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Simulations of finite temperature quantum systems provide imaginary frequency Green’s functions that
correspond one to one to experimentally measurable real-frequency spectral functions. However, due to the
bad conditioning of the continuation transform from imaginary to real frequencies, established methods
tend to either wash out spectral features at high frequencies or produce spectral functions with unphysical
negative parts. Here, we show that explicitly respecting the analytic “Nevanlinna” structure of the Green’s
function leads to intrinsically positive and normalized spectral functions, and we present a continued
fraction expansion that yields all possible functions consistent with the analytic structure. Application to
synthetic trial data shows that sharp, smooth, and multipeak data is resolved accurately. Application to the
band structure of silicon demonstrates that high energy features are resolved precisely. Continuations in a
realistic correlated setup reveal additional features that were previously unresolved. By substantially
increasing the resolution of real frequency calculations our work overcomes one of the main limitations of
finite-temperature quantum simulations.
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The central object of finite-temperature field theories is
the Matsubara Green’s function GðiωnÞ. This quantity
corresponds to the retarded Green’s function GRðωÞ and
the spectral function AðωÞ ¼ −ð1=πÞImGRðωÞ, which
characterizes the single-particle excitation spectrum meas-
urable by photoemission spectroscopy. Finite temperature
simulations ranging from perturbative calculations [1–3] to
lattice [4] and continuous-time [5] quantum Monte Carlo
and lattice QCD [6–8] simulations, as well as algorithms
for the simulation of bosonic systems [9] including He
[10,11], supersolids [12], and warm dense matter [13],
obtain the Matsubara Green’s function and analytically
continue it in postprocessing to obtain spectral information.
As the kernel relating GðiωnÞ to GRðωÞ is ill conditioned

[14], a direct inversion of the relation is infeasible in
practice. Instead, continuation methods such as a Padé
continued fraction fit [15] of Matsubara data [16–21], the
maximum entropy (ME) method [14,22–31], stochastic
analytic continuation and variants [32–38], or genetic
algorithms [11] are employed.
ME and stochastic analytic continuation aim to fit, rather

than interpolate, the spectral function to Matsubara data
consistent with specified error bars. The methods are
generally successful for noisy data but struggle to resolve
high frequency information, sharp peaks, and spectral
functions with multiple features. In contrast, Padé methods
provide a rational interpolation of the Matsubara data.
While sharp features appear, Padé spectral functions
typically change sign and do not satisfy the proper
normalization and moment structure, making them ill
suited for analyzing information away from low frequency.

In this paper, we show that a continued fraction inter-
polation of Matsubara data can overcome all of these
problems, provided that the interpolant satisfies the correct
analytic structure. Spectral functions are then positive and
respect analytically known moments, they are able to
resolve both broad and sharp features at low energy, they
can resolve sharp features at high energy, and they can
resolve multiple spectral features accurately. While there is
an infinite number of valid interpolants, this freedom can be
precisely characterized and used to find the “best possible”
spectral function by optimizing a functional norm.
In situations where noiseless Matsubara data is available,

our continued fractions pave the way to analytic continu-
ations with substantially better frequency resolution,
devoid of the deficiencies of previous attempts. The
remainder of this Letter will introduce the analytic structure
of Green’s functions, derive an interpolation algorithm that
respects this analytic structure, and characterize the degrees
of freedom in the interpolation. We will then present results
for synthetic benchmark Green’s functions (with emphasis
on trial functions exhibiting both sharp and smooth
features), the band structure of silicon (with emphasis on
sharp high frequency features), and correlated real-materi-
als simulations.
The retarded Green’s functionGR is analytic in the upper

half of the complex plane, Cþ, and contains singularities in
the lower half plane. The Matsubara Green’s function
GðiωnÞ and the retarded Green’s function GRðωþ iηÞ
can be expressed consistently by replacing the variables
iω and ωþ iη with a single complex variable z. Analytic
continuation is used to obtain GR from G.
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In complex analysis, a Nevanlinna function is a complex
function that is analytic in the open upper half plane Cþ and

has non-negative imaginary part, i.e., maps into Cþ (the
overline denotes inclusion of the boundary). Denoting the
class of Nevanlinna functions as N, the negative of the
Green’s functionNG ¼ −G restricted to Cþ is a Nevanlinna

function, i.e., NG∶Cþ → Cþ and NG ∈ N.
This follows directly from the Lehmann representation

of the Green’s function G,

Gðγ; zÞ ¼ 1

Z

X

m;n

jhmjc†γ jnij2
zþ En − Em

ðe−βEn þ e−βEmÞ; ð1Þ

where Em and En are eigenvalues corresponding to the
eigenstates jmi and jni of a Hamiltonian, Z is the partition

function, β is the inverse temperature, and c†γ is the creation

operator for orbital γ. Defining Q ¼ ð1=ZÞjhmjc†γ jnij2 ×
ðe−βEn þ e−βEmÞ ≥ 0 and setting z ¼ xþ yi with y > 0,
i.e., z ∈ Cþ,

