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1. Introduction

Let k be a field. A construction of Grothendieck assigns to every k-algebra R its ring

Dgyy, of k-linear differential operators, which is a noncommutative ring that consists of

certain k-linear operators on R [10, §16].

Suppose k has characteristic zero. If R := k[z1,...,2,] is a polynomial ring over k
then the ring Dgy;, is called the Weyl algebra over k and it has a particularly pleasant

structure; for example, it is

(left and right) Noetherian and its global dimension is n [22].

These facts adapt readily to the case where R is an arbitrary regular k-algebra that is

essentially of finite type [8,

has numerous applications

§3], and in this context the study of Dpgy;, and its modules
in singularity theory (e.g. Bernstein-Sato polynomials) and

in commutative algebra (e.g. the study of local cohomology [18]).
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Since the ring Dpg; is noncommutative, a priori its left and right modules could
behave very differently. However, a key feature of the Weyl algebra Dpgy;, is that it is
isomorphic to its opposite ring D%ﬁk via an involutive isomorphism that fixes the subring
R (see Remark 2.6). This induces an equivalence between the categories of left and right
D gji-modules, sometimes known as the side-changing functor, which is used abundantly
when defining functors on Dpg|i-modules [12, §1].

The goal of this paper is to show that such an isomorphism exists under much weaker
hypotheses on the singularities of R, and even in positive characteristic. For example,
our main results ensure that this is the case whenever R is a normal Gorenstein local
domain that is essentially of finite type over a perfect field k (Theorems 4.4 and 4.8) or
whenever R is a ring of invariants over a field k of characteristic zero (Theorem 5.4).
We also show that such an isomorphism is unique when k has positive characteristic
and R is a polynomial ring over k (Theorem 4.10); this is somewhat surprising, since
the analogous statement in characteristic zero is far from true (see Subsection 4.3). We
note that there exist examples of rings of differential operators Dpg;, which are right
Noetherian but not left Noetherian [26, §7] [21, §5] [32], thus providing examples where
one could not have an isomorphism Dpg; = D;ﬁk.

Our hope is that these results can contribute to the study of the behavior of differential
operators on singular algebras, which remains somewhat mysterious despite substantial
results. For example, when X = Spec R is an affine curve in characteristic zero, the
structure of Dpj has been studied extensively and we know that Dpgyy is a (left and
right) Noetherian finitely generated k-algebra [9] [33] [26] [21]. A famous counterexample
of Bernstein, Gelfand and Gelfand showed that this does not remain true in higher
dimensions: they proved that for R := Cl[x,y, z]/(z® + y* 4 2%) the ring Dpc is neither
finitely generated nor Noetherian [5] (see [34] for further examples).

Despite this well-known intractability, there is renewed interest in differential opera-
tors on singular algebras due to some recent applications in commutative algebra. For
example, when R is a direct summand of a polynomial or power series ring over k,
Alvarez-Montaner, Huneke and Nufiez-Betancourt have used the D r|r-module structure
to give a new proof of the finiteness of associated primes of local cohomology of R [2].
They also show that elements of R admit Bernstein-Sato polynomials (see [1] for more
on this direction, including a notion of V-filtrations for direct summands). Brenner, Jef-
fries and Nunez-Betancourt have also used rings of differential operators to introduce a
characteristic zero analogue of F-signature, called differential signature [7].

In characteristic p > 0 there is further evidence that Dgy;, carries information about
the singularities of R. For example, Smith showed that an F-pure and F-finite domain R
is simple as a left D p,-module if and only if it is strongly F-regular [25]. In characteristic
zero, Hsiao has shown that whenever R is the homogeneous coordinate ring of a smooth
projective variety X the simplicity of R as a left Dgj;-module implies the bigness of the
tangent bundle Tx of X [11], and Mallory has used this to construct counterexamples
to the characteristic-zero analogue of Smith’s result [19].
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Let us now describe the different sections and results in the paper in more detail. The
paper begins with some background material in Section 2. In Section 3 we show that if
R is a local or graded Cohen-Macaulay k-algebra then, under reasonable hypotheses, the
canonical module wgr admits a right Dp|,-module structure (Theorems 3.2, 3.4, 3.6 and
3.7). This constitutes our main tool for Section 4, where we start studying the existence
of isomorphisms D), = D;’Dﬁ .- Our main result is as follows.

Theorem (/./). Let k be a field and R be a Gorenstein k-algebra. Assume that one of the
following holds:

(1) The field k has characteristic zero and R is a local normal domain that is essentially
of finite type over k.

(2) The field k is a perfect field of characteristic p > 0, and R is local, F-finite and
admits a canonical module.

(8) The ring R is complete local and k is a coefficient field.

(4) The ring R = @D, Ry is graded and finitely generated over Ry = k.

Then there is a ring isomorphism Dp, = D‘;ﬁk that fixes R. It respects the order filtration

and, if k a perfect field of positive characteristic, it also respects the level filtration (see

2.1.1).

After this work was completed we realized that some of our work from Section 3 and
cases (1) and (4) from Theorem 4.4 are already due to Yekutieli [37, Cor. 4.9], using
more sophisticated machinery (most notably, [36]). We hope that our more elementary
approach has some value.

In Section 4 we also explore the question of when such an isomorphism must be
involutive (i.e. its own inverse). In this regard our result is given by the following The-
orem. We note that the proof of case (1) when chark = p > 0 involves the use of the
Skolem-Noether theorem.

