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ABSTRACT
Consumer Internet of Things (IoT) devices are extremely popular,
providing users with rich and diverse functionalities, from voice
assistants to home appliances. These functionalities often comewith
signi"cant privacy and security risks, with notable recent large-
scale coordinated global attacks disrupting large service providers.
Thus, an important "rst step to address these risks is to know what
IoT devices are where in a network. While some limited solutions
exist, a key question is whether device discovery can be done by
Internet service providers that only see sampled #ow statistics. In
particular, it is challenging for an ISP to e$ciently and e!ectively
track and trace activity from IoT devices deployed by its millions
of subscribers—all with sampled network data.

In this paper, we develop and evaluate a scalable methodology
to accurately detect and monitor IoT devices at subscriber lines
with limited, highly sampled data in-the-wild. Our "ndings indi-
cate that millions of IoT devices are detectable and identi"able
within hours, both at a major ISP as well as an IXP, using passive,
sparsely sampled network #ow headers. Our methodology is able
to detect devices from more than 77% of the studied IoT manufac-
turers, including popular devices such as smart speakers. While our
methodology is e!ective for providing network analytics, it also
highlights signi"cant privacy consequences.

CCS CONCEPTS
• Security and privacy→ Network security; • Networks→ Net-
work monitoring; Public Internet; Network measurement;
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1 INTRODUCTION
The number of IoT devices deployed within homes is increasing
rapidly. It is estimated that at the end of 2019, more than 9.5 billion
IoT devices were active, and the IoT population will increase to 20
billion by 2025 [1]. Such devices include virtual assistants, smart
home control, cameras, and smart TVs. While users deploy some
IoT devices explicitly, they are often unaware of the security threats
and privacy consequences of using such devices [2]. Major Internet
Service Providers (ISPs) are developing strategies for dealing with
the large-scale coordinated attacks from these devices.

Existing solutions focus on instrumenting testbeds or home en-
vironments to collect and analyze full packet captures [3–5], lo-
cal search for IoT anomalies [6, 7], active measurements [8, 9], or
data from antivirus companies running scan campaigns from users
homes [7]. In isolation, these data sources do not provide enough
insights for preventing network-wide attacks from IoT devices [10].
Detecting IoT devices from an ISP can help to identify suspicious
tra$c and what devices are common among the subscriber lines
generating that tra$c.

In this paper, we present a methodology for detecting home IoT
devices in-the-wild at an ISP, and an Internet Exchange Point (IXP),
by relying on passive, sampled network traces and active probing
experiments. We build on the insight that IoT devices typically
rely on backend infrastructure hosted on the cloud to o!er their
services. While contacting such infrastructure, they expose infor-
mation, including their tra$c destinations, even when a device is
not in use [4]. One of the challenges of detecting IoT devices at
scale is the poor availability and low granularity of data sources.
The available data is often in the form of centrally-collected aggre-
gate and sampled data (e.g., NetFlow [11], IPFIX traces [12]). Thus,
we need a methodology that (a) does not rely on payload and (b)
handles sparsely sampled data.
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Another challenge is tra!c patterns diversity, across IoT devices
and their services.1 We note that some devices, e.g., cameras, will
generate signi"cant continuous tra$c; others, e.g., plugs, can be
expected to be mainly passive unless used. Moreover, many devices
o!er the same service, e.g., the Alexa voice assistant [13] is available
on several brands of smart speakers as well as on Amazon Fire
TV devices. Here, the tra$c patterns may depend on the service
rather than the speci"c IoT device. Some services rely on dedicated
backend infrastructures, while others may use shared ones, e.g.,
CDNs. Thus, we need a methodology that identi"es which IoT
services are detectable from the tra$c and then identi"es a unique
tra$c pattern for each IoT device and associated services.

Our key insight is that we can address these challenges by fo-
cusing our analysis only on the types of destinations contacted by
IoT devices. Even with sparsely sampled data, the set of servers
contacted by an IoT device over time can form a reasonably unique
signature that is revealed in as little as a few hours. However, this
approach has limitations, for example we cannot use it to detect
devices or services that use a shared infrastructure with unrelated
services (e.g., CDNs).

To understand the detectability of IoT devices in the above-
mentioned environment, we focus on the possible communication
patterns of end-user IoT services and the types of destinations they
contact. Figure 1 shows three possible communication patterns on
top of a typical network topology. This includes three households,
an ISP, as well as a dedicated infrastructure and a CDN that hosts
multiple servers. Device A is deployed by two subscribers, and only
contacts one server in the dedicated infrastructure. Device B is de-
ployed by a single subscriber and contacts both a dedicated server,
as well as a CDN server. Device C is deployed by two subscribers
and contacts only CDN servers. We observe that, using NetFlow
traces at the ISP edge, it is possible to identify subscriber lines host-
ing devices of type A and B. Devices of type C are harder to detect
given the sampling rates and header-only nature of NetFlow.

In this paper, we use a unique testbed and dataset to build a
methodology for detecting and monitoring IoT devices at scale (see
Figure 2). We "rst use controlled experiments, where we tunnel the
tra$c of two IoT testbeds with 96 IoT devices to an ISP. This pro-
vides us with ground truth IoT tra$c within this ISP (Section 2). We
con"rm the visibility of the ground truth IoT tra$c using the Net-
Flow ISP data (Section 3). Next, we identify backend infrastructures
for many IoT services, from the observed ISP IoT tra$c (Section 4).
We augment this base information with data from DNS queries,
web certi"cates, and banners. Next, we use the tra$c signatures to
identify broadband subscriber lines using IoT services at the ISP,
as well as an IXP (Section 6). Finally, we discuss our results, their
signi"cance, and limitations in Section 7, related work (Section 8),
and conclude with a summary in Section 9.

Our main contributions are as follows:
• We develop a methodology for identifying IoT devices, by classi-
fying domains and IP addresses of the backend infrastructure. To
this end we derive distinct signatures, in terms of IP/domain/port
destinations, to recognize IoT devices. With our signatures we

1Here we refer to IoT services as the set of protocols and destinations that are part of
the operations of an IoT device.

ISP
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Figure 1: Simpli!ed IoT communication patterns.

were able to recognize the presence of devices from 31 out of 40
manufacturers in our testbed.2

• We show that it is possible to detect the presence of IoT devices
at subscriber lines, using sparsely sampled #ow captures from
a large residential ISP, and a major IXP, even if the device is
idle, i.e., not in active use. Speci"cally, we were able to recognize
that 20% of 15 million subscriber lines used at least one of the 56
di!erent IoT products in our testbed.

• We highlight that our technique scales, is accurate, and can iden-
tify millions of IoT devices within minutes, in a non-intrusive
way from passive, sampled data. In the case of the ISP, we were
able to detect the presence of devices from 72% of our target
manufacturers within 1 hour, sometimes minutes.

Based on our "ndings, we also discuss why some IoT devices are
faster to detect, how to hide an IoT service, as well as how the
detectability can be used to improve IoT services and network
troubleshooting.

2 IOT – CONTROLLED EXPERIMENTS
We need ground truth tra$c from IoT devices, as observed both in a
testbed and in the wild, for developing and testing our methodology.
In this section, we describe our data collection strategy (see point

1 of Figure 2).

