
If you cite this paper, please use the PETS reference: Anna Maria Mandalari, Daniel J. Dubois, Roman Kolcun, Muhammad

Talha Paracha, Hamed Haddadi, David Cho�nes. Blocking without Breaking: Identification and Mitigation of Non-Essential IoT

Tra�c. In Privacy Enhancing Technologies Symposium (PETS) 2021.

Anna Maria Mandalari*, Daniel J. Dubois, Roman Kolcun, Muhammad Talha Paracha, Hamed

Haddadi, and David Cho�nes

Blocking without Breaking: Identification and
Mitigation of Non-Essential IoT Tra�c
Abstract:
Despite the prevalence of Internet of Things (IoT) de-
vices, there is little information about the purpose and
risks of the Internet tra�c these devices generate, and
consumers have limited options for controlling those
risks. A key open question is whether one can mitigate
these risks by automatically blocking some of the In-
ternet connections from IoT devices, without rendering
the devices inoperable.
In this paper, we address this question by developing
a rigorous methodology that relies on automated IoT-
device experimentation to reveal which network connec-
tions (and the information they expose) are essential,
and which are not. We further develop strategies to au-

tomatically classify network tra�c destinations as either
required (i.e., their tra�c is essential for devices to work
properly) or not, hence allowing firewall rules to block
tra�c sent to non-required destinations without break-
ing the functionality of the device. We find that indeed
16 among the 31 devices we tested have at least one
blockable non-required destination, with the maximum
number of blockable destinations for a device being 11.
We further analyze the destination of network tra�c
and find that all third parties observed in our experi-
ments are blockable, while first and support parties are
neither uniformly required or non-required. Finally, we
demonstrate the limitations of existing blocklists on IoT
tra�c, propose a set of guidelines for automatically lim-
iting non-essential IoT tra�c, and we develop a proto-
type system that implements these guidelines.

Keywords: IoT, privacy, firewall, filtering, blocking

*Corresponding Author: Anna Maria Man-

dalari: Imperial College London, E-mail: anna-

maria.mandalari@imperial.ac.uk

Daniel J. Dubois: Northeastern University, E-mail:

d.dubois@northeastern.edu

Roman Kolcun: Imperial College London, E-mail: ro-

man.kolcun@imperial.ac.uk

Muhammad Talha Paracha: Northeastern University, E-

mail: paracha.m@husky.neu.edu

Hamed Haddadi: Imperial College London, E-mail:

h.haddadi@imperial.ac.uk

1 Introduction
Consumer Internet of Things (IoT) devices (e.g., smart
TVs, speakers, surveillance cameras, appliances, etc.)
are rapidly gaining presence in homes, o�ces, and public
spaces [1]. While these devices often come with conve-
nient services, they open the door to numerous privacy
and security risks [2–4]. These devices often expose in-
formation to a large number of destinations [2, 5], in-
cluding third party advertising and tracking services.

A fundamental approach for mitigating such risks
would be to automatically block any connections that
are not essential for the essential functionality of a de-
vice. For this approach to work, we need a systematic
approach to identify and block tra�c that is not essen-
tial for a device to work, with little-to-no user configura-
tion, and without causing any device malfunction. Un-
fortunately, existing solutions are not su�cient for this
purpose. Approaches such as Pi-hole [6] block DNS re-
quests for advertising and tracking services using block-
lists, but destinations on those blocklists are often based
on web tracking, thus missing blockable destinations for
our IoT devices. While standard IoT security solutions
might be able to arbitrarily block connections, they are
unable to determine the consequences of any blocking
on device functionality.

In this paper, we design and validate a methodol-
ogy for automatically determining the necessity of the
destinations contacted by an IoT device for the correct
execution of its primary functionality. The intuition be-
hind our approach is that IoT device functions can be
invoked using interfaces amenable to automation (e.g.,
using a voice synthesizer or scripting companion app
interactions). Further, one can automatically determine
whether the execution of such functions has been suc-
cessful, by observing the IoT device signals (e.g., the
screenshot of a companion app, or the network traf-
fic patterns generated). Based on these intuitions, our
methodology can be used for a target device and se-

David Cho�nes: Northeastern University, E-mail:

cho�nes@ccs.neu.edu

ar
X

iv
:2

10
5.

05
16

2v
1

 [c
s.N

I]
 1

1
M

ay
 2

02
1

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 2

lected functionality, to build a list of non-required des-
tinations that can be automatically blocked, without
breaking such functionality. Similarly, we can build a
list of required destinations that can be automatically
allowed (to preserve functionality), while blocking the
rest of the tra�c.

The key building blocks of our system are: auto-
matically interacting with devices to exercise their func-
tions; systematically blocking one or more observed con-
nections; and automatically determining whether each
interaction was successful after blocking a connection.
We use an extensive testbed and large number of trials
to find that 28 out of 31 devices (across five categories)
are amenable to fully automated blocking analysis.

We then turn to analyzing the blockable destina-
tions. We find that 16 of our 31 devices contact at least
one non-required destination (and as many as 11 desti-
nations) to execute their main functions. Across all de-
vices, we find that 62 non-required destinations are con-
tacted. We further analyze the destinations of network
tra�c and find that all third parties observed in our ex-
periments are blockable, while first and support parties
are neither uniformly required or non-required. Addi-
tionally, we show that uniformly blocking all 62 non-
required destinations for all devices can lead to break-
ing device functionality: three devices exhibit a required
destination that is a non-required destination for a dif-
ferent device. We find that non-required/required desti-
nations do not change over time for all the devices, and
that, for 90.32% of the devices, such destinations tend
to be the same across di�erent device functions. Finally,
we propose a set of guidelines for automatically limit-
ing non-essential IoT tra�c, and we develop a prototype
system that implements these guidelines.
To summarize, our key contributions include:

– A methodology for determining required and non-
required destinations by automatically executing
IoT device functions and determining the execution
outcome while blocking selected destinations.

– An analysis of required/non-required destinations
contacted by a diverse set of consumer IoT devices.

– The design of a testing system (IoTrigger) and a
blocking system (IoTrimmer) that use our method
for building the required and non-required des-
tinations list (IoTrim list), and use it to block
non-essential tra�c. IoTrigger , IoTrimmer , and
the IoTrim list are publicly available at http://

iotrim.net/.

2 Assumptions and Goals
In this section, we set the assumptions, the definitions,
the goals, and the non-goals for this work.

2.1 Assumptions and Definitions

Threat Model. We assume a system composed of three
entities: (i) an o�-the-shelf IoT device, with the ability
to communicate to any destinations over the Internet;
(ii) the network tra�c destinations, which include any
Internet destinations that the IoT device creates a con-
nection to; and (iii) the user, who has access to the IoT
device functionality. In our threat model, we consider
an IoT device and the network tra�c destinations as
potential adversaries, since the IoT device can poten-
tially expose information about its users (the victim)
to any destination. Since most IoT tra�c is encrypted
or encoded [2] and the vast majority of IoT systems are
closed, it is infeasible to perfectly infer what information
is exposed through network connections using blackbox
techniques. Instead, we question whether a given con-
nection is necessary for supporting a device’s function
(e.g., ringing a doorbell), and if not, we consider the
connection to be a threat for unnecessary data exposure,
in line with GDPR data minimization [7] and purpose
limitation principles [8]. Hence, blocking such tra�c can
potentially reduce information exposure for users with-
out a�ecting the device functionality.
Essential Tra�c Definition. We define essential traf-

fic, with respect to a given IoT device function, the net-
work tra�c that is essential to fulfill such function.
Required Destination Definition. We define as re-

quired all the network tra�c destinations that are con-
tacted as part of essential tra�c.

2.2 Goals

Fig. 1 illustrates the three main goals of this work. More
specifically, we want to answer the following questions.
RQ1. How can we automatically identify non-
essential IoT tra�c? We seek to understand which
destinations are not required for device functionality, so
that we can block them to mitigate their potential risks.
To address this, we propose a methodology for automat-
ically detecting whether a network tra�c destination is
required or not for a given function of an IoT device
(e.g., in the case of a smart bulb and its switch on/o�
function, destinations that are not necessary for switch-

http://iotrim.net/
http://iotrim.net/

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 3

Goal 1: methodology

IoT device

Goal 2: measurement

Goal 3: mitigation

Unsuccessful

Successful

Essential
Non-essential

Non-essential traffic

Essential traffic

Required Destinations
blocking them breaks functionality

Non-required Destinations
blocking them does not break

functionality

Test device
functionality while
blocking a destination

IoTrimmer

Fig. 1. The three main goals of this paper.

ing the light on/o�). The presence of a non-required
destination means that all the tra�c sent to such desti-
nation is non-essential, and therefore an avoidable case
of information exposure.
RQ2. What is the nature of non-essential IoT
tra�c? Armed with a measurement methodology to
detect non-essential tra�c, we apply it to identify and
study the non-essential tra�c produced by our set of 31
popular IoT devices spanning five categories. As part
of this research question, we are interested in the type
of destinations contacted (e.g., if they belong to the de-
vice vendor), if any required destinations for a device are
non-required for another device, if di�erent devices have
non-required destinations in common, if di�erent device
functions have di�erent required and non-required des-
tinations, and if any of those destinations are present
in existing blocklists. Characterizing non-essential traf-
fic for existing devices is important to find correlations
that can assist in detecting such tra�c in real-time for
future devices, without relying on the methodology pro-
posed to answer RQ1.
RQ3. Can we automatically mitigate non-
essential IoT tra�c? The knowledge of what destina-
tions can be blocked for every device allows us to make
automatic run-time decisions on what tra�c to allow
or not in a typical IoT deployment. To answer this re-
search question, we first determine the feasibility of a
blocking solution by analyzing how much essential and
non-essential tra�c changes over time, as a way to assess
the risk of allowing non-essential tra�c or breaking the
device functionality. Then, we describe our prototype
software for automatically generating destination lists,
and to transparently block as much non-essential IoT
tra�c as possible, thus reducing information exposure
without a�ecting devices’ main functions.

2.3 Non-Goals

In this work, we do not consider the following as goals,
and leave them for future work.
No control over how an IoT device works inter-
nally. We consider the IoT devices as o�-the-shelf con-
sumer items that provide a finite set of functions and
that communicate over the Internet. For these devices,
we have no control over their internal functions, but we
can still interact with them using their user interface
and we can measure their network activity.
No content interception and inference. While we
consider the visibility of the content out of scope, we
are able to see the destinations of such tra�c. We make
this assumption because the vast majority of the traf-
fic is encrypted and the devices are assumed as black-
boxes, where there is no possibility to install custom
self-signed certificates to use man-in-the-middle tech-
niques to intercept encrypted tra�c. We also do not
try to infer the content of encrypted flows as means to
measure privacy exposure since this has been studied
in previous works, but we still use tra�c patterns to
test if blocking/allowing a destination prevents a given
function from working.
We do not test all functions. IoT devices typically
o�er several functions; however, for this work, we apply
our methodology by selecting only a subset of them for
every IoT device under test so that we can have more
coverage by devices rather than by functionality. We
consider this limitation reasonable since our analysis of
multiple functions in §5.6 shows that the vast majority
of the devices we tested use the same destinations for
di�erent functions. In this work, we assert that a given
function is either executed correctly or not. We do not
consider the case of a function partially working.
One trigger per function. Some IoT device functions
can be triggered in several ways (e.g., through a com-
panion app, IFTTT [9], Samsung hub [10], etc.). In this
work we only focus on one trigger per function.

