic groups
in the data (e.g., higher false positive rates for recidivism predictions
for Black defendants [1]). mlinspect can assist data scientists in
identifying such issues, which might be difficult in cases where the
attribute required to identify the protected group is projected out
early in the pipeline or is only available as a specific dimension of
the feature matrix during feature transformation.

3 DEMONSTRATION SCENARIO

In the demonstration, we will show how the extracted DAG, inspec-
tions and checks can be used to inspect pipelines and detect data
distribution bugs. We provide a web-based user interface that allows
attendees to edit the code of an ML pipeline and view the extracted
DAG side-by-side, as shown in Figure 2. Attendees will interact
with the DAG to inspect intermediate data and to determine how
different operators change the data distribution. mlinspect will
automatically warn users when a data distribution bug is detected.

We showcase an inspection that can materialise a sample of the
output rows for each operator, and a check that uses an inspection
that computes histograms of operator outputs for protected groups,
and then compares negative changes in relative proportions of
minority groups after a filter to an acceptable threshold.

https://github.com/stefan-grafberger/mlinspect
https://github.com/stefan-grafberger/mlinspect
https://dataresponsibly.github.io/rds

Demo Track Paper

Pipeline Definition

16
17 data = patients.merge(histories, on=['ssn'])
18 complications = data.groupby('age_group') \
1

.agg(mean_complications=('complications', 'mean'))

20 data = data.merge(complications, on=['age group'])

21 data['label'] = data['complications'] > 1.2 * data['mean_complications']
22 data = data[['smoker',
23 'label']]
24 data = data[data['county'].isin(['county2',

'last_name', 'county', 'num_children', 'race’', 'income',

‘county3'])]

6 impute_and_one_hot_encode = Pipeline([
2 ('impute', SimpleImputer(strategy='most frequent')),
28 ('encode’, OneHotEncoder (sparse=False, handle_ unknown='ignore'))
291
30 featurisation = Col (tr, =[
("impute and one_hot_encode", impute_and_one_hot_encode,

['smoker', 'county', 'race']),
('word2vec', MyW2VTransformer(min_count=2),

('numeric', StandardScaler(), ['num_children',

['last_name']),
3 'income'])
351

36 neural net =

lassifier(build_:

verbose=0)

_model, epochs=10, batch_size=1,

pipeline = Pipeline([

('features', featurisation),

4 ('learner', neural net)])
41
12 train_data, test_data = train_test_split(data)
43 model = pipeline.fit(train_data, train_data['label'])
Pipeline Output
Mean accuracy: 0.9479452013969421
Inspections Checks
Histogram For Columns @ No Bias Introduced For
Row Lineage id

Materialize First Output Rows first name
last_name
® race
county
num_children
income
® age_group
ssn
smoker
complications
No lllegal Features
No Missing Embeddings

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

Extracted DAG
o
i
X
o hd bid
n
= []
o
53 % bid
o o bd s o4 n
T T T 1
T T T 1 T
Y #

Operator Details: Operator 'Selection’, Line 24

NoBiasIntroducedFor((('race’, ‘age_group'), -0.3))

Column 'race’

M before

250 W after

racel race2 race3 nan

Figure 2: User interface for our demonstration. On the left, attendees can edit the Python code of an ML pipeline and select
inspections to run. On the right, we show the corresponding dataflow graph extracted by mlinspect. Attendees can interactively
click on DAG nodes to highlight the corresponding code snippets and view inspection results for the operators.

3.1 Example Pipeline

For our demonstration, we use an example from the medical domain.
Consider a data scientist who implements a Python pipeline that
takes demographic and clinical history data as input, and trains
a classifier to identify patients at risk for serious complications.
Further, assume that the data scientist is under a legal obligation to
ensure that the resulting ML model works equally well for patients
across different age groups and races. This obligation is operational-
ized as an intersectional fairness criterion, requiring equal false
negatives rates for groups of patients identified by a combination
of age_group and race.