2.1 Network Setting
We utilize two vantage points, namely a large European ISP, and a
major European IXP.
ISP (ISP-VP). The ISP is a large residential ISP that o!ers Internet
services to over 15 million broadband subscriber lines. The ISP uses
NetFlow [11] to monitor the tra$c #ows at all border routers in
its network, using a consistent sampling rate across all routers.
Figure 3 shows where NetFlow data is collected.
IXP (IXP-VP). The IXP facilitates tra$c exchange between its
members. At this point, it has more than 800 members, including
international, with peak tra$c exceeding 8 Tbps. The IXP uses
IPFIX [12] to collect tra$c data across its switching fabric at a
consistent sampling rate, which is an order of magnitude lower
than the one used at the ISP. Figure 4 illustrates where the IPFIX
data is collected.

2To foster further research in the area of IoT privacy and security, we make all the
signatures available at https://moniotrlab.ccis.neu.edu/imc20/
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Ethical considerations ISP/IXP.Neither the ISP nor the IXP #ow
data contain any payload data, thus no user information. We distin-
guish user IPs from server IPs and anonymize by hashing all user
IPs, following the method described in [5]. The address space of
the ISP residential users is known. We call an IP a server IP if it
receives or transmits tra$c on well-known ports or if it belongs to
ASes of cloud or CDN providers. The ports include, e.g., web ports
(80, 443, 8080), NTP (123), DNS (53). Moreover, we do not have any
speci"c user activity and can only access and report aggregated
statistics in accordance with the policies of the ISP and IXP.
Subscriber line (Home-VP) Network setup. In order to ingest
ground truth tra$c into the network, we need privileged access to
a home subscriber line. For this, we use the ISP-VP, but rather than
deploying all IoT devices directly within the home, we placed a
VPN endpoint with an IP out of the /28 subscriber’s pre"x and used
it to ingest IoT tra$c tunneled to the server from two IoT testbeds,
one in Europe, one in the US, see Figure 3. The measurement points
within the ISP will also capture this tra$c. We simply excluded this
tra$c from our dataset, as the VPN tunnel endpoints are known
to us and for each experiment we use the default DNS server for
the ISP. Importantly, since the /28 pre"x is used explicitly for our
experiments, there was no other network activity other than that
of the IoT devices.
Ethical considerations–Home-VP setting. With the coopera-
tion of the ISP, we were able to use a reserved /28 allocated to this
speci"c subscriber line (Home-VP) (with signed explicit consent)
out of a /22 pre"x reserved for residential users. Thus, the analysis
in this paper only considers tra$c explicitly ingested by the ground
truth experiments and does not involve any user-generated tra$c.

2.2 Ground Truth Tra#c Setting
The IoT testbeds used here consist of 96 devices from 40 vendors.
We selected the devices to provide diversity within and between
di!erent categories: surveillance, smart hubs, home automation,
video, audio, and appliances. Most of these are among the most
popular devices, according to Amazon, in their respective region.
Our testbed includes multiple instances of the same device (56
di!erent products), so that we can see the destinations that each
product contacts in di!erent locations. For a list of the IoT devices

Category Device Name
Surveillance Amcrest Cam, Blink Cam, Blink Hub, Icsee Doorbell, Lefun Cam,

Luohe Cam, Microseven Cam, Reolink Cam, Ring Doorbell,
Ubell Doorbell, Wansview Cam, Yi Cam, ZModo Doorbell

Smart Hubs Insteon, Lightify, Philips Hue, Sengled, Smartthings, SwitchBot,
Wink 2, Xiaomi

Home Automation D-Link Mov Sensor, Flux Bulb, Honeywell T-stat, Magi-
chome Strip, Meross Door Opener, Nest T-stat, Philips Bulb,
Smartlife Bulb, Smartlife Remote, TP-Link Bulb, TP-Link Plug,
WeMo Plug, Xiaomi Strip, Xiaomi Plug

Video Apple TV, Fire TV, LG TV, Roku TV, Samsung TV
Audio Allure with Alexa, Echo Dot, Echo Spot, Echo Plus,

Google Home Mini, Google Home
Appliances Anova Sousvide, Appkettle, GE Microwave, Netatmo Weather,

Samsung Dryer (idle), Samsung Fridge (idle), Smarter Brewer,
Smarter Co!ee Machine, Smarter iKettle, Xiaomi Rice Cooker

Table 1: IoT devices under test. idle indicates that we capture the
tra#c just for idle periods because the experiments could not be
automated.

and the category of each device, we refer to Table 1. We redirect all
IoT tra$c to the Home-VP within the ISP, and we capture all the

tra$c generated by the IoT devices (see 1 in Figure 2).
Most of the selected IoT devices are controlled using either a

voice interface provided by a voice assistant (such as Amazon Alexa)
or via a smartphone companion application. We use the voice inter-
face to automate active experiments by producing voice commands
using a Google Voice synthesizer. For IoT devices that support a
companion app, we use Android smartphones, and we rely on the
Monkey Application Exerciser for Android Studio [14] for automat-
ing simulated interactions between the user and the IoT device.

2.3 Active and Idle IoT Experiments
Our experiments can be classi"ed into idle and active experiments.
Idle experiments. We de"ne as idle the experiments during which
the devices are just connected to the Internet without being actively
used. We generate idle tra$c for three days (November 23rd-25th,
2019) from both testbeds.
Active experiments. We de"ne as active the experiments involv-
ing automated interactions. We perform two types of automated
interactions, each one repeated multiple times: (i) power interac-
tions, since in a previous study [4] it was reported that many IoT
devices generate signi"cant tra$c when they are powered o! and
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Figure 5: Home-VP vs. ISP-VP.
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Figure 6: Fraction of observed ISP-VP vs. Home-VP per hour for pop-
ular servers (heavy hitters).

on. We manage the power status of the devices through several
TP-Link smart plugs that we can control programmatically, fol-
lowed by two minutes of tra$c capture; (ii) functional interactions,
by automatically controlling the main functionality of the devices
(i.e., the act of switching on/o! the light for a smart bulb) via voice
(either directly or through a smart speaker) or via a companion app
running on a separate network with respect to the IoT device (to
force the communication to happen over the Internet rather than
locally). Unfortunately, some interactions for some devices cannot
easily be automated (devices with idle in Table 1). For these devices,
we consider only idle experiments. In total, we perform 9,810 active
experiments between November 15th and 18th, 2019.

3 IOT TRAFFIC – VISIBILITY
In this section, we aim to understand (i) to which extent the IoT
related tra$c of a single subscriber line reaches a diverse set of
servers in the Internet, and (ii) whether the low sampling rate of
NetFlow limits the subscriber/device visibility. For this, we rely
on the ground truth tra$c for the Home-VP. More speci"cally, we
monitor the IoT tra$c at both vantage points: the Home-VP, as well

as the border routers of the ISP-VP (see 1 and 2 of Figure 2).
We "rst focus on the number of IP addresses that are contacted

in each hour during the idle and the active experiments by the
IoT devices, as stated in Section 2.3. We explicitly exclude DNS
tra$c, since it is not IoT-speci"c. From Figure 5(a), we see that
during the active experiments, the IoT devices contact between 500
and 1,300 service IPs per hour when monitored at the Home-VP.
Due to sampling, not all of this tra$c is visible at the ISP-VP. We
de"ne service IPs as the sets of IPs associated with the backend
infrastructures that support the IoT services. Indeed, the number of
observed service IPs per hour in the ISP-VP decreases to an average
of 16%. Overall, during our idle experiments, the total number
of contacted service IPs is lower, but the average percentage of
observed service IPs remained at 16.5%.