3 Methodology
We answer our first research question by proposing a
methodology to detect non-essential IoT network tra�c
by classifying destinations as either required or not.

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 4

3.1 Testbed

Our classification method relies on a testbed that pro-
vides a controlled environment for testing IoT devices.
Our testbed consists of: (i) a router that o�ers IP con-
nectivity to the IoT devices under test, and the ability
to capture and control network tra�c for each device;
and (ii) a set of support scripts to turn on and o� an
IoT device, trigger a function, and determine whether a
function is successfully executed.

3.1.1 Router

The router is configured using a standard NAT setup,
with one network interface connected to the Internet
and another one bridged to the IoT devices under test.
As part of the router’s DHCP support, IoT devices are
assigned a DNS server that we control (and that serves
as a proxy for the ISP’s DNS server). Together with traf-
fic redirection rules and a dnsmasq instance, our testbed
intercepts all DNS requests, even if an IoT device uses a
DNS server other than the DHCP-advertised one (e.g.,
by using a public resolver). We collect all network traf-
fic traversing the testbed using tcpdump. The router can
block IoT tra�c destinations by IP address (including
IP masks) and by altering DNS responses whose request
matches a given pattern. When a DNS destination is
blocked, it is resolved as localhost (127.0.0.1).

3.1.2 Support Scripts

We use support scripts to power on/o� the devices, to
trigger their functions, and to probe them to find out
if a function execution is successful or not. The invoca-
tion of these scripts is fully automated, as part of our
automated experiments methodology. Please note that
while every step of every experiment (including the in-
vocation of support scripts) is fully automated to allow
our approach to scale, the creation of support scripts
requires programming e�ort, which is a manual process
that is device-dependent and functionality-dependent.
However, once support scripts are written, they can be
reused across experiments and only need to be rewritten
after major changes in the device interaction interface.
Power on/o� Scripts. The IoT devices are plugged
into programmable smart plugs, and we use scripts to
turn these smart plugs on and o� so that we can reset
the IoT devices by power-cycling them after every test.

Unpower and power the IoT device and wait for it to boot

Use TRIGGER to execute the function on the device

Use PROBE to determine if the function has been executed

Add 1 success (s=s+1) Add 1 failure (f=f+1)

end

start (s=f=0)

function executed function not executed

Evaluate successes and failures (n=s+f)
n<10 ∨ max(s,f)/n<80%

Experiment
successful

Experiment
failed

n≥10 ∧ s/n ≥ 80% n≥10 ∧ f/n ≥ 80%

Fig. 2. Functionality experiment. The algorithm iterates the ex-
ecution of a function at least 10 times: s, f , n are counters for
successful, failed, and total iterations. When an 80% consensus is
achieved the algorithm terminates with a success or fail result.

Trigger Scripts. To scale our analysis to many devices,
we automate interactions with IoT devices by triggering
their functions programmatically. We call the di�erent
automation strategies device triggers, which are function
and device-specific. An example of trigger for turning on
a smart bulb is to programmatically provide input to its
companion app in such a way to turn it on.
Probe Scripts. To verify that a trigger correctly exe-
cutes a function, our methodology relies on some addi-
tional scripts, called device probes, which programmati-
cally query the status of a device, or analyze any signals
it produces. The scripts then compare this information
against ground truth, to check whether the execution
of a function was successful or not. Probe scripts are
also device-specific. An example of probe to determine
if a light bulb is on is to retrieve the screenshot of its
companion app and compare it to a previously retrieved
screenshot where we know that the bulb was on.

3.2 Functionality Experiments

The basic unit of our methodology is the functionality

experiment (see Fig. 2). We define it as the fully auto-
mated process to verify if a function of an IoT device can
be executed or not. During our preliminary experiments
we found that several IoT devices are less than 100% re-
liable in terms of correctly executing their functionality
in normal operating conditions (see our evaluation in
§4.4). The reasons are various, and span from random
reboots, to the temporary disruptions in connectivity
to cloud services. To cope with such events that prevent
100% accurate probe scripts, we choose to use probe
scripts as long as they have at least 80% accuracy (i.e.,
they can be incorrect at most 20% of the time due to

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 5

whatever reason, including the device not behaving cor-
rectly). To ensure that we can reliably use information
from probe scripts that may be inaccurate, we test the
function multiple times (at least 10), and we consider
the result correct if a strong majority (at least 80%)
of the test results are consistent. This ensures that the
whole functionality experiment has a negligible proba-
bility of an incorrect result: while the odds of any one
test failing can be significant, the odds that all of the
multiple tests failing is substantially lower.

Specifically, each functionality experiment iterates
at least 10 times the following three steps.
Step 1. We power on the device using the testbed’s
power script (to turn on the smart plug powering the
device) and then wait for it to finish booting. The wait
time is determined empirically using probe scripts, and
we have found that a two-minute delay is enough for all
the devices we tested.
Step 2. We trigger the function of the experiment by
invoking the proper device trigger.
Step 3. We use the device probe to verify that the
function has been actually executed: if it is, we report
the iteration as successful, otherwise as failure. If, after
all the iterations, at least 80% of them is successful, we
report the experiment as successful; if at least 80% of
the iterations fails, we report the experiment as a failure.

If 80% of the iterations is neither a success or a
failure, we run an additional iteration and evaluate this
test again. The algorithm keeps performing iterations
until the 80% threshold is reached. If the threshold is
never reached the algorithm would not terminate (i.e.,
it keeps iterating with no success or fail result); however
since we assume probes that are at least 80% accurate
(as it will be shown in §4.4), having a threshold of 80%
ensures that we achieve convergence in the long run.

Given that the probes have a maximum 20% proba-
bility to produce an incorrect result during an iteration,
there is a chance that a functionality experiment termi-
nates with an incorrect result; however, such a chance is
negligible (less than 0.0078%1) since the incorrect result
must happen in at least 80% of the iterations. During
our experiments the algorithm always converges, mean-
ing that the probes fulfilled their accuracy requirement.

1 This upper bound for the probability of an incorrect result

for our algorithm has been calculated by considering that the

number of incorrect results of a probe (over n iterations) follows

a binomial distribution with parameters n and p = 0.2.

3.3 Building the List of Destinations

To determine what destinations are required or not for
a given IoT function, we need to first obtain the list of
destinations during a preliminary destination-observing
experiment, which consists of running a functionality
experiment (which is composed of minimum 10 itera-
tions of function invocations) without blocking any net-
work tra�c, and collecting the list of destinations con-
tacted by the device. All destination-observing experi-
ments under normal circumstances are successful since
we do not block any tra�c. We primarily identify all
contacted destinations by hostname rather than by IP
address. To do this, for each IP destination, we look at
all the DNS tra�c for the device to find the DNS host-
name that resolved to the IP address. If the hostname
cannot be determined using this method, we simply use
the IP address as the destination. We exclude from this
process DNS (TCP/UDP port 53) and NTP (network
time protocol, UDP port 123) destinations. We always
allow these protocols since they are needed to resolve
hostnames (DNS) and synchronize device clocks (NTP)
for checking TLS certificate validity.

Many cloud services for IoT devices use replicated
servers that provide the same functionality, and they
sometimes use di�erent (but similar) DNS names and
IP addresses for each replica. To facilitate analysis and
streamline blocklists, we group destinations that are
ephemeral, i.e., they appear in less than 80% of the it-
erations of the destination-observing experiments. For
example, if a.zz.com is an ephemeral destination con-
tacted in half of the iterations, and b.zz.com is con-
tacted in the other half, they are both replaced by a
single destination group *.zz.com, which appears in
100% of the iterations. All ephemeral destinations en-
countered in our experiments were successfully replaced
with second-level wildcard domains. For more details on
this process, see Appendix A.

3.4 Determining Required Destinations

The algorithm for creating the list of required and non-
required destinations is reported in Fig 3.
Step 1. Building the list of destinations. See §3.3.
Step 2. Marking each contacted destination. Iteratively
test all contacted destinations by running a functional-
ity experiment for each of them. In each iteration, the
considered destination is blocked. If the experiment suc-
ceeds, such destination is marked as non-required, and
will stay blocked. If the experiment fails, such destina-
tion is marked as required, and will be unblocked. This

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 6

Run a functionality experiment with
all the traffic allowed,

build the list of all destinations

Select a destination: block it, then
run a new functionality experiment.

Was it successful?

The destination
is required:
unblock it

The destination
is non-required:
keep it blocked

Any other destinations to test?

start

end

noyes

yes

no

Fig. 3. Methodology for detecting required destinations.

process repeats until all destinations collected during
the first step are classified.

4 IoT Devices
In this section we describe the IoT devices we use in
our experiments, and all specialized device triggers and
probes we use to apply the methodology described in §3.

4.1 List of Devices and Tested Functions

The devices we consider are consumer IoT devices typi-
cally deployed in a smart home. We have chosen devices
under these categories (see the first column of Table 1):

– Camera. Devices equipped with a camera sensor,
such us smart camera systems and smart doorbells.
The function we test is to watch a live stream.

– Home automation and appliances. Devices that o�er
home automation capabilities such as smart lights,
kitchen appliances. The function we test is switching
the device on and o�.

– Smart hubs. Devices coordinating other non-IP IoT
devices (i.e., Zigbee). The function we test is switch-
ing the devices on and o�.

– Smart speakers. Speakers that o�er a voice assistant.
We test responses to the voice command, “What is
the capital of Italy?”

– Video. Devices designed to stream video on a TV.
We test streaming from YouTube.

The criteria we use for choosing the function to test
are: (i) it must be a function that is characteristic of
the device category; (ii) it must be intended for user-
initiated interactions and not initiated by the device
itself; (iii) it must be amenable to triggers and probes.