Gðγ; zÞ ¼
X

m;n

Qðxþ En − Em − yiÞ
ðxþ En − EmÞ2 þ y2

; ð2Þ

and thus

ImGðγ; zÞ ¼ −

X

m;n

Qy

ðxþ En − EmÞ2 þ y2
≤ 0; ð3Þ

implying that NG ∈ N.
To perform analytic continuation from the Matsubara to

the real axis, we aim to find an interpolant for NG in the
class of Nevanlinna functions N, rather than a generic
continued fraction. By construction, this function will
pass through all Matsubara points (see Fig. 1) and
have a positive imaginary part in the upper half plane,
including just above the real axis. Spectral functions

AðωÞ ¼ limη→0þð1=πÞImfNGðωþ iηÞg are therefore
intrinsically positive, avoiding the common failure of
Padé interpolants.
We construct Nevanlinna interpolants using the Schur

algorithm [39], which is originally a continued fraction
expansion for all holomorphic disk functions mapping from
D to D̄, where D ¼ fz∶jzj < 1g is the open unit disk in the
complex plane, D̄ the closed unit disk. Schur algorithm is
modified to expand all contractive functions [40], which are
holomorphic functions mapping from Cþ to D̄. The

invertible Möbius transform h∶Cþ → D̄, z ↦ ðz − iÞ=ðzþ
iÞ on function value (with half-plane domain unchanged)
maps Nevanlinna functions one to one to contractive
functions (see Fig. 1). The Nevanlinna interpolation prob-
lem is therefore mapped into the problem of constructing
the contractive function θ, which is Möbius transformed
from NG,

θðYiÞ ¼ λi ¼ hðCiÞ ¼
Ci − i

Ci þ i
i ¼ 1; 2;…;M; ð4Þ

where Yi is the ith Matsubara frequency, Ci is the value of
NG at Yi, and λi is the value of θ at Yi.
Remarkably, there is a straightforwardly verifiable cri-

terion for the existence of Nevanlinna interpolants directly
based on input data, which is a generalization of the Pick
criterion [41,42]. Nevanlinna interpolants exist if and only
if the Pick matrix,

�

1 − λiλ
�
j

1 − hðYiÞhðYjÞ�
�

i;j

i; j ¼ 1; 2;…;M; ð5Þ

is positive semidefinite, and a unique solution only if it is
singular. In practice, we find that most noisy data (in
particular most Monte Carlo data) does not satisfy this
criterion, meaning that there does not exist a globally
positive and holomorphic function in the upper half plane
that passes through all Matsubara points.
The iterative construction of contractive interpolant

comes as follows. First, note that a contractive function
θðzÞ,

θðzÞ ¼
z−Y1

z−Y�
1

θ̃ðzÞ þ γ1

γ�1
z−Y1

z−Y�
1

θ̃ðzÞ þ 1
; ð6Þ

will satisfy θðY1Þ ¼ γ1 for any contractive function θ̃ðzÞ
[40]. Given an interpolation problem for j nodes,
θðYkÞ ¼ γk; k ¼ 1…j, Eq. (6) defines an interpolation
problem for the j − 1 nodes Y2;…; Yj for θ̃. The equation
results from Schur’s expansion for any disk function with
known value γ1 at the origin [43] by the conformal map
g∶Cþ → D, z ↦ ðz − Y1Þ=ðz − Y�

1Þ, projecting the origin
in D to Y1 in Cþ.

FIG. 1. Analytic continuation setup with fermion Matsubara
points at iωn and real frequency axis ω. The retarded Green’s
function is evaluated η (small) above the real axis. Inset: Möbius

transformof theclosedupperhalfplane C̄þ to theclosedunit disk D̄.
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Equation (6) suggests an iterative algorithm starting from
the original interpolation problem for θ1 ¼ θ of M points,
which defines an interpolation problem θ2 for M − 1

points, which in turn defines an interpolation problem θ3
for M − 2 points, etc. Concatenating these interpolation
problems results in a continued fraction form for θ.
Denoting θjðYjÞ ¼ ϕj to be the point ignored by the
interpolant θjþ1, there is a freedom to choose an arbitrary
contractive function θMþ1 at the last step that is reduced
from θMðYMÞ ¼ ϕM fulfilling the interpolation problem.
As we will show below, this freedom can be used to satisfy
additional criteria, such as smoothness.
The recursive final θ can conveniently be written in a