We provide attendees with an implementation of this pipeline
that uses pandas and scikit-learn.! The pipeline first reads two
CSV files, which contain patient demographics and their clinical
histories, respectively, and joins them. Next, the pipeline computes
the average number of complications per age group and adds the
binary target label to the dataset, indicating which patients had a

!https://github.com/stefan-grafberger/mlinspect/blob/
19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines/healthcare/
healthcare.py

2738

higher than average number of complications compared to others
in their age group. The data is then projected to a subset of the
attributes, to be used by the classification model.

The data scientist additionally filters the data to contain only
records from patients within a given set of counties. This may
lead to a data distribution bug if populations of different counties
systematically differ in age or race.

Next, the pipeline creates a feature matrix from the dataset by
applying feature encoders with scikit-learn’s ColumnTransformer,
before training a neural network on the features. For the categorical
attributes smoker, county, and race, the pipeline imputes missing
values with mode imputation (using the most frequent attribute
value), and subsequently creates one-hot-encoded vectors from
the data. The last_name is replaced with a corresponding vector
from a pretrained word embedding, and the numerical attributes
num_children and income are normalized.

As illustrated by this example, preprocessing can give rise to
subtle data distribution bugs that are difficult to identify manually.
In our demonstration, attendees will use mlinspect to detect some
of these potential errors and subsequently fix them in real time.

https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines/healthcare/healthcare.py
https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines/healthcare/healthcare.py
https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines/healthcare/healthcare.py
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html

Demo Track Paper

3.2 Pipeline Inspection

Attendees start with the given Python-based ML pipeline, with the
data and the initial code for the healthcare example. Attendees can
then extend and modify the code and execute it as they would in
a computational notebook environment. As they run the pipeline,
the DAG on the right side will be updated to reflect the changes
they make. The DAG provides an abstract representation of the
pipeline, which allows them to analyse complex nested pipelines.
In addition, attendees can specify which inspections and checks
they want to apply during pipeline execution (Figure 3(a)).

The No Bias Introduced For check looks for data distribution
changes, while the No Illegal Features check determines whether
potentially illegal attributes (such as gender) are used by the ML
model. We also support inspections that sample intermediate out-
puts, compute histograms of groups in the intermediate results, and
show record-level lineage.

Run inspections: MaterializeFirstOutputRows(5)

Row Lineage county
®© Materialize First Output Rows [1. 0.]
Run checks:

[1. 0.]

No Bias Introduced For

No lllegal Features [0. 1.]

No Missing Embeddings [1. 0.1
| (. 0.1

(a) Attendees enable different checks and
inspections.

(b) Inspection results such as samples
of the outputs of each operator.

Figure 3: Attendees will run inspections on the Python
pipeline and view the corresponding results per operator.

We first focus on the general techniques to inspect the ML
pipeline. For that, we showcase the Materialize First Output Rows
inspection, which allows users to view samples of the outputs of
each operator. They enable this inspection, rerun the pipeline, and
can then click on the DAG nodes that represent the operators to
inspect the operator’s output. As a result, attendees will see the first
few output rows (Figure 3(b)), and our GUI will also highlight the
code corresponding to the operator on the left. We will showcase
this for a “one-hot-encoding” operator in a scikit-learn pipeline,
which consumes relational data and produces matrix data.

3.3 Data Distribution Debugging

In the next part of the demonstration, we show how our library
assists data scientists with the detection of potential data distri-
bution bugs. For that, we focus on operators like selection that
may accidentally change the proportion of protected groups in the
data. We use the No Bias Introduced For inspection, which analyses
histograms of the input and output data of operators, and checks
whether the change in histograms of protected groups exceeds a
specified threshold. When attendees run the pipeline code while
enabling the No Bias Introduced For check, mlinspect will highlight
problematic operators directly in the DAG (Figure 4(a)).
Attendees can then click on the DAG node for additional details:
mlinspect will highlight the source code that introduced the data

2739

SIGMOD ’21, June 20-25, 2021, Virtual Event, China

NoBiasIntroducedFor((('race’, ‘age_group’), -0.3))

x Column ‘race’
%
250 W after
o n n -
& 200 8
150
n x n
100
n n n n n
50
I S | g le
o
racel race2 race3 nan

(a) Operators that potentially introduce data
distribution bugs are highlighted in the DAG.