Theorem (//.8). Let k be a field, R be a commutative k-algebra and ® : D gy, = Dloﬁk be
a ring isomorphism that fixres R. Then ® is involutive in the following cases:

(1) The algebra R is reduced and essentially of finite type over k.

(2) The ring R is local, Gorenstein and zero dimensional, k is a coefficient field of
R and ® is the ring isomorphism that corresponds to the compatible right Dg)y-
module structure on R given by pullback via an isomorphism R = Homg (R, k) (see
Lemma 4.3(a)).

We conclude Section 4 by pointing out the following curious result in characteristic p >
0, which follows from a generalization of the Skolem-Noether theorem due to Rosenberg
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and Zelinski [23] (Theorem 4.9). We note that the statement is false in characteristic
zero (see Subsection 4.3).

Theorem (//.10). Let k be a perfect field of characteristic p > 0 and R := k[x1,...,x,] be
a polynomial ring over k. Then there is a unique isomorphism D gy, = D;p‘k that fixes R.

We end the paper in Section 5, where we use a theorem of Kantor (Theorem 5.2) to

explore the existence of isomorphisms D, = D7, for rings of invariants. Our result is

R|k
the following.

Theorem (5./). Let k be a field of characteristic zero, G be a finite subgroup of GL, (k)
that contains no pseudoreflections, S := klzr1,...,z,] be a polynomial ring over k
equipped with the standard linear action of G and R := S be the ring of G-invariants
of S. Then there is an involutive isomorphism Dpgy;, = D;,ﬁk that fixes R.
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2. Background
2.1. Rings of differential operators

Let k be a commutative ring and let R be a commutative k-algebra. The ring Dp
of k-linear differential operators on R is a particular subring of Endy(R), the ring of
k-linear endomorphisms on R. After fixing some notation, we recall its definition.

Convention 2.1. By an abuse of notation, we identify every element f of R with the
operator R — R given by [g — fg|. In this manner, we also identify R with the subring
Endg(R) of Endg(R).

We inductively define k-subspaces D7, of Endy(R), which will be called the k-linear
differential operators D?:q  of order <n on R, as follows:

Rie = {€ € Endi(R) : [§, f] € D%@l for all f € R}. (1)
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These D% ,, form an increasing chain of subspaces of Endy(R). Moreover, composing a
differential operator of order at most n with one of order at most m yields a differential
operator of order at most n + m; that is,

n+m
In particular, the D ; are (left and right) R-submodules of Endy(R), and the increasing
union

DR\k = U D%\k

n=0

is a subring of Endy(R), which we call the ring of k-linear differential operators on R.

Remark 2.2. We note that every k-linear derivation is a differential operator of order
< 1;i.e. Derg(R) C DR‘k In fact, one can check that D}ﬂk = R & Dery(R).

Remark 2.3. We will use the convention that D R|1k = {0}, and we note that (1) is still

valid for n = 0.

2.1.1. Rings of differential operators in positive characteristic

Suppose now that k is a perfect field of positive characteristic p > 0 and that R is
F-finite; that is, R is noetherian and finitely generated as a module over its subring RP
of p-th powers (this holds, for example, whenever R is essentially of finite type over k).
In this setting the ring Dgj;, admits another filtration, this time by subrings, as follows.

For each positive integer e > 0, we define the ring Dg) of differential operators of
level e on R by D(e) = Endppe (R); i.e. Dg) consists of e;ll the operators on R that are
e

linear over its subring RP* of p°-th powers. The rings Dg%
we have (see [35] [28, §2.5])

form an increasing union and

o0

Dri=J D'
e=0

2.1.2. Rings of differential operators on smooth algebras

The most typical example of a ring Dg;, of differential operators comes from the
case where k is a field of characteristic zero and S := k[z1,...,z,] is a polynomial ring
over k. In this case Dg|; is generated by S (acting, as usual, by multiplication) and the
derivations 04, ...,0d,, where 0; = 5%. The ring Dgj;, is known as the Weyl algebra in
2n generators over k and a k-algebra presentation for it is given by

Iy, I‘n,al,... 8n>
62]7[87,;8] [xzaxj] :O>’

(2)
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where §;; is the Kronecker delta symbol. In particular, there is a left S-module decom-
position

Dsj.= € so0°

aeENg

where 0% = 07" --- 09~ [8, Prop. 1.1.2].

Our next goal is to formulate a version of these statements due to Grothendieck
that works, after a suitable localization, for any commutative essentially smooth algebra
over an arbitrary commutative ring. More precisely, it will work under the following
conditions.

Setup 2.4. Let £ be a commutative ring and S be a commutative k algebra that is
formally smooth and essentially of finite presentation. We furthermore assume that the
module Q}ﬂ . of Kéhler differentials is free over S which, we recall, can always be achieved
by localizing. We pick elements z1,...,x, € S such that dzq,...,dz, form an S-basis
for Q}S‘\k' Of course, a typical example is S = k[z1,...,z,].

In order to state the result, we introduce multi-index notation. Given elements

21,y...,2n € S and a multi-exponent o € Nj we denote by z* the element z® :=
Z{t - z0n. Given a multi-exponent o € NJ' we denote o! = ag!---a,! and |o| =
a; + -+ a,. Given o, 8 € Ni, we say a < 3 whenever a; < ; for all @ =1,2,...,n.
With this notation, we have a multivariate binomial theorem: if z1, ..., z, and y1,...,yn

are elements of S and o € N§ is a multi-exponent then (2 +y)* = > 5, _, B”!‘—fy!zﬁyV.
We note that, for 5+ = «, the number a!/(S!7!) is an integer. With this notation, the
statement is as follows.