matrix form [40,43],

θðzÞ½z; θMþ1ðzÞ� ¼
aðzÞθMþ1ðzÞ þ bðzÞ
cðzÞθMþ1ðzÞ þ dðzÞ ; ð7Þ

where

�

aðzÞ bðzÞ
cðzÞ dðzÞ

�

¼
Y

M

j¼1

�

z−Yj

z−Y�
J

ϕj

ϕ�
j
z−Yj

z−Y�
j

1

�

; ð8Þ

with j increasing from left to right. θ is then back trans-
formed to a Nevanlinna interpolant via the inverse Möbius
transform h−1, NGðzÞ¼h−1½θðzÞ�¼ i½1þθðzÞ�=½1−θðzÞ�.
In practice, we found that solving these equations required at
least quadruple precision.
The choice of θMþ1 is still to be discussed. Any

contractive function will yield a valid interpolation and
spectral function, and therefore this freedom can be used to
select the “best” of all consistent spectral functions. It is
natural to expand θMþ1 into a set of basis functions and
optimize the resulting spectral function in some norm as a
function of those basis function coefficients. As we
demonstrate below, a constant θMþ1 results in spectral
functions with oscillations. We therefore employ the free-
dom in choosing θMþ1 to eliminate these oscillations and
obtain the smoothest possible spectral function. Other
criteria, such as proximity to a trial function that is either
featureless or exhibits a desired feature, are possible but
have not been pursued here.
The Hardy space H2 [44] in Cþ consists of holomorphic

functions whose mean square value on ωþ iη remains
bounded as η↓0. The Hardy basis fkðzÞ ¼ 1=½ ffiffiffi

π
p ðzþ

iÞ�½ðz − iÞ=ðzþ iÞ�k and its conjugate (see Fig. 2) generate
functions in the contractive function space with rapid
variations at low frequency. Expanding θMþ1 ¼
P

H
k¼0 akf

kðzÞ þ bk½fkðzÞ�� allows us to determine the
complex coefficients ak and bk by minimizing a smooth-
ness norm such as F½AθMþ1

ðωÞ� ¼ j1 −
R

AθMþ1
ðωÞj2þ

λ
R

A00
θMþ1

ðωÞ2, where the first term enforces proper nor-

malization while the second term promotes smoothness by

minimizing second derivatives (we typically use λ ¼ 10−4

and H ¼ 25). In our implementation, we used a conjugate
gradient minimizer of the Dakota package [45] to minimize
the norm and eliminate oscillations from the spectral
function.
Finally, we remark that the moments of the Green’s

function, which are known analytically from commutator
expansions [46], can be enforced explicitly. This is known
as the Hamburger moment problem [47], and combinations
with the Schur algorithm are straightforward [48]. In our
simulations, which predominantly used data accurate to
double precision, we found that nonuniform grids [49,50]
with data at large Matsubara frequencies contained enough
moment information that an explicit enforcement of the
moments did not yield any advantage in practice. A
combination may become useful if fits to noisy
Monte Carlo data are attempted.
Figure 3 shows the results of the method for four

prototypical spectral functions: an off-center δ-peak “level”

FIG. 2. Real and imaginary parts of the 3rd and 20th Hardy
functions and conjugates used in the optimization, plotted in the
upper half complex plane.

FIG. 3. Continuation with and without Hardy function opti-
mization. Off-centered δ peak (top left), Gaussian (top right),
two-peak scenario (bottom left), and a three-peak scenario
(bottom right). β ¼ 100, IR grid [49,51] with 36 Matsubara
positive frequency points.
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(top left), a centered Gaussian (top right), a double-peak
“pseudogap” scenario (bottom left), and a three-peak
structure with a second, smaller peak hidden behind the
first peak. Black lines show input data that is then back-
continued to the imaginary axis in double precision as an
input for the interpolation algorithm.
We show two sets of results from Nevanlinna continu-

ation that both interpolate all Matsubara points and are
intrinsically positive and normalized. First, the result of an
interpolation using a constant function θMþ1 ¼ 0. For the δ
function, the interpolation is very close to the original data.
However, other curves display artificial oscillations. The
number of these oscillations increases as additional
Matsubara points are fit. Nevertheless, the approximate
shape of the original spectral function is evident in all
interpolations.
Next, we exploit the additional freedom to find the “best”

function among all possible interpolants by minimizing the
functional F½AθMþ1

ðωÞ� with 25 Hardy basis coefficients
and their conjugates. Other choices of functionals, includ-
ing minimizing

