
Journal of Artificial Intelligence Research 69 (2020) 531-570 Submitted 06/2019; published 10/2020

Computing Bayes-Nash Equilibria in

Combinatorial Auctions with Verification

Vitor Bosshard BOSSHARD@IFI.UZH.CH

Department of Informatics, University of Zurich

Benedikt Bünz BUENZ@CS.STANFORD.EDU

Department of Computer Science, Stanford University

Benjamin Lubin BLUBIN@BU.EDU

Questrom School of Business, Boston University

Sven Seuken SEUKEN@IFI.UZH.CH

Department of Informatics, University of Zurich

Abstract

We present a new algorithm for computing pure-strategy ε-Bayes-Nash equilibria (ε-BNEs) in

combinatorial auctions with continuous value and action spaces. An essential innovation of our

algorithm is to separate the algorithm’s search phase (for finding the ε-BNE) from the verification

phase (for computing the ε). Using this approach, we obtain an algorithm that is both very fast and

provides theoretical guarantees on the ε it finds. Our main technical contribution is a verification

method which allows us to upper bound the ε across the whole continuous value space without

making assumptions about the mechanism. Using our algorithm, we can now compute ε-BNEs in

multi-minded domains that are significantly more complex than what was previously possible to

solve. We release our code under an open-source license to enable researchers to perform algorith-

mic analyses of auctions, to enable bidders to analyze different strategies, and to facilitate many

other applications.

1. Introduction

Combinatorial auctions (CA) are used to allocate multiple, indivisible goods to multiple bidders.

CAs allow bidders to express complex preferences on the space of all bundles of goods, taking into

account that goods can be complements or substitutes (Cramton et al., 2006). They have found

widespread use in practice, including for the sale of radio spectrum licenses (Cramton, 2013), for

the procurement of industrial goods (Sandholm, 2013), and for the allocation of TV ad slots (Goet-

zendorff et al., 2015).

Unfortunately, the strategyproof VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973)

has several serious flaws when applied to the CA setting: most notably, it can lead to very low

or even zero revenues despite high competition for the goods (Ausubel & Milgrom, 2006). Fur-

thermore, it leaves incentives for collusion (Day & Milgrom, 2008). For these reasons, many CAs

conducted in practice do not use VCG, instead opting for alternative payment rules, such as first-

price payments (also known as “pay-as-bid”) or other payment rules, typically from the class of

core-selecting rules, which are designed to make the winners’ payments high enough to guarantee

envy-freeness (Day & Milgrom, 2008). These alternative mechanisms are not strategyproof in gen-
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eral settings, and the behavior of bidders under them is not well understood. If we want to predict

auction outcomes in terms of desirable properties (such as incentives, revenue, efficiency), we must

therefore study them in equilibrium instead of at truth. As a first step, this requires us to choose a

suitable equilibrium concept.

1.1 Equilibria in CAs

In the full information setting, significant theoretical work has been done towards characterizing

the equilibria of CAs. For first-price payments, the set of Nash equilibria has been fully charac-

terized (Bernheim & Whinston, 1986); see the work of Milgrom (2004, Chapter 8.2) for a modern

treatment. Day and Raghavan (2007) showed that an analogous characterization holds for any pay-

ment rule that always selects bidder-Pareto-optimal core payments. While the full information Nash

equilibrium (NE) may be a good approximation of bidder behavior in some settings (e.g., repeated

auctions where bidders can reasonably be assumed to know others’ values), it has several issues:

there is a high multiplicity of equilibria, and each equilibrium must be supported by very precise

bids on losing packages. The latter issue is especially problematic, since in a full information set-

ting, a losing bidder would know a priori that he will not win any items, and thus has no reason

to participate in the auction at all. However, this bidder’s losing bid may be needed to keep the

winners in equilibrium. For more details on the issues of equilibrium selection and stability, see the

discussions in Bernheim and Whinston (1986) and Day and Raghavan (2007).

In addition to these theoretical issues, many real-world high-stakes auctions such as spectrum

auctions are only conducted once, and bidders work hard to keep their private information secret,

motivating the study of incomplete information settings. In such a setting, private information is

explicitly modelled by assuming that each bidder knows his own valuation but only has a prior

belief (i.e., a distribution) over the valuations of others. This leads to the solution concept of the

Bayes-Nash Equilibrium (BNE), where bidders maximize their expected utility over many possible

auction outcomes, weighted according to their beliefs.

