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If k is a field and R is a commutative k-algebra, we explore 
the question of when the ring DR|k of k-linear differential 
operators on R is isomorphic to its opposite ring. Under mild 
hypotheses, we prove this is the case whenever R Gorenstein 
local or when R is a ring of invariants. As a key step in 
the proof we show that in many cases of interest canonical 
modules admit right D-module structures.
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1. Introduction

Let k be a field. A construction of Grothendieck assigns to every k-algebra R its ring 
DR|k of k-linear differential operators, which is a noncommutative ring that consists of 
certain k-linear operators on R [10, §16].

Suppose k has characteristic zero. If R := k[x1, . . . , xn] is a polynomial ring over k
then the ring DR|k is called the Weyl algebra over k and it has a particularly pleasant 
structure; for example, it is (left and right) Noetherian and its global dimension is n [22]. 
These facts adapt readily to the case where R is an arbitrary regular k-algebra that is 
essentially of finite type [8, §3], and in this context the study of DR|k and its modules 
has numerous applications in singularity theory (e.g. Bernstein-Sato polynomials) and 
in commutative algebra (e.g. the study of local cohomology [18]).
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Since the ring DR|k is noncommutative, a priori its left and right modules could 
behave very differently. However, a key feature of the Weyl algebra DR|k is that it is 
isomorphic to its opposite ring Dop

R|k via an involutive isomorphism that fixes the subring 
R (see Remark 2.6). This induces an equivalence between the categories of left and right 
DR|k-modules, sometimes known as the side-changing functor, which is used abundantly 
when defining functors on DR|k-modules [12, §1].

The goal of this paper is to show that such an isomorphism exists under much weaker 
hypotheses on the singularities of R, and even in positive characteristic. For example, 
our main results ensure that this is the case whenever R is a normal Gorenstein local 
domain that is essentially of finite type over a perfect field k (Theorems 4.4 and 4.8) or 
whenever R is a ring of invariants over a field k of characteristic zero (Theorem 5.4). 
We also show that such an isomorphism is unique when k has positive characteristic 
and R is a polynomial ring over k (Theorem 4.10); this is somewhat surprising, since 
the analogous statement in characteristic zero is far from true (see Subsection 4.3). We 
note that there exist examples of rings of differential operators DR|k which are right 
Noetherian but not left Noetherian [26, §7] [21, §5] [32], thus providing examples where 
one could not have an isomorphism DR|k ∼= Dop

R|k.
Our hope is that these results can contribute to the study of the behavior of differential 

operators on singular algebras, which remains somewhat mysterious despite substantial 
results. For example, when X = SpecR is an affine curve in characteristic zero, the 
structure of DR|k has been studied extensively and we know that DR|k is a (left and 
right) Noetherian finitely generated k-algebra [9] [33] [26] [21]. A famous counterexample 
of Bernstein, Gelfand and Gelfand showed that this does not remain true in higher 
dimensions: they proved that for R := C[x, y, z]/(x3 + y3 + z3) the ring DR|C is neither 
finitely generated nor Noetherian [5] (see [34] for further examples).

Despite this well-known intractability, there is renewed interest in differential opera-
tors on singular algebras due to some recent applications in commutative algebra. For 
example, when R is a direct summand of a polynomial or power series ring over k, 
Àlvarez-Montaner, Huneke and Núñez-Betancourt have used the DR|k-module structure 
to give a new proof of the finiteness of associated primes of local cohomology of R [2]. 
They also show that elements of R admit Bernstein-Sato polynomials (see [1] for more 
on this direction, including a notion of V -filtrations for direct summands). Brenner, Jef-
fries and Núñez-Betancourt have also used rings of differential operators to introduce a 
characteristic zero analogue of F -signature, called differential signature [7].

In characteristic p > 0 there is further evidence that DR|k carries information about 
the singularities of R. For example, Smith showed that an F -pure and F -finite domain R
is simple as a left DR|k-module if and only if it is strongly F -regular [25]. In characteristic 
zero, Hsiao has shown that whenever R is the homogeneous coordinate ring of a smooth 
projective variety X the simplicity of R as a left DR|k-module implies the bigness of the 
tangent bundle TX of X [11], and Mallory has used this to construct counterexamples 
to the characteristic-zero analogue of Smith’s result [19].
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Let us now describe the different sections and results in the paper in more detail. The 
paper begins with some background material in Section 2. In Section 3 we show that if 
R is a local or graded Cohen-Macaulay k-algebra then, under reasonable hypotheses, the 
canonical module ωR admits a right DR|k-module structure (Theorems 3.2, 3.4, 3.6 and 
3.7). This constitutes our main tool for Section 4, where we start studying the existence 
of isomorphisms DR|k ∼= Dop

R|k. Our main result is as follows.

Theorem (4.4). Let k be a field and R be a Gorenstein k-algebra. Assume that one of the 
following holds:

(1) The field k has characteristic zero and R is a local normal domain that is essentially 
of finite type over k.

(2) The field k is a perfect field of characteristic p > 0, and R is local, F -finite and 
admits a canonical module.

(3) The ring R is complete local and k is a coefficient field.
(4) The ring R =

!∞
n=0 Rn is graded and finitely generated over R0 = k.

Then there is a ring isomorphism DR|k ∼= Dop
R|k that fixes R. It respects the order filtration 

and, if k a perfect field of positive characteristic, it also respects the level filtration (see 
2.1.1).

After this work was completed we realized that some of our work from Section 3 and 
cases (1) and (4) from Theorem 4.4 are already due to Yekutieli [37, Cor. 4.9], using 
more sophisticated machinery (most notably, [36]). We hope that our more elementary 
approach has some value.

In Section 4 we also explore the question of when such an isomorphism must be 
involutive (i.e. its own inverse). In this regard our result is given by the following The-
orem. We note that the proof of case (1) when chark = p > 0 involves the use of the 
Skolem-Noether theorem.