R

A2ðωÞ while keeping
R

AðωÞ constant,
yield similar results. As is evident in Fig. 3, the minimi-
zation eliminates all oscillations and produces a spectral
function that is both smooth and very close to the original
data, while not destroying the sharp features of the δ peak in
the top left panel.
We now turn to Fig. 4. Shown are k-resolved DFT Kohn

Sham eigenvalues (the “band structure”) of solid Si in the
LDA approximation at the Γ and the X point, obtained on
an 8 × 8 × 8 grid in the gth-dzvp-molopt-sr basis [52] with
gth-pbe pseudopotential [53]. The eigenvalue spectrum at
the k points shown is backcontinued to the Matsubara axis
in double precision, at T ¼ 316 K and with 52 nonuniform
[49] IR basis [51] Matsubara points, for each orbital
individually, and then analytically continued. Shown are
Nevanlinna (blue) and maximum entropy continuations
(orange). It is evident that Nevanlinna resolves the delta
peaks at the right locations, even at very high energy,
whereas ME only obtains the approximate area, but not the
sharp unperturbed levels at high energy. Continuations

performed with stochastic optimization method (SOM)
[54,55] and sparse modeling (SpM) [56] show behavior
similar to ME. Continuations performed with Padé (not
shown here) generally show peaks at the correct locations
but with incorrect peak heights. In addition, Padé contin-
uations exhibit negative spectral weight at large frequen-
cies. Continuations of this type often appear in correlated
simulations of real materials, where the spectral function
broadening due to electron correlations needs to be dis-
tinguished from a broadening due to analytic continuation
deficiencies. Our method, which is able to capture both
broad features near the Fermi energy and sharp features
away from it, therefore offers the unique capability of
accurately resolving band structure at high energy. The fact
that sharp features are resolved, despite Hardy function
smoothing, hints at the severe restriction of the functions
available within the Nevanlinna space.
To illustrate the power of the method in a difficult

realistic correlated setting, we show near-Fermi-energy
results from a self-consistent GW [1] calculation of
SrVO3 in Fig. 5, from ME (top) [27] and Nevanlinna
(bottom panel). For methods details and physics discussion
see Ref. [57]. Shown are experimental Photoemission
Spectroscopy (PES) [58] and Bremsstrahlung Isochromat

FIG. 4. LDA band structure (Kohn Sham eigenvalues, DOS) of
solid Si (blue, exact) at the Γ and the X point, as well as
Nevanlinna (black) and ME (red) continuations of the corre-
sponding Green’s functions. T ¼ 316 K, 52 nonuniform [49] IR
basis [51] Matsubara positive frequency points.

FIG. 5. Orbital-resolved realistic band structure of SrVO3 from
self-consistent GW continued with ME (top) and with Nevan-
linna (bottom) [57]. PES denotes photoemission spectroscopy,
BIS bremsstrahlung isochromat spectroscopy, and “rest” sum-
marizes all remaining orbitals.
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Spectroscopy (BIS) [59] data along with orbitally resolved
local GW spectra obtained at T ¼ 1579 K on a 6 × 6 × 6

grid in a Gaussian gth-dzvp-molopt-sr basis [52] with gth-

pbe pseudopotential [53] at 84 frequency points. The four-
fermion Coulomb integrals are decomposed into a combi-
nation of auxiliary even-tempered Gaussian for Strontium
and def2-svp-ri [60] bases for all other atoms. Both
methods recover the same overall features. However,
Nevanlinna continuation reveals additional details, such
as multiplet structures in the occupied and unoccupied
bands, and does not exhibit artificial oscillations in the t2g
bands near the Fermi energy.
In conclusion, we have derived a continuous fraction

expansion for analytic continuation of Matsubara data. The
expansion constructs a class of functions that intrinsically
respect the analytic structure of Green’s functions. By
construction, the functions are positive, consistent with the
Matsubara data, and respect the moment information
contained in the input data. We have provided a para-
metrization of the class of all possible spectral functions in
terms of contractive functions, which can be expanded into
Hardy basis. We have then shown how optimizations in this
space of functions (e.g., to obtain the “smoothest” function
consistent with the input data) are possible and yield the
expected result.
An application to synthetic benchmark data showed that

the method could resolve both sharp and smooth features.
An application to the band structure of silicon showed that
high energy features are precisely resolved. Finally, an
application to correlated real materials simulation revealed
additional structure that was not visible in a ME
continuation.
Our description is accompanied by a sample implemen-

tation [61]. Natural extensions to be considered in the
future are the calculation of self-energy continuations [62],
matrix valued functions [29], anomalous functions [63],
and most importantly bosonic response functions [14], such
as optical conductivities [25] and spin-spin correlation
functions [11,64].
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