The spikes in the active experiments are partially due to power
and the functional interactions. This can be seen on the idle experi-
ments, where the spike indicates the action of starting the device
(only at the beginning). Note that these spikes are also visible in
the sampled ISP NetFlow data.

At "rst glance, 16% sounds like a very small percentage. However,
we note that the visibility of popular service IPs is signi"cantly
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high. Figure 6 shows the fraction of service IPs that are visible for
the servers contacted the most, according to byte count. For the
top 10% of the service IPs, more than 75% are visible, rising up to
90% during some experiments. For less popular service IPs, e.g., the
top 20% and top 30%, the visibility is only reduced to 70% and 60%
in the active experiment, and a bit lower for the idle experiment.

If we consider the entire period of our experiments, the percent-
age of visible service IPs is more than 34% and 28% for idle and
active experiments. Overall, at the daily level, more than 95% of
service IPs are visible for the top 20%. Although we cannot observe
all IoT devices activity at the ISP-VP, a signi"cant subset is visible.

While any speci"c service IPmay not matter that much for an IoT
service, its communications with a server domain name that may be
hosted on multiple service IPs is essential. From the Home-VP, we
know which service IPs correspond to which domain. Thus, we can
determine which observed service IPs at the ISP-VP belong to which
domain. This information is relevant for our methodology because
in the ISP NetFlow data only IPs are visible. Figure 5(b) shows the
number of observed Fully Quli"ed Domain Names (FQDNs, we
will refer to them as domains or domain names for the rest of the
paper) at the Home-VP and the ISP-VP. Many domains are hosted
at multiple service IPs, hence we see that the number of observed
service IPs is higher than the number of observed domains.

Figure 5(d) shows the number of observed IoT devices per hour
from the ground truth IoT tra$c. We observe a device when at
least one packet from that device is seen within an hour. Note,
For active mode, the experiments on devices from Testbed 1 (see
"gure 3), are initiated after Testbed 2. Therefore, all devices are not
active during the same period. The average percentages of devices
visible at ISP-VP, during active and idle experiments are 67% and
64% respectively.

Next, we separate the observable network activity by ports. More
speci"cally, we consider Web Services (ports 443, 80, 8080), NTP
services (port 123), and other services (the rest of the ports), and we
show the cumulative number of service IPs contacted. The resulting
plot, Figure 5(c), shows that (i) the trend of observable service IPs at
the Home-VP is mirrored at the ISP-VP, evenwhen di!erent services
are considered, and (ii) the number of service IPs converges over
time.

We also checked if any of the tra$c from the Home-VP is visible
at the IXP. However, neither during the active, nor during the idle
experiments, we observe tra$c at the IXP. This is expected as the
ISP is not a member of the IXP. Rather it peers directly (via private
interconnects) with a large number of content and cloud providers
as well as other networks.

In summary, our analysis of the ground truth IoT tra$c shows
that, despite the low sampling of NetFlow, popular domains, service
IPs, and ports of a single subscriber line (the Home-VP) are visible
at the ISP.

4 IOT DEVICE DETECTION METHODOLOGY
In this section, we outline our methodology for the detection of IoT
devices in-the-wild. IoT services typically rely on a backend support
infrastructure (see Figure 1) for user interactions. From our ground
truth experiments, we noticed that this backend infrastructure is
often also used for keep-alives, heartbeats, updates, maintenance,

Build a Hitlist of IoT-Domains, IPs & Port Numbers +  Detection Rules

 IoT Domains DNSDB data  Censys Dataset

Section 4.1 Section 4.2.1 Section 4.2.2

Generic 
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No
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Generate 
 Detection
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Daily Hitlist &
Detection Rules

Yes

Figure 7: IoT Tra#c detection methodology overview.

storage, and synchronization. This observation is consistent with
previous works [4, 15].

We focus on identifying which Internet backend infrastructure is
supporting each of the IoT devices that we deployed in our testbeds

(see 3 in Figure 2). When we refer to Internet backend infrastruc-
ture, we use two di!erent abstractions: (i) sets of IP addresses/ports
combinations as observable from the Internet vantage points, and
(ii) sets of DNS domains. We focus also on domains because they
are the primary indirect way for the devices to access their backend
infrastructure. While domain names are typically part of the per-
manent programming of the devices, IP addresses are discovered
during DNS resolution, and may change over time.

A naive approach for identifying the backend infrastructure
would be to use the ground truth tra$c to identify which domains,
and as a consequence, which service IPs are being contacted by
each device. However this is not su$cient for the following reasons:
Limited relevance of some domains: Not all domains are essen-
tial to support the services, or are useful for classi"cation; for ex-
ample, some domains may be used for advertisements or generic
services, e.g., time.microsoft.com or wikipedia.org, see Sec-
tion 4.1.
Limited visibility of IP addresses: Since the ground truth data
is captured at a single subscriber line only and DNS to IP mapping
is rather dynamic, just looking at this tra$c is not su$cient, see
Section 4.2.1.
Usage of shared infrastructure: Not all IoT services are supported
by a dedicated backend infrastructure. Some rely on shared ones,
such as CDNs. In the former case they can still have dedicated
IP addresses; in the latter cases they use shared IP addresses, see
Section 4.2.1.
Churn: DNS domain to IP address mappings are dynamic, see
Section 4.2.1.
Common programming APIs: Multiple IoT services may use
the same common programming API or may be used by di!erent
manufacturers; as a result, they often rely on the same infrastruc-
ture. This is the case for relatively generic IoT services such as
Alexa voice service. While this IoT service is available on dedi-
cated devices, e.g., Amazon Echo, it can also be integrated into
third-party hardware, e.g., fridges and alarm clocks [13]. We cannot
easily distinguish these from network tra$c observations.

Below we tackle these challenges one by one. The outcome is an
IoT dictionary that contains mappings for individual IoT services
to sets of domains, IP addresses, and ports. Based on IoT services,
we generate rules for IoT device detection. For an overview of the
resulting methodology, see Figure 7.

91



IMC ’20, October 27–29, 2020, Virtual Event, USA Saidi et al.

1

10

100

1k

Avg # Packet/H

(log10)