Theorem (4.8 ). Let k be a field, R be a commutative k-algebra and Φ : DR|k ∼= Dop
R|k be 

a ring isomorphism that fixes R. Then Φ is involutive in the following cases:

(1) The algebra R is reduced and essentially of finite type over k.
(2) The ring R is local, Gorenstein and zero dimensional, k is a coefficient field of 

R and Φ is the ring isomorphism that corresponds to the compatible right DR|k-
module structure on R given by pullback via an isomorphism R ∼= Homk(R, k) (see 
Lemma 4.3(a)).

We conclude Section 4 by pointing out the following curious result in characteristic p >
0, which follows from a generalization of the Skolem-Noether theorem due to Rosenberg 
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and Zelinski [23] (Theorem 4.9). We note that the statement is false in characteristic 
zero (see Subsection 4.3).

Theorem (4.10 ). Let k be a perfect field of characteristic p > 0 and R := k[x1, . . . , xn] be 
a polynomial ring over k. Then there is a unique isomorphism DR|k ∼= Dop

R|k that fixes R.

We end the paper in Section 5, where we use a theorem of Kantor (Theorem 5.2) to 
explore the existence of isomorphisms DR|k ∼= Dop

R|k for rings of invariants. Our result is 
the following.

Theorem (5.4). Let k be a field of characteristic zero, G be a finite subgroup of GLn(k)
that contains no pseudoreflections, S := k[x1, . . . , xn] be a polynomial ring over k
equipped with the standard linear action of G and R := SG be the ring of G-invariants 
of S. Then there is an involutive isomorphism DR|k ∼= Dop

R|k that fixes R.
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2. Background

2.1. Rings of differential operators

Let k be a commutative ring and let R be a commutative k-algebra. The ring DR|k
of k-linear differential operators on R is a particular subring of Endk(R), the ring of 
k-linear endomorphisms on R. After fixing some notation, we recall its definition.

Convention 2.1. By an abuse of notation, we identify every element f of R with the 
operator R→ R given by [g #→ fg]. In this manner, we also identify R with the subring 
EndR(R) of Endk(R).

We inductively define k-subspaces Dn
R|k of Endk(R), which will be called the k-linear 

differential operators Dn
R|k of order ≤ n on R, as follows:

D0
R|k = R

Dn
R|k = {ξ ∈ Endk(R) : [ξ, f ] ∈ Dn−1

R|k for all f ∈ R}. (1)
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These Dn
R|k form an increasing chain of subspaces of Endk(R). Moreover, composing a 

differential operator of order at most n with one of order at most m yields a differential 
operator of order at most n + m; that is,

Dn
R|kD

m
R|k ⊆ Dn+m

R|k .

In particular, the Dn
R|k are (left and right) R-submodules of Endk(R), and the increasing 

union

DR|k :=
∞"

n=0
Dn

R|k

is a subring of Endk(R), which we call the ring of k-linear differential operators on R.

Remark 2.2. We note that every k-linear derivation is a differential operator of order 
≤ 1; i.e. Derk(R) ⊆ D1

R|k. In fact, one can check that D1
R|k = R ⊕ Derk(R).

Remark 2.3. We will use the convention that D−1
R|k = {0}, and we note that (1) is still 

valid for n = 0.

2.1.1. Rings of differential operators in positive characteristic
Suppose now that k is a perfect field of positive characteristic p > 0 and that R is 

F -finite; that is, R is noetherian and finitely generated as a module over its subring Rp

of p-th powers (this holds, for example, whenever R is essentially of finite type over k). 
In this setting the ring DR|k admits another filtration, this time by subrings, as follows.

For each positive integer e > 0, we define the ring D(e)
R of differential operators of 

level e on R by D(e)
R := EndRpe (R); i.e. D(e)

R consists of all the operators on R that are 
linear over its subring Rpe of pe-th powers. The rings D(e)

R form an increasing union and 
we have (see [35] [28, §2.5])

DR|k =
∞"

e=0
D(e)

R .

2.1.2. Rings of differential operators on smooth algebras
The most typical example of a ring DS|k of differential operators comes from the 

case where k is a field of characteristic zero and S := k[x1, . . . , xn] is a polynomial ring 
over k. In this case DS|k is generated by S (acting, as usual, by multiplication) and the 
derivations ∂1, . . . , ∂n, where ∂i = ∂

∂xi
. The ring DS|k is known as the Weyl algebra in 

2n generators over k and a k-algebra presentation for it is given by

DS|k = k⟨x1, . . . , xn, ∂1, . . . , ∂n⟩
⟨[∂i, xj ] = δij , [∂i, ∂j ] = 0, [xi, xj ] = 0⟩ , (2)
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where δij is the Kronecker delta symbol. In particular, there is a left S-module decom-
position

DS|k =
#

α∈Nn
0

S∂α

where ∂α = ∂α1
1 · · · ∂αn

n [8, Prop. 1.1.2].
Our next goal is to formulate a version of these statements due to Grothendieck 

that works, after a suitable localization, for any commutative essentially smooth algebra 
over an arbitrary commutative ring. More precisely, it will work under the following 
conditions.

Setup 2.4. Let k be a commutative ring and S be a commutative k algebra that is 
formally smooth and essentially of finite presentation. We furthermore assume that the 
module Ω1

S|k of Kähler differentials is free over S which, we recall, can always be achieved 
by localizing. We pick elements x1, . . . , xn ∈ S such that dx1, . . . , dxn form an S-basis 
for Ω1

S|k. Of course, a typical example is S = k[x1, . . . , xn].

In order to state the result, we introduce multi-index notation. Given elements 
z1, . . . , zn ∈ S and a multi-exponent α ∈ Nn

0 we denote by zα the element zα :=
zα1
1 · · · zαn

n . Given a multi-exponent α ∈ Nn
0 we denote α! := α1! · · ·αn! and |α| =

α1 + · · · + αn. Given α, β ∈ Nn
0 , we say α ≤ β whenever αi ≤ βi for all i = 1, 2, . . . , n. 

With this notation, we have a multivariate binomial theorem: if z1, . . . , zn and y1, . . . , yn
are elements of S and α ∈ Nn

0 is a multi-exponent then (z + y)α =
$

β+γ=α
α!
β!γ!z

βyγ . 
We note that, for β+ γ = α, the number α!/(β!γ!) is an integer. With this notation, the 
statement is as follows.