Theorem 2.5 (10, §16.11, §17.12.4]). Let k and S be as in Setup 2./. Then

(1) For every a € NI there is a unique differential operator ol ¢ Dgyi; such that

|
glelighy— P s
@) = S —an®
for all B € Ny. In particular, 01*19lP] = (ij—ﬁﬁ)’a[a%.
(2) We have
Dsjp = @ 501,
aeNJ
Remark 2.6. Suppose k is a field of characteristic zero and for all ¢ = 1,2,...,n let

9; € Dery(S) denote the dual of dz;. Then 9l* = (1/a!)0%, and Theorem 2.5 tells us
that Dgyj is generated by D}S‘\k as an algebra (see Remark 2.2). When S = k[zq,...,z,]
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is a polynomial ring over k, this observation allows one to recover the presentation given
in (2).

2.2. Anti-automorphisms in the smooth case

In this subsection we review the standard isomorphism between the Weyl algebra and
its opposite ring, and we use Grothendieck’s representation (Theorem 2.5) to define an
analogous operation on arbitrary smooth algebras.

We first recall some terminology. Given two (noncommutative) rings A and B, an
additive map ® : A — B is called a ring anti-homomorphism if ®(14) = 15 and ®(zy) =
O(y)®(x) for all z,y € A (equivalently, we may think of ® as a ring homomorphism
A — B or A°? — B). If ® is bijective we say it is an anti-isomorphism, and a self
anti-isomorphism is called an anti-automorphism.

If k£ is a field of characteristic zero and S = k[z1,...,z,] is a polynomial ring over
k we have repeatedly mentioned that Dg; is a Weyl algebra over k, and an explicit
k-algebra presentation is given in (2). Using this presentation it is easy to check that
the assignments [z; — ;] and [0; — —0;] define an anti-automorphism on D gy, usually
called the standard transposition. Note that the standard transposition is involutive (i.e.
its own inverse) and that it fixes the subring S. In this subsection, we extend this to the
case of smooth algebras (see Proposition 2.9).

Lemma 2.7. Let o € Ni be a nonzero multi-exponent. Then

|
3 (—1)'5|% = 0.

B+d=0c
Proof. Let yy ==y, =1, 21 =--- = 2z, = —1 and apply the multivariate binomial
theorem to conclude 0 = (z +y)7 =35 5, 5‘7!—(!;!251/5 = 25+5:U(—1)|B‘5‘7!—é!. O

Lemma 2.8. Let k and S be as in Setup 2.4. Then for all o € N§ and f € S we have the
following equality in Dg)y:

olelf = Z Pl (f)obl.
ByeNg
fty=a

Proof. Fix some integer m > |a|. We let J C R®j, R denote the ideal of the multiplication
map i : R®x R — R, and we let Pfﬁk = R®y R/J™! denote the m-th module of
principal parts for R over k, so that we have an identification Homg(Png, S) = Dgﬁk,
given by [p — [g — ¢(1 ® g)]] [10, §16]. Given g € R we denote by d"g the element
d"g = 1®g—9g®1 € P}{Tk. Then P}’ﬁk is, as a left R-module, free in the basis
{(d™x)? : |B] < m}, and 9l°l is, thought of as an R-linear map 9! : Pry, — R, the
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dual of the basis element (dz)* [10, §16]. In particular, for all g € S we have an equality

1®9=235<n Pl (g)(d™z)? in P Sk
We need to show that, for all g € S, we have 0l°l(fg) = > = ol (£ ol (g). This
follows by considering the following equalities in PR| &

lofg=0eflleyg)
= (Y NN 2)”)( Y (f)(dz))

1Bl<m [v|<m

and extracting the coefficient of (dz)® of the last expression. O

Proposition 2.9. Let k and S be as in Setup 2./. Then there is a unique involutive anti-
automorphism on Dg|y that fives S and sends [Pl i (=)o) for all o € N

Proof. By Theorem 2.5, Dgy;, is free as a left S-module with basis {olel . a € NgJ.
Therefore there is a unique additive map ® : Dg)y — Dgyp, with ®(fole)) = (—1)leloled f
for all f € S and a € NJ'. We want to show that ® is a ring anti-homomorphism.

One immediately verifies that, for all { € Dgp,a € Ny and f € S we have
d(eol) = (O D(¢) and D(fE) = ®(£)f. We conclude it suffices to show that
® (0l f) = f®(0!). By using Lemma 2.8 we conclude that

q;(a[a]f) = & Z 3[5}(f)3[7})

B+y=a
— Z (—1)ahlalsl( 1)
Bty=a
= D (=pht Y ollal(f))e
Bty=a Ste=y
o
:M;_ (—1)lotel (ﬁﬁj';') oo+l fyple

_ o)l e
O EDY (_1)|5|%T!€) pla—e(H)o!!

e<a \pB+é=a—e

= (=1)lel folel

where in the last equality we made use of Lemma 2.7. This completes the proof of the
fact that ® is a ring anti-homomorphism. To show that it is an involution we now simply
observe that ®? is a ring homomorphism with ®?(f) = f and ®2(dl®l) = 9l°l for every
f €S and a € N7, and therefore ®? must be the identity. O
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3. Right D-module structures on canonical modules

Let k£ be a field and R be a local k-algebra. In this section we show that, under
reasonable hypotheses, the canonical module wg carries a compatible right Dg,-module
structure. This fact will be the main ingredient in our construction of anti-automorphisms
on rings of differential operators on Gorenstein algebras. Before we begin, let us clarify
what “compatible” means in this setting.