a
m

a
zo

n
 d

o
m

a
in

2
3

a
m

a
zo

n
 d

o
m

a
in

1
8

a
m

a
zo

n
 d

o
m

a
in

1
4

a
m

a
zo

n
 d

o
m

a
in

1
7

am
az

o
n
 d

o
m

ai
n
11

am
az

o
n
 d

o
m

ai
n
20

am
az

on
 d

om
ai

n3

am
az

on
 d

om
ai

n5

am
az

on d
om

ai
n9

am
azo

n d
om

ain
13

amazon domain21

amazon domain7

amazon domain10

amazon domain22

amazon domain15

amazon domain19

amazon domain2
amazon domain8amazon domain16

amazon domain1

amazon domain12

amazon domain4

am
azon dom

ain6

ap
p
le d

o
m

ain
7

ap
p
le d

o
m

ain
6

a
p

p
le

 d
o

m
a
in

3

a
p

p
le

 d
o

m
a
in

4

a
p

p
le

 d
o

m
a
in

8

a
p

p
le

 d
o

m
a
in

1
0a

p
p

le
 d

o
m

a
in

9

a
p

p
le

 d
o

m
a
in

1
1

a
p

p
le

 d
o

m
a
in

1

a
p

p
le

 d
o

m
a
in

2

ap
p
le

 d
o
m

ai
n
5

blin
k 

dom
ai

n1blin
k d

om
ain

2

meross domain1
netatm

o domain1

philips domain4
philips domain1philips domain2
philips domain3

platform2 domain1

platform1 domain2

platform1 domain1

smartthings domain1

smartthings domain2

smartthings domain3

sousvide dom
ain1

tplink dom
ain1

xiaom
i dom

ain1

xiaom
i dom

ain2

yi cam
era d

o
m

ain
3

yi cam
era d

o
m

ain
1

y
i c

a
m

e
ra

 d
o

m
a
in

2

Gossiping

Devices

Gossiping

Devices

Laconic

Devices

Device

Apple TV

Blink Hub

Echo Dot

Meross
Door Opener
Netatmo
Weather
Station

Philips Hub

Smarter Brewer

Smartlife Bulb

Smartthings Hub

Sous vide

TP−Link Bulb

Xiaomi Hub

Yi Camera

Figure 8: Home-VP: Circular bar plot of average # of packets/hour
per domain (log y-scale). The domains belong to 13 IoT devices and
separated into three groups: one for laconic and two for gossiping
devices (Echo Dot and Apple TV).

4.1 Classifying IoT Domains
The amount and frequency of network tra$c that an IoT device
exchanges with its backend infrastructure varies from device to
device, depending on the complexity of its services, its implemen-
tation speci"cs, and the usage of the device. This is highlighted in
Figure 8, where we show the average number of packets per device
and per domain (using a log y-scale) for 13 di!erent devices (subset
of devices) in their idle mode. The "rst observation is that most
devices are supported by their own set of domains and for many
IoT services, this is a small set containing less than 10 domains. We
refer to these as small domain sets as they correspond to laconic
devices. Other devices gossip and have sizable domain sets. Figure 8
shows the domains of two example gossip devices (Apple TV in
gray and Echo Dot in orange) and several laconic devices (rest of
the colors). Having a sizable domain set often indicates the usage
of a larger infrastructure, which may not be dedicated to a speci"c
IoT service. We "nd that most of these domains are mapped via
CNAMEs to other domains. For the two gossiping examples con-
sidered in Figure 8, the domains of Echo Dot are mostly mapped to
its own infrastructure. However, the ones of Apple TV are mainly
mapped to a CDN—in this case, Akamai—that o!ers a variety of
services.

Based on these observations from our ground truth data, we
classify the domains as follows:
IoT-Speci!c domains. Grouped into (i) Primary domains: regis-
tered to an IoT device manufacturer or an IoT service operator;
and (ii) Support domains: that are not necessarily registered to IoT
device manufacturers or service operators, but o!ering complemen-
tary services for IoT devices, i.e., samsung-*.whisk.com for Samsung
Fridges, here whisk.com is a service that provides food recipes and
images of food.

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

0.00

0.25

0.50

0.75

1.00

1 10 100 1k 10k

Avg # of packets/h per device and domain(log10)

E
C

D
F

Experiment !Active Idle

Figure 9: Home-VP: ECDF of average # of packets/hour for all IoT-
Speci!c domains, per device, (idle and active experiments).

Generic domains. Domains registered to generic service providers
that are heavily used by non-IoT devices as well, e.g., net"ix.com,
wikipedia.org, and public NTP servers.

We classify each domain name from our idle and active experi-
ments using pattern matching, manual inspection, and by visiting
their websites and those of the device manufacturers. Since the
Generic domains cover non-IoT tra$c, we do not further consider
them. Rather, we focus on the IoT-Speci#c domains. As a result, we
classify 415 out of the 524 domains as Primary and 19 as Support
domains.

Next, we explore the volume of tra$c that the IoT devices ex-
change with all domains. Figure 9 shows the ECDF of the average
number of packets per hour per domain for all IoT-Speci"c domains
for both the idle and the active experiments. First, we note that
almost all devices and domains , except for one device in its idle
mode, are exchanging at least 100 packets per hour, and this may
not su!ce for detecting them in any given hour in the wild due
to sampling. However, during the active experiments, we see that
some domains are only used when the device is active or other
domains receive signi"cantly more tra$c, up to and exceeding 10K
packets, which may su!ce for detection. These latter domains may
be ideal candidates for detecting such devices in the wild.

4.2 Identifying Dedicated Infrastructures
Once we have a list of IoT-Speci"c domains (FQDNs) with their
associated service IP addresses and port mappings from the ground
truth experiments, we need to understand whether they have a
shared or dedicated backend infrastructure. The reason is that, if
we want to identify IoT services and consequently IoT devices in
the wild by using network traces such as NetFlow, we can only
observe standard network level features such as src/dst IP and port
numbers without packet payload. Therefore, if a service IP belongs
to a shared infrastructure such as a CDN or a generic web hosting
service, this service IP can serve many domains, and it is impossible
for us to exactly know which domain was actually contacted. To
this end, the purpose of this section is two-fold. First, to expand
the candidate service IPs beyond those directly observed in the
ground truth experiments (to mitigate that we are focusing on a
single subscriber line). Second, to classify domains into those that
use backend services hosted on dedicated infrastructure service
IPs vs. those that rely on shared infrastructure service IPs. We do
this by relying on DNSDB [16], Censys [9], and applying additional
"lters.
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4.2.1 From IoT-Specific Domains to Service IPs: DNSDB. We use
IoT-Speci"c domains to identify the backend infrastructure that
is hosting them. To this end, we leverage the technique in [17],
and use these domain names to identify all associated service IPs
on which these domains are hosted during the time period of our
experiments. We use both the ground truth experiments, and ex-
ternal DNS databases, including DNSDB [18]. We found that the
speci"c IP addresses mapping to speci"c domains can change of-
ten. However, DNSDB provides information for all domains served
by an IP address in a given time period and vice versa, hence it
mitigates the issues caused by this churn. DNSDB also provides all
records, including CNAMEs that may have been returned in the
DNS response, for a given domain. Thus, we use DNSDB to check
if a service IP address is exclusively used for a speci"c IoT service,
or if it hosts additional domains. We say a service IP is exclusively
used if it only serves domains from a single “second-level” domain
(SLD) and its CNAMEs. However, we note that the CNAMEs may
not involve the same second-level domain. Let us consider an exam-
ple: the domain devA.com is mapped via a chain of CNAMEs such
as devA-VM.ec2compute.amazonaws.com to IP a.b.c.d. This IP
only reverse maps to devA-VM.ec2compute.amazonaws.com and
its associated CNAME devA.com. Since this is the only CNAME
associated with the IP, we may consider this IP a direct mapping
for the domain. Yet, at the same time, we "nd support that public
IP addresses assigned to a cloud resource such as a virtual machine
in AWS EC2, that is occupied by a tenant, is not shared with other
tenants unless the current resource is released. This is a popular ser-
vice o!ered by multiple platforms [19–21]. Let us consider a second
example: domain devB.com. It may use the Akamai CDN. Thus, the
domain devB.com is a CNAME for devB.com.akadns.net. This
domain then maps to IP a.b.c.d. However, in this case, many
other domains, e.g., anothersite.com.akadns.net, also map to
this IP. Thus, we may conclude that this domain is hosted on a
shared infrastructure.