To better represent how IoT devices behave in the
wild, we try to keep their default configuration and pri-

Device
Trigger Probe Success Success Success

(May) (July) (October)
Camera (Watching live)

Blink App Screen 93.3% 96.7% 100%
Bosiwo App Screen 100% 100% 100%
iCSee App Screen 80% 76.7% 70%
Reolink App Screen 70% 70% 60%
Wansview App Screen 90% 93.3% 100%
Yi App Screen 100% 100% 100%

Home-automation (Switching on/o�)
App Kettle App Screen 100% 100% 100%
Honeywell thermostat App Screen 100% 100% 100%
Magichome App Screen 100% 100% 100%
Meross dooropener App Screen 100% 100% 100%
Nest thermostat App Screen 100% 100% 100%
Netatmo weather App Screen 100% 100% 100%
Smarter co�ee machine App Screen 100% 100% 100%
Smartlife bulb App Screen 100% 100% 100%
Smartlife remote control App Screen 100% 100% 100%
Sousvide cooker App Screen 100% 100% 100%
Switchbot App Screen 100% 100% 100%
TP-Link bulb App Screen 100% 100% 100%
TP-Link plug App Screen 100% 100% 100%
Wemo plug App Screen 100% 100% 100%
Xiaomi rice-cooker App Screen 46.7% 53.3% 40%

Smart-hub (Switching on/o�)
Insteon App Screen 100% 100% 100%
Lightify App Screen 100% 100% 100%
Philips App Screen 100% 100% 100%
Samsung App Screen 96.7% 100% 100%
Sengled App Screen 100% 100% 100%

Smart-Speaker (Asking questions)
Allure Voice Tra�c 100% 100% 100%
Echo Dot Voice Tra�c 100% 100% 100%
Google Home Voice Tra�c 100% 100% 100%

Video (Watching YouTube)
Fire TV App Tra�c 100% 100% 100%
Roku TV App Tra�c 100% 100% 100%

Table 1. List of our devices by category. For each of them: trig-
gering and probing strategy we used, and probe success rate eval-
uation in three di�erent point in time (May, July, and October
2020). Crossed out probing strategies are the ones we could not
use programmatically due to insu�cient success rate (see §4.4).

vacy settings unaltered and we do not perform user-
initiated firmware updates. Devices are still allowed to
perform automated firmware updates when such a fea-
ture is enabled in the default configuration.

4.2 Specialized Device Triggers

As discussed in §3.1.2, we use device-dependent trigger
scripts to execute functionality. The triggering strate-
gies we use for each device are reported in the second
column of Table 1 and described as follows.
Companion app. This triggering strategy is possible
for IoT devices that can be controlled via a compan-
ion app compatible with Android. We install this app
on an Android phone that is not on the same LAN as
the IoT device (to force the communication to happen
over the Internet rather than directly), and then trigger
each function by emulating user interactions program-
matically using the Android Debug Bridge.
Voice assistant. This strategy is used for smart speak-
ers. We use the Google voice synthesizer connected to

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 7

Fig. 4. ECDF of the data peaks pi,j over 135 experiments for the
Echo Dot: the plot shows a clear distinction between the data
peaks when its main function is executed (activation data peaks)
and when it is not (background data peaks).

a set of regular speakers (placed next to the smart
speaker) to programmatically issue voice commands.

4.3 Specialized Device Probes

We use several device-dependent strategies also for
probing the devices; the probing strategies we use for
each device are reported in the third column of Table 1
and described as follows.
Companion app screenshot. For the majority of IoT
devices, a companion app is available as a method to
obtain their state. For this method, we use a preliminary
experiment during which we take sample screenshots of
the app for each device, and we use this as the ground
truth for the correct state after executing a function. For
subsequent experiments, we take screen shots after using
a trigger, and compute the similarity of each screenshot
to the ground truth to infer the state of the device.

To quantify this similarity, we simply check how
many pixels di�er in the two screenshots by more than
a particular threshold. We use the same parameters for
all companion apps, which we tuned through an analysis
on a few sample screenshots.
Network tra�c patterns. This probe analyzes the
patterns of the network tra�c generated by an IoT de-
vice in two situations: when the function has been ex-
ecuted (activation tra�c) and when the function was
not executed (background tra�c). During preliminary
experiments we observed that when the main function
is executed for some devices (typically streaming devices
such as smart speakers), they significantly increase the
amount of data transmitted to certain destinations com-
pared to when the function is not executed (see Echo
Dot example in Fig. 4). Based on this observation, we

Device (i) Destination Bmax
i Amin

i Threshold (Xi)
[KB/s] [KB/s] [KB/s]

Allure bob-dispatch-* 6.763 13.342 10.052
*.amazon.com

Echo Dot bob-dispatch-* 8.889 15.455 12.172

(3
rd gen.) *.amazon.com

Fire TV youtube.com 0 109.38 54.69

Google Home google.com 41.69 50.483 46.086

Roku TV youtube.com 0 140.364 70.182

Table 2. Network tra�c probe thresholds for data peaks. Bmax
i

is the maximum peak in background tra�c (i.e., no functionality
execution), Amin

i is the minimum peak in activation tra�c (i.e.,
with functionality execution), Xi is the data peak threshold, i.e.,
the minimum peak required for detecting device activation.

automatically detect tra�c bursts corresponding to the
tra�c pattern for the main function of a device.

Specifically, for device i and an experiment j, we
consider the data peak pi,j , defined as the maximum
amount of tra�c sent by the device to such destinations
among all 20-second window samples over the full dura-
tion of the experiment. From a series of preliminary ex-
periments where we know as ground truth that the main
function of device i is executed and not executed, we cal-
culate the constants Amin

i and Bmax
i , where Amin

i (min-
imum activation peak) is the minimum data peak pi,j

over all experiments j with execution, and Bmax
i (maxi-

mum background peak) is the maximum data peak di,j

over all experiments j without execution. We then define
the data peak activation threshold Xi, as the average be-
tween Amin

i and Bmax
i : any data peak that is larger than

this threshold signals the presence of activation tra�c.
The probe then uses Xi to determine whether device

i had its function executed or not during a new exper-
iment k: if pi,k > Xi (i.e., the experiment has a data
peak that is larger than the peak activation threshold),
the probe returns success for k, otherwise it returns fail-
ure. Table 2 shows the destinations and parameters for
the network tra�c probes, calculated over a minimum
of 135 preliminary experiments for each device.

4.4 Probes Evaluation

Probes Evaluation Method. Our method for clas-
sifying required destinations relies on probes that are
at least 80% accurate on average. To identify whether
this property holds, we run 70 probe evaluation experi-

ments per device in three points in time (10 in May, 30
in July, and 30 in October 2020). Each probe evaluation
experiment is a set of functionality experiments run in
the following three situations: (i) with all the destina-
tions allowed, where we know a priori that the function
execution succeeds (i.e., testing to see if the probe cor-

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 8

rectly detects successful experiments); (ii) with all the
destinations blocked, where we know a priori that the
function fails (to ensure that the probe detects exper-
iment failures); (iii) with all the destinations allowed,
but without executing the trigger, to test whether the
probe detects that the function is not executed.

Once the experiments are complete, we calculate the
success (failure) rate of the probe, defined as the num-
ber of correct (incorrect) probe results over the total
number of experiments for that probe. We consider the
minimum between the success rate and the failure rate
as a conservative metric to measure the accuracy of a
probe, and use it as the expected probability to provide
a correct result.
Detecting successes. The results of our probes eval-
uation method for detecting the success of a function
execution are reported in the last three columns of Ta-
ble 1, where each column represents the evaluation at a
di�erent point in time. For 28 of 31 devices, our probes
correctly and consistently recognize the execution of a
function in at least 80% of the cases, which satisfies the
requirement of our method for classifying destinations.
For the remaining three devices (iCSee Doorbell, Re-
olink Camera, and Xiaomi Rice Cooker), we could not
find probes that are at least 80% accurate during all the
three points in times.
Detecting failures. We find that our probes correctly
recognize a function execution failure both for cases
where all tra�c is blocked, and when the function is
(intentionally) not triggered. As a result, it is very un-
likely that a probe will report as successful an experi-
ment where the execution of a function fails, since this
kind of error never happened during our 4,340 probe
evaluation experiments.
Dealing with inaccurate probes. For the three de-
vices whose probes are not accurate enough, we cannot
use our fully automated analysis approach because we
do not have an automated way to detect if a trigger is
successful. To still include them in our study, we probe
their status manually, while keeping all the remaining
steps of our approach automated.

5 Identifying Non-essential Tra�c
We answer our second research question by applying the
methodology described in §3 to identify and characterize
non-essential tra�c produced by our IoT devices (§4).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

16

5

4
2

3 2

0

25

50

75

100

al
l (

n=
31

)

ca
m

er
a

(n
=6

)

ho
m

e−
au

to
 (n

=1
5)

sm
ar

t−
hu

b
(n

=5
)

sm
ar

t−
sp

ea
ke

r (
n=

3)

vi
de

o
(n

=2
)

of

 D
ev

ic
es

(%
)

of non−req. destinations ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●1 2−4 5+

Fig. 5. Percentage of devices with at least one non-required des-
tination. Sub-bars show how the number of non-required destina-
tions is distributed among the devices for each category.

5.1 Impact of Device Category

We now characterize the destinations of the tra�c of
each device in terms of tra�c sent to required destina-
tions (essential tra�c) and tra�c sent to non-required
destinations (non-essential tra�c). Fig. 5 shows that
52% of the IoT devices we tested produce non-essential
tra�c, with 25% and 16% of them contacting respec-
tively at least 2 and 5 non-required destinations. The
figure shows that all devices tested in the smart speak-
ers and video categories produce non-essential tra�c.

We now consider these devices and non-required
destinations in more detail (Table 3). Of these de-
vices, the Amazon Fire TV (11 destinations) and the
Roku TV (8 destinations) contact the largest number
of non-required destinations. Notably, devices in the
camera category also contact up to six non-required
destinations—a surprising result since such devices do
not have third-party apps or UIs that can include non-
required tra�c such as advertising. In most of these
notable cases the number of non-required destinations
tend to be larger than the number of required ones. Fi-
nally, we observe several non-required destinations also
on simple devices, such as the TP-Link plug, which
sends non-essential tra�c to three non-required desti-
nations while only having a single required destination.