Definition 3.1. Let M be an R-module. A (right or left) Dgj;-module structure on M is
compatible if it extends the already-existing R-module structure.

We note that Theorem 3.2 and Theorem 3.7 follow from the duality for differential
operators developed by Yekutieli [37, Cor. 4.2], or by noting that the co-stratification
approach of Berthelot [4, §1.2.1] (in the case m = o0) also works in the singular setting.
Trying to keep an elementary exposition, we prove these results using simpler techniques.

3.1. Characteristic zero case

Theorem 3.2. Let k be a field of characteristic zero and R be a local Cohen-Macaulay
normal domain that is essentially of finite type over k. Then the canonical module wgr
admits a compatible right D gj;-module structure.

Proof. Let U C Spec R denote the smooth locus of R; by the normality of R, its com-
plement has codimension > 2. By use of the Lie derivative, we have an action of the
tangent sheaf Ty on the sheaf of modules wgr|y, which extends to a compatible right
module structure over the sheaf of differential operators on U [12, §1.2] (note: one cru-
cially uses that k has characteristic zero here, since otherwise the tangent sheaf does not
generate the sheaf of differential operators). We conclude that I'(U, wgr) has a compatible
right T'(U, Dgr)-module structure.

The module wg is reflexive [3] [27, 0AVB]. Since we have an R-module isomorphism
Dy, = HomR(PI%k, ), where Py is the n-th module of principal parts for R [10, §16],
we conclude that Dy is also a reflexive R-module [27, 0AV6, 0AVB|. Therefore, the
natural maps wr — I'(U,wg) and D — IT'(U, Dg) are isomorphisms. It follows that wpr
has a compatible right Dgr-module structure, as required. O

Remark 3.3. Note that neither the Cohen-Macaulay nor the local hypotheses were really
needed in the proof of Theorem 3.2: if we remove them, the only issue is that we need
to make sense of what wpg is. Since R is normal, the smooth locus U C Spec R has
codimension at least two, and if we define wgr to be the unique reflexive extension of the
canonical bundle on U then the proof given goes through verbatim.
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3.2. Characteristic p > 0 case

We will tackle the case of characteristic p > 0 next, and we begin by setting up some
notation.

Let k be a perfect field of characteristic p > 0 and R be an F-finite k-algebra. We
denote by F': R — R the Frobenius morphism (i.e. F/(r) = 7). Given a positive integer
e, we denote by F¢ the e-th iteration of F, and we let RP* be the subring of p°-th
powers of R. Given e we also define the set FfR := {F¢r : r € R}, which we endow
with abelian group structure Ffr + Ffs = F¢(r + s) and an (R, R)-bimodule structure
given by f - Fér = FEfP"r and (F¢r) - f := FR(rf) — i.e. as a right R-module F¢R
is (isomorphic to) R, and as a left R-module F¢R is (isomorphic to) the restriction of
scalars of R across F*.

Recall that in our setting the ring Dy, of k-linear differential operators on R is given
by Drix = U, DS), where Dg) = Endgee (R) (see 2.1.1). The inclusion RP° C R and
the Frobenius map R — F¢R [r — F¢rP] are isomorphic, in the sense that the diagram

r»—>Ffrpe
RTET, peR

e
lrr—)rp lFfrr—)r

RP" — R,

commutes, and we can thus identify DS) with
D\ =~ Endg(F°R)
R — R\L % )

where Endg (F¢R) is the endomorphism ring of FER as a left R-module.
If M is an R-module we let

(F¢)°M := Homg(F¢R, M)

be the set of left R-linear homomorphisms from FfR to M, endowed with an R-module
structure given by

(f @) (Fir) == @(F(rf)) (€ (F°)’Mandr, f € R);

that is, the structure inherited from the right R-module structure on F¢R. This con-
struction respects morphisms and therefore induces functors (F¢)” on R-modules.

We note that for all e,d > 0 there are bimodule isomorphisms FYR ®p F¢R =
FteR given by [Fla @ F¢b — F9t¢aP"b] which, by the tensor-Hom adjunction, give
isomorphisms

(Fd)b(Fe)bM ~ (Fd-i-e)bM
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which induce natural equivalences of functors.

Theorem 3.4. Let k be a perfect field of characteristic p > 0 and R be a local Cohen-
Macaulay F-finite k-algebra with canonical module wgr. Then wr admits a compatible
right D gj,-module structure.

Proof. There is an R-module isomorphism wr = F’wp [6, Thm. 3.3.7(b)] which, in turn,
induces isomorphisms wg = (F¢)°wg for every e > 0. By the description of (F¢)°, we
observe that (F¢)°wp — and, indeed, any (F¢)’M — inherits a natural right-module
structure over the ring Endg(Ff R), and thus over the ring Dg%e). Since the isomorphisms
(F&)’wp — (Fe1)wg are Dg)-linear, the module

wg & ILIE(Fe)wa

inherits a right Dgr-module structure. Since the maps wr — (F e)wa are R-module
maps, this right Dgr-module structure is compatible. O

Remark 3.5. With the appropriate replacements for wg we do not need the local hy-
pothesis in Theorem 3.4. Our proof shows that if R is equidimensional and essentially of
finite type over k, ¢ : Spec R — Speck is the structure map and wr = i!k’[— dim R] then
wpg carries a natural compatible right Dg;-module structure.