Some analytical research into BNEs already exists. Non-combinatorial single-item auctions

have been studied extensively (Klemperer, 1999), but comparatively little is known about multi-

item auctions, as the difficulty of finding BNEs by hand increases markedly, requiring the solution

of challenging differential equations. For this reason, only a few analytical results exist in small

settings, most notably the Local-Local-Global (LLG) domain with two goods and three bidders

(which we define in Section 2.2). Goeree and Lien (2016) as well as Ausubel and Baranov (2020)

have independently derived the analytical BNE of the VCG-nearest or “quadratic” rule, which is

commonly used in practice (Day & Cramton, 2012). Furthermore, Ausubel and Baranov (2013)

have also derived analytical BNEs of three other payment rules. For first-price payments, Baranov

(2010) provides some necessary properties of BNEs, but does not fully characterize them.

As known analytical methods are not amenable to larger settings, the only feasible approach

to finding BNEs in such settings is through algorithmic methods. However, one challenge we face

when designing algorithms for finding BNEs in CAs is that equilibria are not known to exist in

general, but only in specific settings.1 Fortunately, every strategy profile is an ε-BNE for some

1. The general CA problem has a structure much richer than what is covered by the single crossing condition (Athey,

2001) or other approaches for games with discontinuous payoffs (McLennan et al., 2011). There have been some

results for restricted classes of auctions, such as uniform price auctions (McAdams, 2006), double auctions (Jackson

& Swinkels, 2005), and games with discrete actions and continuous single-dimensional types (Rabinovich et al.,

2013).
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ε. Thus, finding an ε-BNE with ε being as small as possible is a well-defined problem, and an

algorithm for solving this problem can be an important tool for auction designers to analyze existing

mechanisms and to design new ones.

1.2 Prior Algorithmic Work on Computing BNEs

Computer scientists have long worked on algorithms for computing equilibria in non-cooperative

games. The Gambit software package provides a number of algorithms to find NEs and BNEs

(McKelvey & McLennan, 1996; McKelvey et al., 2016), but only for finite games (with finite type

and action spaces). Solving auction games with even a modest number of types (valuations) and

actions quickly becomes infeasible with these general solvers; therefore, infinite games can only be

modeled with significant loss of fidelity. This is why researchers have turned towards developing

special-purpose algorithms for computing BNEs in CAs. One important class of BNE algorithms is

based on iterated best response. The algorithms proposed by Reeves and Wellman (2004), Vorobey-

chik and Wellman (2008) and Rabinovich et al. (2013) belong to this class. To keep the computation

manageable, all three algorithms simplify the strategy space (using piecewise linear strategies, mul-

tiplicative shading strategies, or a finite set of actions, respectively) before solving the simplified

auction game.

A fundamental limitation of this “simplify, then solve” approach is that the ε-BNE computed

is only valid within the space over which the algorithm searches for best responses. If this issue is

not handled carefully, it can lead to what we call the false precision problem: the modelling choices

that were made to speed up the computation end up distorting the auction game in meaningful ways,

and the equilibrium that is calculated might not be as good as the algorithm reports.2 To illustrate

this point, consider the following simple but striking thought experiment: We search for an ε-BNE

in a CA, but restrict the bidders’ actions to bidding zero on all bundles of items. Any iterated best

response algorithm will immediately find an ε-BNE with ε = 0, as there is no beneficial deviation.

Obviously, this 0-BNE only “survives” because bidders are artificially prevented from meaningfully

participating in the auction.

Restricting the action space of a game in order to make equilibrium computation easier is known

as action abstraction (Sandholm, 2015). For some types of finite games, abstraction methods have

been developed that guarantee that an equilibrium of the abstracted game can be translated into

an equilibrium of the original game, with a bound on how much the coarseness of the abstraction

affects the solution quality (Sandholm & Singh, 2012). Unfortunately, no such methods exist for

infinite games. A recent algorithm proposed by Bosshard et al. (2018) could be interpreted as a

kind of action abstraction for CAs, but it is only applicable to CAs where the payment rule is non-

decreasing (e.g., first-price auctions).

1.3 Overview of our Contribution

In this paper, we develop a fast algorithm for computing pure-strategy ε-BNEs in CAs, without

sacrificing accuracy in the formalization of the auction game or the equilibrium computed within

this game. For this purpose, we set up an algorithm framework (Section 3) that protects against the

2. Note that Vorobeychik and Wellman (2008)[Sec. 7.4] correctly state this limitation of their algorithm. Rabinovich

et al. (2013) also handle this issue correctly by only claiming to find the BNE in the “game with the restricted strategy

space.”. Reeves and Wellman (2004) restrict themselves to a class of auctions where the best response is guaranteed

to lie in the subset of the strategy space they search through.
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false precision problem. This framework splits the task of computing an ε-BNE into a search phase

and a verification phase.