On the other hand, 15 of 31 devices contact required
destinations only, 22 in total. Table 8 in Appendix B
lists all the required and non-required destinations.
Takeaways. Our results show that tra�c to non-
required destinations is present across all categories of
IoT devices, and these devices often contact more non-
required destinations than required ones. We further
find that devices with a richer set of functions—such

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 9

Device Dest. # Req. # Non-Req. # List of Non-Required Destinations

Ca
m

er
a

Bosiwo 4 2 2 54.157.82.107, 210.72.145.44
iCSee 6 2 4 47.52.222.172, 47.52.32.118, api.gdxp.com, oss-us-west-1.aliyuncs.com
Reolink 2 1 1 pushx.reolink.com
Wansview 9 3 6 159.65.95.225, 3.122.229.130 , ajcloud.net, htpdate.ajcloud.net, sdc-isc.ajcloud.net, *.backblaze.com
Yi 5 3 2 api.eu.xiaoyi.com, log.eu.xiaoyi.com

H
om

e-
au

to Nest thermostat 3 2 1 frontdoor.nest.com
TP-Link bulb 4 1 3 euw1-api.tplinkra.com, n-deventry.tplinkcloud.com, use1-api.tplinkra.com
TP-Link plug 4 1 3 euw1-api.tplinkra.com, n-deventry.tplinkcloud.com, use1-api.tplinkra.com
Xiaomi rice-cooker 7 3 4 183.84.5.203, 58.83.160.36, 123.125.102.215, 110.43.0.83

H
ub Philips 4 2 2 diagnostics.meethue.com, ecdinterface.philips.com

Samsung 3 2 1 fw-update2.smartthings.com

Sp
ea

ke
r Allure 3 1 2 api.amazon.com, d1enchupjctwud.cloudfront.net

Echo Dot 10 3 7 arcus-uswest.amazon.com, *.cloudfront.net, device-metrics-us.amazon.com, dp-gw.amazon.com, fire-
oscaptiveportal.com, prod.amcs-tachyon.com, s3-1-w.amazonaws.com

Google Home 9 4 5 youtube-ui.l.google.com, clientservices.googleapis.com, fcm.googleapis.com, *.googlevideo.com, stor-
age.googleapis.com

V
id

eo

Fire TV 14 3 11 aax-eu.amazon-adsystem.com, arcus-uswest.amazon.com, bob-dispatch-prod-eu.amazon.com,
*.cloudfront.net, device-metrics-us.amazon.com, api.amazon.com, ktpx-eu.amazon.com,
api-global.eu-west-1.prodaa.netflix.com, mas-ext-eu.amazon.com, mas-sdk.amazon.com, msh.amazon.com

Roku TV 10 2 8 api-global.eu-west-1.prodaa.netflix.com, configsvc.cs.roku.com, cooper.logs.roku.com,
customerevents.eu-west-1.prodaa.netflix.com, ichnaea.eu-west-1.prodaa.netflix.com,
partnerad.l.doubleclick.net, scribe.logs.roku.com, uiboot.eu-west-1.prodaa.netflix.com

Other devices (15) 22 22 0
Total 31 119 57 62

Table 3. Non-required destinations. We report, for each device (having at least one non-required destination), the total number of des-
tinations, the number of required destinations, the number of non-required destinations, and the list of non-required destinations. Col-
ors identify the destination party type (see §5.2): first party, support party , and third party. For a version of this table, which includes
all our IoT devices and the list of required destinations as well, see Table 8 in Appendix B.

as smart speakers and video devices—are more likely to
have such non-required tra�c, followed by smart cam-
eras. For the case of video devices, some of the non-
required destinations are advertisers while others are re-
lated to video recommendations for pre-installed apps, a
topic we discuss in §7.2. Note that these destinations are
not from background app activity, since it is disallowed
for the Roku TV [4, 11], and we disabled background
app activity on the Fire TV [12]. Regarding the cameras
and other simpler devices, it is unclear why they pro-
duce non-essential tra�c without the internal details of
the devices and their software.

5.2 Impact of Destination Party Type

In this section, we determine trends relating to whether
a destination’s party type (first party, support, third)
are indicative of whether the destination is required or
not for device functionality. We use the same party type
definitions and classification approach proposed in [2]
and we consider any advertising domain as third-party:
a First party is a destination related to the device man-
ufacturer or a related company responsible for fulfilling
device functionality; a Support party is any company
providing outsourced computing resources such as CDN
and cloud providers, which is not also a first party; a
Third party is a destination that is not a First party or

a Support party. Third-party companies include adver-
tising and analytics companies. Table 3 uses text dec-
oration in the rightmost column to indicate the party
type for each observed device-destination pair.

To show aggregate findings, we group results by cat-
egory in Fig. 6, with the left figure analyzing the number
of destinations and the right figure analyzing tra�c vol-
umes. We begin with the left plot, which plots how many
required and non-required destinations are contacted for
each destination party type and device category. We find
that third-party destinations are never required, mean-
ing that all their tra�c is non-essential, while first and
support parties are sometimes non-required and some-
times required. Overall, there are slightly more non-
required first- and support-party destinations among
the majority of devices and categories.

The right plot in Fig. 6 shows the average amount
of data (payload only, no headers) that is sent to re-
quired and non-required destinations during successful
function invocations. We observe that the vast majority
of the data is sent to required destinations (i.e., essential
tra�c) that are either first or support parties, while the
volume of non-essential tra�c is relatively small (1,931
bytes in total), and a mix of all the three party types.

For the devices we tested, non-essential tra�c sent
to third parties only occurs for the camera and video
category, while all the non-essential tra�c produced by

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

non−required required

ca
m

er
a

(n
=6

)

ho
m

e−
au

to
 (n

=1
5)

sm
ar

t−
hu

b
(n

=5
)

sm
ar

t−
sp

ea
ke

r (
n=

3)

vi
de

o
(n

=2
)

ca
m

er
a

(n
=6

)

ho
m

e−
au

to
 (n

=1
5)

sm
ar

t−
hu

b
(n

=5
)

sm
ar

t−
sp

ea
ke

r (
n=

3)

vi
de

o
(n

=2
)

0

5

10

of

 d
es

tin
at

io
ns

party ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●first support third

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

non−required required

ca
m

er
a

(n
=6

)
ho

m
e−

au
to

 (n
=1

5)

sm
ar

t−
hu

b
(n

=5
)

sm
ar

t−
sp

ea
ke

r (
n=

3)
vi

de
o

(n
=2

)

ca
m

er
a

(n
=6

)

ho
m

e−
au

to
 (n

=1
5)

sm
ar

t−
hu

b
(n

=5
)

sm
ar

t−
sp

ea
ke

r (
n=

3)

vi
de

o
(n

=2
)

1
10

100
1000

10000
100000

Tr
af

fic
 [b

yt
es

]

party ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●first support third

Fig. 6. Number (left) and total tra�c (right) of required/non-required destinations. The total tra�c is the average payload (without
headers) produced by the devices during successful function invocations.

IoT devices in the smart-hub category is sent to the first
party. In more detail, the third-party non-essential traf-
fic is sent to advertisers such as doubleclick.net and
adsystem.com, and other services such as netflix.com,
which are contacted by video devices, even if we do not
use the Netflix app during our experiments.

Most non-required destinations are first par-
ties, with domain names suggesting that they
are mainly used for logs, diagnostics and de-
vice configuration (i.e., diagnostics.meethue.com,
device-metrics-us.amazon.com, logs.roku.com; see
Table 3 for more detail).
Takeaways. A key finding is that—for the devices
we tested—third-party destinations are always non-
required. This suggests that a simple blocking approach
for such devices is simply to block all third-party com-
munication. We also found that the video category has
the largest number of third parties, some of which is ex-
plained by the menu screen loading previews of content
from third-party apps.

The fact that some non-required destinations are
first or support party suggests that the manufacturer
includes device activity that is unrelated to the main
function. This could occur for good reasons such as
firmware updates, or for more concerning reasons such
as collection of device/user data. Fortunately, only a
small amount of payload is sent to non-required desti-
nations, suggesting that the device is not exposing much
information over these connections. On the other hand,
we observe a significant number of non-required desti-
nations contacted that are not first parties. This is con-

Destination Device (Non-required) Device (Required)
api.amazon.com Allure Echo Dot, FireTV

bob-dispatch-prod-eu.amazon.com Fire TV Echo Dot, Allure

Table 4. Device-dependant destinations. Destinations that are
both required and non-required for di�erent devices.

cerning because recent work shows that in such a small
payload it is still possible to signal the device presence,
its status, and basic data from its sensors [5, 13, 14],
thus constituting a privacy and potential security risk.

5.3 Device-dependent Non-required
Destinations

In this analysis we check whether any destinations that
are non-required for a device are required for another de-
vice. We define these destinations as device-dependent.
Knowing if there are any destinations that are device-
dependent (under our definition) is important since
their existence means that a blocking approach to pre-
vent non-essential tra�c cannot rely only on a flat list
of destinations; rather blocking of destinations must be
device-specific (requiring accurate device detection) for
at least some devices.

Table 4 shows the list of device-dependent des-
tinations (first column), with the list of devices for
which they are non-required (second column) and re-
quired (third column). We find two destinations that
are non-required for some devices, but required for oth-
ers, even for devices from the same manufacturer. The

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 11

Destination Device (Category)
*.cloudfront.net Echo Dot (Smart-speaker), FireTV (Video)

api-global.eu-west-1.prodaa.netflix.com Fire TV (Video), Roku TV (Video)
arcus-uswest.amazon.com Echo Dot (Smart-speaker), Fire TV (Video)

device-metrics-us.amazon.com Echo Dot (Smart-speaker), Fire TV (Video)
euw1-api.tplinkra.com TP-Link bulb, plug (Home-automation)

n-deventry.tplinkcloud.com TP-Link bulb, plug (Home-automation)
use1-api.tplinkra.com TP-Link bulb, plug (Home-automation)

Table 5. Non-required destinations contacted by multiple devices.

first case is api.amazon.com, which is mandatory for
Amazon devices to function, but not required by the
Allure speaker, although it is powered by the same
voice assistant of Amazon (Alexa). The second case is
bob-dispatch.prod-eu.amazon.com, which is required
by all Amazon-powered smart speakers to process voice
commands, but not required to watch YouTube on an
Amazon Fire TV.
Takeaways. On one hand, device-dependent destina-
tions do exist, motivating blocklists that associate des-
tinations to the actual device. However, the function
tested is also relevant in determining if a destination is
required or not. For example, Amazon Fire TV is pri-
marily designed to stream TV through apps, but it also
o�ers voice assistant functionality: for this reason the
presence of a non-required destination typically used by
Amazon-enabled smart speakers is not surprising.

5.4 Common Non-required Destinations

We now analyze non-required destinations that are in
common for the devices we tested, i.e., non-required des-
tinations contacted by more than one device. The reason
for this analysis is that, if multiple devices have the same
non-required destination, such destination may have the
same non-required purpose for other devices as well,
which can help generalize our blocking approach.

Table 5 reports the list of common non-required
destinations (first column), and the devices/categories
contacting them (second column). We observe that the
same manufacturers (e.g., Amazon and TP-Link) have
an overlap for non-required destinations. In the case
of TP-Link, the non-required destinations contacted
by a bulb and a plug coincide. Note that there is
overlap from devices from di�erent manufacturers in
the video category: both Fire TV and Roku TV con-
tact the same third-party service that is non-required
(api-global.eu-west-1.prodaa.netflix.com).
Takeaways. Our experiments demonstrate that devices
from the same vendors tend to behave similarly, prob-
ably due to sharing some code among them and inte-
grating them in the same IoT ecosystem. This enables

Fig. 7. Second-level domain destinations that are both required
and non-required. The width of the flow is proportional to the
number of individual destinations contacted by each device.

the extension of a blocking approach based on our des-
tination lists to other or future devices from the same
manufacturer. Our analysis does not show notable situa-
tions in which devices from di�erent vendors contact the
same non-required destinations, except for the case of
devices in the video category, where both devices show
Netflix video recommendations in their menu screen.