Theorem 2.5 ([10 , §16.11, §17.12.4]). Let k and S be as in Setup 2.4. Then

(1) For every α ∈ Nn
0 there is a unique differential operator ∂[α] ∈ DS|k such that

∂[α](xβ) = β!
α!(β − α)!x

β−α

for all β ∈ Nn
0 . In particular, ∂[α]∂[β] = (α+β)!

α!β! ∂
[α+β].

(2) We have

DS|k =
#

α∈Nn
0

S∂[α].

Remark 2.6. Suppose k is a field of characteristic zero and for all i = 1, 2, . . . , n let 
∂i ∈ Derk(S) denote the dual of dxi. Then ∂[α] = (1/α!)∂α, and Theorem 2.5 tells us 
that DS|k is generated by D1

S|k as an algebra (see Remark 2.2). When S = k[x1, . . . , xn]
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is a polynomial ring over k, this observation allows one to recover the presentation given 
in (2).

2.2. Anti-automorphisms in the smooth case

In this subsection we review the standard isomorphism between the Weyl algebra and 
its opposite ring, and we use Grothendieck’s representation (Theorem 2.5) to define an 
analogous operation on arbitrary smooth algebras.

We first recall some terminology. Given two (noncommutative) rings A and B, an 
additive map Φ : A → B is called a ring anti-homomorphism if Φ(1A) = 1B and Φ(xy) =
Φ(y)Φ(x) for all x, y ∈ A (equivalently, we may think of Φ as a ring homomorphism 
A → Bop or Aop → B). If Φ is bijective we say it is an anti-isomorphism, and a self 
anti-isomorphism is called an anti-automorphism.

If k is a field of characteristic zero and S = k[x1, . . . , xn] is a polynomial ring over 
k we have repeatedly mentioned that DS|k is a Weyl algebra over k, and an explicit 
k-algebra presentation is given in (2). Using this presentation it is easy to check that 
the assignments [xi #→ xi] and [∂i #→ − ∂i] define an anti-automorphism on DS|k, usually 
called the standard transposition. Note that the standard transposition is involutive (i.e. 
its own inverse) and that it fixes the subring S. In this subsection, we extend this to the 
case of smooth algebras (see Proposition 2.9).

Lemma 2.7. Let σ ∈ Nn
0 be a nonzero multi-exponent. Then

%

β+δ=σ

(− 1)|β| σ!
β!δ! = 0.

Proof. Let y1 = · · · = yn = 1, z1 = · · · = zn = − 1 and apply the multivariate binomial 
theorem to conclude 0 = (z + y)σ =

$
β+δ=σ

σ!
β!δ!z

βyδ =
$

β+δ=σ(− 1)|β| σ!
β!δ! . !

Lemma 2.8. Let k and S be as in Setup 2.4. Then for all α ∈ Nn
0 and f ∈ S we have the 

following equality in DS|k:

∂[α]f =
%

β,γ∈Nn
0

β+γ=α

∂[β](f)∂[γ].

Proof. Fix some integer m ≥ |α|. We let J ⊆ R⊗ kR denote the ideal of the multiplication 
map µ : R ⊗ k R → R, and we let Pm

R|k := R ⊗ k R/Jm+1 denote the m-th module of 
principal parts for R over k, so that we have an identification HomS(Pm

S|k, S) ∼= Dm
S|k, 

given by [ϕ #→ [g #→ ϕ(1 ⊗ g)]] [10, §16]. Given g ∈ R we denote by dmg the element 
dmg := 1 ⊗ g − g ⊗ 1 ∈ Pm

R|k. Then Pm
R|k is, as a left R-module, free in the basis 

{(dmx)β : |β| ≤ m}, and ∂[α] is, thought of as an R-linear map ∂[α] : Pn
R|k → R, the 
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dual of the basis element (dx)α [10, §16]. In particular, for all g ∈ S we have an equality 
1 ⊗ g =

$
|β|≤n ∂

[β](g)(dmx)β in Pm
S|k.

We need to show that, for all g ∈ S, we have ∂[α](fg) =
$

β+γ=α ∂
[β](f)∂[γ](g). This 

follows by considering the following equalities in Pm
R|k

1 ⊗ fg = (1 ⊗ f)(1 ⊗ g)

= (
%

|β|≤m

∂[β])(f)(dmx)β)(
%

|γ|≤m

∂[γ](f)(dx)γ)

and extracting the coefficient of (dmx)α of the last expression. !

Proposition 2.9. Let k and S be as in Setup 2.4. Then there is a unique involutive anti-
automorphism on DS|k that fixes S and sends [∂[α] #→ (− 1)|α|∂[α]] for all α ∈ Nn

0 .

Proof. By Theorem 2.5, DS|k is free as a left S-module with basis {∂[α] : α ∈ Nn
0 }. 

Therefore there is a unique additive map Φ : DS|k → DS|k with Φ(f∂[α]) = (− 1)|α|∂[α]f

for all f ∈ S and α ∈ Nn
0 . We want to show that Φ is a ring anti-homomorphism.

One immediately verifies that, for all ξ ∈ DS|k, α ∈ Nn
0 and f ∈ S we have 

Φ(ξ∂[α]) = Φ(∂[α])Φ(ξ) and Φ(fξ) = Φ(ξ)f . We conclude it suffices to show that 
Φ(∂[α]f) = fΦ(∂[α]). By using Lemma 2.8 we conclude that

Φ(∂[α]f) = Φ(
%

β+γ=α

∂[β](f)∂[γ])

=
%

β+γ=α

(− 1)|γ|∂[γ]∂[β](f)

=
%

β+γ=α

(− 1)|γ|
%

δ+ϵ=γ

∂[δ](∂[β](f))∂[ϵ]

=
%

β+δ+ϵ=α

(− 1)|δ+ϵ| (β + δ)!
β!δ! ∂[δ+β](f)∂[ϵ]

= (− 1)|α|
%

ϵ≤α

⎛

⎝
%

β+δ=α−ϵ

(− 1)|β| (α − ϵ)!
β!δ!