In the search phase, our goal is to find an ε-BNE as quickly as possible. For this, we design an

algorithm based on iterated best response that is highly optimized to CAs (Section 4). We use many

numerical techniques to cut down on computation time. The result of the search phase is a BNE

candidate: a strategy profile likely to offer only small incentives to deviate for any bidder, but for

which the algorithm, at this time, only has an estimate of the ε (i.e., the incentives to deviate).

In the verification phase, our goal is to find an ε such that the equilibrium candidate is in fact

an ε-BNE. For this, it is important to compare the quality of the equilibrium candidate against the

best alternative strategies available in the full strategy space, without the restrictions imposed dur-

ing search. The main technical contribution of our paper is a verification procedure that computes

a theoretical upper bound on ε, taking into account the full strategy space of the auction game, i.e.,

the entire continuum of valuations and actions (Section 5). It is surprising that it is even possible

to derive such a theoretical bound, given that any algorithm can only evaluate a finite number of

individual valuations and actions, while the bound requires reasoning over the continuous value and

action spaces. To the best of our knowledge, our approach is the first to achieve such guarantees for

infinite games without restricting the strategy space. Our results require some mild theoretical con-

ditions to hold (most notably, independent distributions of bidders’ valuations), so we also provide

a second verification procedure that robustly estimates ε in arbitrary CA settings. This alternative

approach ensures that our algorithm is fully general. While it only produces an estimated ε, we also

show experimentally that, with sufficient computation time, the estimated ε and the upper bound on

ε converge towards each other.

We validate our approach by running a series of experiments in the LLG domain with two items

and three bidders. Our experiments show that the techniques we use significantly speed up our

algorithm’s runtime and that our algorithm converges consistently despite the use of randomness.

Moving beyond single-dimensional domains like LLG, we also discuss the difficulties of scaling

any BNE algorithm to high-dimensional auctions (Section 7). We introduce the new multi-minded

LLLLGG domain with eight goods and six bidders, which is much larger than any domain that

previous algorithms have been able to tackle. In this domain, we find accurate ε-BNEs for both

the VCG-nearest and first-price payment rules, which demonstrates the scaling capabilities of our

algorithm, and sets a benchmark for future work on BNE algorithms.

There are multiple use cases for our BNE algorithm. First, researchers may use it for the pur-

pose of auction design, e.g., when automatically searching for optimal payment rules within a given

design space (Lubin et al., 2015; Bünz et al., 2018). Other researchers may find our algorithm

useful when analyzing specific aspects of CAs, like the impact of reserve prices (Day & Cram-

ton, 2012), incentives for overbidding in CAs (Beck & Ott, 2013), or as a supporting tool for

finding and validating new analytical results (Baranov, 2010). Actual bidders participating in an

auction could use our algorithm to optimize their bidding, e.g., by analyzing the effect of different

strategies under a given CA design. Further, bidders that are contemplating whether to partici-

pate in an auction could use our algorithm to better understand their economic position in a given

competitive landscape. To enable all of these use cases, we explain how to use our software and

describe its main features (Section 8), and we release our code under an open-source license at

https://github.com/marketdesignresearch/CA-BNE.
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2. Preliminaries

This section specifies the notation and terminology used throughout the paper. It also introduces the

LLG domain which we use extensively as a benchmark.

2.1 Formal Model

2.1.1 COMBINATORIAL AUCTIONS

A combinatorial auction (CA) is used to sell a set M = {1, 2, . . . ,m} of goods to a set N =
{1, 2, . . . , n} of bidders. Each bidder i has a value vi(K) ∈ R≥0 for each bundle of goods K ∈ 2M .

We assume that these values are normalized such that vi(∅) = 0. It is often the case that a bidder

is only interested in a small set of d different bundles {K1, . . . ,Kd}, having strictly positive value

for each of those d bundles, and value 0 for all others. Therefore, it is convenient to represent the

bidder’s valuation vi as a point in the d-dimensional value space Vi ⊆ R
d
≥0

, where d can be between

1 and 2m − 1, depending on the setting.

The bidder submits a (possibly non-truthful) bid to the auction. To simplify the exposition, we

adopt the XOR bidding language (Nisan, 2006), but our algorithm and results generalize to other

bidding languages. In our model, every bidder is allowed to submit an XOR bid with exactly r ∈ N

atomic bids (i.e., expressing a value for r different bundles), where the r and the set of atoms is fixed

a priori for each bidder. Note that setting r = 2m − 1 allows bidders to express arbitrary valuations

over the entire bundle space. This modeling choice is thus without loss of generality. However,

our model also allows for smaller r, capturing bidders who focus their attention on a specific set of

bundles. Given this, bidder i’s bid can be represented by a point bi in the action space R
r
≥0

. We do

not assume free disposal, and therefore the value for all bundles for which a bidder does not submit

a bid is implicitly zero. The bid profile b = (b1, . . . , bn) is the vector of all bids. The bid profile of

every bidder except i is denoted b-i.