5.5 Impact of SLDs, Protocols, and Ports

Using only second-level domains (SLDs). We now
investigate whether SLDs are su�cient for identifying
non-required destinations. Fig. 7 shows the list of SLDs
that are simultaneously required and non-required, and
the list of devices contacting them as required (on the
left) and non-required (on the right): for 12 devices con-
tacting the 11 SLDs in the figure, SLDs are not specific
enough since both essential and non-essential tra�c use
the same SLDs. For the remaining cases (19/31 devices),
using only SLDs is su�cient. While this simplification of
using SLDs is e�ective for identifying non-essential traf-
fic for the majority of the devices we tested, it nonethe-
less would lead to mislabeling tra�c for a significant
fraction of devices (12/31).
Using protocols and ports. We determine whether
the IP protocol and port are alone su�cient to
detect tra�c to non-required destinations. The an-
swer is generally no: we find that most non-required
destinations consistently use HTTPS (TCP/443),

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 12

with just the following exceptions: two domains us-
ing HTTP (TCP/80) (fireoscaptiveportal.com and
diagnostics.meethue.com), and ICMP packets sent to
two IP addresses by the Bosiwo camera.

5.6 Experiments with Additional Functions

In the previous analyses, we consider, for each device,
only the main function. We now investigate if the list
of required/non-required destinations changes when we
consider additional functions. To this end, we increase
functionality coverage by testing, in addition to the
main function, at least three additional functions per
device, listed per category in Table 6. We then recreate
the lists of (non)-required destinations as follows: re-
quired destinations are the ones needed by at least one
tested function, while non-required destinations are the
ones that are not needed by any tested functions.

After testing additional functions, we see no
changes in the list of non-required destinations for
devices in all categories except for smart speakers:
all of them contact several additional non-required
destinations when asked for streaming music on
YouTube/Amazon. For example, the Google Home de-
vice contacts 4 additional non-required destinations,
two of which are third parties (googleadservices.com,

googleads.g.doubleclick.net). With respect to re-
quired destinations, only five devices require new des-
tinations to fulfill one of the additional functions: Yi
camera (enable motion), Honeywell thermostat (adjust
the temperature based on the weather), Google Home
(stream music on YouTube), and Echo Dot/Allure
(stream music on Amazon). The lists of destinations
contacted by additional functions in our tests are re-
ported (in parenthesis) in Table 8 in Appendix B.
Takeaways. While testing additional functions, non-
required destinations are unchanged for 90.32% of the
devices, meaning that even if we only test the main func-
tion, we cover the vast majority or non-required desti-
nations. Only five devices have one additional required
destination, which is required and used only for one of
the additional functions, suggesting that it is common
for required destinations to fulfill more than one func-
tion. While streaming content, smart speakers contact
up to 4 non-required destinations and blocking those
destinations does not break any additional functions.2

2 Despite blocking advertisement destinations, there is no

change in advertising behavior.

Category Additional Functions Req. # Non-Req. #
Camera Recording, get clip recordings, enable motion 1 0
Home-automation Schedule, timer, set status,

set temperature, check water level 1 0
Hub Schedule, timer, set status 0 0
Speaker Wikipedia search, google search,

play music on YouTube/Amazon 5 6*
Video Sleeping mode, timer, add to watch list 0 0

Table 6. List of additional tested functions per category and
number of additional required/non-required destinations. Only
the additional function “*playing music on YouTube/Amazon"
triggers additional non-required destinations for smart speakers.

5.7 Similarities with Existing Blocklists

To conclude this section, we determine whether any of
the observed required or non-required destinations ap-
pear on blocklists from prior work. This can help clarify
if any of such lists can be e�ective in also blocking non-
essential IoT tra�c, or if they are likely to break some
IoT functionality. In this analysis we use the blocklists
considered by Varmarken et. al [4], who evaluated the
e�ectiveness of DNS-based blocklists to prevent smart
TVs from accessing advertising and tracking service do-
mains. In particular, they consider the most relevant
blocklists to smart TVs (actively managed), which are
Pi-hole Default [15], the Firebog [16], Mother of all Ad-
Blocking (MoaAB) [17], and StopAd [18].

Table 7 shows the devices having at least one non-
required destination. The table shows that existing
blocklists contain very few of such destinations only for
the most popular devices. Out of the 62 non-required
destinations, the most (i.e., six) are obtained in the
Firebog list. This is not surprising as the Firebog merges
many popular blocklists into a single one. The second
most successful blocklist is the Pi-hole, which blocks
four non-required destinations, the third is MoaAB
blocking two, and the last is StopAd, which does not
contain any of the non-required destinations.

Regarding the presence of required destinations in
existing blocklists, we have not found any, which means
that current popular blocklists should not break the
functionality of the devices we tested.
Takeaways. Most (91%) destinations we have identi-
fied as non-required do not appear on any of the ex-
isting blocklist, making them inadequate for mitigating
non-essential tra�c in the consumer IoT context. This
occurs because existing blocklists primarily target web-
sites and smart TVs, while we consider a broader range
of IoT device categories that use di�erent destinations.

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 13

Device Non-required # Pi-hole Firebog MoAB StopAd

Ca
m

er
a

Bosiwo 2 0 0 0 0
iCSee 4 0 0 0 0
Reolink 1 0 0 0 0
Wansview 6 0 0 0 0
Yi 2 0 0 0 0

H
om

e-
au

to Nest thermostat 1 0 0 0 0
TP-Link Bulb 3 0 0 0 0
TP-Link Plug 3 0 0 0 0
Xiaomi rice 4 0 0 0 0

H
ub Philips 2 0 0 0 0

Samsung 1 0 0 0 0

Sp
ea

ke
r Allure 2 0 0 0 0

Echo Dot 7 1 1 0 0
Google Home 5 0 0 0 0

V
id

eo Fire TV 11 2 3 1 0
Roku TV 8 1 2 1 0
Total 62 4 6 2 0

Table 7. Similarity to existing blocklists. Comparison, by device,
of the total number of non-required destinations with the number
of such destinations that are present in various blocklists.

6 Mitigating Non-essential Tra�c
We answer our last research question by discussing how
to limit IoT information exposure in practice.

6.1 Blocking Strategies

Deny-listing: blocking non-required destinations and

allowing the rest of the tra�c. This strategy only works
under the assumption that non-required destinations
are stable, i.e., they do not change over time. To ver-
ify this, we measured the non-required destinations at
several points in time over six months: May, July, and
October 2020. We then compared the three lists of non-
required destinations and verified that there are no dif-
ferences. This means that the destinations that were
non-required during our first set of experiments were
still contacted and non-required six months later.

For this reason we consider all non-required desti-
nations we encountered so far as stable. Having a vast
majority of stable non-required destinations means that
a deny-listing blocking strategy is feasible because it
does not need frequent updates on its blocklists, with
low risk of allowing non-essential tra�c and/or breaking
the device functionality. The drawback of this approach
is that the possible appearance of new non-required des-
tinations would not be mitigated.
Allow-listing: allowing required destinations and

blocking the rest. The assumption of this strategy is that
required destinations do not change over time. We also
verified this assumption on the same three sets of ex-
periments over six months, noticing that required des-
tinations also do not change.

The stability of required destinations makes an
allow-listing approach also feasible, without breaking
the device functionality. The advantage of this approach
is that it has the highest mitigation potential, since
existing and future non-required destinations will be
blocked, but it also carries the highest risk of break-
ing the functionality of the device since if in the future
a function requires a new destination, it will be blocked
until the list of required destinations is updated.
Choosing a blocking strategy. Based on the con-
siderations above, choosing between a deny-listing and
allow-listing blocking strategy depends on the priority
between functionality and mitigation. We believe that
for the typical home IoT scenario a deny-listing strategy
may be more appropriate, since maintaining functional-
ity is a high priority (and mitigation of newly blockable
destinations can be addressed through periodic blocklist
updates). In critical scenarios where privacy and secu-
rity is a priority over functionality (e.g., enterprise de-
ployments), allow-listing may be the more appropriate.

6.2 Maintenance of Blocklists

IoT systems may change the set of destinations they
contact over time (e.g., via firmware updates or server-
side changes), potentially requiring updating the block-
lists so they remain e�ective. While we did not observe
such a change in six months, this may occur over longer
periods. Since all the steps of our approach are auto-
mated (except for the creation of probe and trigger
scripts, which is manual, but only needed once), the
measurement of (non-)required destinations can be eas-
ily iterated to keep the blocklists updated. To minimize
the risk of triggers/probes failing (e.g., changes in the
device interaction interface), we rely on our probe eval-
uation algorithm (see §4.4), which is run before mea-
suring the destinations. Specifically, if a probe becomes
inaccurate for a function or device, experiments are dis-
abled and the problem is reported so that a human
maintainer knows to update the a�ected trigger/probe
scripts. We anticipate that blocklists and the library
of trigger/probe scripts will be maintained via options
like crowdsourcing or via organizations that conduct our
automated measurements on a regular basis (and share
the outcomes), similar to what happens for blocklists
for web/mobile-app trackers and advertisers.

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 14

IoTrimmer

Auxiliary devices

IoT devices to test
Trigger

and
probe
scripts

Blocking strategy

IoT devices to protect

Creation of the lists (ideally crowdsourced) Blocking unnecessary IoT traffic

IoTrigger
Device-specific

non-required
destinations

Device-specific

required
destinations Firewall

rules

Fig. 8. Design of a blocking system. IoTrigger measures
required/non-required destinations, while IoTrimmer uses them
to block non-essential IoT tra�c by defining firewall rules.

6.3 Design of a Blocking System

To mitigate non-essential IoT tra�c, we propose a
blocking system composed of two components: IoTrig-

ger and IoTrimmer (see Fig. 8). The former runs the
methodology in §3 to produce (non-)required destina-
tion lists, and the latter uses such lists with a blocking
strategy to generate firewall tra�c-blocking rules.
IoTrigger . This component runs on a router providing
connectivity to a set of IoT devices to test. It man-
ages the lifecycle of functionality experiments for each
device, including the invocation of user-provided trigger
and probe scripts, and to finally produce (non-)required
destination lists. To work, IoTrigger needs the IoT de-
vices connected to the same router, the list of their IP
addresses, the scripts to trigger and probe their func-
tions, and any other auxiliary devices (e.g., devices
used by trigger/probes scripts). Given this, IoTrigger

will run the experiment and generate the destinations
lists without any human interaction. We implemented a
command-line prototype of IoTrigger , which includes a
library of probes and triggers scripts that support the
IoT devices we tested. Anyone owning the same IoT
devices, and the proper trigger devices (e.g., Android
phones) can use the IoTrigger prototype to reproduce
our results. For new devices and new functions, new
trigger/probe scripts must be added.
IoTrimmer . This component runs on a router and uses
the destination lists produced by IoTrigger to deter-
mine which destinations to block. IoTrimmer takes as
input these lists, the list of IoT devices (and their IP ad-
dresses) to be protected, and the blocking strategy (for
generating firewall rules). These rules, the final output
of IoTrimmer , are installed in the router to block non-
essential IoT tra�c. We implemented a prototype of
IoTrimmer (Appendix C). It comes preconfigured with
the deny-listing blocking strategy and uses the blocklist
of 62 non-required destinations we found for our set of
31 IoT devices. This IoTrimmer prototype automati-
cally detects devices connected to the IoT network: the
user is provided with a web interface to associate the

detected device with the ones we have analyzed, so the
prototype can automatically apply proper firewall rules.