⎞

⎠ ∂[α−ϵ](f)∂[ϵ]

= (− 1)|α|f∂[α],

where in the last equality we made use of Lemma 2.7. This completes the proof of the 
fact that Φ is a ring anti-homomorphism. To show that it is an involution we now simply 
observe that Φ2 is a ring homomorphism with Φ2(f) = f and Φ2(∂[α]) = ∂[α] for every 
f ∈ S and α ∈ Nn

0 , and therefore Φ2 must be the identity. !
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3. Right D-module structures on canonical modules

Let k be a field and R be a local k-algebra. In this section we show that, under 
reasonable hypotheses, the canonical module ωR carries a compatible right DR|k-module 
structure. This fact will be the main ingredient in our construction of anti-automorphisms 
on rings of differential operators on Gorenstein algebras. Before we begin, let us clarify 
what “compatible” means in this setting.

Definition 3.1. Let M be an R-module. A (right or left) DR|k-module structure on M is 
compatible if it extends the already-existing R-module structure.

We note that Theorem 3.2 and Theorem 3.7 follow from the duality for differential 
operators developed by Yekutieli [37, Cor. 4.2], or by noting that the co-stratification 
approach of Berthelot [4, §1.2.1] (in the case m =∞) also works in the singular setting. 
Trying to keep an elementary exposition, we prove these results using simpler techniques.

3.1. Characteristic zero case

Theorem 3.2. Let k be a field of characteristic zero and R be a local Cohen-Macaulay 
normal domain that is essentially of finite type over k. Then the canonical module ωR
admits a compatible right DR|k-module structure.

Proof. Let U ⊆ SpecR denote the smooth locus of R; by the normality of R, its com-
plement has codimension ≥ 2. By use of the Lie derivative, we have an action of the 
tangent sheaf TU on the sheaf of modules ωR|U , which extends to a compatible right 
module structure over the sheaf of differential operators on U [12, §1.2] (note: one cru-
cially uses that k has characteristic zero here, since otherwise the tangent sheaf does not 
generate the sheaf of differential operators). We conclude that Γ(U, ωR) has a compatible 
right Γ(U, DR)-module structure.

The module ωR is reflexive [3] [27, 0AVB]. Since we have an R-module isomorphism 
Dn

R|k
∼= HomR(Pn

R|k, R), where Pn
R|k is the n-th module of principal parts for R [10, §16], 

we conclude that Dn
R|k is also a reflexive R-module [27, 0AV6, 0AVB]. Therefore, the 

natural maps ωR → Γ(U, ωR) and DR → Γ(U, DR) are isomorphisms. It follows that ωR
has a compatible right DR-module structure, as required. !

Remark 3.3. Note that neither the Cohen-Macaulay nor the local hypotheses were really 
needed in the proof of Theorem 3.2: if we remove them, the only issue is that we need 
to make sense of what ωR is. Since R is normal, the smooth locus U ⊆ SpecR has 
codimension at least two, and if we define ωR to be the unique reflexive extension of the 
canonical bundle on U then the proof given goes through verbatim.
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3.2. Characteristic p > 0 case

We will tackle the case of characteristic p > 0 next, and we begin by setting up some 
notation.

Let k be a perfect field of characteristic p > 0 and R be an F -finite k-algebra. We 
denote by F : R→ R the Frobenius morphism (i.e. F (r) = rp). Given a positive integer 
e, we denote by F e the e-th iteration of F , and we let Rpe be the subring of pe-th 
powers of R. Given e we also define the set F e

∗R := {F e
∗ r : r ∈ R}, which we endow 

with abelian group structure F e
∗ r + F e

∗ s = F e
∗ (r + s) and an (R, R)-bimodule structure 

given by f · F e
∗ r = F e

∗ f
pe

r and (F e
∗ r) · f := F e

∗R(rf) — i.e. as a right R-module F e
∗R

is (isomorphic to) R, and as a left R-module F e
∗R is (isomorphic to) the restriction of 

scalars of R across F e.
Recall that in our setting the ring DR|k of k-linear differential operators on R is given 

by DR|k =
*∞

e=0 D
(e)
R , where D(e)

R = EndRpe (R) (see 2.1.1). The inclusion Rpe ⊆ R and 
the Frobenius map R→ F e

∗R [r #→ F e
∗ r

pe ] are isomorphic, in the sense that the diagram

R F e
∗R

Rpe

R,

r &→F e
∗ r

pe

r &→rp
e

F e
∗ r &→r

commutes, and we can thus identify D(e)
R with

D(e)
R
∼= EndR(F e

∗R),

where EndR(F e
∗R) is the endomorphism ring of F e

∗R as a left R-module.
If M is an R-module we let

(F e)♭M := HomR(F e
∗R,M)

be the set of left R-linear homomorphisms from F e
∗R to M , endowed with an R-module 

structure given by

(f · ϕ)(F e
∗ r) := ϕ

+
F e
∗ (rf)

,
(ϕ ∈ (F e)♭M and r, f ∈ R);

that is, the structure inherited from the right R-module structure on F e
∗R. This con-

struction respects morphisms and therefore induces functors (F e)♭ on R-modules.
We note that for all e, d > 0 there are bimodule isomorphisms F d

∗R ⊗ R F e
∗R ∼=

F d+e
∗ R given by [F d

∗ a ⊗ F e
∗ b #→ F d+e

∗ ap
e

b] which, by the tensor-Hom adjunction, give 
isomorphisms

(F d)♭(F e)♭M ∼= (F d+e)♭M
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which induce natural equivalences of functors.

Theorem 3.4. Let k be a perfect field of characteristic p > 0 and R be a local Cohen-
Macaulay F -finite k-algebra with canonical module ωR. Then ωR admits a compatible 
right DR|k-module structure.

Proof. There is an R-module isomorphism ωR ∼= F ♭ωR [6, Thm. 3.3.7(b)] which, in turn, 
induces isomorphisms ωR ∼= (F e)♭ωR for every e > 0. By the description of (F e)♭, we 
observe that (F e)♭ωR — and, indeed, any (F e)♭M — inherits a natural right-module 
structure over the ring EndR(F e

∗R), and thus over the ring D(e)
R . Since the isomorphisms 

(F e)♭ωR → (F e+1)♭ωR are D(e)
R -linear, the module

ωR ∼= lim
→e

(F e)♭ωR

inherits a right DR-module structure. Since the maps ωR → (F e)♭ωR are R-module 
maps, this right DR-module structure is compatible. !

