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Abstract. We prove quasi-optimal L norm error estimates (up to logarithmic factors) for the
solution of Poisson’s problem in two dimensional space by the standard hybridizable discontinuous
Galerkin (HDG) method. Although such estimates are available for conforming and mixed finite
element methods, this is the first proof for HDG. The method of proof is motivated by known
L°° norm estimates for mixed finite elements. We show two applications: the first is to prove
optimal convergence rates for boundary flux estimates, and the second is to prove that numerically
observed convergence rates for the solution of a Dirichlet boundary control problem are to be expected
theoretically. Numerical examples show that the predicted rates are seen in practice.
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1. Introduction. In this paper we derive L> norm estimates for the standard
hybridizable discontinuous Galerkin (HDG) method applied to a diffusion problem.
The problem is posed on a bounded convex polyhedral domain Q C R2. We seek to
approximate the solution (u, q) of the following elliptic system:

(1.1a) cq+Vu=0 inQ,
(1.1b) V.g=f inQ,
(1.1c) u=g on .

We assume the data is given as follows: the diffusivity ¢ € (W1>°(Q))?*2 is a uni-
formly bounded positive definite symmetric matrix-valued function, and the functions
¢, f, g and the domain  are such that the solution (u,q) € L>®(Q) x L>(Q) (see
Remark 3.2). In particular, we shall prove quasi-optimal L error estimates (up to
logarithmic factors) for the HDG approximation to u and q. We also verify that, after
a standard procedure, the postprocessed solution denoted uj is superconvergent in
the L°° norm.

Quasi-optimal L* norm estimates on general quasi-uniform meshes for the con-
forming finite element method were first proved by Scott [34] in 1976. The method of
proof is based on weighted L? norms and was extended in [33, 13, 11, 12, 14, 36] to
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mixed methods for elliptic equations and in [16, 15] to the Stokes equations. Another
technique was developed in the series of papers by Schatz and Wahlbin [30, 31, 32].
They use dyadic decomposition of the domain and require local energy estimates to-
gether with sharp pointwise estimates for the corresponding components of the Green’s
matrix. For smooth domains such a technique was successfully used in [7] for mixed
methods, in [19, 24] for discontinuous Galerkin (DG) methods, and in [6] for local
DG methods. This technique was also applied on a nonsmooth domain for the Stokes
equations; see Guzman and Leykekhman [20].

The HDG method for elliptic equations was devised by Cockburn, Gopala-
krishnan, and Lazarov [9] and was analyzed using a special projection in [10]. Since
there is a strong relation between the HDG method and mixed finite element methods
(see [9]), it is reasonable to ask if similar L*°(€2) norm estimates on general quasi-
uniform meshes could be obtained for the HDG method. To the best of our knowledge,
there is no such result in the literature. In section 3, we give quasi-optimal L*° norm
estimates for the flux variable g and scalar variable u (see Theorem 3.1). One advan-
tage of the HDG method is that we can obtain superconvergent rates of convergence
for a postprocessed approximation u} to w in the L*(Q) norm [9]. In Theorem 3.1,
we show that the postprocessed solution also enjoys superconvergent rates in the L>°
norm. We present a numerical test in Example 6.1 (see Table 1) to confirm our the-
oretical results from Theorem 3.1. As mentioned in [26], we can use our L® norm
estimates to improve L?(I") norm estimates on an interface I'; see Theorem 4.1. The
numerical test in Example 6.1 (see Table 2) confirms the theoretical result from The-
orem 4.1. It is worthwhile to mention that a standard analysis of convergence on an
interface (usually via the trace theorem) only gives a suboptimal convergence rate.

The optimal L?(T") norm estimates on an interface I' or on the boundary of the
domain have many applications. One example [26] is where some complex problems
require the use of a variety of models in different parts of the computational domain,
which in turn are coupled through the normal flux across common interfaces. On
the level of numerical methods, this entails a need to understand and quantify the
discretization error in the normal flux at interfaces [26]. Another example appears in
the problem of Dirichlet boundary control of PDEs with L?(92)-regularization, where
the normal derivative naturally arises in the discrete optimality system. Hence, the
estimation of the error in the normal derivative plays an essential role in the error
analysis of the Dirichlet boundary control of PDEs; see [21, 27, 1, 29, 37| for more
details. In recent papers where HDG methods have been successfully applied to the
Dirichlet boundary control of PDEs [5, 23, 22, 17, 18], the analysis for the control is
optimal in the sense of regularity and suboptimal for other variables. Furthermore,
numerical experiments show that the discrete control can achieve optimal convergence
with respect to the polynomial degree if the control is smooth enough. However, the
analysis in the above-mentioned HDG papers is suboptimal in this situation. In
section 5, we use the improved L? norm estimates on the boundary in Theorem 4.1
to obtain an optimal convergence rate for both the control and the other variables;
see Theorem 5.1. The numerical test in Example 6.2 confirms our theoretical result.

2. HDG formulation and preliminary material. In this section, we shall
give the HDG formulation of (1.1) and introduce some standard auxiliary projections.
Our main result in this section is to extend the L? norm estimates for the auxiliary
projections used in the error analysis of HDG to L? norms (1 < p < o0); see Theo-
rem 2.6. This is one essential step of the paper. Although our final L norm estimates
require the domain to be two dimensional and convex, it is worth mentioning that
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we do not need these restrictions in Theorem 2.6. Hence, in the present section, we
assume that Q C R¢ (d = 2,3) and do not assume convexity.

Throughout the paper we adopt the standard notation W™ P(D) for Sobolev
spaces on a bounded domain D C R? (d = 2,3) with norm || - [|yym.»(p) and seminorm

| . |W7n,p(D):

sy = 3 [ 1D, sy = 3 [ Dz,

[i|<m |i]=m

where 4 is a multi-index and D’ is the corresponding partial differential operator
of order [i|. We denote W"-2?(D) by H™(D) with norm || - ||gm(p) and seminorm
| - |um(py. Specifically, Hj(D) = {v € H*(D) : v = 0 on dD}. We denote the
L2-inner products on L?(D) and L*(S) by

(v,w)D:/ vw de  Yo,w € L*(D), (mw)sz/vw de You,w e L*(9),
D s

where S C dD. Finally, we define the space H (div,{2) as
H(div,Q) = {v e [L2(Q)]¢ : V-v e L*(Q)}.

Let 7; be a shape-regular simplicial family of triangulations of € so that there
exists a constant (, independent of h and K, such that

h
(k=—-2<¢ VKeT,
PK

where hg is the diameter of K and pg is the diameter of the largest inscribed circle
in K.

We denote by 97, the set {0K : K € T;,}. For an element K of the mesh 7p,
let FF = 0K N 90N denotes the boundary face of K having nonzero d — 1 dimensional
Lebesgue measure. Let .7-';? be the set of boundary faces and Fj, denote the set of all
faces. We define the following mesh dependent inner product, spaces, and norms by

(wav)Th = Z (’LU,U)K, <C7p>a7’h = Z <<ap>6K7

KeTh KeTy
H(Th) = [[ H(K), L0 = ] L*(0K),
Keﬂz Keﬂz
1/2 1/p
w7, = (Z |w||iz<K)> o leloren) = ( > ||w||’;p<K)>  1<p<oo.
KeTy, KeTy

Let P*(D) denote the set of polynomials of degree at most k on a domain D. We
introduce the discontinuous finite element spaces used in the HDG method as follows:

Vi = {'vh S [LQ(Q)]d cvplk € [Pk(K)]d VK € 77L},
Wy, = {wp, € L*(Q) : wy|x € PH(K) VK € Ty},
W, := {@n € L*(Fp) : @nlp € PP(F) VF € Fp;@nlp =0 VF e F}.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/16/21 to 132.174.254.72. Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

OPTIMAL L* ERROR ESTIMATE OF HDG METHODS 723

2.1. HDG formulation. To simplify the presentation, we assume the Dirichlet
boundary condition is homogeneous, i.e., g = 0. Then the HDG method of Cockburn,
Gopalakrishnan, and Lazarov [9] seeks the flux g;, € V},, the scalar variable uj, € Wy,

—

and its numerical trace u, € W), satisfying

(2.13,) (th,’ljh)Th — (u;“ V- 'Uh)Th + (ﬁh, vy, - n>a7—h =0,
(2.1b) —(qn, Vwp) 7, +(qn -, wn)or, = (f, wn) 7,
(2.1C) <l/]\h . n,l/ﬁh>a7‘h =0

for all (vp, wp, Wy) € Vi, X Wy x Wh. The numerical flux on 97y, is defined by [10]
(2.1d) qn-n=qp-n+7(u, —uy) ondTp,

where the stabilization parameter 7 € L>(F},) is uniformly positive and bounded. For
simplicity, we consider the stabilization function 7 to be constant on the boundary of
each element.