6.4 E�ectiveness of a Blocking System

E�ectiveness Evaluation. To measure the e�ective-
ness of our blocking system in terms of preserving de-
sired functionality, we run the following test for 7 days
on our 31 IoT devices: we first protect the devices using
IoTrimmer with a deny-listing blocking strategy, then
we use trigger and probe scripts to run their main func-
tions once per day at di�erent hours and check whether
they work. We found all of the 217 function invoca-
tions were successful and thus IoTrimmer is e�ective at
blocking without breaking for the devices we tested.
Risk of allowing non-essential tra�c. Indepen-
dently from the blocking strategy used, our approach
tries to block non-essential tra�c that is produced by
non-required destinations. However, it is possible that
some devices use (or may use in the future, to elude
our blocking strategy, see §7.2) the same destination for
both essential and non-essential tra�c. In this case a fu-
ture improvement of our approach is to look not just at
the destination, but also at other tra�c characteristics
to find more distinguishing features, and then filter the
tra�c based on such features.
Risk of breaking device functionality. Our work is
motivated by the fact that most consumer IoT devices
are relatively simple, o�ering functions that are easy to
test such as changing the state of a light, or asking a
question to a smart speaker. Since we test functionality
similarly to how a generic algorithm is tested, in the
case of complex functionality, we cannot prove that it
works for every possible input (the total correctness of
an algorithm is not decidable). Due to this limitation we
expect cases where complex functionality that has not
been fully tested may break. Unfortunately this is a lim-
itation on most blocking systems (e.g., ad-blockers [19]
preventing a website from loading non-ad content cor-
rectly), which can be partially addressed by increasing
the coverage of the functionality tested to the maximum
possible extent, and refining blocklists accordingly.

7 Discussion
We now discuss implications of our findings and limita-
tions of our approach.

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 15

7.1 Implications

Purpose of non-required destinations. We know
that non-required destinations are not essential for the
main function of the device, but their intended pur-
pose remains an open question, particularly whether
the purpose is benign or malicious. One (optimistic) hy-
pothesis is that they are required for other (i.e., non-

main) functions that we did not test (e.g., for syncing
with a cloud service, checking for a firmware update).
A less optimistic hypothesis is that they are used for
tracking purposes, given that some destinations (e.g.,
partnerad.l.doubleclick.net and netflix.com) are
third parties not related to the device manufacturer.
Privacy considerations. In this work we have seen
that many contacted destinations are not required for
the device to operate. The good news is that the quantity

(number of bytes) of data we have seen sent to the non-
required destinations is very small compared to the rest
of the tra�c, as anything otherwise would be extremely
suspicious. However, even if the amount of data is small,
it is still a concern from a privacy perspective, since it
is still enough to signal the presence of a device and the
functions in use, as shown in previous work [5, 13, 14].
Further, such non-required connections potentially vio-
late the data minimization by design principle of some
privacy regulations such as the GDPR [7].

A related question is whether device manufacturers
reveal the purpose of these connections in their privacy
policies. Unfortunately, many devices’ privacy policies
provide little information about how they use the data
from their customers’ devices [20]. In many cases it is
unclear whether a destination is used by the IoT device
or the mobile app controlling it, and the behavior of
some devices is not consistent with what is stated [21].

7.2 Limitations

The experiments of this work have been executed on
a fixed set of devices, and limited to a subset of their
functions. We do not know if our results extend to other
devices, after future firmware updates to existing de-
vices, or for any additional functions. However, our ini-
tial results are promising, suggesting that our method-
ology covers popular unmodified devices across di�erent
functional categories. We expect that the non-essential
tra�c reported in this study represents a subset of all
such tra�c that our IoT devices generate. As such, our
findings represent a lower-bound of such tra�c, using
an approach that can be automated, i.e., automatically
detecting non-required destinations.

Non-observable functionality. Our approach only
works for device functions that can be tested using
trigger and probe scripts. Some functions cannot be
triggered (e.g., device maintenance or synchronization
tasks); to allow such functions as needed, one can pe-
riodically restart the device and unblock previously
flagged non-required destinations temporarily to allow
the maintenance connections to proceed.
Firmware updates. While firmware updates are im-
portant for adding features and security patches to
IoT devices, they may also introduce unwanted behav-
ior [22]. We believe it should be up to the user to de-
cide whether to allow or block these updates. By de-
fault our approach can block firmware updates if the
corresponding destination(s) are not used for any es-
sential function. If a user chooses to allow firmware up-
dates while blocking non-essential tra�c, the following
strategies may be used. For unattended updates, we can
use the “non-observable functionality” approach (e.g.,
restart the device while keeping destinations unblocked
for a set period of time). For user-initiated updates, we
can treat them as a device function, and use a dedicated
set of trigger/probe scripts to detect what destinations
are used by the firmware update function. Another ap-
proach is to allow tra�c matching patterns that reveal
the firmware update intention (e.g., destinations con-
taining strings such as “fwupdate”).
Scalability. Every step of our approach is fully au-
tomated, including the execution of probe and trigger
scripts, with each function to be tested taking an av-
erage of 4 minutes and easily repeatable to allow fre-
quent crowdsourced updates. However, the creation of
such scripts is a manual process that has to be repeated
once for every function tested for each device. A mitigat-
ing factor is that devices belonging to similar categories
may reuse existing scripts with little modifications (e.g.,
a simple change of tap coordinates for companion app
triggers, and of screenshots for companion app probes).
Although not observed in the six months of our study,
it is possible that trigger and probe scripts stop working
and need to be manually modified when device function-
ality changes substantially (e.g., via firmware updates).
We can identify such cases by periodically running our
automated probe evaluation algorithm (see §4.4).
Blocking granularity. Our approach focuses on
destination-based blocking to reduce information expo-
sure; however, other factors may be used to identify
tra�c that should be blocked, e.g., time of day, tra�c
volumes, device-to-device communication. One advan-
tage of only considering destinations is that it is easy to
automatically measure, and easy to block using simple

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 16

firewall rules, without the need of fine-grained enforce-
ment mechanisms that may not be readily deployable
and may incur heavy overhead at runtime.
Evading blocklists. To evade the blocklists a device
can disable its functionality when any of its destina-
tions are unreachable. This limitation also exists in anti-
tracking browser plugins, where a website is not allowed
to load until anti-tracking software is disabled [23].
There is no simple defense against this evasion tech-
nique, but our approach can still block any non-required
destinations where a device does not try to evade block-
ing, e.g., destinations used by third-party apps.
Third-party apps. Some devices include pre-installed
third-party apps (e.g., Netflix on video devices). In
such cases, background tra�c or content previewed on
a menu screen may be considered required or non-
required depending on whether the device owner wishes
to use those apps. A limitation of our work is that we
cannot know whether to block or allow the tra�c for
third-party apps without user input about which apps
are required to work. As an example, we found that
netflix.com was identified as non-required by default
in our approach because it is not necessary for the menu
screen to work. For users that subscribe to Netflix, we
can include results from testing the Netflix app on the
device and treat corresponding destinations as required.
Working with MUD profiles. Manufacturer Usage
Description (MUD) profiles [24, 25] allow manufacturers
to declare the behavior of their devices (including the
destinations contacted). None of the devices we tested
implements MUD profiles. However, even if a destina-
tion is declared in the future, a MUD profile does not
help to determine if such destination is used for essential
tra�c only. Hence, our approach is orthogonal to MUD
profile enforcement and can work side-by-side with it.

8 Related Work
Recent research has produced a number of tools to pro-
tect against undesirable IoT tra�c. Haar and Buch-
mann presented FANE [26], a firewall that isolates IoT
devices into a separate network. FANE allows commu-
nication only with the learned set of IPs. If a device
contacts a new IP address, the user is alarmed. FANE
does not support blocking destinations based on domain
names. Simpson et al. [27] focus on protecting IoT de-
vices against known vulnerabilities and automatically
blocking tra�c when a threat is identified. Gupta et

al. [28] propose a firewall based on a Raspberry Pi with

simple iptables rules to protect the devices from po-
tential attacks. Heimdall [29] focuses on protecting de-
vices against hacks from the Internet using a pre-learned
allow-list. Lastdrager et al. [30] describe SPIN, a soft-
ware tool for visualizing and blocking tra�c from IoT
devices. None of these solutions focus on mitigating in-
formation exposure nor blocking connections without
breaking device functionality.

Numerous commercial tools provide solutions to
protect networks with IoT devices, e.g., ShieldIOT [31],
Fing [32], and Bitdefender [33]. These approaches either
rely on cloud-based analysis of network tra�c, target
device manufacturers rather than device users, block or
allow the device as a whole, monitor the overall amount
of IoT tra�c generated, or protect against known vul-
nerabilities and attacks from the Internet. IoTrimmer

allows fine-grained control over destinations contacted
by the devices and protects users privacy by blocking
the unnecessary tra�c generated by IoT devices.

There are a number of existing tools for IoT privacy
risk analysis. For example, IoT Inspector [34] collects
smart home tra�c using ARP spoofing. However, this
tool focuses on the collection of data, rather than its
analysis or the blocking of non-essential tra�c. A re-
cent study [2] of 81 consumer IoT devices shows that
many IoT devices expose information to first, support,
and third parties. Additional research uses tra�c gen-
erated by the IoT devices to identify devices or device
activities [5, 13, 14, 35–39]. Because IoTrimmer can re-
duce the number of destinations contacted by IoT de-
vices, it reduces the attack surface and can prevent an
eavesdropper to identify users device or activity.

Two recent IoT papers focus on strategies for de-
fending user privacy against potential eavesdroppers
(e.g., ISP). Apthorpe et al. [40] propose generating ad-
ditional dummy network tra�c that hides genuine IoT
device network tra�c patterns from an observer, and
Alshehri et al. [41] proposes a similar approach using
uniform random noise. In contrast, our approach focuses
on protecting users’ privacy from legitimate destinations
that the IoT devices communicate with, not against po-
tential eavesdroppers. However, our approach can be in-
tegrated with the above work to enhance user privacy
against potential eavesdroppers.

9 Conclusion
This paper demonstrated that it is feasible and e�ective
to block non-essential network tra�c from IoT devices,

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 17

thus limiting the information they expose to other par-
ties without breaking device functionality. We developed
the first comprehensive method to automatically iden-
tify non-required destinations from network tra�c, and
analyzed the results of the corresponding experiments.