3.3. Complete case

We now tackle the complete case, which is an easy application of Matlis duality for
D-modules. This duality was developed by Switala (similar constructions appear in the
work of Yekutieli [36]). We will quickly summarize the key facts, and we refer to Switala’s
work [30, §4] or thesis [29] for details.

Let R be a Cohen-Macaulay complete local ring with coefficient field k. Let m be the
maximal ideal of R and, by an abuse of notation, we will denote the residue field R/m by
k. Given a (not necessarily finitely generated) R-module M, a k-linear map ¢ : M — k is
called X-continuous if for every u € M there exists some s > 0 such that p(m®u) = 0. We
denote by HomE(M , k) the collection of all such maps, which has an R-module structure
by premultiplication. We note that if M is such that Supp(M) = {m} then every k-linear
map is X-continuous.

Let E = ERr(k) be the injective envelope of k, and fix a k-linear splitting o of the
inclusion k < E. Given an arbitrary R-module M, the map

Hompg (M, E) — Homy (M, k)
Yoo

gives an isomorphism between Homp (M, E) (the Matlis dual of M) and the module
HomE(M , k) which, in fact, gives a natural equivalence of functors.
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Theorem 3.6. Let R be a Cohen-Macaulay complete local ring with coefficient field k.
Then the canonical module wr of R admits a compatible right D gj-module structure.

Proof. Since R is complete, the canonical module wg is the Matlis dual of the top local
cohomology module HZ(R) and, since Supp HZ(R) = {m}, we have

wr = Homy (H(R), k).

Since HZ(R) has a compatible left D r|r-module structure (via the Cech complex), wr
has a compatible right Dg;-module structure, given by premultiplication. O

3.4. Graded case

Finally, we consider the graded case. The strategy is identical to the one for the
complete case, except in that we use graded versions of all the relevant constructions.

Suppose that R = @, , R, is a graded ring which is finitely generated over a field
k = Ry. Whenever we talk about the canonical module of such a graded ring R we
will always mean the *canonical module in the sense of Bruns and Herzog [6, §3.6]. In
particular, it is a graded module which is uniquely determined up to graded isomorphism
[6, Prop.3.6.9].

Given a graded R-module M = @ icz Mi, its graded Matlis dual is given by

*Homy (M, k) = @D Homy,(M_;, k),

i€Z

which has a natural structure of graded R-module. Whenever the module M has a left
D gji-module structure, its graded Matlis dual acquires a compatible right Dpp-module
structure by precomposition [31] [15, Prop. 3.1].

Theorem 3.7. Let R = @, R, be a Cohen-Macaulay graded ring which is finitely
generated over a field k = Ry. Then the canonical module wr admits a compatible right
Dgr-module structure.

Proof. The canonical module wg is the graded Matlis dual of the top local cohomol-
ogy module H(R) [6, Thm. 3.6.19]. Since HZ(R) is a left Dpjy-module (via the Cech
complex), wgr acquires a compatible right Dp,-module structure. O

4. Symmetry on rings of differential operators

4.1. Existence of anti-automorphisms on Dgy, for Gorenstein algebras

The goal of this section is to prove Theorem 4.4. We begin with a few lemmas that
hold for arbitrary commutative rings k£ and R.
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Lemma 4.1. Let k be a commutative ring and R be a commutative k-algebra. Suppose
that R carries a compatible right D gj,.-module structure. If £ € Dpy has order < n then
the k-linear operator £ given by £*(f) = f-& for all f € R is also a differential operator
of order < n.

Proof. We prove this by induction on n, with the case n = 0 following from the compat-
ibility of the right Dpgj,-module structure. Therefore, suppose that the statement holds
forn=m—1, and let f € R. We observe that *f = (f¢)* and f&* = (£f)*, from which
it follows that

[6*7](] = _[éaf]*

Since ¢ has order < m, [, f] has order < m — 1 which, together with the inductive
hypothesis, implies that [£*, f] has order < m—1. Since f € R was arbitrary, we conclude
that £* has order < m, as required. 0O

Lemma 4.2. Let k be a commutative ring, R be a commutative k-algebra and ® : Dgj;, —
Dgyi be a ring anti-homomorphism that fizes R. Then ® is an anti-isomorphism.

Proof. By Lemma 4.1, ® respects the order filtration. We now claim that if { € Dpyy,
has order < n then the operator ®(£) + (—1)""1¢ has order < n — 1. The claim being
clear for n = 0 (see Remark 2.3), we assume that it is true for n = m — 1. Suppose that
¢ has order < m and let f € R. We observe that

[2(6) + (=)™, f] = [B(9), f1+ (-1 e ]
= —®([&, f]) + (=1)™ ¢, f]
= — (®([&, /D) + (~1™[&, /)

and we therefore conclude that [ + (—1)""1®(£), f] has order < m — 2. As f € R was
arbitrary, £ + (—=1)"*"1®(¢) has order < m — 1, which proves the claim.