Once we understand if an IP is exclusively used for a speci"c IoT
service, we can also classify the domains as either using a dedicated
or shared infrastructure. For the former, all service IPs have to be
dedicated to this domain for all days, otherwise we presume that
the domain relies on a shared infrastructure.

Once we apply this methodology to all 434 domain names, we
"nd that 217 are hosted on dedicated service IPs, while 202 are
relying on a shared backend infrastructure. For 15 of the domains
we did not have su$cient information in DNSDB. We handle them
in the next step.

4.2.2 From IoT-Specific Domains to Service IPs: Censys. Among
the reasons that DNSDBmay not su$ce for mapping some domains
to service IPs is that (a) frequent remapping of domains to IPs or, (b)
missing data since the requests for the domains may not have been
recorded by DNSDB, which intercepts requests for a subset of the
DNS hierarchy. To overcome this limitation, we rely on the certi"-
cate and banner datasets from Censys [9], to infer the ownership of
the domains and the corresponding IPs, as long as these are using
HTTPS. For example, we did not "nd any record for the domain
c.devE.com in the DNSDB dataset. We then check if device E uses
HTTPS to communicate with this domain. This allows us to query
for all service IPs that potentially o!er the same web certi"cate as

the hosts in this domain. For a certi"cate to be associated with a
domain, we require that the domain name and the Name "eld entry
in the certi"cate match at least the SLD or higher, i.e. the Name "eld
of the certi"cates matches the pattern c.devE.com or *.devE.com
and that there is no other Subject Alternative Name (SAN) in the
certi"cate. Next, we query the Censys dataset for all IPs with the
same certi"cate and HTTPS banner checksum for the domain from
our ground truth dataset within the same period. This allows us
to identify data for 8 out of 15 of the domains which belong to 5
devices.

4.2.3 Removal of Shared IoT Backend Infrastructures. In the last
step of our methodology we "lter out devices that use shared back-
end infrastructures. We "nd that Google Home, Google Home Mini,
Apple TV, and Lefun camera, all have a shared backend infrastruc-
ture. For LG TV, we are left with only one out of 4 domains; for
Wemo Plug andWink-hub, we could not identify su$cient informa-
tion. Because of this, we have excluded these devices from further
consideration.

The result forms our daily list of dedicated IoT services, along
with their associated domains, service IPs and port combinations.

4.3 IoT Services to Device Detection Rules
Once we identi"ed the set of IoT services that can be monitored,
we generate the rules for detecting IoT devices. Depending on the
set of IoT services contacted by the devices we can generate device
detection rules at three granularity levels: (i) Platform-level, (ii)
Manufacturer-level, and (iii) Product-level, from the most coarse-
grained to the most "ne-grained, respectively. In this section, "rst,
we show how we determine the detection level for each device.
Then, we explain how we generate the detection rules for each IoT
device for the detection level that can be supported.

4.3.1 Determining IoT Detection Level.
Platform-level: Some manufacturers use o!-the-shelf "rmware,
or outsource their backend infrastructure to IoT platform solu-
tion companies such as Tuya [22], electricimp [23], AWS IoT Plat-
form [24]. These IoT platforms can have several customers/manufacturers
that rely on their infrastructure. Therefore, we may not be able to
distinguish between di!erent manufacturers from their network
tra$c.
Manufacturer-level: The majority of our studied IoT services
rely on dedicated backend infrastructures that are operated by the
manufacturers themselves. We also observe that many manufac-
turers rely on similar APIs and backend infrastructures to support
their di!erent products and services. This makes distinguishing
individual IoT products from their network tra$c more challenging.
Product-level: This is themost "ne-grained detection level, where
we are able to distinguish between di!erent products of a manufac-
turer, e.g., Samsung TV, or Amazon Echo vs. Amazon Fire TV. For de-
tection at the product level, we underline the importance of side in-
formation about the purpose associated with a domain. With this in-
formation, we can improve our classi"cation accuracy. For example,
for Alexa Enabled devices, the domain avs-alexa.*.amazon.com

is critical, as it is the base URL for the Alexa Voice Service API [13]
(shown in Figure 8 as amazon domain23). Other examples are the
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Samsung devices that use the domain samsungotn.net to check
for "rmware updates [25].

Additionally, some advanced services of the devices often require
additional backend support from manufacturers. These may then
contact additional domains. By considering more speci"c features
(domains), the capabilities to distinguish products increases. We
leverage these specialized features e.g., to distinguish Amazon Fire
TV, which contacts signi"cantly more domains than other Amazon
products, e.g., Echo Dot.

4.3.2 Generation of Detection Rules. For any of our three lev-
els of detection, we require that a subscriber contacts at least one
IP/port combination associated with a Primary domain of the IoT
service, to claim detectability of IoT activity at the subscriber. How-
ever, if there are many domains, requiring only one such activity
may not have enough evidence. For example, by monitoring a single
domain we can detect all Alexa Enabled devices, but this service can
be integrated into third party hardware as well. Therefore, in order
to detect products manufactured by Amazon, e.g., Amazon Echo,
it is essential to monitor additional domains that are contacted
by the Amazon Echo devices. For this, we introduce the detection
threshold D. If an IoT service has N IoT-Speci"c domains, we re-
quire to observe tra$c involving k IP/port combinations that are
associated withmax(1, !D × N #) of the N domains. To determine
an appropriate value for this threshold, we rely on our ground truth
dataset, see Section 5.

We start with 96 devices in our testbeds. We have multiple copies
of a same device deployed in di!erent continents. This reduces the
set of devices to 56 unique products. Of these, many are from the
same manufacturer, e.g., a Xiaomi rice cooker, a Xiaomi plug, and
a Xiaomi light bulb. Since these devices are often supported by
the same backend infrastructure of the manufacturer, the list of
domains has signi"cant overlap and often fully overlaps. In our
methodology we can detect 3 di!erent IoT platforms, the coarsest
level, as 4 of our products rely on them. Moreover, we generated
rules for the detection of 29 IoT devices at the manufacturer level.
We had a diverse range of products from Amazon and Samsung
in our testbed that allowed us an in-depth analysis, and cross-
examination of domains contacted by di!erent products. Therefore,
for devices using Alexa voice service (i.e., Alexa Enabled), and for
Samsung IoT devices, we detect the former at the platform level
and the latter at the manufacturer level. For Alexa Enabled and
Samsung IoT devices, we compared the domains across di!erent
devices and obtained enough side information about the purpose
of their domains that allowed us to further divide each of them
into two subclasses at more "ne grained levels. For this, we de"ned
a hierarchy, namely Amazon products, and Fire TV, under Alexa
Enabled devices. Amazon products are detected at manufacturer
level, and include products such as Amazon Echo family and is
superclass of Fire TV. We identi"ed 33 additional domains, besides
the Alexa voice service domain, that were contacted by Amazon
products. Moreover, Fire TV contacts up to 67 domains (34 more
domains than Amazon products). This allows us to establish its
subclass, at product level, under Amazon products. Using side in-
formation [25] and comparing the set of domains across di!erent
Samsung products, we monitor 14 domains in total, but only one
domain is important to detect Samsung IoT devices with Samsung
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Figure 10: Home-VP: Time to detect IoT (per threshold).

"rmware (these include a broad range of products, such as fridges,
washing machines and TVs). Samsung TVs contact 16 additional
domains that are not used by any of the other Samsung devices in
our testbed.