M before

(b) Attendees can view histograms
of the corresponding data distribu-
tion changes caused by the operator.

Figure 4: mlinspect detects potential data distribution bugs
and points users to the corresponding operations.

distribution bug, and will show the data distribution histograms,
helping the user investigate the issue (Figure 4(b)).

During the demonstration, we will use a pipeline with a selec-
tion that filters for people living in certain counties. In our example
dataset, the county attribute is correlated with the sensitive at-
tribute race. The selection code initially present in the pipeline
will lead to a data distribution bug. But if participants discover the
correlation, they can include an additional county value in the list of
counties used for the filter to fix the bug. To validate their solution,
participants can edit the pipeline, rerun the checks, and re-examine
the histograms corresponding to the problematic operation.

Interactivity. Our demonstration is highly interactive, as attendees
will be able to use our interface to rerun the pipeline, inspect the
operators, and check for data distribution bugs. Once they discover
a bug with the help of mlinspect, they can modify the source code
in real time to fix it and re-run the pipeline.

Acknowledgements. This work was supported in part by Ahold Delhaize,
and by NSF Grants No. 1926250, 1934464 and 1922658. All content represents
the opinion of the authors, which is not necessarily shared or endorsed by
their respective employers and/or sponsors.

REFERENCES

[1] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. 2016.
Machine bias. (ProPublica). https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal- sentencing

Irene Chen, Fredrik D Johansson, and David Sontag. 2018. Why Is My Classifier
Discriminatory? NeurIPS (2018), 3539-3550.

Alexandra Chouldechova and Aaron Roth. 2020. A snapshot of the frontiers of
fairness in machine learning. Commun. ACM 63, 5 (2020), 82-89.

Stefan Grafberger, Julia Stoyanovich, and Sebastian Schelter. 2021. Lightweight
Inspection of Data Preprocessing in Native Machine Learning Pipelines. CIDR
(2021).

Fotis Psallidas, Yiwen Zhu, Bojan Karlas, et al. 2019. Data Science through the
looking glass and what we found there. arXiv:1912.09536

Sebastian Schelter, Joos-Hendrik Boese, Johannes Kirschnick, Thoralf Klein, and
Stephan Seufert. 2017. Automatically tracking metadata and provenance of
machine learning experiments. In Machine Learning Systems workshop at NeurIPS.
Sebastian Schelter, Yuxuan He, Jatin Khilnani, and Julia Stoyanovich. 2019. Fair-
Prep: Promoting Data to a First-Class Citizen in Studies on Fairness-Enhancing
Interventions. EDBT (2019).

Sebastian Schelter and Julia Stoyanovich. 2020. Taming Technical Bias in Machine
Learning Pipelines. IEEE Data Eng. Bull. 43, 4 (2020).

Julia Stoyanovich, Bill Howe, and HV. Jagadish. 2020. Responsible Data Manage-
ment. VLDB 13, 12 (2020), 3474-3489.

Manasi Vartak and Samuel Madden. 2018. MODELDB: Opportunities and Chal-
lenges in Managing Machine Learning Models. IEEE Data Eng. 41 (2018), 16-25.
Matei Zaharia, Andrew Chen, Aaron Davidson, et al. 2018. Accelerating the
Machine Learning Lifecycle with MLflow. IEEE Data Eng. Bull. 41, 4 (2018)

[9]
(10]

(1]

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://arxiv.org/abs/1912.09536

	Abstract
	1 Introduction
	2 Overview of mlinspect
	3 Demonstration Scenario
	3.1 Example Pipeline
	3.2 Pipeline Inspection
	3.3 Data Distribution Debugging

	References