The claim implies that the associated graded map gr(®) : gr Dgj;, — gr Dp), is given
by multiplication by —1 on odd degrees and the identity on even degrees and that, in
particular, it is an isomorphism (note that gr D R|k I8 @ commutative ring). We conclude
that ® : Dg, — Dpgy is bijective as well. O

Lemma 4.3. Let k be a commutative ring and R be a commutative k-algebra.

(a) There is a one-to-one correspondence between the compatible right D gjx-module
structures on R and the anti-automorphisms on Dp;. that fir R.

(b) Every anti-automorphism on Dgy;, that fives R respects the order filtration.

(c) If k is a perfect field of positive characteristic and R is F-finite then every anti-
automorphism on Dpgyy that fizes R respects the level filtration.
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Proof. We begin with part (a), for which we explicitly describe the correspondence.
Suppose ® : Dpgj, — Dpgj is a ring anti-automorphism that fixes R. The ring R is
naturally a left Dgj;-module, and by restricting scalars across ® we give it a right Dpgj-
module structure. More explicitly, we define f-& := ®(£)(f) for all { € Dg, and f € R.
Because @ fixes R, this right Dg|,-module structure is compatible.

Conversely, suppose R has a compatible right Dgj;-module structure. Given § € Dpyy,
we define £* to be the k-linear operator defined by £*(f) = f- for all f € R (i.e. £* is mul-
tiplication by  under the given right Dg|;-module structure). By Lemma 4.1, £* is a dif-
ferential operator and therefore the assignment [£ — £*] gives a ring anti-homomorphism
® : DRy — Dgji that fixes R. By Lemma 4.2, ® is an anti-automorphism.

These two constructions are readily checked to be inverses, which proves part (a).

We now tackle (b). Given a ring anti-automorphism ® : Dp, — Dpgj;, that fixes
R, we consider the compatible right D g|;-module structure on R given by restriction of
scalars. The result then follows from Lemma 4.1 (alternatively, one could use an induction
argument entirely analogous to the one in Lemma 4.1).

We now assume that k is perfect of characteristic p > 0 and that R is F-finite, and
we prove part (c). Suppose that ® : Dgy;, — D})ﬁk is an anti-automorphism that fixes R.
Recall that £ € Dpy;, has level e > 0 if and only if £ is RP-linear; i.e. if £fP° = fP°¢ for
all f € R. Applying ® to such an equality we obtain fP°®(¢) = ®(&)fP", which proves
the result. O

Theorem 4.4. Let k be a field and R be a Gorenstein k-algebra. Assume that one of the
following holds:

(1) The field k has characteristic zero and R is a local normal domain that is essentially
of finite type over k.

(2) The field k is a perfect field of characteristic p > 0, and R is local, F-finite and
admits a canonical module.

(8) The ring R is complete local and k is a coefficient field.

(4) The ring R =@, ., Ry is graded and finitely generated over Ry = k.

Then there is a ring anti-automorphism on Dgy, that fives R. It respects the order filtra-
tion and, if k a perfect field of positive characteristic, it also respects the level filtration.

Proof. By Theorems 3.2, 3.4, 3.6 and 3.7 we know that wr admits a compatible right
Dpgji-module structure. By pulling it back across an R-module isomorphism R = wg,
we obtain a compatible right Dpjz-module structure on R which, by Lemma 4.3 (a),
corresponds to a ring automorphism Dpgj; = D%p‘ , that fixes R (explicitly, the ring
automorphism is given by [§ — £*] where £*(f) = f - for all £ € Dgj;, and f € R). The

rest of the statements follow from Lemma 4.3 (b) and (c). O
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As mentioned in Section 1, after this work was completed we realized that the cases
(1), and (4) of Theorem 4.4 were already proven by Yekutieli [37, Cor. 4.9] in greater
generality, albeit using more sophisticated methods.

4.2. Involutivity of anti-automorphisms on Dy,

We now address the question of when a ring anti-automorphism ® : Dgy;, =D Rk ON
Dpyj, is involutive (i.e. its own inverse). For starters, we note that the associated graded
morphism gr(®) : gr D, — gr Dp), is always involutive (see Proof of Lemma 4.2), and
that the following simple observation allows us to reduce the problem significantly.

Lemma 4.5. Let ® : Dpy, = Dgi; be a ring anti-automorphism that fizes R. If for all
& € Dgjy we have ®*(£)(1) = &(1) then ® is involutive.

Proof. For such a ® we have ®2(&)(f) = (®2(&)f)(1) = ®2(££)(1) = (£f)(1) = £(f) for
all f € R and § € Dpy, and thus P2(¢)=¢ O

We can also show that ® is involutive on differential operators of order < 1.

Lemma 4.6. Let k be a commutative ring, R be a commutative k-algebra and ® be a ring
anti-automorphism on Dpy, that fizes R. If § is a differential operator of order <1 then
®2(¢) = £. Consequently, if Drgy; is generated as an algebra by the differential operators
of order <1 then ® must be involutive.

Proof. We recall that Dll%| x = R ® Dery(R) and, therefore, it suffices to prove the claim
in the case where £ is a derivation. With this assumption, we observe that for all f € R
we have

(E)(f) = (2(6) ) (1)
(@), f1+ F2(6)(1)
= (=([&, ) + Fe(E)(1)

= =¢(f) + re(§) )

and therefore ®(£) = —& + ®(£)(1). We conclude that ®2(§) = &(—€ + ®(£)(1)) =
—®(&) + P(&)(1) = € as required. O

It is known that whenever k is a field of characteristic zero and R is regular and
essentially of finite type over k the ring Dpgy is generated by the differential operators
of order <1 [20, §15.5.6], and therefore any ring anti-automorphism on D Rk that fixes
R is involutive. In characteristic p > 0, we use the Skolem-Noether theorem to prove an
analogous result for field extensions.
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Lemma 4.7. Let k be a perfect field of characteristic p > 0 and K be a finitely generated
field extension of k. Then every ring anti-automorphism ® on Dy, that fives K is
involutive.