After computing the solution (gp, up, Up) of (2.1), we can use the following element-
by-element postprocessing to find ujf|x € P*T(K) such that for all (zp,wp) €
[PEHHE)]H x PUK),

(223) (VUZ, VZh)K = _(tha VZh)K;
(22b) (uz,wh)K = (uh,wh)K,
where [P*H (K]t = {2, € PFTYK) : (21,1)x = 0}.

To shorten lengthy equations, we define the following HDG bilinear form % :
HY(T,) x HY(Ty) x L2(0Ty) x HY(Tp,) x H(Ty) x L?(0T,) — R by
23) PB(q,u,u;v,w,0) = (cq,v)7, — (4, V- v)7, + (U, v-n)ar,

—(V-qu)7, — (r(u—1),w — )7, + (g1, W)oT,-

By the definition of & in (2.3), we can rewrite the HDG formulation of system
(2.1), as follows: find (gn,un,upn) € Vi, X Wy, x Wy, such that

(2.4) B(qh, Un, Un; U, Wh, Wh) = —(f, wr) 7,

for all (vp,wp, Wp) € Vi X Wy, X Wh. Moreover, the exact solution (g, u) also satisfies
(2.4), ie.,

(2.5) #(q, u, u; vy, wh, Wy) = —(f,wn) T,

for all (’Uh,’wh,ﬁ)\h) eV, x Wy x /Wh.
From [4, Lemma 2] we recall the following stability result.

LEMMA 2.1. For any (qp,up,up) € Vi X Wj x /Wh, we have

B(Qn, Un, Uns Qry —Un, —n) = (cqn, qn) T, + (T(Un — Up), un — Un)oT;, -

The following lemma shows that the bilinear form £ is symmetric and is proved
by integration by parts. We do not provide details.

LEMMA 2.2. For any (q,u,u;v,w, @) € H(T,) x HY(Ty) x L?(0Ty,) x H(Tp,) x
HY(Ty) x L*(9Ty), we have

(2.6) PB(q,u,u;v,w,w) = B(v,w,W; q,u,u).
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2.2. Preliminary material. Recall the HDG projection IIj(q,u) := (IIyq,
Mywu) € Vi, x Wy, (see [10, equation (2.1a)—(2.1c)]) that satisfies the following equa-
tions:

(2.7a) (Ilvq,vi)x = (q,vn) K Y vy, € [PFHEK)]Y,
(2.7b) (ku, wh)K = (u, wh)K Vwe 'Pkil(K),
(2.7¢) (Iyq-n+ tIwu, Wy)r = (q- N+ Tu, W) F Y wy, € Pk(F)

for all faces F' of the simplex K. If kK = 0, then (2.7a) and (2.7b) are vacuous and
I}, is defined solely by (2.7c). Note that although we denoted the first component
of the projection by Ily g, it depends not just on g but on both g and u, as we see
from (2.7). The same is true for IIyyu. Hence the notation (ITy q, Iy u) for Iy (g, u)
is somewhat misleading, but its convenience outweighs this disadvantage.

It is worthwhile mentioning that the domain of the projection IIj is a subspace
of [L2(2)]¢ x L?(2) on which the right-hand sides of (2.7) are well defined. We do
not require that the two components (q,u) satisfy (1.1a).

The well-posedness of (ITy,IIy,) and its approximation properties are given in
the following Lemma 2.3. The proof can be found in [10, Appendix].

LEMMA 2.3. Suppose T|ax is positive and is a constant on each face F C 0K.
Then the system (2.7) is uniquely solvable for I1yq and My u. Furthermore, there is
a constant C independent of K and 7 such that

Lg+1
(2.8&) HHWu - UHL2(K) < Ch%+1|u|Heu+1(K) + C’rﬁﬁ|v . q|qu(K),
K
l
(2.8b) Ty q — qllze(x) < ChE gl geatr i) + CREE il greaan i)

for £y, lq € [0,k]. Here Tj := maxT|px\p+, where F™* is a face of K at which T|ak
18 Maximum.

Besides the projections ITy and Ily, in the analysis we also need to introduce
the standard local L? projection operators 119 : L2(K) — PY(K) and 11{ : L*(F) —
Pk (F) satisfying
(2.9a) (ITpw, wp) k = (W, wp) K Y wy, € PHK),

(29b) <sz, ﬁ}h>F = <w, ﬁ)\h>F Y wy, € Pk(F)
We use II7 to denote the local vector L? projection operator; the definition compo-
nentwise is the same as local scalar L? projection operator. The next lemma gives

the approximation properties of II9, and its proof can be found in [35, Theorem 3.3.3,
Theorem 3.3.4].

LEMMA 2.4. Let £ > 0 be an integer and p € [1,+o0]. If ({+ 1)p < d, then we

require d, p, and £ to also satisfy 2 < %. For j € {0,1,...,0+1}, if s; satisfies

PSS]‘Sm (L+1—j)p<d,

(2.10) p<sj<oo (+1—j)p=d,
p<s;<oo (L+1—j)p>d,
then there exists a constant C which is independent of K such that
o e+l-j+ L -2
(2.11a) VI (TGu — u)|| o5 () < Chy T M ulwere k),

1—j4 4t d

(2.11b) IV (gu — w)l| o5 (ox) < Chyg Tl i)
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In the analysis, we also need the following standard inverse inequality [35, Theo-
rem 3.4.1].

LEMMA 2.5 (inverse inequality). Let k > 0 be an integer and p,p € [1,+00];
then there exists C' depend on k, u, p, and d such that

da_d_
(2.12) nlepre < ChE " luplspx Vun € Po(K), t>s.

In the analysis, not only are the L? approximation properties of (ITy-, ) impor-
tant for us, but the L>° approximation of these projection operators plays an essential
role. We provide these estimates in the next theorem.

THEOREM 2.6. Let k > 0 be an integer and p € [1,+00]. If (k+ 1)p < d, then
we need d, p, and k to satisfy 2 < %, For j € {0,1,...,k+ 1}, if s; satisfies
(2.10), then

(2.13a)
C kt1+L -4 k144 -4
Mwu —wllpew) < —hg 7 "IV - @lwroae) + Chy |[ulwr+io (k)
(2.13b)
k144 -4 k144 -4
[TIvq — q Lo (K) < Chy ! |‘I|Wk+1vp(K) + Chy |u|wk+1,p(K)~

Proof. First, we prove (2.13a). In the proof of [10, Proposition A.2.] we have

h
T — TR pare) < C— (IIV - ¢ = T (V- @) 22(6))
(2.14) T

+ C (|lu = TRul| (k) + hic |V (= TR || L2 (k) -

Then, using the local inverse estimate in Lemma 2.5,

T — | Lo )y < [Mww — Tul| o gy + [Tw — ull Lo (k)
< On M — Tl 20 + 1T — ull s by (2.12)
<ony " (MY g -1V @l

= Tl ey + |V — qu>||Lz<K>) by (2.14)
+ 17w — ullpss ()
gh?H%_%IV “Glyro) + ch';f %_%M\WMP(K) by (2.11a).