Remark 3.5. With the appropriate replacements for ωR we do not need the local hy-
pothesis in Theorem 3.4. Our proof shows that if R is equidimensional and essentially of 
finite type over k, i : SpecR→ Spec k is the structure map and ωR = i!k[−  dimR] then 
ωR carries a natural compatible right DR|k-module structure.

3.3. Complete case

We now tackle the complete case, which is an easy application of Matlis duality for 
D-modules. This duality was developed by Switala (similar constructions appear in the 
work of Yekutieli [36]). We will quickly summarize the key facts, and we refer to Switala’s 
work [30, §4] or thesis [29] for details.

Let R be a Cohen-Macaulay complete local ring with coefficient field k. Let m be the 
maximal ideal of R and, by an abuse of notation, we will denote the residue field R/m by 
k. Given a (not necessarily finitely generated) R-module M , a k-linear map ϕ : M → k is 
called Σ-continuous if for every u ∈M there exists some s > 0 such that ϕ(msu) = 0. We 
denote by HomΣ

k (M, k) the collection of all such maps, which has an R-module structure 
by premultiplication. We note that if M is such that Supp(M) = {m} then every k-linear 
map is Σ-continuous.

Let E = ER(k) be the injective envelope of k, and fix a k-linear splitting σ of the 
inclusion k +→ E. Given an arbitrary R-module M , the map

HomR(M,E)→ HomΣ
k (M,k)

ψ #→ σ ◦ ψ

gives an isomorphism between HomR(M, E) (the Matlis dual of M) and the module 
HomΣ

k (M, k) which, in fact, gives a natural equivalence of functors.
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Theorem 3.6. Let R be a Cohen-Macaulay complete local ring with coefficient field k. 
Then the canonical module ωR of R admits a compatible right DR|k-module structure.

Proof. Since R is complete, the canonical module ωR is the Matlis dual of the top local 
cohomology module Hd

m(R) and, since SuppHd
m(R) = {m}, we have

ωR = Homk(Hd
m(R), k).

Since Hd
m(R) has a compatible left DR|k-module structure (via the Čech complex), ωR

has a compatible right DR|k-module structure, given by premultiplication. !

3.4. Graded case

Finally, we consider the graded case. The strategy is identical to the one for the 
complete case, except in that we use graded versions of all the relevant constructions.

Suppose that R =
!∞

n=0 Rn is a graded ring which is finitely generated over a field 
k = R0. Whenever we talk about the canonical module of such a graded ring R we 
will always mean the *canonical module in the sense of Bruns and Herzog [6, §3.6]. In 
particular, it is a graded module which is uniquely determined up to graded isomorphism 
[6, Prop.3.6.9].

Given a graded R-module M =
!

i∈ZMi, its graded Matlis dual is given by

*Homk(M,k) =
#

i∈Z

Homk(M−i, k),

which has a natural structure of graded R-module. Whenever the module M has a left 
DR|k-module structure, its graded Matlis dual acquires a compatible right DR|k-module 
structure by precomposition [31] [15, Prop. 3.1].

Theorem 3.7. Let R =
!∞

n=0 Rn be a Cohen-Macaulay graded ring which is finitely 
generated over a field k = R0. Then the canonical module ωR admits a compatible right 
DR-module structure.

Proof. The canonical module ωR is the graded Matlis dual of the top local cohomol-
ogy module Hd

m(R) [6, Thm. 3.6.19]. Since Hd
m(R) is a left DR|k-module (via the Čech 

complex), ωR acquires a compatible right DR|k-module structure. !

4. Symmetry on rings of differential operators

4.1. Existence of anti-automorphisms on DR|k for Gorenstein algebras

The goal of this section is to prove Theorem 4.4. We begin with a few lemmas that 
hold for arbitrary commutative rings k and R.
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Lemma 4.1. Let k be a commutative ring and R be a commutative k-algebra. Suppose 
that R carries a compatible right DR|k-module structure. If ξ ∈ DR|k has order ≤ n then 
the k-linear operator ξ∗ given by ξ∗(f) = f · ξ for all f ∈ R is also a differential operator 
of order ≤ n.

Proof. We prove this by induction on n, with the case n = 0 following from the compat-
ibility of the right DR|k-module structure. Therefore, suppose that the statement holds 
for n = m − 1, and let f ∈ R. We observe that ξ∗f = (fξ)∗ and fξ∗ = (ξf)∗, from which 
it follows that

[ξ∗, f ] = − [ξ, f ]∗.

Since ξ has order ≤ m, [ξ, f ] has order ≤ m − 1 which, together with the inductive 
hypothesis, implies that [ξ∗, f ] has order ≤ m − 1. Since f ∈ R was arbitrary, we conclude 
that ξ∗ has order ≤ m, as required. !

Lemma 4.2. Let k be a commutative ring, R be a commutative k-algebra and Φ : DR|k →
DR|k be a ring anti-homomorphism that fixes R. Then Φ is an anti-isomorphism.

Proof. By Lemma 4.1, Φ respects the order filtration. We now claim that if ξ ∈ DR|k
has order ≤ n then the operator Φ(ξ) + (− 1)n+1ξ has order ≤ n − 1. The claim being 
clear for n = 0 (see Remark 2.3), we assume that it is true for n = m − 1. Suppose that 
ξ has order ≤ m and let f ∈ R. We observe that

[Φ(ξ) + (− 1)m+1ξ, f ] = [Φ(ξ), f ] + (− 1)m+1[ξ, f ]
= − Φ([ξ, f ]) + (− 1)m+1[ξ, f ]
= − (Φ([ξ, f ]) + (− 1)m[ξ, f ])

and we therefore conclude that [ξ + (− 1)n+1Φ(ξ), f ] has order ≤ m − 2. As f ∈ R was 
arbitrary, ξ + (− 1)n+1Φ(ξ) has order ≤ m − 1, which proves the claim.