Using the above methodology, except for the devices listed
in section 4.2.3, we generated detections rules at di!erent levels
for our testbed devices. We generated rules for the detection of
20 manufacturers, and 11 products that amounts to the 77% of
manufacturers in our testbeds. We generate rules for 4 unique IoT
platforms by monitoring 1 to 4 domains (2 platforms were contacted
by 4 devices, we report them separately). Finally, for 11 products
we consider between 1 to 67 domains. For a detailed number of
domains per IoT device see Figure10.

5 METHODOLOGY: CROSSCHECK
We use our ground truth dataset to check how long it takes for our
methodology (applied to the sampled #ow data from the ISP) to
detect the presence of the IoT devices for the idle and the active

experiments (see 4 of Figure 2). For this, we report the time that
it takes to detect an IoT device that is hosted in our ground truth
subscriber line when it is in active mode (Figure 10 left) and idle
mode (Figure 10 right). We only include the ones that are detectable
with our methodology, i.e., those that do not rely exclusively on
shared infrastructures. We also annotate the device name with its
detection levels: Platform (Pl.), Manufacturer (Man.), and Product
level (Pr.).

On average, by requiring the evidence of at least 40% of domains,
we are able to detect 72/93/96% of IoT devices that are detectable
at manufacturer or product level within 1/24/72 hours in the ac-
tive mode. Even in idle mode their the percentage is 40/73/76%
with 1/24/72 hours. For the devices detectable only at product level
(Pr.), with the same required evidence, we detected 63/81/90% of
them within the 1/24/72 hours respectively, in active mode. Note,
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Figure 11: ISP: Per Hour, Subscriber lines with IoT activity (Alexa Enabled, Samsung IoT, and others).
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Figure 12: ISP: Drill down for Amazon and Samsung IoT devices–per
day.

we are using the sampled ISP data. Indeed, popular products such
as Amazon products (i.e., Echo Dot, Echo Spot) can be almost in-
stantly detected. This is a signi"cant "nding and underlines that
it is possible to use sampled #ow data within an ISP to accurately
detect the presence of a speci"c IoT product within a subscriber
line, despite di!erences in activity and IP churn due to operational
requirements.

A closer look reveals that, in general, it takes longer to detect
an idle IoT device in comparison to when it is active. This is not
surprising, as most IoT devices show more network activity in
active mode. However, this does not mean that the increase will
occur across all of the services contacted by a device, since there
are exceptions that take longer to detect even in active mode, e.g.,
SmartLife, and Nest.

Figure 10 also contains information regarding the number of
monitored domains per IoT device with their detection level. For
9 IoT devices, a single domain is considered. For the others, we
consider many more (up to 67). A threshold determines the fraction
of domains for which we require evidence of network tra$c to
claim detection. To understand the impact of such threshold on
detection time, we variate its value from 0.1 to 1 and show the
corresponding detection times. Note, for IoT devices where we
consider only one domain, the variation of the threshold does not
change the detection time, as we always require evidence of at
least one domain. Overall, we note that a larger threshold can

increase the detection time, and some IoT devices may no longer be
detectable. However, it may also increase the false positive rate. We
crosscheck possible false positives by running another experiment
where we only enable a small subset of IoT devices. We then apply
our detection methodology to these traces and do not identify any
devices that are not explicitly part of the experiment. We also try
to avoid false positives by ensuring that the domain sets per device
di!er.

Regarding detectability, we notice that 6 IoT devices could not be
detected even after the entire duration of our idle experiments. A
closer investigation shows that for 5 of these, the frequency of tra$c
is so small that their likelihood of detection is very low. Indeed,
for this speci"c time period, they were invisible in the NetFlow
data. This highlights that in order to be able to con"dently detect
a device, the device have to either exchange enough packets with
the targeted domains or the sampling rate shall be increased. For
Samsung TV, we require to observe enough domains to con"rm
the presence of a Samsung IoT device, before moving forward with
detection. Thus, if we do not see enough Samsung IoT domains, then
we do not claim the detection of Samsung TVs. Nevertheless, the
results look very promising for us to attempt on detecting deployed
IoT devices in the wild.

6 RESULTS: IOT IN THEWILD
In this section, we apply our methodology for detecting IoT activity

in the ISP and IXP data (see 5 in Figure 2). For this we focus on
the two weeks in which we collected the data from the ground truth
experiments to obtain up-to-date mappings of domains to IPs.

6.1 Ethical Considerations and Privacy
Implications

Applying our methodology to tra$c data from ISPs and IXPs may
raise ethical concerns as it may be considered as analyzing customer
activities. However, this is not the goal of this paper. The goal here is
to showcase that it is possible to detect and map the penetration of
IoT device usage. As such, this study is not about subscribers’ device
activities, instead it is about detection capabilities and aggregated
usage. Thus, we report on percentages of subscriber lines where
we can observe IoT related activity. Indeed, we are unable to trace
IoT activity back to individuals as the raw data was anonymized
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Figure 13: ISP: Cumulative # of subscriber lines resp. /24s with daily
IoT activity across two weeks.

as per recommendations by [5] and never left our collaborators’
premises. Moreover, we do not analyze any data that is not related
to the detection of IoT presence, e.g., DNS queries [26], or #ows
that are not related to IoT backend infrastructures, to eliminate any
user Web visit pro"ling.

6.2 Vantage Point: ISP

IoT related activity in-the-wild. Figure 11 shows the number
of ISP subscriber lines for which we detect IoT related activity.
The ISP does not operate a carrier-grade NAT. Even if multiple
IoT devices are hosted at an ISP subscriber, we count the hosting
subscriber only once. Thus, the number of subscribers that host
a given IoT device is a lower bound for the number of the given
IoT device in the premises of ISP subscribers. Figure 11(a) and
Figure 11(b) focus on hourly and daily summaries. Since the top
IoT devices detected are Alexa Enabled and Samsung IoT, we show
them separately. We see IoT related activity for roughly 20% of
the subscriber lines. Our results show a signi"cant penetration of
Alexa Enabled devices of roughly 14%. This is slightly more than
estimates of national surveys in the country where the ISP operates,
stating that the market penetration of Alexa Enabled devices, as of
June 2019, is around 12% [27–29]. Yet, these reports cannot capture
which devices are in active use at any particular day, e.g., Nov. 2019,
contrary to our study. Note, in Figures 11, 12, 14 and 15 we apply
our methodology on each time bin independently.
Daily patterns of IoT related activity. By looking at the hourly
plots in Figure 11(a), we see some signi"cant daily patterns for
Alexa Enabled and Samsung IoT devices. We do not see diurnal
patterns for the other 32 IoT device types. Such diurnal patterns
are correlated with human activities. Typically, during the day, net-
work activity increases as the users interact with the IoT devices
while it decreases during the night when the devices are idle. As
detection likelihood is correlated with network activity, the de-
vices detectability also correlates with this diurnal pattern. We note
that the patterns for Alexa Enabled does not di!er from those for
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Figure 14: ISP: Drill down of IoT activity for 32 di$erent IoT device
types with their popularity in the ISPs country.

Samsung. The reason is that many of the Alexa Enabled and Sam-
sung IoT (Samsung TVs) class may be used more for entertainment,
which is why their activity is higher in the evenings. Samsung
IoT devices have a small spike in the mornings before gradually
reaching their peak around 18:00 (ISP timezone).