Next, we prove (2.13b). Because we do not have an estimate like (2.14) for Ily,
we introduce the single face HDG projection By defined on sufficiently smooth vector
functions q such that By q € [P*(K)]¢ satisfies [8, equation (3.10)]

(2.15a) (Bvq,vn)x = (q,vn)k Y vy, € [PFH(K))4,

(2.15b) (Byq-n,pun)r, = {q-n,un)r, Y oun € PR(F),i=1...,d.
By [8, equation (3.13) of Lemma 3.2, Lemma 3.3] we have

(2.16a) I1Bvallse) < llallzzce) + bl *lla - mll 2o

(2.16b) IBva — all e (x) < ChE " lal e (i)
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for 0 < s < k+ 1. Note that Byqy, = g for any g, € [P*(K)]¢. Then, using the
local inverse estimate in Lemma 2.5,

Bva —qllzsi (k) < |1Bva —IIRq| Lo (k) + 1179 — qll L+ (k)

d _d
<Chy "|Bva—Tq|r2x) + |10 — ql| e (x) by (2.12)
d _d
=Chy ’ | Bv(q —T13q) | 2(x) + 1ITIRq — ql|L°5 (k)
d _d
<cn? (g~ allrae + il *lla - Tal 2or) ) by (2.16a)
+ 11139 — qll =i (%)
E+1+2L -4
S OhK 7 |q|Wk,+1,p(K) by (2.11&),

where in the last inequality we used (2.11a) and (2.11b). In the proof of [10, Propo-
sition A.3.] we find that

(217)  |Bvq—Tlyq|z2x) < C (h}g?uu — 09| L2 sy + [T — nguuLz(K)) .
Then, again using the local inverse estimate in Lemma 2.5,

ITIvq — qllLsi (k) < | Bvq —Ivallre k) + |Bva — qllrsi (k)

da _d

<Chy *|Bva—Tvq|rex) + |Bva — gl x) by (2.12)
da _ d

< (M=l om + Mwu — Wl o)) by (2.17)

+ [|Bvq — qllLi (k)
k1424 k144 -4
<Chy 7 Tlalwerre) +Chye 7 Tulwrrie(k),

where in the last inequality we split IIyyu — IIu = Ilywu — v + u — IIYu and used
(2.11a), (2.11b), and (2.13b). d

3. L*° norm estimates. In the rest of this paper, we restrict the domain 2 to
two dimensional space, i.e., d = 2. Furthermore, we assume the following.

(A) The domain is convex, and the triangular mesh 7y, is quasi-uniform.
Now, we state the main result of our paper.

THEOREM 3.1. Let (q,u) and (qn,up,un) be the solution of (1.1) and (2.1),
respectively. We assume that (A) holds. First, if u € L>®(Q), ¢ € L*(Q)), and
f € L%(Q), then we have the following stability bounds:

(3.1a) lunllze() < llullze@) + Cllfllzz), k=0,
(3.1b) Jnll (o) < llullzoe ) + C(|log A" + 1)llql L (o) k>1,
(3.1c) llgnllz< () < llallLe=) + Cllfllz2@), k>1.

Second, if (q,u) € WFHL=(Q) x WkHL0(Q), then we have the following error esti-
mates:

(3.1d)

la — anllLe@) < CR*(|log h|'/? + D(lqlwrt1.00) + [ulwriro ), k>1,
(3.1e)

[ = up o) < ChETH([log Al + 1) (Iqlwisrec ) + [ulwrsro (), k>1.
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Furthermore, if (q,u) € WFHL0(Q) x Wk+2:22(Q) then we have the following error
estimate for the postprocessed solution:

(3.1) flu—up Loy < CRF2(1+ [log A|)(|qlwr+1. () + [ulwirz(o), k> 1,
where u} was defined in (2.2).

Remark 3.2. The assumption u € L*°(Q2) and g € L*>(Q2) hold in Theorem 3.1 if
feH(),s>0,g=0,c=1, and Q is convex in 2D. It is well known [2] that, in
this case,

lull 242y < C)| fllasy Vs <min{l,n/w— 1},

where w is the largest interior angle of the boundary of 2. By the Sobolev embedding
theorem [35, Theorem 1.1.2] we have

HP2(Q) = Wh™(Q)  Vt<s+1,
in particular for t = 1.
The remainder of this section will be devoted to proving the above result.

3.1. Proof of Theorem 3.1. We start the proof of Theorem 3.1 by defining
suitable regularized Green’s functions. We follow the notation of Girault, Nochetto,
and Scott [16] to define by d, > 0 the usual mollifier in D(R?) such that supp(d,) C
B(0,1) and [, 0,(x)dx = 1. Then for any point o € © and real number py > 0 such
that the ball B(xg, po) is contained in €, we define the mollifier by

(3.2) §(z) = [)1(2)5* ( “’ ;O””‘)) .

LEMMA 3.3 (see [16, Lemma 1.1}).  Suppose the triangular mesh Ty, is quasi-
uniform. Let pp, be a polynomial in P* on each K, s be a point of Q where |op ()|
attains its mazimum, K be an element containing xp;, and B C K be the disk of

radius pgx inscribed in K. Then there exists a smooth function 0p; supported in B
such that

(3.3a) oy de =1,
Q
(3.3b) lonllLee () = ‘/B5M<Ph dx
and for any number t with 1 <t < oo, there exists a constant C' such that
(3.3¢) 60z ]l (my < CRY/P72,
(3.3d) IVonllze(m) < O3,

Proof. The proof of (3.3a)—(3.3¢c) can be found in [16, Lemma 1.1] where it is
shown that there exists polynomial Py; € P*(K) such that

(S]w = 6PM
Since [|6]|zerzy < C/p% and ||V porey < C/pi, by (2.12) and the assumption
that the triangle mesh is quasi-uniform, we have
||V5M||Lt(B) = ||P]ij5 + 6VPMHL"(B)
< |Vol| ooy | Paell e By + 10] oo (Y IV Pt || e ()
< CR**73. O
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The main idea behind the proof of L*° norm estimates is to use the so-called
smooth d,; function, which was described in Lemma 3.3. Given a scalar function d;
and a vector d2 of the above type, we define two regularized Green’s functions for

problem (1.1) in mixed form:

C‘I)1 + V\Ifl =0 in Q,
(34) V- (Dl == 51 in Q,
¥, =0 on 00
and
C‘I’Q + V\I/Q = (52 in Q,
(3.5) V-®;,=0 in €,
Uy =10 on 0f).
Next, we define the weight o by
(3.6) o(@) = (j& — x| + h*)'/?,

where o € Q. In this paper, we are going to estimate four quantities: |lu (),
llu —un|lL=(), |g]lL= (), and ||g — gu|| (o). Without loss of generality, we assume
that g is a point where the maximum of one of these four quantities is attained.
This function was introduced by Nitsche [28] for conforming finite element methods
and was applied by Gastaldi and Nochetto [14] for Raviart—Thomas mixed methods.

We need two auxiliary results before starting the proof of Theorem 3.1. The first
concerns bounds on the regularized Green’s function (¥4, ¥s).

LEMMA 3.4. Let ¥y and Wy be the solution of (3.4) and (3.5), respectively. If
assumption (A) holds, then we have

(3.72) || U]l g2y < Ch™Y, [|[oD* W12y < Cllog h|*2, | D*W4 |11y < C|loghl,
(3.7b)
H\IJQHHQ(Q) S Oh72, ||O'D2\I’2||L2(Q) S Ohil, ”DZ\I/QHLl(Q) S Ch71| 10gh|1/2.

Proof. The proof of (3.7a) can be found in [36, equation (3.6)]. By the elliptic
regularity of Poisson problem and (3.3d) we have

192llrr20) < CIV - 82l L2y < ChT2
The remaining estimations in (3.7b) can be found in [11, Lemma 3.2] and [36, equation

(3.12d)]. 0

In the second auxiliary lemma we summarize some properties of the function
which will be used later.

LEMMA 3.5 (see [36, equation (2.13)]). For any o € R there is a constant C
independent of a such that the function o has the following properties:

MaXge K J(m)o‘

(3.82) <C VKE€T,

Mingcg o(x)

(3.8b) [VE(o(2)*)] < Co(@)* ",
(3.8¢) /Qa(ac) x < C|loghl.
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We split the proof of Theorem 3.1 into four steps. First, we shall obtain the L'
norm approximations error of the solution of (3.4) and (3.5). Second, we prove the L™
norm stability of g, and wy. Next, we obtain the L norm error estimates of g — gy,
and u — up. Finally, we obtain the L° norm error estimates of the postprocessed
solution wuj.

Step 1: L' norm error estimates for the regularized Green’s functions. Let (@1,
Ui h, (I\/Lh) and (®2p, Yo p, \/I}Q’h) be the HDG solution of (3.4) and (3.5), respectively,

ie.,

(3.9a) B(B11, U1, U1 s Op, why ) = (01, 0) 75,5

(3.9b) B(Bop, Wa g, Vo g vp, why W) = (82,00)7,

for all (vp,, wp, Wp) € Vi x W, x Wh. The existence and uniqueness of these solutions
follow by standard HDG theory [9].