The CA has an allocation rule X assigning bundle Xi(b) to bidder i, in such a way that the

allocation it produces is feasible, i.e., ∀i, j ∈ N : Xi(b) ∩Xj(b) = ∅.3 The CA also has a payment

rule p which is a function assigning a payment pi(b) ∈ R≥0 to each bidder. We let ui(vi, X(b), p(b))
denote bidder i’s utility for an auction outcome, given his own valuation vi, an allocation X(b), and

payments p(b).4 Since the allocation and payment rules X and p are always fixed in each auction,

bidder i’s utility only depends on the bid profile b, so we abbreviate the utility as ui(vi, b), or

equivalently ui(vi, bi, b-i).

2.1.2 CAS AS BAYESIAN GAMES

We model the process of bidding in a CA as a Bayesian game.5 Each bidder knows his own valuation

vi, but he only has probabilistic information (i.e., a prior) over each other bidder j’s valuation vj .
This information is represented by the random variable Vj drawn from the distribution Vj with

support Vj (i.e., all valuations in Vj have strictly positive probability under Vj). The joint prior

V = (V1, . . . ,Vn) is common knowledge and consistent among all bidders.

3. In much of the literature, it is typically assumed that the allocation rule is also efficient (i.e., maximizes the sum

of bidders’ reported values). Of course, our model covers this case, but it is much more general, as it can handle

arbitrary allocation rules, including approximately efficient ones, or rules targeting other objectives such as revenue.

4. To simplify the language, we always use he/his when referring to a bidder.

5. In the game theory literature, a bidder would be called a player, and his valuation vi would be called his type.
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The goal of bidder i is to maximize his utility ui(vi, bi, b-i) in expectation over the distribution

of bids b-i of all other bidders. To capture a bidder’s belief about b-i, we model every bidder j as

having a strategy sj : Rd
≥0

7→ R
r
≥0

, which is a function mapping all of his possible valuations to

bids.6 From the point of view of bidder i, the bids b-i are thus induced by the valuations v-i through

the strategies: b-i := s-i(v-i). This allows us to introduce the expected utility ūi, defined as

ūi(vi, bi) := E
V-i∼V-i|Vi=vi

[ui(vi, bi, s-i(V-i))] , (1)

where V-i|Vi = vi is the conditional distribution of valuations of all other bidders, which can depend

on the realization of Vi (when the distributions of valuations are not independent).

The highest possible expected utility that can be achieved with any bid is the best response

utility, given by

ūBR
i (vi) = sup

b′
i
∈Rr

≥0

ūi(vi, b
′
i). (2)

Note that we take the supremum over bids instead of the maximum, because the maximum might

not exist due to discontinuities in the utility function.7 Whenever a bidder i submits a bid bi that is

not optimal he leaves a certain amount of utility “on the table.” We call this quantity the utility loss,

given by

li(vi, bi) := ūBR
i (vi)− ūi(vi, bi). (3)

Bidders are in an ε-Bayes-Nash equilibrium when the utility loss is smaller than ε for all possible

valuations of all bidders, i.e., no bidder has a profitable deviation from the equilibrium netting him

more than ε utility in expectation:

Definition 1. An ε-Bayes-Nash equilibrium (ε-BNE) is a strategy profile s∗ such that

∀i ∈ N, ∀vi ∈ Vi : li(vi, s
∗
i (vi)) ≤ ε.

We take the ε-BNE as our solution concept because we use numerical algorithms with limited

precision to find the BNEs. Thus, when we solve a CA, we mean that we find an ε-BNE, where ε is

a suitably small constant fixed a priori.

Remark 1. Throughout the paper, we sometimes refer to the “true” ε of a strategy profile s∗. By

this we mean the smallest ε such that s∗ is an ε-BNE.

6. With this definition, we assume that all bidders’ strategies are pure and not mixed. This assumption is quite natural

from a behavioral perspective. Furthermore, pure-strategy ε-BNEs (introduced further below) always exist for some

ε > 0. This, together with our verification method (Section 5), ensures that the ε-BNE-finding problem is well-

defined. Nevertheless, allowing for mixed strategies would be an interesting avenue for future work, as it models

different economic behavior and could even improve the accuracy and convergence of our algorithm.