For the drill down for Samsung IoT devices see Figure 12. Even
with the presence of a diurnal variation for Alexa Enabled, there
is a signi"cant baseline during the night. This is expected as IoT
devices often have tra$c even when they are idle and are thus
detectable. Over the course of a day, the diurnal variation is rather
low compared with the typical network activity driven by human
activity. This explains the low variance of the observed number of
subscriber lines for Alexa Enabled devices.
Aggregation per day. We observed in Section 5 that, while it
is often possible to detect Alexa Enabled devices within an hour,
the same is not always true for Samsung IoT devices. Therefore,
Figure 11(b) reports the same data but this time using an aggregation
period of a day.3 We see that the total number of observed subscriber
lines does not change drastically from day to day. However, we
also note that the number of subscriber lines with Alexa Enabled
devices roughly doubled, while those with Samsung increased by
a factor of 6. The reason is that detecting Samsung IoT devices is
more challenging because they are contacting their Primary domain
less frequently than Alexa Enabled devices. Thus, their detection is
heavily helped by the increase in the observation time period. For
the other IoT devices we see these e!ects, whereby the increase is
correlated to the expected time for detection. Note, certain Samsung

3Most subscriber lines are not subject to new address assignments within a day. Most
addresses remain stable as the ISP o!ers VoIP services.
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domains are contacted by both Samsung IoT and Non-IoT devices.
In our analysis, we only consider domains that are exclusively
contacted by Samsung IoT devices. By adding those domains, the
number of detected Samsung devices will be increased at least by a
factor of two, but this also adds false positives to our results.
Detecting speci!c devices. So far, we have focused on the su-
perclass of Alexa Enabled and Samsung IoT devices. However, by
adding more specialized features, our methodology allows us to
further di!erentiate them. For example, some subsets of domains
are only contacted by speci"c products. Thus, in Figure 12 we show
which fraction of the Alexa Enabled IoT devices are con"rmed
Amazon products and which fraction of these are Fire TVs using a
conservative detection threshold of 0.4. For Samsung IoT devices,
we show howmany of them are Samsung TVs. Again, the number of
subscriber lines with such IoT devices is quite constant across days.
As expected, the specialized devices only account for a fraction of
the devices of both manufacturers.
Subscriber lines churn. While the ISP’s overall churn of sub-
scriber line identi"er is pretty low (as was also con"rmed by the
ISP operator), some changes are possible and may bias our results.
Possible reasons for such changes are: unplugging/rebooting of the
home router, regional outages, or daily re-assignment of IPs for
privacy reasons. Yet, as most IoT devices are detectable within a
day (recall Section 5), the churn should not bias our results. Still, to
check for such artifacts, we move to larger time windows: see the
upper panel of Figure 13, which plots the cumulative number of sub-
scriber lines with detected Alexa Enabled and Samsung IoT devices,
respectively, for up to two weeks. Here, we see that the fractions
increase. However, we may have substantial double counting due
to identi"er rotation. To underline this conclusion, we consider
penetration at the /24 pre"x aggregation level, see the lower panel
in Figure 13. The penetration lines stabilize smoothly, but at dif-
ferent levels and with di!erent speed. The latter is related to the
popularity of an IoT device. If it is already popular, the likelihood
of moving from a known to an unknown subscriber line identi"er
is lower with respect to less popular IoT devices.
Detecting other IoT devices in-the-wild. Figure 14 reports the
detected number of the IoT devices that are neither Alexa Enabled
nor Samsung IoT. We report them using a heatmap, where each
column corresponds to a day and each row to an IoT device anno-
tated with its detection level. The color of each entry shows the

number of subscribers lines during that day. Our "rst observation
is that the number of subscriber lines for each device class is very
stable across the duration of our study. Next, we point out that
our experiments include popular devices from both the European
as well as the US market. For a reference, we report the relative
popularity of each IoT device in the Amazon ranking for that device,
in the country where the ISP operates. If a ranking of a device is not
available, we categorize them as “other.” Popular devices are more
prominent than unpopular ones or the ones that are not available
in the country’s market. For example, on the one hand there are
Philips devices that are popular and in heavy use with more than
100K subscription lines on a daily basis. On the other hand there
is Microseven camera that is not in the country’s market. Yet, we
can still observe some deployments, these results highlight that our
methodology is able to detect both popular and unpopular IoT de-
vices when the domains and associated service IPs that IoT devices
visit can be extracted.

6.3 Vantage Point: IXP
Next, we apply our detection methodology at the IXP vantage
point. Here, we have to tackle a few additional challenges: First,
the sampling rate at the IXP is an order of magnitude lower than at
the ISP. Second, the vantage point is in the middle of the network,
which means that we have to deal with routing asymmetry and
partial visibility of the routes. Third, while the ISP does aggressive
spoo"ng prevention, e.g., with reverse path "ltering, this is not
possible at the IXP. Spoo"ng prevention is the responsibility of
individual IXP members. Thus, we require TCP tra$c to see at
least one packet without #ags, indicating that a TCP connection
was successfully established. While this may reduce visibility, it
prevents us from over-estimating the presence of IoT tra$c.

While the IXP o!ers network connectivity for every ASes, only
a few member ASes are large eyeballs [30]. It is not that surprising
that we did not observe any activity of the ground truth experi-
ment, recall Section 3. Still, we are able to detect signi"cant IoT
activity. Figure 15 shows the number of IPs for which we detected
IoT activity per day for our two-week study period (November
15th-28th, 2019). We are able to detect roughly 90k Samsung de-
vices, 200k Alexa Enabled devices, and more than 100k of other
IoT devices. This underlines that our methodology, which is based
on domains and generalized observations from a single subscriber
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line, is successful. Most IXP members are non-eyeball networks.
As such, we expect that the detected IoT activity is concentrated on
these members. Figure 16 shows an ECDF of the distribution of IoT
activity per AS for one day (November 15th, 2019) and three IoT
device types, namely, Samsung IoT, Alexa Enabled, and the other
IoT devices. The distributions are all skewed—a small number of
member ASes are responsible for a large fraction of the IoT activity.
Manual checks showed that these are all eyeball ASes. Yet, we also
see a fairly long tail. This underlines that some IoT devices may not
only be used at home (and, thus, send their tra$c via a non-eyeball
AS).

7 DISCUSSION

7.1 Device Usage Detection
A natural question is whether sampled #ow data also allows one
to distinguish if an IoT device is in active use. Our results indicate
that the answer is positive. First, our ground truth experiments
show that for some devices, the domain sets used during the idle
experiments di!er from those during active experiments. Hence we
can use these domains to determine the mode (active/idle) of an IoT
device. Second, the amount of tra$c also varies depending on the
mode. To highlight this, Figure 17 shows the number of observed
packets at the Home-VP for a single Alexa Enabled device, as well
as the ISP-VP for both modes. Activities cause spikes above 1K at
the home vantage points and above 10 at the ISP-VP. These ranges
are never reached during the idle experiments.

When using the "rst insight for, e.g., devices from TP-link (TP-
link Dev.), we are able to capture active use for only 3.5% of the
devices. The reason is that these are plugs, which have a total tra$c
volume so low that it limits the detectability due to the low sampling
rate at the ISP. When using the second insight for Alexa Enabled
devices, we "nd that we can detect signi"cant activity. Figure 18
shows both the subscriber lines with Alexa-enabled devices per
hour, per day as well as the subscriber lines with active Alexa-
enabled devices. Based on the above-mentioned observations, we
used the threshold of 10 for packet counts per hour to "lter out
subscribers that actively used Alexa-enabled devices in a given hour.
Based on this threshold, we see that the number of actively used
devices reaches 27,000 during the day and weekends (November
23rd-24th, 2019), following the diurnal pattern of human activity.