Proof. By Proposition 2.9 we know there is an involutive ring anti-automorphism ¥
on Dy, that fixes K. By Lemma 4.3(c) both ® and ¥ respect the level filtration (see
Subsection 2.1), and it suffices to show that for every e > 0 the restriction of ® to the
subring of differential operators of level e is involutive. We thus fix an arbitrary e > 0.

We observe that Dg) = End g (K) is a matrix ring over the field K?°. The Skolem-
Noether theorem tells us that every automorphism of a matrix algebra over a field is
inner and, in particular, so is the composition

DY) 2, plY 2, plo),

We conclude that there exists some invertible v € Dg? such that ®W¥(¢) = vy~ for all
£ c Dg?) and, replacing ¢ by ¥(£), we conclude that ®(£) = y¥(&)y~! for all £ € Dgg).

We note that, since ® and ¥ fix K, we have that fv = ~f for all f € K; that is,
v € Dg?) = K. In particular, v and y~! are also fixed by both ® and ¥. We conclude
that for all & € Dgﬁ) we have

&) = d(YU(£)y )
=71 RU(E)y
= (Y PEY )y
=

as required. 0O
We are now ready to prove our main result in this subsection.

Theorem 4.8. Let k be a field, R be a commutative k-algebra and ® be a ring anti-
automorphism on Dpy;, that fives R. Then ® is involutive in the following cases:

(1) The algebra R is reduced and essentially of finite type over k.

(2) The ring R is local, Gorenstein and zero dimensional, k is a coefficient field of R
and ® is the ring anti-automorphism that corresponds to the compatible right D gyy-
module structure on R given by pullback via an isomorphism R = Homg (R, k) (see
Lemma 4.5(a)).

Proof. We begin with case (1). First observe that the anti-automorphism ® on Dpgyy
gives R a compatible right Dpi-module structure, which induces a compatible right
Dyy -1 gjx-module structure on every localization W=IR of R [10, §16.4.14], which in turn
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corresponds to an anti-automorphism on Dy -1 gy, that fixes W' R (see Lemma 4.3(a)).
In this way, the isomorphism ® induces an isomorphism of sheaves of rings on Spec R.
It then suffices to show that ® is involutive locally and we therefore restrict to the
case where R is a domain. Moreover, by applying the same construction to the field
of fractions K of R we obtain an anti-automorphism on D, in such a way that the
diagram

Dy —— Dii

J J

Drjx —— DRk

commutes, and therefore it suffices to show that the anti-automorphism on Dy is
involutive. When char k£ = p > 0 this was already proved in Lemma 4.7. When char k = 0
the ring D ;. is generated by the elements of order < 1, since K is regular and essentially
of finite type over k, and the statement then follows from Lemma 4.6.

Let us now tackle case (2). Let ¢ : R = Homy (R, k) denote the chosen isomorphism,
and let o := (1).

Fix £ € Dgj. By the definition of ®({), we know that for all f € R we have
o(P(&)(f)) = ¢(f)€ which, by the linearity of ¢, gives

a(®(£)(f)g) = o(f&(g)) for all f,g € R.

We conclude that, for all h € R,

a(@*(§)(1)h) = o(2(€)(h)) = o(h&(1));

that is, ¢(®?(£)(1)) = ¢(£(1)). We conclude that ®2(£)(1) = £(1) for all £ € Dpy), which,
by Lemma 4.5, gives the result. O

4.8. A curious result in positive characteristic

We finish by showing how the generalization of the Skolem-Noether theorem due to
Rosenberg and Zelinski can be used to prove a curious result on uniqueness of anti-
automorphisms in characteristic p.

We first state the theorem of Rosenberg and Zelinski. Although their result is much
more general, we state it here in a much weaker form that suffices for our purposes (a
proof of this weaker statement can also be found in the survey of Isaacs [13]).

Theorem 4.9 (/25, Thm. 14]). Suppose that R is a unique factorization domain. Then
every R-algebra automorphism ® of the ring M, (R) of n X n matrices over R is inner.

Theorem 4.10. Let k be a perfect field of characteristic p > 0 and R := k[z1,...,z,] be a
polynomial ring over k. Then there is a unique anti-automorphism on Dpgy;, that fives R.
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Proof. The existence and an explicit description of such an anti-automorphism is given
in Proposition 2.9. Let ® and ¥ be two anti-automorphisms on Dgy;, that fix R, and we
will show that & = V.

By Lemma 4.3(c), ® and W respect the level filtration, and it is enough to show that
for every e > 0 the isomorphisms ® and ¥ agree on Dg;f). We thus fix an e > 0.