Our goal in this step is to prove the upcoming Lemma 3.8. To start we summarize
some relevant results in the following;:

(3.10a) By &y, My Uy, TV vp, wy, @) = (c(Ty @1 — 81),v4) 7, — (01, wn) 75,
(3.10b) B(ILy @y, My Wy, T2y vy, wh,, Bp) = (c(TIy By — B2), vp) 7, + (82, v1)7,

(3.10¢)

%(qu:.l o leh’Hqul - \Ijlyh’Hg\Ijl - \/I}l,h;/vhvwhv{v\h) = (C(qu)l — q)l),’vh)'rh,
(3.10d)

By &y — By, My Wy — Uy, TIIWy — Uy s vp, why, D) = (c(Thy By — D), v1) 75,
(3.10¢) ITLy @1 — @1 p)lr2(0) < O, |[Mw ¥y — Uy 120y < CR™PRL

(310f) ||HV@2 - QQ,hHL?(Q) S Ch_l, ||HW\I’2 — \IIQ,h||L2(Q) S Chmin{kJ}_l'

The proof of (3.10a) and (3.10c¢) can be found in [3, Lemma 3.6], and the proof of
(3.10b) and (3.10d) is similar. The proof of (3.10e) and (3.10f) can be found in [10,
Theorem 3.1 and Theorem 4.1] and the regularity of regularized Green’s functions in
Lemma 3.4.

We now present a series of lemmas providing convergence estimates for the pro-
jections used in our analysis.

LEMMA 3.6. For any integer k > 0, K € Ty, and o € R, let II}, be the standard
L? projection (see (2.9a)); then for v € H*TY(K) we have

(3.11a) o™ (0 = TE20) | ey < CRA |07 V50| s
Furthermore, let w € H*TY(K); then (0v,0%w) is in the domain of I1j, and we have
(3.11b)  [0® (v — Tyo)ll o, < CRET (107 0]l 2oy + 07T i)
(3.11¢) [0V (w — Tyw)l gy < Ol ([0 wll g2y + [0V il g2 ey
Proof. We only prove (3.11b) because the proofs of (3.11a) and (3.11c) are similar.
lo® (v = Thv )l L2y < max{o®} [lv — Iy ol z2(x)
< ChkHt ;neai)(i{oa} (V¥ 0| p2(xe) + VR wlp2y) - by (2.8b)
< Chit ;Tglfg{Ua} (IV** L2 i) + [V w0l 2 (k) by (3.84)

< ChF ([0 VE ol L2 ) + 10" VE w2k ) - O
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LEMMA 3.7. Let (vp,wp) € Vi, x Wy then for any integer k > 0, we have
(3.12a) o (o2, — IR (0Pvy)) ||L2(K) < Chlvnll gy -
(312b) Ho'_l (UZ'Uh - HV(UQ'Uh))HLQ(K) S Ch(H'UhHLQ(K) + HwhHLQ(K))

Proof. Notice that vy,| € [P*(K)]?, i.e., VF¥lv, = 0. Then by Lemma 3.6 we

have
Ha_l (azvh - HZ(Uzvh)) < ChFt? Ha_l (Vk+1(02vh))

k+1
_ Chk+1 O_flzvj(oj)v]vl*lfjvh
j=1

Iz o)

L2(K)
< Chllvp|l2(k),

where we applied (3.8b) and Lemma 2.5 to the above inequality. This proves (3.12a),
and the proof of (3.12b) is the same; hence we omit the details here. |

LEMMA 3.8. Let (®1,V1) and (<I’17h,\111,h,\i'1,h) be the solution of (3.4) and
(3.9a), respectively, and (®2, Vo) and (Pap, Yo r, Vo) be the solutions of (3.5) and
(3.9b). Let

(313) &M =TIy ®, — &y, & =Tyl — Uy, & =T100, — Ty .

If assumption (A) holds and k > 1, then we have

(3.14a) o2 |2 + oV (EXT — EX) 120 < Ch(|log b/ + 1),
(314b)  [o&F |z + loVT(EY — EF)z2om) < C.
Proof. On the one hand, by the definition of % in (2.3) we obtain
BEX VT €57 —g2EM —g2E)
= (&7, 06T )T — (EV,V - (PET ) + (EF, °EF - n)or,
+ (V- EFLEN) T + (& = E1), 06 — P& om, — (EF 1, 0°E] o,
= (cEF 0 E )T, — (E71,0°V - EF )7, — (€1, 20V0EF )7, + (EX1,0EF - n)or,
+ (V&R PG T + (€0 — E1), 06 — &M om, — (EX1 1, 0N Vo
This gives
BET E V2R —o2EN —a?EN)

(3.15) ”
= (cEX, 22 ) 7, + lovT(EF — 5,?1)\|%2(3Th) — (&, 20V0 - X)),

We use definition (2.7) with ¢ = 02&;7",u = —02€,*. On the other hand, by the
error equation (3.10c) we get

BED EV 1 2P g2V —g2ET)
=BEP,EE 2R — Ty (02ET), —02E) — Ty (—a%ELY),

- (28 - T(EM)
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+BED EV EV T (0% E8), Ty (—0%E)"), T (0°E))
— BER &V & 2R — Ty (262, —0%EY — Ty (—a2EN),
— (@6 —IR(*E)))
+ (Ty ®; — &1, My (0257"))7;..
Next, we use the definition of # in (2.3) again to get
BED EV EN G EM — Ty (02E21), —02EY — TTw (—0°EM), —(0°EF — T (02E71)))
= (&t &Rt — Ty (0”& )7, — (€ V - (o7& =Ty (0”E) 7,
+ (5,?1, (22 — Ty (0PEFY)) - n)or, + (V- EX1,0°EN + Tw (=& )73,
+(T(EN — &1, (%60 + w (—02E)) — (0°E — T2 (%E7)) o,
— (&m0t — T (0E7))or, + (c(Tly @1 — @1), Ty (02 E))
= (cEF, PERT — My (PEX)) 1, + (VEF Y, °EX — Ty (62E8Y)) T,
(& g (0% Ty (0%EF)) - m)or, + (V- EF %60 + w (—0°E))),
+(r(E — 1), 0% E) + Tw (—0”E0)) o, + (c(Tly @1 — 1), Ty (0°E7)) 7,

where we used integration by parts in the above equation. Notice that (o2& ,;I) L ;11/ )

is in the domain of ITj, (see (2.7)); then by (2.7c) and the fact that (£, — & ")|r €
PE(F) for all F € F,, we have

(EF — &8 (T (6*€F) — 5*EF) - n)or,
(T (EN — &1, 28" + Ty (0267 ))or, = 0.

Furthermore, by (2.7a)-(2.7b) and the fact that V& '|x € [P*1(K)]? and V -
EX' |k € PF1(K), we have
(V&Y & — Ty (0°Ey ")) 7 = 0,
(V&2 08 + Ty (=& Y)) 7, = 0.
This gives
3.16) BET EN V26T —o2E, o€
= (&7, 0% — My (0?5 )75, + (c(TTy @1 — 1), Iy (02E71)).

Comparing with (3.15) and (3.16) we have

(cEpt, e ) + lovT(EY — EXII T2 o)
= (&, 20V0 - EXV)p, + (€, *ER — Ty (02E2)) T,
+ (c(Tly @) — @), Iy (0%E2") — *EX ) 7, + (c(Tly @1 — B1), 0260 ) T,
=L+ 1+ I3+,

For the first term I7, we use (3.8b), Young’s inequality, (3.10e), and k > 1 to get

1 1
|| < 1(05;?1,0251?1)Th +CIE 172 < 1||05;?1||i2(9) +Ch?.
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For the second term I, we use Young’s inequality, (3.12b), and (3.10e) to get

|I2] = |(co& o (o?Eyt — Ty (02E))) T,

2
(&, )7, + C o7 (P60 Ty (oE)|

<
L2(Q)

(
1
1
1
1

< S (cEy 0% e )T + CRA (1€ T2 () + 163 172 (@)

1
~ (& a2 EX ), + Oh2.

For the third term I3, we use Young’s inequality, (3.12b), (3.10e), (3.11b), and (3.7a)
to get

13| = |(o(c(y @1 — @1)), 0 Ty (?E7") — o?E7)) 7,

IA
I /—\

2
o (T @1 = @1)[[F2(0) + 5 |07 (026 Ty (a2E7))|

L2(Q)

1
< Ch?|loD*¥, ||L2 @t Ch?(”g;?lHL?(Q) + 1y ||%2(sz))
< Ch*(1 + |loghl).

For the last term I, we use Young’s inequality, (3.11b), and (3.7a) to get

1] = [(o ety @, — @), 088 ),
< L(ER T ER ), + Cllo(TTy By — 81) [
< i(asfaazf:;?l)n + 2o D2 0
<

Z(cg;?l L2 )1, + CR*(1 + |logh).
Summing the estimates for {Ix}{_, gives (3.14a). The proof of (3.14b) is similar to

the proof of (3.14a). ad
By (3.11b) we have the following corollary.