We found that 16 of the 31 consumer IoT devices
in our study contact destinations that are not required
to fulfill their main functions. Most destinations (62
out of 119) are responsible for non-essential tra�c,
and such non-required destinations are relatively long-
lasting in our study— they did not change at all over
six months. The vast majority (91%) of destinations re-
sponsible for non-essential tra�c are not listed in any
other general blocklist, demonstrating the benefits of
our device-dependent approach. Finally, we produced a
set of guidelines and a prototype of a blocking system
to mitigate non-essential IoT tra�c.

To support further research, all software and data
we produced as part of this work are publicly available
at http://iotrim.net/.

10 Acknowledgments
We thank the anonymous reviewers for their construc-
tive feedback. The research in this paper was partially
supported by the EPSRC (Databox EP/N028260/1,
DADA EP/R03351X/1, HDI EP/R045178/1, and Im-
pact Acceleration Account (IAA)), NSF (BehavIoT
CNS-1909020, ProperData SaTC-1955227) and Con-
sumer Reports (Digital Lab Fellowship for Daniel J.
Dubois).

References
[1] IoT Analytics. IoT 2019 in review: The 10 most relevant IoT

developments of the year. https://iot-analytics.com/

iot-2019-in-review/. [Online; accessed Nov. 2020].
[2] Jingjing Ren, Daniel J. Dubois, David Cho�nes, Anna Maria

Mandalari, Roman Kolcun, and Hamed Haddadi. Infor-
mation exposure from consumer IoT devices: A multidi-
mensional, network-informed measurement approach. In
Proceedings of the Internet Measurement Conference, 2019.

[3] Hooman Mohajeri Moghaddam, Gunes Acar, Ben Burgess,
Arunesh Mathur, Danny Yuxing Huang, Nick Feamster,
Edward W. Felten, Prateek Mittal, and Arvind Narayanan.
Watching you watch: The tracking ecosystem of over-the-
top TV streaming devices. In CCS’19, 2019.

[4] Janus Varmarken, Hieu Le, Anastasia Shuba, Athina
Markopoulou, and Zubair Shafiq. The TV is smart and full
of trackers: Measuring smart TV advertising and tracking.
PETS’20, 2020(2):129–154, 2020.

[5] Said Jawad Saidi, Anna Maria Mandalari, Roman Kolcun,
Hamed Haddadi, Daniel J Dubois, David Cho�nes, Geor-
gios Smaragdakis, and Anja Feldmann. A haystack full of
needles: Scalable detection of IoT devices in the wild. In
IMC’20, pages 87–100, 2020.

[6] Pi-Hole: A black hole for Internet advertisements. https:

//pi-hole.net/. [Online; accessed Nov. 2020].
[7] ico. Principle (c): Data minimisation. https://ico.org.uk/

for-organisations/guide-to-data-protection/guide-

to-the-general-data-protection-regulation-gdpr/

principles/data-minimisation/. [Online; accessed Nov.
2020].

[8] ico. Principle (b): Purpose limitation. https://ico.org.uk/

for-organisations/guide-to-data-protection/guide-

to-the-general-data-protection-regulation-gdpr/

principles/purpose-limitation/. [Online; accessed Mar.
2021].

[9] IFTTT, Inc. IFTTT helps every thing work better together.
https://ifttt.com. [Online; accessed Mar. 2021].

[10] SmartThings, Inc. SmartThings: One simple home system.
A world of possibilities. https://www.smartthings.com.
[Online; accessed Mar. 2021].

[11] Roku Inc. Roku Developer Documentation: Development
Environment Overview. https://sdkdocs.roku.com/

display/sdkdoc/Development+Environment+Overview.
[Online; accessed Feb. 2021].

[12] Amazon.com Inc. Developer Tools Menu (Fire TV). https:

//developer.amazon.com/docs/fire-tv/developer-

tools.html. [Online; accessed Feb. 2021].
[13] Rahmadi Trimananda, Janus Varmarken, Athina

Markopoulou, and Brian Demsky. Packet-level signatures
for smart home device events. In NDSS’20, 2020.

[14] Abbas Acar, Hossein Fereidooni, Tigist Abera, Amit Ku-
mar Sikder, Markus Miettinen, Hidayet Aksu, Mauro Conti,
Ahmad-Reza Sadeghi, and Selcuk Uluagac. Peek-a-Boo: I
see your smart home activities, even encrypted! In WiSec’20,
page 207–218, 2020.

[15] Pi-Hole LLC Blocking Mode. https://docs.pi-hole.net/

ftldns/blockingmode. [Online; accessed Nov. 2020].
[16] WaLLy3K. The big blocklist collection. https://firebog.

net. [Online; accessed Nov. 2020].
[17] Mother of All AD-BLOCKING. The big blocklist collection.

https://forum.xda-developers.com/showthread.php?t=

1916098. [Online; accessed Nov. 2020].
[18] Kromtech Alliance Corp. Stopad for TV. https://stopad.

io/. [Online; accessed Nov. 2020].
[19] Ashish Kumar Singh and V. Potdar. Blocking online ad-

vertising - a state of the art. In 2009 IEEE International

Conference on Industrial Technology, pages 1–10, Feb 2009.
[20] Consumer Reports. Home security cameras from top

brands lack basic digital security measures. https:

//www.consumerreports.org/wireless-security-

cameras/home-security-cameras-from-top-brands-

lack-basic-digital-security-measures/. [Online; ac-
cessed Nov. 2020].

[21] Alanoud Subahi and George Theodorakopoulos. Ensuring
compliance of IoT devices with their privacy policy agree-
ment. In FiCloud’18, pages 100–107. IEEE, 2018.

[22] Chris Welch. I guess I have to watch ads everywhere on my
$1,500 LG TV now. https://www.theverge.com/tldr/

http://iotrim.net/
https://iot-analytics.com/iot-2019-in-review/
https://iot-analytics.com/iot-2019-in-review/
https://pi-hole.net/
https://pi-hole.net/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/data-minimisation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/purpose-limitation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/purpose-limitation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/purpose-limitation/
https://ico.org.uk/for-organisations/guide-to-data-protection/guide-to-the-general-data-protection-regulation-gdpr/principles/purpose-limitation/
https://ifttt.com
https://www.smartthings.com
https://sdkdocs.roku.com/display/%20sdkdoc/Development+Environment+Overview
https://sdkdocs.roku.com/display/%20sdkdoc/Development+Environment+Overview
https://developer.amazon.com/docs/fire-tv/developer-tools.html
https://developer.amazon.com/docs/fire-tv/developer-tools.html
https://developer.amazon.com/docs/fire-tv/developer-tools.html
https://docs.pi-hole.net/ftldns/blockingmode
https://docs.pi-hole.net/ftldns/blockingmode
https://firebog.net
https://firebog.net
https://forum.xda-developers.com/showthread.php?t=1916098
https://forum.xda-developers.com/showthread.php?t=1916098
https://stopad.io/
https://stopad.io/
https://www.consumerreports.org/wireless-security-cameras/home-security-cameras-from-top-brands-lack-basic-digital-security-measures/
https://www.consumerreports.org/wireless-security-cameras/home-security-cameras-from-top-brands-lack-basic-digital-security-measures/
https://www.consumerreports.org/wireless-security-cameras/home-security-cameras-from-top-brands-lack-basic-digital-security-measures/
https://www.consumerreports.org/wireless-security-cameras/home-security-cameras-from-top-brands-lack-basic-digital-security-measures/
https://www.theverge.com/tldr/2021/3/10/22323790/lg-oled-tv-commercials-content-store

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 18

2021/3/10/22323790/lg-oled-tv-commercials-content-

store. [Online; accessed Mar. 2021].
[23] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed,

Narseo Vallina-Rodriguez, Marjan Falahrastegar, Julia E
Powles, Emiliano De Cristofaro, Hamed Haddadi, and
Steven J Murdoch. Adblocking and counter blocking: A
slice of the arms race. In 6th USENIX Workshop on Free

and Open Communications on the Internet (FOCI 16), 2016.
[24] E. Lear, R. Droms, and D. Romascanu. RFC 8520: Manu-

facturer usage description specification, 2019.
[25] A. Hamza, D. Ranathunga, H. H. Gharakheili, M. Roughan,

and V. Sivaraman. Clear as MUD: Generating, validating
and applying IoT behavioral profiles. In SIGCOMM ’18

Workshop on IoT S&P, 2018.
[26] C. Haar and E. Buchmann. FANE: A firewall appliance for

the smart home. In FedCSIS ’19, pages 449–458, 2019.
[27] A. K. Simpson, F. Roesner, and T. Kohno. Securing vulner-

able home IoT devices with an in-hub security manager. In
PerCom ’17 Workshops, pages 551–556, 2017.

[28] N. Gupta, V. Naik, and S. Sengupta. A firewall for internet
of things. In 2017 9th International Conference on Com-

munication Systems and Networks (COMSNETS), pages
411–412, 2017.

[29] J. Habibi, D. Midi, A. Mudgerikar, and E. Bertino. Heim-
dall: Mitigating the internet of insecure things. IEEE Inter-

net of Things Journal, 4(4):968–978, 2017.
[30] E. Lastdrager, C. Hesselman, J. Jansen, and M. Davids.

Protecting home networks from insecure IoT devices. In
NOMS 2020, pages 1–6, 2020.

[31] ShieldIOT. https://shieldiot.io/. [Online; accessed Nov.
2020].

[32] Fingbox. https://www.fing.com/. [Online; accessed Nov.
2020].

[33] Bitdefender. https://www.bitdefender.com/iot/. [Online;
accessed Nov. 2020].

[34] Danny Yuxing Huang, Noah Apthorpe, Frank Li, Gunes
Acar, and Nick Feamster. IoT inspector: Crowdsourcing
labeled network tra�c from smart home devices at scale.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.,
4(2), June 2020.

[35] Noah Apthorpe, Dillon Reisman, and Nick Feamster. A
smart home is no castle: Privacy vulnerabilities of encrypted
IoT tra�c. DAT’16, 2016.

[36] Hamid Tahaei, Firdaus Afifi, Adeleh Asemi, Faiz Zaki, and
Nor Badrul Anuar. The rise of tra�c classification in IoT
networks: A survey. Journal of Network and Computer Ap-

plications, 154:102538, 2020.
[37] Yair Meidan, Michael Bohadana, Asaf Shabtai, Juan David

Guarnizo, Martín Ochoa, Nils Ole Tippenhauer, and Yuval
Elovici. ProfilIoT: A machine learning approach for IoT
device identification based on network tra�c analysis. In
SAC ’17, pages 506–509, 2017.

[38] M. Miettinen, S. Marchal, I. Hafeez, N. Asokan, A. Sadeghi,
and S. Tarkoma. IoT SENTINEL: Automated device-type
identification for security enforcement in IoT. In ICDCS’17,
pages 2177–2184, 2017.

[39] I. Hafeez, M. Antikainen, A. Y. Ding, and S. Tarkoma. IoT-
KEEPER: Detecting malicious IoT network activity using
online tra�c analysis at the edge. IEEE Transactions on

Network and Service Management, 17(1):45–59, 2020.