The claim implies that the associated graded map gr(Φ) : grDR|k → grDR|k is given 
by multiplication by − 1 on odd degrees and the identity on even degrees and that, in 
particular, it is an isomorphism (note that grDR|k is a commutative ring). We conclude 
that Φ : DR|k → DR|k is bijective as well. !

Lemma 4.3. Let k be a commutative ring and R be a commutative k-algebra.

(a) There is a one-to-one correspondence between the compatible right DR|k-module 
structures on R and the anti-automorphisms on DR|k that fix R.

(b) Every anti-automorphism on DR|k that fixes R respects the order filtration.
(c) If k is a perfect field of positive characteristic and R is F -finite then every anti-

automorphism on DR|k that fixes R respects the level filtration.
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Proof. We begin with part (a), for which we explicitly describe the correspondence. 
Suppose Φ : DR|k → DR|k is a ring anti-automorphism that fixes R. The ring R is 
naturally a left DR|k-module, and by restricting scalars across Φ we give it a right DR|k-
module structure. More explicitly, we define f · ξ := Φ(ξ)(f) for all ξ ∈ DR|k and f ∈ R. 
Because Φ fixes R, this right DR|k-module structure is compatible.

Conversely, suppose R has a compatible right DR|k-module structure. Given ξ ∈ DR|k
we define ξ∗ to be the k-linear operator defined by ξ∗(f) = f ·ξ for all f ∈ R (i.e. ξ∗ is mul-
tiplication by ξ under the given right DR|k-module structure). By Lemma 4.1, ξ∗ is a dif-
ferential operator and therefore the assignment [ξ #→ ξ∗] gives a ring anti-homomorphism 
Φ : DR|k → DR|k that fixes R. By Lemma 4.2, Φ is an anti-automorphism.

These two constructions are readily checked to be inverses, which proves part (a).
We now tackle (b). Given a ring anti-automorphism Φ : DR|k → DR|k that fixes 

R, we consider the compatible right DR|k-module structure on R given by restriction of 
scalars. The result then follows from Lemma 4.1 (alternatively, one could use an induction 
argument entirely analogous to the one in Lemma 4.1).

We now assume that k is perfect of characteristic p > 0 and that R is F -finite, and 
we prove part (c). Suppose that Φ : DR|k → Dop

R|k is an anti-automorphism that fixes R. 
Recall that ξ ∈ DR|k has level e > 0 if and only if ξ is Rpe-linear; i.e. if ξfpe = fpe

ξ for 
all f ∈ R. Applying Φ to such an equality we obtain fpeΦ(ξ) = Φ(ξ)fpe , which proves 
the result. !

Theorem 4.4. Let k be a field and R be a Gorenstein k-algebra. Assume that one of the 
following holds:

(1) The field k has characteristic zero and R is a local normal domain that is essentially 
of finite type over k.

(2) The field k is a perfect field of characteristic p > 0, and R is local, F -finite and 
admits a canonical module.

(3) The ring R is complete local and k is a coefficient field.
(4) The ring R =

!∞
n=0 Rn is graded and finitely generated over R0 = k.

Then there is a ring anti-automorphism on DR|k that fixes R. It respects the order filtra-
tion and, if k a perfect field of positive characteristic, it also respects the level filtration.

Proof. By Theorems 3.2, 3.4, 3.6 and 3.7 we know that ωR admits a compatible right 
DR|k-module structure. By pulling it back across an R-module isomorphism R ∼= ωR, 
we obtain a compatible right DR|k-module structure on R which, by Lemma 4.3 (a), 
corresponds to a ring automorphism DR|k ∼= Dop

R|k that fixes R (explicitly, the ring 
automorphism is given by [ξ #→ ξ∗] where ξ∗(f) = f · ξ for all ξ ∈ DR|k and f ∈ R). The 
rest of the statements follow from Lemma 4.3 (b) and (c). !
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As mentioned in Section 1, after this work was completed we realized that the cases 
(1), and (4) of Theorem 4.4 were already proven by Yekutieli [37, Cor. 4.9] in greater 
generality, albeit using more sophisticated methods.

4.2. Involutivity of anti-automorphisms on DR|k

We now address the question of when a ring anti-automorphism Φ : DR|k
∼−→ DR|k on 

DR|k is involutive (i.e. its own inverse). For starters, we note that the associated graded 
morphism gr(Φ) : grDR|k → grDR|k is always involutive (see Proof of Lemma 4.2), and 
that the following simple observation allows us to reduce the problem significantly.

Lemma 4.5. Let Φ : DR|k
∼−→ DR|k be a ring anti-automorphism that fixes R. If for all 

ξ ∈ DR|k we have Φ2(ξ)(1) = ξ(1) then Φ is involutive.

Proof. For such a Φ we have Φ2(ξ)(f) = (Φ2(ξ)f)(1) = Φ2(ξf)(1) = (ξf)(1) = ξ(f) for 
all f ∈ R and ξ ∈ DR|k, and thus Φ2(ξ) = ξ. !

We can also show that Φ is involutive on differential operators of order ≤ 1.

Lemma 4.6. Let k be a commutative ring, R be a commutative k-algebra and Φ be a ring 
anti-automorphism on DR|k that fixes R. If ξ is a differential operator of order ≤ 1 then 
Φ2(ξ) = ξ. Consequently, if DR|k is generated as an algebra by the differential operators 
of order ≤ 1 then Φ must be involutive.

Proof. We recall that D1
R|k = R ⊕ Derk(R) and, therefore, it suffices to prove the claim 

in the case where ξ is a derivation. With this assumption, we observe that for all f ∈ R

we have

Φ(ξ)(f) = (Φ(ξ)f)(1)

= ([Φ(ξ), f ] + fΦ(ξ)(1)

= (− Φ([ξ, f ]) + fΦ(ξ))(1)

= − ξ(f) + fΦ(ξ)(1)

and therefore Φ(ξ) = − ξ + Φ(ξ)(1). We conclude that Φ2(ξ) = Φ(− ξ + Φ(ξ)(1)) =
− Φ(ξ) + Φ(ξ)(1) = ξ as required. !