The ring R is free as a module over its subring RP° of p°-th powers, and therefore
Dg%e) = Endpye (R) is a matrix ring over RP". Since RP is a polynomial ring, and thus
a unique factorization domain, Theorem 4.9 applies and, arguing as in the proof of
Lemma 4.7, we conclude that there exists some invertible v € R such that ®(§) =
Ay IW(€)y for all € € Dgs). We now observe that all units of R are in k, so «y is in k and
it therefore commutes with all differential operators. We conclude that ®(§) = ¥ (&) for
all £ € Dg), which proves the result. O

This result is in stark contrast with the situation in characteristic zero. Indeed, when
chark = 0 and R = k[z1,...,z,], a presentation for Dpgjy, was given in 2.1.2. If we pick
arbitrary elements fi,..., f, € R such that for every ¢ the polynomial f; involves only
on the variable x;, then the assignments [z; — z;], [0; — —0; + f;] define an involutive
anti-automorphism on Dp; that fixes R.

5. Quotient singularities

In this section we show that if R is the ring of invariants of a linear action of a finite
group G with no pseudoreflections on a polynomial ring S := k[z1,...,z,], where k is
a field of characteristic zero, then there exists an involutive anti-automorphism on Dpy,
that fixes R. We begin by recalling the notion of pseudoreflection.

Definition 5.1. A nontrivial linear transformation v € GL, (k) is a pseudoreflection if
there exists a hyperplane H C k™ on which v acts trivially.

Let k be a field of characteristic zero and G be a finite subgroup of GL, (k) that
contains no pseudoreflections. The natural action of G on k" extends to an action by
algebra automorphisms on Symy (k™), which via the natural choice of basis we identify
with a polynomial ring S := k[x1,...,2,]. Let R := S be the G-invariant subring of S.

The group G also acts on the ring Dgy;, of differential operators on S by the formula

(v-Of) =(v""f) (ve€G, € Dgp, f€S).

It is easy to check that every G-invariant differential operator induces a differential
operator on R, giving a map Dgfl w — DRrjr- We have the following theorem of Kantor.

Theorem 5.2 ([16, IILIII], [17]). Let k,G,S and R be as above. Then the natural map
Dg“c — Dpgyx s an isomorphism.
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From this point onwards, we identify Dg;, with the invariant subring D§|k of Dgy.

Example 5.3. Let G = (o|0? = 1) be a cyclic group of order 2, and we consider the
linear action of G on S := kls, t] given by 0s = —s, ot = —t. Then the invariant subring
R := S% consists of all polynomials that only have homogeneous components of even
degree; that is, R = k[s?, st, t?]. The ring Dy, is then given by

DR|k = k<82, St, t2, 885, s@t,tas, t@t, 83, 858t, 33)

The standard transposition on Dg|;, (see Subsection 2.2) preserves the subring Dp;, and
therefore it restricts to an involutive anti-automorphism of Dgy;, that fixes R.

We show that, as we just observed in Example 5.3, the standard transposition on Dgy,
always preserves the subring Dpgyy.

Theorem 5.4. Let k be a field of characteristic zero, G be a finite subgroup of GL,, (k) that
contains no pseudoreflections, S := k[x1,...,xz,] be a polynomial ring over k equipped
with the standard linear action of G and R := SC be the ring of G-invariants of S. Then
the standard transposition on Dgy, preserves the subring Dy, inducing an involutive
anti-automorphism on Dgy;, that fizes the subring R.

Proof. We note that every ring automorphism of Dg;, is also a ring automorphism of
D?'J ..» and therefore the action of G on Dgyj, is also an action on Dgﬂj .- We claim that the
standard transposition ® : Dgx — Dgz') .. 18 G-equivariant; since Dp;, is identified with
the ring of invariants D§| ,, this will prove the result.

The claim states that for all { € Dgj, and all v € G we have v- ®({) = ®(v-§). As
with any action on an algebra, it suffices to check that this holds on algebra generators
for Dgys. For the generators x; we have:

v ®(x) =7 x =3 = P(xy) = Py - xy).

For the partial derivatives 0;, we first observe that v - ®(0;) = v - (=09;) = —v - 0;, and
therefore it suffices to show that ®(vy-09;) = —(v - 9;). To prove this, we show that - 0;
is in the k-span of the derivatives 01, ..., 0y, i.e. we show that v-0; € k{d1,...,0,}.
We first note that k{d1,...,0,} is precisely the set of all derivations 6 with the
property that 6(x;) € k for all j; indeed, an arbitrary derivation 6 can be written as
0 =3, f;0; for some f; € S, and f; = 0(z;).
For all f,g € S we have

(v-0:)(fg) =v0i(v"(f9))
=70,((v f)(v ')

= 7((7—1f)ai(v‘1g) + (7‘19)8¢(7‘1f))
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= fv(0:(v'9)) + v (8:(v 1))
= f(v-0:)(9) +9(v-0)(f),

and therefore 7 - 9; is a derivation. Moreover, if we let ay € k be such that v la; =

Zk ATl then
(v-0i)(xj) = v(8i(v " x)) = (@) = ai € k.
We have therefore shown that - 9; € k{01, ...,0,}, which concludes the proof. O

Remark 5.5. Kantor’s theorem (Theorem 5.2) remains true whenever k has characteristic
p > 0 and p does not divide |G| (see Jeffries’ notes [14, §4.2]). However, note that in
the proof of Theorem 5.4 we use the fact that Dgy is generated by derivations, which
crucially uses the fact that k£ has characteristic zero. Note that the proof also uses the
fact that the action of G is linear.

Remark 5.6. Even when G is not finite, there is a map Dg| r — Dgr which is surjective
for some nice group actions [24], and the only obstruction to generalizing Theorem 5.4
to other rings of invariants is whether this map is an isomorphism.
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