[40] Noah Apthorpe, Danny Yuxing Huang, Dillon Reisman,
Arvind Narayanan, and Nick Feamster. Keeping the smart
home private with smart(er) IoT tra�c shaping. PETS,
2019(3):128 – 148, 2019.

[41] Ahmed Alshehri, Jacob Granley, and Chuan Yue. Attacking
and protecting tunneled tra�c of smart home devices. In
CODASPY ’20, page 259–270, 2020.

A Grouping Ephemeral
Destinations

During our destination-observing experiments (see
§3.3), some devices contact destinations that appear in
less than 80% of the experiment iterations. We refer
to such destinations as ephemeral destinations. To fa-
cilitate analysis and streamline blocklists, we developed
two algorithms to automatically group ephemeral desti-
nations into specific groups that cover ephemeral desti-
nations in at least 80% of the iterations. One algorithm
is for ephemeral hostname destinations and the other
for ephemeral IP destinations.
Grouping hostname destinations. When a host-
name is ephemeral (i.e., it appears in less than 80% of
the iterations), we remove the first character from the
domain name and replace it with a wildcard matching
any number of characters (zero or more). If the result-
ing group matches domains in at least 80% of the iter-
ations, we consider such group as a new hostname des-
tination (and remove all the matching hostnames from
the list of destinations). If not, we repeat the process
recursively by replacing additional characters with the
wildcard up to the entire second-level domain. For ex-
ample, ephemeral domains 1.yy.com and 2.yy.com are
replaced by the group *.yy.com, which also happens to
be the entire second-level domain.

Note that our algorithm is also capable of finding
groups that are more specific than second-level domains.
For example, ephemeral domains a-b-c.ww.com and
b-b-c.ww.com are replaced by the group *-b-c.ww.com,
which is more specific than a second-level domain.

Across all our destination-observing exper-
iments, we have found three groups matching
ephemeral hostname destinations (*.backblaze.com,
*.cloudfront.net, *.googlevideo.com), which also
happen to be second-level domain names, since there
were no more specific alternatives. We have found no
cases of ephemeral hostname destinations that could
not be matches by one of the three groups above.

https://www.theverge.com/tldr/2021/3/10/22323790/lg-oled-tv-commercials-content-store
https://www.theverge.com/tldr/2021/3/10/22323790/lg-oled-tv-commercials-content-store
https://shieldiot.io/
https://www.fing.com/
https://www.bitdefender.com/iot/

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 19

Grouping IP destinations. When an IP address is
ephemeral (i.e., it appears in less than 80% of the iter-
ations), we perform a WHOIS query to get the IP mask
that includes such IP address. If such IP mask matches
an ephemeral IP in at least 80% of the iterations, we
consider such IP mask as a destination (and remove all
the matching IPs from the list of destinations). For ex-
ample, if we have two ephemeral IPs 1.2.3.4 and 1.2.4.5,
and for both of them we obtain a matching mask from
WHOIS that is 1.2.0.0/16, we would use 1.2.0.0/16 as
the grouped destination.

Across all our destination-observing experiments,
we have found no cases of ephemeral IP addresses, and
therefore we have no IP destination groups. Still, should
that happen in the future, this algorithm would be able
to deal with such cases.

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 20

B List of Required and
Non-required Destinations

In this appendix we report, for each device, the list of
required and non-required destinations. This is the data
we used to produce part of the analyses in §5.

From Table 8, we can confirm that 16 out of 31

devices contact at least one non-required destination. In
general, the number of non-required destinations tend
to be larger than the number of required ones.

We believe this information, together with the
IoTrigger and the IoTrimmer software available at
http://iotrim.net/, to be valuable for researchers, de-
vice manufacturers, and regulators to support and re-
produce our findings.

Device Dest. # List of Required Destinations List of Non-Required Destinations

Ca
m

er
a

Blink 2 rest-hw-prde.immedia-semi.com, cs-prde.immedia-semi.com
Bosiwo 4 145.239.253.48, 37.187.159.39 54.157.82.107, 210.72.145.44
iCSee 6 47.91.198.64, 47.91.207.52 47.52.222.172, 47.52.32.118, api.gdxp.com, oss-us-west-

1.aliyuncs.com
Reolink 2 p2p.reolink.com pushx.reolink.com
Wansview 9 cam-gw-isc-eu02.ajcloud.net, cam-tunnel-isc-eu02.ajcloud.net, fw-

isc.ajcloud.net
159.65.95.225, 3.122.229.130 , ajcloud.net, htpdate.ajcloud.net,
sdc-isc.ajcloud.net, *.backblaze.com

Yi 5 (1) 47.74.255.9, 47.88.59.209, 47.90.240.160, (motiondetection-
eu.oss-eu-central-1.aliyuncs.com)

api.eu.xiaoyi.com, log.eu.xiaoyi.com

H
om

e-
au

to
m

at
io

n

App Kettle 2 ak.myappkettle.com, query.jingxuncloud.com
Honeywell therm. 2 (1) ihsu-prod-bl-003.cloudapp.net,lcc-prodsf-

fwu.eastus.cloudapp.azure.com, (weather.clouddevice.io)
Magichome 1 ra8816us.magichue.net
Meross opener 1 iot.meross.com
Nest thermostat 3 transport.home.nest.com, logsink.devices.nest.com frontdoor.nest.com
Netatmo weather 1 netcom.netatmo.net
Smarter co�ee 1 prd19a.boxen.electricimp.com
Smartlife bulb 1 a.tuyaeu.com
Smartlife remote 1 a.tuyaeu.com
Sousvide 1 pc.anovaculinary.com
Switchbot 1 a2alhn2dfztqv9.iot.us-east-1.amazonaws.com
TP-Link bulb 4 n-devs.tplinkcloud.com euw1-api.tplinkra.com, n-deventry.tplinkcloud.com, use1-

api.tplinkra.com
TP-Link plug 4 n-devs.tplinkcloud.com euw1-api.tplinkra.com, n-deventry.tplinkcloud.com, use1-

api.tplinkra.com
Wemo plug 2 api.xbcs.net, nat.xbcs.net
Xiaomi rice-cooker 7 mi.com, ot.io.mi.com, 120.92.65.243 183.84.5.203, 58.83.160.36, 123.125.102.215, 110.43.0.83

H
ub

Insteon 1 lb-connect-insteon-com-503033429.us-east-1.elb.amazonaws.com
Lightify 3 srm-emea-p01-lb02.arrayent.com, 35.157.95.104, 35.159.20.196
Philips 4 dcp.dc1.philips.com, ws.meethue.com diagnostics.meethue.com, ecdinterface.philips.com
Samsung 3 api.smartthings.com, dc.CoNnect.SMaRTThInGs.cOm fw-update2.smartthings.com
Sengled 2 eu.cloud.sengled.com, 18.195.119.104

Sp
ea

ke
r

Allure 3 (3) bob-dispatch-prod-eu.amazon.com, (m.media-amazon.com,
tinytts.amazon.com)

api.amazon.com, d1enchupjctwud.cloudfront.net,
(msh.amazon.com)

Echo Dot 10 (3) api.amazon.com, bob-dispatch-prod-eu.amazon.com, un-
agi.amazon.com, (m.media-amazon.com, tinytts.amazon.com)

arcus-uswest.amazon.com, *.cloudfront.net, device-metrics-
us.amazon.com, dp-gw.amazon.com, fireoscaptivepor-
tal.com, prod.amcs-tachyon.com , s3-1-w.amazonaws.com,
(msh.amazon.com)

Google Home 9 (5) connectivitycheck.gstatic.com, home-devices.googleapis.com,
play.googleapis.com, www.google.com, (*knez.googlevideo.com)

youtube-ui.l.google.com, clientservices.googleapis.com,
fcm.googleapis.com, *.googlevideo.com, stor-
age.googleapis.com, (tools.google.com, www.youtube.com,
www.googleadservices.com, googleads.g.doubleclick.net)

V
id

eo

Fire TV 14 api.amazon.com, unagi-eu.amazon.com, youtube.com aax-eu.amazon-adsystem.com, arcus-uswest.amazon.com,
bob-dispatch-prod-eu.amazon.com, *.cloudfront.net, device-
metrics-us.amazon.com, api.amazon.com, ktpx-eu.amazon.com,
api-global.eu-west-1.prodaa.netflix.com, mas-ext-eu.amazon.com,
mas-sdk.amazon.com, msh.amazon.com

Roku TV 10 api.sr.roku.com, youtube.com api-global.eu-west-1.prodaa.netflix.com, con-
figsvc.cs.roku.com, cooper.logs.roku.com,
customerevents.eu-west-1.prodaa.netflix.com,
ichnaea.eu-west-1.prodaa.netflix.com, partnerad.l.doubleclick.net,
scribe.logs.roku.com, uiboot.eu-west-1.prodaa.netflix.com

Total 31 119 (13) 57 (7) 62 (6)

Table 8. Required and non-required destinations per device. Colors identify the destination party type (see §5.2): first party,
support party , and third party. In parenthesis the additional destinations for the additional functions. Only “playing music on
YouTube/Amazon" triggers additional non-required destinations for smart speakers.

http://iotrim.net/

Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Tra�c 21

C IoTrimmer Prototype
We have implemented a prototype version of IoTrim-

mer . Fig. 9 shows its web interface. When a new device
is connected to IoTrimmer its MAC address appears on
the list.

Fig. 9. Prototype implementation of IoTrimmer .

The user then chooses which device is connected to
IoTrimmer . The blocklist (IoTrim) is regularly updated
from the Internet and automatically applied to all con-
nected devices. Users can click on a device to display
the list of blocked destinations.

	Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Traffic
	1 Introduction
	2 Assumptions and Goals
	2.1 Assumptions and Definitions
	2.2 Goals
	2.3 Non-Goals

	3 Methodology
	3.1 Testbed
	3.1.1 Router
	3.1.2 Support Scripts

	3.2 Functionality Experiments
	3.3 Building the List of Destinations
	3.4 Determining Required Destinations

	4 IoT Devices
	4.1 List of Devices and Tested Functions
	4.2 Specialized Device Triggers
	4.3 Specialized Device Probes
	4.4 Probes Evaluation

	5 Identifying Non-essential Traffic
	5.1 Impact of Device Category
	5.2 Impact of Destination Party Type
	5.3 Device-dependent Non-required Destinations
	5.4 Common Non-required Destinations
	5.5 Impact of SLDs, Protocols, and Ports
	5.6 Experiments with Additional Functions
	5.7 Similarities with Existing Blocklists

	6 Mitigating Non-essential Traffic
	6.1 Blocking Strategies
	6.2 Maintenance of Blocklists
	6.3 Design of a Blocking System
	6.4 Effectiveness of a Blocking System

	7 Discussion
	7.1 Implications
	7.2 Limitations

	8 Related Work
	9 Conclusion
	10 Acknowledgments
	A Grouping Ephemeral Destinations
	B List of Required and Non-required Destinations
	C IoTrimmer Prototype