It is known that whenever k is a field of characteristic zero and R is regular and 
essentially of finite type over k the ring DR|k is generated by the differential operators 
of order ≤ 1 [20, §15.5.6], and therefore any ring anti-automorphism on DR|k that fixes 
R is involutive. In characteristic p > 0, we use the Skolem-Noether theorem to prove an 
analogous result for field extensions.
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Lemma 4.7. Let k be a perfect field of characteristic p > 0 and K be a finitely generated 
field extension of k. Then every ring anti-automorphism Φ on DK|k that fixes K is 
involutive.

Proof. By Proposition 2.9 we know there is an involutive ring anti-automorphism Ψ
on DK|k that fixes K. By Lemma 4.3(c) both Φ and Ψ respect the level filtration (see 
Subsection 2.1), and it suffices to show that for every e > 0 the restriction of Φ to the 
subring of differential operators of level e is involutive. We thus fix an arbitrary e > 0.

We observe that D(e)
K = EndKpe (K) is a matrix ring over the field Kpe . The Skolem-

Noether theorem tells us that every automorphism of a matrix algebra over a field is 
inner and, in particular, so is the composition

D(e)
K D(e)

K D(e)
K .Ψ Φ

We conclude that there exists some invertible γ ∈ D(e)
K such that ΦΨ(ξ) = γξγ−1 for all 

ξ ∈ D(e)
K and, replacing ξ by Ψ(ξ), we conclude that Φ(ξ) = γΨ(ξ)γ−1 for all ξ ∈ D(e)

K .
We note that, since Φ and Ψ fix K, we have that fγ = γf for all f ∈ K; that is, 

γ ∈ D(0)
K = K. In particular, γ and γ−1 are also fixed by both Φ and Ψ. We conclude 

that for all ξ ∈ D(e)
K we have

Φ2(ξ) = Φ(γΨ(ξ)γ−1)
= γ−1ΦΨ(ξ)γ
= γ−1(γΨ2(ξ)γ−1)γ
= ξ

as required. !

We are now ready to prove our main result in this subsection.

Theorem 4.8. Let k be a field, R be a commutative k-algebra and Φ be a ring anti-
automorphism on DR|k that fixes R. Then Φ is involutive in the following cases:

(1) The algebra R is reduced and essentially of finite type over k.
(2) The ring R is local, Gorenstein and zero dimensional, k is a coefficient field of R

and Φ is the ring anti-automorphism that corresponds to the compatible right DR|k-
module structure on R given by pullback via an isomorphism R ∼= Homk(R, k) (see 
Lemma 4.3(a)).

Proof. We begin with case (1). First observe that the anti-automorphism Φ on DR|k
gives R a compatible right DR|k-module structure, which induces a compatible right 
DW−1R|k-module structure on every localization W−1R of R [10, §16.4.14], which in turn 
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corresponds to an anti-automorphism on DW−1R|k that fixes W−1R (see Lemma 4.3(a)). 
In this way, the isomorphism Φ induces an isomorphism of sheaves of rings on SpecR. 
It then suffices to show that Φ is involutive locally and we therefore restrict to the 
case where R is a domain. Moreover, by applying the same construction to the field 
of fractions K of R we obtain an anti-automorphism on DK|k in such a way that the 
diagram

DK|k DK|k

DR|k DR|k

∼

∼

commutes, and therefore it suffices to show that the anti-automorphism on DK|k is 
involutive. When char k = p > 0 this was already proved in Lemma 4.7. When char k = 0
the ring DK|k is generated by the elements of order ≤ 1, since K is regular and essentially 
of finite type over k, and the statement then follows from Lemma 4.6.

Let us now tackle case (2). Let ϕ : R ∼−→ Homk(R, k) denote the chosen isomorphism, 
and let σ := ϕ(1).

Fix ξ ∈ DR|k. By the definition of Φ(ξ), we know that for all f ∈ R we have 
ϕ(Φ(ξ)(f)) = ϕ(f)ξ which, by the linearity of ϕ, gives

σ(Φ(ξ)(f)g) = σ(fξ(g)) for all f, g ∈ R.

We conclude that, for all h ∈ R,

σ(Φ2(ξ)(1)h) = σ(Φ(ξ)(h)) = σ(hξ(1));

that is, ϕ(Φ2(ξ)(1)) = ϕ(ξ(1)). We conclude that Φ2(ξ)(1) = ξ(1) for all ξ ∈ DR|k which, 
by Lemma 4.5, gives the result. !

4.3. A curious result in positive characteristic

We finish by showing how the generalization of the Skolem-Noether theorem due to 
Rosenberg and Zelinski can be used to prove a curious result on uniqueness of anti-
automorphisms in characteristic p.

We first state the theorem of Rosenberg and Zelinski. Although their result is much 
more general, we state it here in a much weaker form that suffices for our purposes (a 
proof of this weaker statement can also be found in the survey of Isaacs [13]).

Theorem 4.9 ([23, Thm. 14]). Suppose that R is a unique factorization domain. Then 
every R-algebra automorphism Φ of the ring Mn(R) of n × n matrices over R is inner.

Theorem 4.10. Let k be a perfect field of characteristic p > 0 and R := k[x1, . . . , xn] be a 
polynomial ring over k. Then there is a unique anti-automorphism on DR|k that fixes R.
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Proof. The existence and an explicit description of such an anti-automorphism is given 
in Proposition 2.9. Let Φ and Ψ be two anti-automorphisms on DR|k that fix R, and we 
will show that Φ = Ψ.

By Lemma 4.3(c), Φ and Ψ respect the level filtration, and it is enough to show that 
for every e > 0 the isomorphisms Φ and Ψ agree on D(e)

R . We thus fix an e > 0.
The ring R is free as a module over its subring Rpe of pe-th powers, and therefore 

D(e)
R = EndRpe (R) is a matrix ring over Rpe . Since Rpe is a polynomial ring, and thus 

a unique factorization domain, Theorem 4.9 applies and, arguing as in the proof of 
Lemma 4.7, we conclude that there exists some invertible γ ∈ R such that Φ(ξ) =
γ−1Ψ(ξ)γ for all ξ ∈ D(e)

R . We now observe that all units of R are in k, so γ is in k and 
it therefore commutes with all differential operators. We conclude that Φ(ξ) = Ψ(ξ) for 
all ξ ∈ D(e)

R , which proves the result. !