The ability to distinguish active from idle usage of IoT devices
in the wild may raise ethical/privacy concerns. However, the goal

of this paper is not to analyze user behavior, but rather to point out
the privacy concerns associated with having these IoT devices at
home [3].

7.2 Potential Security Bene!ts
The ability to detect IoT services can be used in a constructive
manner or even as a service by ISPs. For example, if there are
known security problems with an IoT device, the ISP/IXP can block
access to certain domains/IP ranges or redirect their tra$c to benign
servers. The methodology can also be used for troubleshooting,
incident investigation, and even incident resolution. For example,
an ISP can use our methodology for redirecting the IoT devices
tra$c to a new backend infrastructure that o!ers privacy notices or
security patches for devices that are no longer supported by their
manufacturers.

Moreover, if an IoT device is misbehaving, e.g., if it is involved
in network attacks or part of a botnet [31], our methodology can
help the ISP/IXP in identifying what devices are common among
the subscriber lines with suspicious tra$c. Once identi"ed, their
owner can be noti"ed in a similar manner, as suggested by [32],
and it may be possible to block the attack or the botnet control
tra$c [33].

7.3 Limitations
Our methodology has some limitations.
Sample devices.We need to have sample devices in order to ob-
serve which domains are being contacted.
Superclass detection. We mostly check for false negatives and
limitedly for false positives as we only have tra$c samples from a
subset of IoT devices, but not for all possible IoT devices. If an IoT
device relies on a shared backend infrastructure or common IoT
APIs, we only detect the superclass, e.g., at the manufacturer level.
Network activity. We rely on the network activity of IoT devices.
As such, if the tra$c volume is very low detectability decreases,
and detection time increases.
Shared infrastructures.We cannot detect IoT services that rely
on shared infrastructures. If the IoT devices change their backend
infrastructure, e.g., after an update, we may have to update our
detection rules too.
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7.4 Lessons Learned
Our analysis could be simpli"ed if an ISP/IXP had access to all DNS
queries and responses as they do in [34] and [26]. Even having
a partial list, e.g., from the local DNS resolver of the ISP, could
improve our methodology. Yet, this raises many privacy challenges.
An increasing number of end-users rely on technologies like DNS
over TLS [35], or public DNS resolvers, e.g., Google DNS, OpenDNS,
or Cloud#are DNS, rather than the local ISP DNS server [36]. Yet,
this also points to another potential privacy issue—the global data
collection and analysis engines at these DNS operators, which can
identify IoT devices at scale from the recorded DNS logs using our
insights. Capturing DNS data from the network itself would require
deep packet inspection and thus, specialized packet capture, which
is beyond the scope of this paper.

The subscriber or device detection speed varies depending not
only on the device and its tra$c intensity, but also on the tra$c
capture sampling rates. The lower this rate, the more time it may
take to detect a speci"c IoT device. Moreover, identifying the rele-
vant domains for each IoT device does require sanitization, which
may involve manual work, e.g., studying manuals, device docu-
mentation, vendor web sites, or even programming APIs. Given
that we are unable to identify IoT services if they are using shared
infrastructures (e.g., CDNs), this also points out a good way to hide
IoT services.

7.5 Future Directions
We can use our insights to develop signatures that allow an ISP to
identify households that use speci"c IoT services. If such services
are, e.g., subject to security concerns they can use such signatures to
notify the corresponding customer of the potential problem and "x.
This is also possible if the IoT service is no longer supported or needs
end-user manual upgrades, e.g., to mitigate threats. Such signatures
may also be used to move from DDoS attacks towards identifying
culprits. Our approach is potentially scalable further using MUD
pro"les [37], where devices will signal to the network what sort of
domains, access and network functionality they require to properly
function. It is also possible to extend the list of signatures of IoT
devices using crowdsourcing [38].

8 RELATEDWORK
There have been some recent papers in understanding home IoT
tra$c patterns and identifying devices based on their signatures,
trackers, and network tra$c [39]. These approaches often rely on
testbed data [4, 40], or tools for the active discovery of the household
devices and their network tra$c [41]. The authors in [40] use a
broad range of network features from packet captures, including
domain names to train a machine learning model and detect IoT
devices in a lab environment. However, they do not further study the
backend infrastructure supporting IoT devices. There have also been
a few early attempts at mitigating against these device discoveries
using tra$c padding [42] or blocking techniques [33].

A number of recent e!orts focused on inferring IoT device types
from network tra$c [6, 43]. In [15] the authors used instrumented
home gateways to look at IoT traces from over 200 households
in a US city. Their analysis revealed that while the IoT space is

fragmented, few popular cloud and DNS services act as a central
hub for the majority of the devices and their data.

Generally, many IoT devices periodically connect to speci"c
servers on the Internet. Authors in [26] and [34] proposed a method
to identify IoT devices by observing passive DNS tra$c and unique
IP addresses that the device connects to. Unfortunately, many IoT
devices rely on shared infrastructures and often di!erent IoT de-
vices from the same vendor connect to the same servers, therefore
detection at the scale of ISP/IXP, based on the IP addresses and
port numbers without considering the important role of shared
infrastructures, cannot be very reliable.

Complementing the approaches based on testbeds and home
gateways, there have been e!orts in understanding IoT tra$c pat-
terns using data from transit networks [44], though it has been
challenging to successfully validate the derived signatures. Similar
works relied on speci"c port numbers [45] that may also be used
for specialized industrial IoT systems [46], though the approach
used cannot be easily extended to general-purpose IoT devices and
smart home systems that utilize popular ports, e.g., 443, 80.

These related works indicate that often, neither data from core
networks subject to sampling and middleboxes, nor data from few
devices using home gateways or testbeds are enough for rapidly and
accurately detecting IoT devices, and understanding their anomalies
and miscon"gurations [10].

In this paper, for the "rst time we have complemented detailed
ground truth data from testbeds and a particular subscriber, with
large-scale data from an ISP and an IXP, to reveal the aggregate
behavior of these devices, alongside the ability to isolate and identify
speci"c subscriber devices using sampled data at an ISP.

9 CONCLUSION
Home IoT devices are already popular, and their usage is expected
to grow further. Thus, we need to track their deployment without
deep packet inspection or active measurements, both intrusive
and unscalable methods for large deployments. Our insight is that
many IoT devices contact a small number of domains, and, thus, it
is possible to detect such devices at scale from sampled network
#ow measurements in very large networks, even when they are in
idle mode. We show that our method is able to detect millions of
such devices in a large ISP and in an IXP that connects hundreds of
networks.

Our technique is able to detect 4 IoT platforms, 20 manufacturers
and 11 products–both popular and less popular ones–at vendor level
and in many cases even at product granularity. While this detection
may be useful to understand the penetration of IoT devices at home,
it raises concerns about the general detectability of such devices
and the corresponding human activity.

In light of our alarming observations, as part of our future work,
we would like to investigate how to minimize the harm of potential
attacks and surveillance using IoT devices. We also want to use our
insights to help ISPs to tackle security and performance problems
caused by IoT devices, e.g., by detecting them, redirecting their
tra$c, or blocking their tra$c.
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