COROLLARY 3.9. Let (®1,7) and (P15, V1,5, @17h) be the solution of (3.4) and
(3.9a), respectively, and (®2, V) and (Pap, Yo r, Vo) be the solutions of (3.5) and
(3.9b). If assumption (A) holds and k > 1, then we have
(3.17a) (@1 — ®1.0)|2(02) < Ch(|log h|*/? + 1),

(3 17b) ||0'(’~I>2 — @27}],)”[12(9) S C

Next, we give a weighted L? estimation of E;f' .

LEMMA 3.10. Let (®1,%1) and (<I>1,h,\I/17h,\T11,h) be the solution of (3.4) and
(3.9a), respectively. If assumption (A) holds and k > 1, then we have

(3.18) oV (U1 =Wy p)llr2@) < C.

Proof. For any K € T, we take v, = Vé’,\lpl on K and v, = 0 otherwise,
(wp, Wr) = (0,0) in (3.10c), use the notation in (3.13), and use integration by parts
to get
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(CEZ VEM ) + (VEN , VEI ) e — (EV — E11 VEY - m)ox
= (C(Hv‘I’l - @1), VE,;PI)K
By the Cauchy—Schwarz inequality and inverse inequality we obtain
IVEY L2y < CUIeER L2y +h ™ 2IEY = EY L2 ox) + Ty @1 — @1l L2(x))-
Using the property of the weight function o in (3.8a) we get

loVEY L2 (k) < Tmaxl| VEY L2 (k) < COminl| VEY L2 (x0)

< Clllo(eEd )2y + B2 llo(E) = EF ) L2om) + Ty @1 — @1 22(x0))-
Summing over all elements and using (3.14a) we have

loVey Iz < Clllo(cr )iz +h™llo (€ — &) o + [Ty 1 — @1

Th) <C.

Our desired result (3.18) follows by (3.11c). d

LEMMA 3.11. Let (®1,¥;) and ('1>1,h,\1/17h,\fl17h) be the solutions of (3.4) and
(3.9a), respectively, and let (®2,Vs3), (Pa,n, Yon, ¥ap) be the solution of (3.5) and
(3.9b). If assumption (A) holds and k > 1, then we have

(319&) Hq)Lh — q)lnLl(Q) + ch)l - Hk_l(C(I)l)”Ll(Q) S Ch(‘ IOg h‘ + 1),
(3.19b) [ @2, — ®2l[L1(0) + [|c®2 — T 1(c®2)|| L) < C(|logh|*? + 1),
(3.19¢) V(1 — U1 )| Lie) < C(|log A2 +1).

Proof. By the Cauchy—Schwarz inequality and (3.14a) we have
21~ ®1alliro = [ o7 (0l@1— @ual) dw < Ch(1+ [ log ).
Q

Next, by (2.11a) we have

(320) ||C(51 - Hk,1(0@1)|‘L1(Q) S Ch”Vz\Ifl”Ll(Q) S Ch‘ log h|

Then (3.19a) follows. The proofs of (3.19b) and (3.19¢) are similar to the proof of
(3.19a). O

Step 2: Proof of (3.1a)—(3.1c) in Theorem 3.1.

Proof. We only prove (3.1a) and (3.1b) since the proof of (3.1c) is similar. We
choose d1 so that |lup| p-(q) = (d1,un)7;,; then

— (61, un) 7, = B(®1 0 1 p, Ut ps @ un, ) by (3.9a)
= B(qn, un, Un; B1p, Vg, U1 p) by (2.6)
= B(q,u,u; @15, V15, U1 p) by (2.5)

= B(®1p, U1, U1pi g, 0, ) by (2.6)
= B(B1p — 1, U1y — U1, Uiy — Uisq u,u) + B(81, 01, Uy q,u,u)
= B(®1),— ®1, 01— V1, U1y, — Uisq,u,u) — (31, )7, - by (3.9a)
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By the definition of 4 in (2.3) we have

B(®1 ), — @1, V15— U1, Uy, — Uy;q,u,u)
= (@1~ 21),@)7 — (Vi — V1,V -q)7; + (Vi — V1,q-n)oy,
= (V- (®rp — @1),u)7, + (R1,n — 1) -, u)or,
=—(W1n =¥,V -q@)7, + <\/I;1,h —Vy,q-n)sT, -

This implies
(3.21) (1, un) 7, = (01, u)7 + (Wi — U1,V @) — (U1, — U1, q - n)o7,.

Next, we split the proof into two cases.
(1) If kK =0, we have

(61,up) 1, = (61,w) 75 + (Y10 — V1,V - q) 75, = (61, u) 7, + (Y1, — V1, f)75,

where we used (@Lh,q ‘n)ay, = 0 and (¥1,q - n)sp7, = 0. Using the fact that
16121 () = 1 together with the estimates in (3.10e) gives

lunllze @) < ullzoe@) + 1(Y1n = Y1, f)7,| < llullpe@) + Cllfllzz2)-

This completes the proof of (3.1a).
(2) If £ > 1, we have

(01, un) 7, = (61,u) 75, — (V(¥1,0 — 01), @) 7, + (P1n — U1, q-n)a7, — (P1n — ¥1,q o,
= (01w, — (V(¥1r — V1), @)1, + (Y1, — w1, q - n)or,
+ (M ¥, — Uy, q-nYor, — (U1 — LW, q-n)or,
= (61,07, = (VW10 — 1), @) 75, — (€)' — & @ n)or, +(TTw ¥1—V1, q - n)oT,,

where we used integration by parts in the first equality and the fact that (@Lh, q-

n)pr, = 0 and (TII9¥,q - n)s7, = 0 in the second equality. Using the fact that
101]l1 () = 1 together with the estimates in (3.10e) gives

llunllzoe @) < Cllgllzoe@ IV (W1n = U)lLiy 1€ =€ e, +ITw U1 — 1 || 11 o7, ))
+ [lullze= (o)
< lulloe @y + C(|log AV + 1)[|ql| L («)-

This completes the proof of (3.1b). d

Step 3: Proof of (3.1d)—(3.1e) in Theorem 3.1. We choose ¢; and &y such that
T — upl Lo @) = (01, Twu — up) 7, Ty q — gL~ @) = (02, Iy q — qu)7;, -

LEMMA 3.12. Let (‘bl,h,\pl,hyi}l,h) and (‘I>2,h,\1127h7\/1\/2,h) be the HDG solutions
of (3.9a) and (3.9b), respectively. Then we have

—(01, Owu — up) 7, = (c(Pr,p — P1), Ivg — q)75, + (cP1 — i_1(cP1),IIvq — q)7;,,
(02, 1Iyq — qn) 7, = (c(Pop, — ®2), Iy q — q)7;, + (cP2 — Ix_1(cP2), 1Ty q — q)T;, -
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Proof. We take (vj,, wp, @) = (Iyq — qn, Hwu — up, T9u — @) in (3.92) to get

— (61, Owu — un)1, = B(P1,n, Vin, \/I\’l,hQ IIvq — qn, llwu — up, Moy — Un)

= B(Myq — qn, wu — un, gu — Up; @14, Ui p, Uy p) by (2.6)
= B(Mvq—q,Mwu —u,T0u — u; &1, U1, Uy ) by (2.5)
= B(®1n, Vin, Vi Tvg — g, Mwu — u, Tju — u) by (2.6)

= (c®1n,Mvg —q)7, — (V1,0, V- (IIvq — q))7;,
+ <@1,h, (ITvg — q) - Yo, — (V- @1, Hwu —u)7,
—(7(U1,p — @1,h),HWu —wor, +(P1,n M, Mu — U)aTs, »

where we used the definition of Z in the last step. Next, by (2.7a)—(2.7¢c) we have

= (01, Iy u —up)7;, = (c®rp, Myvq — q)15, — (V1,0, V- (Tlyq — q))7;,
+ (U1, (Myg —q) - n)or, — (T(1h — U1p), Dwu — w)or,
= (c®1p, IIvg — q)7, + (VU1 5, IIvg — q)7;
— (U1 — Uy, (Mg — q) - nYor, — (T(W1p — Vi), wu — uwor,
= (c®1 4, Ilyq — q)7;
= (c(®1,n — ®1),1Ivqg — q@)7;, + (c®1,IIyvqg — q)7;,
= (c(P1p — ®1),IIyqg — @)1, + (cP1 — 1 (cP1), IIvq — q)7;,-

This gives the proof of the first identity; we omit the proof of the second identity since
it follows along the same lines. 0

LEMMA 3.13. Let (q,u) and (gn,up) be the solution of (1.1) and (2.1), respec-
tively. If assumption (A) holds and k > 1, then we have

(3-22a)  |[Mwu — upl|L=(o) < CR**2(|log hl + 1)(lglwrire o) + lulwriie@)),
(3.22b) |TIvq — gnl L) < CA*([log h['? + 1)(|glwrisr. () + |ulwrsroe(a)-
Proof. By Lemmas 3.11 and 3.12 we have
Ty — upl| Lo o) = [(c(P1,n — @1), My q — q) 7, + (c®1 — I _1(cP1),TIvq — q)7; |
< Oy g — qllz=(a) (|®1.h — B1llz1() + lc®1 — M1 (c®1)]|L1(e))
< ChM2([log bl + 1) (lglws00 () + [ulwrre(@)- o

As a consequence, a simple application of the triangle inequality and Lemma 3.13
and Theorem 2.6 gives convergence rates for ||q — qn|| (o) and ||u —up| L= (o). This
completes the proof of (3.1d)—(3.1e) in Theorem 3.1.