This result is in stark contrast with the situation in characteristic zero. Indeed, when 
char k = 0 and R = k[x1, . . . , xn], a presentation for DR|k was given in 2.1.2. If we pick 
arbitrary elements f1, . . . , fn ∈ R such that for every i the polynomial fi involves only 
on the variable xi, then the assignments [xi #→ xi], [∂i #→ − ∂i + fi] define an involutive 
anti-automorphism on DR|k that fixes R.

5. Quotient singularities

In this section we show that if R is the ring of invariants of a linear action of a finite 
group G with no pseudoreflections on a polynomial ring S := k[x1, . . . , xn], where k is 
a field of characteristic zero, then there exists an involutive anti-automorphism on DR|k
that fixes R. We begin by recalling the notion of pseudoreflection.

Definition 5.1. A nontrivial linear transformation γ ∈ GLn(k) is a pseudoreflection if 
there exists a hyperplane H ⊆ kn on which γ acts trivially.

Let k be a field of characteristic zero and G be a finite subgroup of GLn(k) that 
contains no pseudoreflections. The natural action of G on kn extends to an action by 
algebra automorphisms on Symk(kn), which via the natural choice of basis we identify 
with a polynomial ring S := k[x1, . . . , xn]. Let R := SG be the G-invariant subring of S.

The group G also acts on the ring DS|k of differential operators on S by the formula

(γ · ξ)(f) = γξ(γ−1f) (γ ∈ G, ξ ∈ DS|k, f ∈ S).

It is easy to check that every G-invariant differential operator induces a differential 
operator on R, giving a map DG

S|k → DR|k. We have the following theorem of Kantor.

Theorem 5.2 ([16, III.III], [17]). Let k, G, S and R be as above. Then the natural map 
DG

S|k → DR|k is an isomorphism.



E. Quinlan-Gallego / Journal of Algebra 586 (2021) 787–807 805

From this point onwards, we identify DR|k with the invariant subring DG
S|k of DS|k.

Example 5.3. Let G = ⟨σ|σ2 = 1⟩ be a cyclic group of order 2, and we consider the 
linear action of G on S := k[s, t] given by σs = − s, σt = − t. Then the invariant subring 
R := SG consists of all polynomials that only have homogeneous components of even 
degree; that is, R = k[s2, st, t2]. The ring DR|k is then given by

DR|k = k⟨s2, st, t2, s∂s, s∂t, t∂s, t∂t, ∂
2
s , ∂s∂t, ∂

2
t ⟩.

The standard transposition on DS|k (see Subsection 2.2) preserves the subring DR|k, and 
therefore it restricts to an involutive anti-automorphism of DR|k that fixes R.

We show that, as we just observed in Example 5.3, the standard transposition on DS|k
always preserves the subring DR|k.

Theorem 5.4. Let k be a field of characteristic zero, G be a finite subgroup of GLn(k) that 
contains no pseudoreflections, S := k[x1, . . . , xn] be a polynomial ring over k equipped 
with the standard linear action of G and R := SG be the ring of G-invariants of S. Then 
the standard transposition on DS|k preserves the subring DR|k, inducing an involutive 
anti-automorphism on DR|k that fixes the subring R.

Proof. We note that every ring automorphism of DS|k is also a ring automorphism of 
Dop

S|k, and therefore the action of G on DS|k is also an action on Dop
S|k. We claim that the 

standard transposition Φ : DS|k → Dop
S|k is G-equivariant; since DR|k is identified with 

the ring of invariants DG
S|k this will prove the result.

The claim states that for all ξ ∈ DS|k and all γ ∈ G we have γ · Φ(ξ) = Φ(γ · ξ). As 
with any action on an algebra, it suffices to check that this holds on algebra generators 
for DS|k. For the generators xi we have:

γ · Φ(xi) = γ · xi = xi = Φ(xi) = Φ(γ · xi).

For the partial derivatives ∂i, we first observe that γ · Φ(∂i) = γ · (− ∂i) = − γ · ∂i, and 
therefore it suffices to show that Φ(γ · ∂i) = − (γ · ∂i). To prove this, we show that γ · ∂i
is in the k-span of the derivatives ∂1, . . . , ∂n, i.e. we show that γ · ∂i ∈ k{∂1, . . . , ∂n}.

We first note that k{∂1, . . . , ∂n} is precisely the set of all derivations θ with the 
property that θ(xj) ∈ k for all j; indeed, an arbitrary derivation θ can be written as 
θ =

$
j fj∂j for some fj ∈ S, and fj = θ(xj).

For all f, g ∈ S we have

(γ · ∂i)(fg) = γ∂i(γ−1(fg))
= γ∂i((γ−1f)(γ−1g))

= γ
-

(γ−1f)∂i(γ−1g) + (γ−1g)∂i(γ−1f)
.
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= fγ
+
∂i(γ−1g)

,
+ gγ

+
∂i(γ−1f)

,

= f(γ · ∂i)(g) + g(γ · ∂i)(f),

and therefore γ · ∂i is a derivation. Moreover, if we let ak ∈ k be such that γ−1xj =$
k akxk then

(γ · ∂i)(xj) = γ
+
∂i(γ−1xj)

,
= γ(ai) = ai ∈ k.

We have therefore shown that γ · ∂i ∈ k{∂1, . . . , ∂n}, which concludes the proof. !

Remark 5.5. Kantor’s theorem (Theorem 5.2) remains true whenever k has characteristic 
p > 0 and p does not divide |G| (see Jeffries’ notes [14, §4.2]). However, note that in 
the proof of Theorem 5.4 we use the fact that DS|k is generated by derivations, which 
crucially uses the fact that k has characteristic zero. Note that the proof also uses the 
fact that the action of G is linear.

Remark 5.6. Even when G is not finite, there is a map DG
S|k → DR which is surjective 

for some nice group actions [24], and the only obstruction to generalizing Theorem 5.4
to other rings of invariants is whether this map is an isomorphism.
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