Step 4: Proof of (3.1f) in Theorem 3.1.

Proof. First, for all wy € P°(K), we have
(3.23) (M — 10y yu, wo) k. = (Tlwu — w, wo)  + (w — TI7  u, wo) ik = 0.
Let ey, = uj — up, + Iyu — TI7 u; by (2.2) we obtain
IVenll7eiry = (V(uf, —un), Ver)x + (V(wu — 113 u), Ver) k

= (=Vup, — gn,Ver)x + (Vwu — Hg+1u), Ven)k
= (V(ku — uh)K — (qh — q) + V(u — Z_Hu), Veh)K-
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Using Lemma 2.5, this implies that

(3.24)
IVenllrziry < Clhi IMwu — un 2y + llan — allz2cry + 11V (0 = )| 2 s )-

By (2.2b) and (3.23) we get (ex, 1)k = 0, i.e., IIe, = 0. Then standard estimates for
the L? projection given in (3.24) show that

lenllzz(x) = llen — Hgenll L2 (k)
< Chk||Ven|| L2 (x)
< C(IMwu —unllp2xy + hicllan — allz ) + bV (u = Mgp1u) || 22 (x))-

Hence, we have

T} p1u — w2y < Clwu = unllL2(x) + Chllgn — v qllr2(x)
+ Ch|[Ilvq — ql|z2(x) + Ch[|V(u — T}, u)|| £2(k)-

We use the above inequality and Lemma 2.5 to get

TR yu — jy || oo (i) < ChTHITIR, u — ujll L2k
< Ch M Mwu — unll2x) + Cllan — v ql 2 (k)
+ CIlyq — qllr2(x) + CIV(u — 17 u) || 2 s
< ClMwu — unl|p=(xy + Chllgn — v q|| o (k)
+ C|Tvq — qll2 (k) + Cl|V(u — T} 1 u) || 2 (k) -

Now let K* denote the element in which [[II{ u — uj|p=@) = [[TI7,u —

||Hz+1u - UZHLOO(Q) = IIHz+1u - UZ”LOO(K*)
< O (IMwu — unl| o (1) + hllgn — vl o< (x+))
+C (IMyq — qll g2y + IV (0w = TRy w) | 25049
< C (IMwu — upll L= @) + bllan — v q|| L (q))
+C(IMvg — gl 2y + [V (u = T} 0) | 12(k+)) -
By the estimates in Lemmas 2.4, 2.5, and 3.13 and Theorem 2.6 and the triangle
inequality we get our claimed result. |

4. Quasi-optimal estimates on interfaces. Let I' be a finite union of line
segments such that  is decomposed into finitely many Lipschitz domains by I'. We
stress that, while € is assumed to be convex, the subdomains need not be convex.
Define F} by

Fi ={F € Fj, : measure(FNT) > 0}.

We assume, furthermore, that the triangle mesh 7 resolves I'. Hence, I' can be
written as the union of O(h™1) edges in Fp, ie., [ = UFethth F.

THEOREM 4.1. Assume T' has the above properties, and let (q,u) and (qn,up) be
the solution of (1.1) and (2.1), respectively. If assumption (A) holds and k > 1, then
we have
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(4.1a) lg — gnllz>ry < CR*H([log bIM? + 1)(Iglwssr (o) + [ulwrsr (@),
(4.1b) |l — uhHL2(F) < Chk+1(| log h| + 1)(|q‘wk+1,oc(ﬂ) + ‘U|Wk+1,oo(Q)).
Furthermore, we have the following error estimate for the postprocessed solution:
(4.1C) ||u — ’U,ZHL2(1—\) S Chk+2(‘ log h| + 1)(|q|wk+1,x(g) =+ |U|Wk+2,oo(Q)),

where uj, is defined in (2.2).

Remark 4.2. The result proves the observation seen in numerical experiments
that the flux on I' converges at an optimal rate. The best theoretical estimate known
to us before our paper is O(h*+1/2).

Proof. We only prove (4.1a) since the proofs of (4.1b) and (4.1¢) are very similar.
We define tubular neighborhoods of T by

Sp:={K € TH|ITNIK # 0} .
Then the number of the elements in Sy, is order of O(h™!).

lg = anll72ry < IMva — gl 2 + 1Tva — anll 72
< > My —qlliz0k) + ITva — gl 20k

KeSy,

<C Z (h2k+3|vk+1q|%oo(g) + h—1||1'IVq — qh||2LQ(K)) by (2.13b)
KeSy,

<C Z <h2k+3|vk+1Q|iW(Q) +h 'Ry q — %H%oo(K)) by (2.12)
KeSy,

<C Z h2k+3|vk+1q|im(m 4 CO|Myq - Qh||2Loo(Q) Z h-1p2
KeSy KeS,,

< CR*H2VI gl o) + Oy g — anlli~(q)

< Ch2+2(| log h|1/2 + 1)2(|q\Wk+1,w(Q) + |U|Wk+2,oo(g))2 by (3.22b).

This completes the proof of (4.1a). 0

5. Dirichlet boundary control problem. In this section, we consider an ellip-
tic Dirichlet boundary control problem. Let ug € L?(£2) denote a given desired state
for the solution, and let v > 0 be a given regularization parameter. The problem is
to solve the following optimization problem:

1 Y
(5.1a) J(g), J(g):= 5”“ — w20y + §||9||i2(m)7

min
g€L2(0%)

where u is the solution of the Poisson equation with nonhomogeneous Dirichlet bound-
ary conditions

(5.1b) —Au=f inQ,
(5.1c) u=g onf.

The function g is called the control, and computing the optimal g is the desired result
of the above problem.
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It is well known that the Dirichlet boundary control problem (5.1a)—(1.1b) is
equivalent to solving the following optimality system for (u, z, g):

(5.2a) —Au=f in Q,
(5.2b) u=g on 092,
(5.2c) —Az=u—ug in{,
(5.2d) z=0 on 042,
(5.2e) g=~v"'0pz on N.

Define ¢ = —Vu and p = —Vz; then the mixed weak form of (5.2a)-(5.2¢) is to
find (q,u,p, z,9) € H(div,Q) x L?(Q) x H(div,Q) x L?(2) x L?(99) such that

(5.3a) (g,v1) — (u,V-7)+ {(g,v1 -n) =0

(5.3b) (V-q,wi) = (f,wr),
(5.3¢) (p,v2) — (2,V -v2) =0,

(5.3d) (V- p,wz) — (u,we) = —(ug, wa),
(5.3¢) (vg+p n,&) =0

for all (vq, w1, vy, we, &) € H(div,Q) x L?(Q) x H(div,) x L2(2) x L?(99Q).
To give the HDG formulation of the above mixed system (5.3), we need to intro-
duce the following finite element space for the boundary control g¢:

Wi(0) = {@, € L3(F?) : @p|p € PH(F) VF € FPY}.

By the definition of £ in (2.3) and setting ¢ = 1, the HDG formulation of the
optimality system (2.1) is to find (qn, Ph,Un, 2h; Uk, Zh, Gn) € Vi X Vi X Wp, x W), X
Wi, x Wy, x Wy (0) such that

(543) %(q}u Up, ahv vy, W1, 12]\1) = _<gha v1-n+ TUJ1>]:S - (fv wl)'r;m
(54b) *@(phazhvé\h;vQ;wQa'&}Q) = —(Uh —Ud,’U)Q)']’h,
(5.4c) 7 HPh A T2n, Wa) o = —(gn, W3) 7o

for all (Ul,vg,wl,wg,@h@z,’l/ﬁg) eV, x Vi, x Wy, x Wy x Wy, x Wj, x Wh(ﬁ)
We can now state our main result of this section.

THEOREM 5.1. Let (q,u,p, z,9) and (qp,un, Pn, 21, gn) be the solution of (5.3)
and (5.4), respectively. Assume that q,p € WFTL2(Q), u,z € WhtLee(Q). If
assumption (A) holds and k > 1, then we have

lg—gnll2a0) + v — unllL2) + 12 = 2nll2(@) + IP — PullL2) + h1/2||q —qnllz2(0)
< ChF Y (Jlog h| + 1) (Iplwrs1. ) + |2lwrtri () + |G mes1 () + Ul e o)-

Remark 5.2. Numerical experiments for the Dirichlet boundary control problem
given in (5.2) always show optimal order convergence rates if the solution is smooth
enough. The first work to prove this observation can be found in [25] by May,
Rannacher, and Vexler. The proof is based on a duality argument and gives esti-
mates for the control in weaker norms than L?(9Q). However, this technique is not
straightforward for the HDG method; see [5, 23, 22, 17, 18]. Hence, Theorem 5.1 is
the first proof that the HDG method achieves an optimal order convergence rate for
the control, state, and dual state, provided we assume the solution of the Dirichlet
boundary control problem is smooth enough.
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5.1. Proof of Theorem 5.1. We follow the strategy in [23] and introduce an
auxiliary problem: find (gx(g), pn(9), un(9), zn(9),Un(9), Zn(9)) € Vi x Vi x Wp x
Wy, x Wh X Wh such that

(5.5a) PB(an(9); un(9),Un(g); v1, w1, 1) = —(g,v1 - n+ Tw1) 720 — (f, w175,
(5.5b) B(Pn(9),21n(9), Zn(9); v2, w2, Wa) = —(u — Ug, w2)Th

for all (v1,va, wy, we, @y, @) € Vi x Vi, x Wy x Wi, x Wy, x Wy, where g € L2(99)
is the exact optimal control.

The proof now proceeds in three steps as follows.

Step 1. We first bound the error between the solutions of the auxiliary problem
(5.5) and the mixed weak form (5.3a)—(5.3e) of the optimality system. The proof of
Lemma 5.3 can be found in [10, Theorem 4.1, Appendix| and Theorem 4.1.

LeEMMA 5.3. Let (q,u,p,z,9) and (n(9), Pr(9), un(9), 2n(9), n(9), Zn(g)) be the
solution of (5.3) and (5.5), respectively. If assumption (A) holds and k > 1, then we

have

(5.6a) g — an(9)llL2@) < CR" (lg| e o) + [l e @),

(5.6b) [ — un(9)ll L2 < CR (gl e ) + |ulgrei o)),

(5.6¢) 1P — Pr(9)llL2@) < CHF (Pl @) + 2l men @),

(5.6d) Iz = 2n(9) | L2(0) < CR* (Il Eres ) + 12l arei (@),

(5.6e)  [lpn(9) — PllL2(on) < CR* ™ (|log Y2 + 1) (|plwe+1.o (o) + [2lwest.o0 ),
(5.6f) |I7(2n(9) — 2)ll22(90) < CR* ! (|log h| + 1)(|plwr+1.0 () + [2lwrs1.0())-

Step 2. Next, we bound the error between the solutions of the auxiliary problem
and the HDG problem (2.4). Note that

(5.7a)

P(an(9) — an, un(g) — un, Un(g) — Un; v1, w1, W1) = —(g — gn, V1 - M+ TW1) £2,
(5.7b)

‘%(ph(g) - phazh(g) - zhv/Z\h(g) - /Z'\h;’ljg,wg,’l/ﬁg) = —(’LL - U}“U)Q)Th

for all (Ul,vg,wl,wg,ﬁ)\l,ﬁi\z) eV, x Vi, x Wy, x Wy, x Wh X /Wh.
LEMMA 5.4. Let (u,g) and (up, gn) be the solution of (5.3) and (5.4), respectively.
If assumption (A) holds and k > 1, then we have
g — 9h||L2(aQ)
< ChM (| log | + 1) ([plwsre () + [2lwrroe o) + @l e @) + lulare (o),
l[u = unllL2(0)
< CRMH(|log | + 1) ([plwr+r. (o) + [2lwrsioe (@) + 1@l s o) + [ulrss o)-
Proof. First, we take (vy, w1, W) = (Pn(9)—=Pn, 2n(9)—2n, 20 (9)—2h), (va, w2, W) =
(gn(9) — gn,un(g) — un,Un(g) —Up) in (5.7) and use Lemma 2.2 to get
(9= gn, (Pr(g) —pn) -+ 7(20(g) — 21n)) Fo = (U — un, un(g) — un) 7 -

-1

Since g +v 'p-n=0on .7-",‘? and g, +v 'pp -n+y 7z, =0o0n ]-";? we have
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(u—un,un(g) — un)7; = ) - n A+ T720(9) + V9n) Fo
) mn—p-n+p-n+7z(9) +V9h) Fo
9= 9nPr(9) m—p-n+72,(9) + V90 —V9) 52
)

2
n—p-n+72:(9))r0 — V9 — 9nllL2(00)-
Since z = 0 on ]-';? , we rearrange the above equality and obtain

vlg - th;(aQ) + [Ju— uhH%Z(Q)
= ((pr(9) —p) v+ 720(9),9 — gn) Fo — (v — un,un(g) — u)7,
< (IIlpr(9) = PllL2(o0) + 17(2r(9) = 2)ll260) 9 = 90l 250
+ v — unl 2 llun(g) — ullz2(0)-
Our desired result follows by Young’s inequality, the triangle inequality, and Lemma
5.3. ]
Step 3.
LEMMA 5.5. Let (p, z) and (pn, z1,) be the solution of (5.3) and (5.4), respectively.
If assumption (A) holds and k > 1, then we have
lp — Pl
< CR*([log b| + 1) ([Plwr 1. () + [2lwisoe @) + [alar+i () + |ulmre ),
2 = 2nllr2(e)
< CH* Y ([log b| + 1) ([plwr 1. () + [2lwistoe ) + |alar+i () + |ul e g)-
Proof. By Lemma 2.1 and letting (ve, we, Wa) = (pr(g) —ph, 21n(9) — 2h, 2n(9) —21)
in the error equation (5.7b), we have
1P1(9) — PrllF2(q) < —(u—un, 2n(9) — 2)7;

zn(9) = znllT,

(5.8) < flu = unllT,
1
< ;||u —unl%, + llzn(9) — 2l -

Here p is a positive constant which will be assigned later. Next, we introduce the dual
problem of finding (®, ¥) such that

c® + VU =0 in Q,
(5.9) V- -®=z,(9) — 2 in Q,
¥ =0 on ON.

Since the domain €2 is convex, we have the following regularity estimate:
(5.10) 1@l 71 () + ¥l 2y < Creg 121(9) = 21l 2 -
On the one hand, we take (ve, w2, @Ws) = (ITy ®, Iy ¥, I W) in (5.7b) to get

B(pn(9) — Pr2n(9) — 2n. 2n(g) — Zn; Ty @, Ty U, TIT)
(5.11) = By @, Ty ¥, TV p1,(9) — Ph, 2n(9) — 2n, 2n(g) — Zn)
= (v ® — ®,pr(9) — P75, + l120(9) — 20720 -
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On the other hand, by the error equation (5.7b), we have

(5.12)
B(pn(9) — Pr, 20(9) — 21, 2n(9) — Zn; My @, My U, TIOW) = —(u — up, My V) 7, .

Comparing the above two equalities (5.11), (5.12), and (2.8b) give
120(9) = 20172 () = —(u = un, T ¥) 7, — (My @ — @, p(9) — P17,
1
< Cllu = unlaoy + 3 () = ey
h? 9 9
T I2n(9) = znll72 () + Clpa(9) — Prlliz)

1 1
<0 (14 ) lu=wnliay + 5 lon(a) = 2nley + Collan(s) = 20l

Taking p = i, then we have

(5.13) [20(9) = znll L2y < Cllu = unllz2(0)-
Inserting this inequality into (5.8) gives

(5.14) Pn(9) — PrllL2() < Cllu — unl|L2(q)-

Then our desired result follows by (5.13), (5.14), and Lemma 5.5. d

LEMMA 5.6. Let (q,u,p, z,9) and (qp, Un, Ph, 2h, gn) e the solution of (5.3) and
(5.4), respectively. If assumption (A) holds and k > 1, then we have

lg — anll20)
1
< ChM 2 (Jlog h| + 1)(Iplwrsr. (0 + |2lwrreo (@) + [@lmee @) + [ulge @)

Proof. On the one hand, by the error equation (5.7a), we have

$(qn(9) — an, un(g) — un,un(g) — un; qn(g) — qn, un(g) — un, un(g) — un)
= —(9 — gn. (an(9) — an) - — T(un(g) — un)) 7,
< lg = gnllr2(a0) (1arn(9) = anll 1200y + lun(g) = unllz200))

<Ch /2 lg — QhHLZ(aQ) (lgn(g) — qh||L2(Q) + [lun(g) — UhHLZ(Q))~

On the other hand, by Lemma 2.1, we obtain

B(qn(9) — an, un(g) — un, Un(g) — Un; qn(g) — qn, un(g) — un, un(g) — un)
= llan(9) — anll7, + IVT((un(g) — un) — (@n(9) — @n))lloT,-

Comparing the above two inequalities, using Young’s inequality and (5.4), gives

(5.15) lgn(9) — anllm < Ch™Y2lg = gnll L2 (a0 -

Then our desired result follows by Lemma 5.5, the triangle inequality, and (5.6a). 0O
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6. Numerical results. In this section, we present two examples to illustrate
our theoretical results.

Ezxample 6.1. We first test the convergence rate of the L* norm estimate on a
convex domain and the L? norm estimate on the boundary. The data is chosen to be

Q=(0,1) x(0,1), c¢=1, wu(z,y)=-sin(10z).

The source term f is chosen to match the exact solution of (1.1), and the approxima-
tion errors are listed in Table 1 for the L°(2) norm error and Table 2 for the L?(99Q)
norm error. The rates match the theoretical predictions in Theorems 3.1 and 4.1.

Our theoretical result needs the domain to be convex, but it is interesting to
observe whether the convergence rate can still hold for a nonconvex domain. For
example, we choose the same data as above except the domain is chosen to be an
L-shape domain:

Q= (0,1) x (0,1)\[1/2,1) x (0,1/2].

In this case the H? regularity of ¥; and ¥y in Lemma 3.4 does not hold. The
approximation errors are listed in Table 3 for the L>°(Q) norm error (the L?(9Q)
norm error also converges at the quasi-optimal rate: results are not shown). It is
obvious that the quasi-optimal convergence rate is still seen for the L-shape domain.

Ezxample 6.2. Lastly, we test the convergence rate for a smooth solution to the
Dirichlet boundary control problem. The data and the exact solution are chosen to
be

TABLE 1
Ezample 6.1: L>°(Q) errors for qn, up, and u} on the convexr domain (0,1) x (0, 1).

Degree % la — anllzo (o) lu = unllLoo () llu = ujllLoo ()
Error Rate Error Rate Error Rate

2-1 | 1.8881E+01 - 8.1191E4-00 - 1.4941E4-00 -
272 | 1.0384E+01 0.86 | 2.9595E+00 1.46 4.0248E-01 1.89
k=1 273 | 2.9862E+400 1.80 7.7800E-01 1.93 5.9420E-02 2.76
2—4 7.5737E-01 1.98 2.0046E-01 1.96 7.6187E-03 2.96
25 1.9487E-01 1.96 4.9683E-02 2.01 9.7985E-04 2.96

2-1 | 1.8115E+401 - 6.5763E4-00 - 7.2961E-01 -
272 | 3.4370E4+00 | 2.40 1.0994E+400 | 2.58 6.9452E-02 3.39
k=2 23 4.7355E-01 2.86 1.4548E-01 2.92 4.6990E-03 3.89
24 6.2699E-02 2.92 1.7948E-02 3.02 3.1054E-04 3.92
25 7.8798E-03 2.99 2.2918E-03 2.97 1.9522E-05 3.99

TABLE 2
Example 6.1: L?2(0Q) errors for qp, up, and u} on the convex domain (0,1) x (0,1).

Degree % la — anllL2(a0) llu — urllL2(a0) llu = ujll 200y
Error Rate Error Rate Error Rate

2=1 | 9.3751E+00 - 3.9706 E+00 - 5.4467E-01 -
22 4.1197E+00 1.19 1.9143E+00 1.05 1.0446E-01 2.38
k=1 23 1.1791E+00 1.80 6.1659E-01 1.63 1.4777E-02 2.82
24 3.0648E-01 1.94 1.6398E-01 1.91 | 1.9370E-03 | 2.93
25 7.7039E-02 1.99 4.1472E-02 1.98 | 2.4450E-04 | 2.99

2-1 | 6.4399E+00 - 3.4609E-+00 - 1.9906E-01 -
22 9.3121E-01 2.79 5.3204E-01 2.70 | 1.3075E-02 | 3.93
k=2 273 1.1602E-01 3.00 5.7436E-02 3.21 9.1221E-04 3.84
2—4 1.4279E-02 3.02 6.5665E-03 3.13 | 5.8411E-05 | 3.97
25 1.7866E-03 3.00 8.0200E-04 3.03 | 3.6752E-06 | 3.99
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TABLE 3
Ezample 6.1: L>®(Q) errors for qp, up, and u}, on the nonconvex L-shaped domain.

Degree | - llg — anllLe (o) llu —unll Lo () lu — ujll Lo ()
V2 Error Rate Error Rate Error Rate

2=1 | 1.9604E+01 - 8.1190E4-00 - 1.4713E+00 -
272 | 9.9832E+00 0.97 | 2.9608E-+00 1.46 3.7109E-01 1.99
k=1 273 | 2.9810E+00 1.74 7.7748E-01 1.93 5.9410E-02 2.64
24 7.5727TE-01 1.98 2.0046E-01 1.96 7.6187E-03 2.96
25 1.9487E-01 1.96 4.9683E-02 2.01 9.8015E-04 2.96

2-1 | 1.6115E401 - 6.4608E4-00 - 5.6157E-01 -
272 | 3.4372E+00 2.23 1.0994E+00 2.55 6.9454E-02 3.02
k=2 23 4.7348E-01 2.86 1.4548E-01 2.92 4.7007E-03 3.89
24 6.2862E-02 2.91 1.7948E-02 3.02 3.1283E-04 3.91
2-5 7.8980E-03 2.99 2.2918E-03 2.97 1.9653E-05 3.99

TABLE 4

Example 6.2, k = 1: Errors, observed convergence orders, and expected order (EQO) for the
control g, state u, adjoint state z, and their flures q and p.

h/2 1/16 1/32 1/64 1/128 1/256 EO
la—anll2() 2.1856E-02 6.3683E-03 1.9677B-03 6.3980B-04  2.1568E-04

order - 1.78 1.69 1.62 1.57 1.50
P —pnllLecq) 6.8866E-03 1.5958E-03 3.0873E-04 9.9650E-05 2.4911E-05

order - 2.00 2.00 2.00 2.00 2.00
Ju—unll 2() S.3560B-03 2.1051E-03 5.2796E-04 1.3218E-04 3.3073E-05

order - 1.99 2.00 2.00 2.00 2.00
Tz—2nll2¢0)  5-1536E-03 7.9650E-04 2.0006E-04 50125B-05 1.2545B-05

order - 1.99 1.99 2.00 2.00 2.00
19— 0nllL2(00) 7-2110B-03 1.8119E-03 45412E-04 1.1367E-04 2.8425E-05

order - 1.99 2.00 2.00 2.00 2.00

Q=(0,1)x(0,1), =1,
u(z,y) = —w(sin(wz) + sin(wy)), z(z,y) = sin(wz) sin(ry).

The source term f, the desired state ug, and the control g are chosen to match the
exact solution of (5.2), and the approximation errors are listed in Table 4 when k = 1.
Results (not shown) for £ = 2 also confirm the predicted higher order convergence
rate in this case. The rates are matched with Theorem 5.1.

7. Conclusion. We have proved quasi-optimal L norm estimates for the Pois-
son equation in 2D. Using this result, we obtained quasi-optimal L? estimates on an
interface. Moreover, we obtained quasi-optimal convergence rates for the Dirichlet
boundary control of Poisson’s equation, provided the solution is smooth enough.

Our work suggests several interesting directions for further research. First we
would like to extend the results to cover L°° norm estimates in 3D. In addition
the quasi-uniformity assumption on our mesh is restrictive for problems that require
adaptive mesh refinement, including those on nonconvex domains. Finally it would
be desirable to prove the optimal convergence rate for the Dirichlet boundary control
of PDEs without assuming that the solution is smooth.
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