7. Consider, e.g., a single-item first-price auction with complete information. If opponents bid a maximum amount of

x, the best response is often to outbid them by a small amount, i.e., to bid limδ→0 x+ δ. Analogues of this situation

can arise even in incomplete information settings, where a discontinuity arises due to i’s bid crossing over a threshold

where his probability of winning a certain bundle jumps by a discrete amount. Such thresholds are caused by point

masses in the distribution of s-i(V-i), which can occur even if the distribution of V-i itself is smooth, e.g., when

strategies have flat segments.
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2.2 The LLG Domain and Straightforward Bundle Bidding

In this paper, we study the performance of our BNE algorithm, first in a small domain, where

analytical results are available, and later in a novel larger domain (Section 7). For the former, we

use the widely-studied Local-Local-Global (LLG) domain (Ausubel & Milgrom, 2006). LLG is

one of the smallest examples of an auction where combinatorial interactions between bidders arise.

There are three bidders, with bidders 1 and 2 being local, interested in two different single goods,

and bidder 3 being global, interested in the package of both goods.

This domain has been widely studied, and analytical BNE results for it are available under sev-

eral mechanisms. Ausubel and Baranov (2013) study the case where the global bidder’s valuation

is drawn from U [0, 2], while the local bidders’ valuations are drawn from U [0, 1], with cumulative

distribution function F (v) = vα. Furthermore, the local bidders’ valuations are perfectly correlated

with probability γ, and independent otherwise. Within this framing, they derive analytical BNEs for

four different mechanisms. All of the mechanisms use the efficient allocation rule but each of them

uses a different core-selecting payment rule (VCG-nearest, Nearest-bid, Proxy and Proportional).

These BNEs are unique under the assumption that local bidder strategies are symmetric. Adopt-

ing their results as our benchmark, we assemble a set of 16 auction settings to be used as a test

suite: four payment rules each applied to four domains (α ∈ {1, 2} × γ ∈ {0, 0.5}). Note that our

selection of settings covers all payment rules for which analytical results are known and all inter-

esting regions in the (α, γ)-parameter space for which the analytical results have distinct functional

forms (Ausubel & Baranov, 2013).8 Importantly, we did not exclude any settings for modeling or

algorithmic tractability reasons.

In the literature on LLG, it is often assumed (sometimes implicitly) that the local bidders can

only bid on the good that is of direct interest to them (Goeree & Lien, 2016; Ausubel & Baranov,

2020).9 This implements what we call “straightforward bundle bidding:” The bidder submits an

atomic bid on each bundle that has strictly positive marginal value, i.e., where removing any part of

the bundle would strictly decrease the value. Formally:

Definition 2. An XOR bid bi is a straightforward bundle bid if the bid contains one atomic bid for

each bundle in the set

{K ⊆ M | ∀K ′ ⊂ K : vi(K
′) < vi(K)} (4)

and no other atomic bids.

The interpretation of the set (4) is simple: To declare the valuation vi truthfully, the bid bi must

include an atomic bid for each of the subsets in (4), and no other atomic bids are necessary. A

straightforward bundle bid is thus the smallest bid capable of expressing a bidder’s true valuation.

For our analysis of LLG, we follow the majority of prior work and also assume straightforward bun-

dle bidding. Because in LLG, every bidder is single-minded (i.e., only interested in one bundle), we

thus set r = 1. Given that all of our payment rules are minimum-revenue core-selecting, we know

that it is a dominant strategy for the global bidder to be truthful (Beck & Ott, 2013). Thus, in LLG,

computing the ε-BNE only involves computing the strategies for the local bidders. Furthermore, to

match the analytical results of Ausubel and Baranov (2013), we only consider symmetric equilibria

8. We excluded some simple settings where the analytical solution is just a multiplicative shade.

9. There are two noteworthy exceptions. Beck and Ott (2013) analyzed a specific payment rule in LLG with r = 3, thus

allowing bids on all non-empty bundles in this case. More recently, Bosshard and Seuken (2020) studied bidders’

incentives for exploiting an exponentially large action space, requiring r = 2m.
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Algorithm 1: Iterated Best Response with Verification

input : Mechanism M, Distribution V of bidder valuations

output : ε-BNE strategy profile

1 s := truthful strategies

2 repeat

3 repeat

4 foreach bidder i do

5 s′i := BestResponseInner(M,V, s-i)
6 end

7 ε̃ := UtilityLoss(s, s′)
8 s := Update(s, s′)

9 until ConvergedInner(ε̃)
10 foreach bidder i do

11 s′i := BestResponseOuter(M,V, s-i)
12 end

13 ε̃ := UtilityLoss(s, s′)
14 s := Update(s, s′)

15 until ConvergedOuter(ε̃)
16 s∗ := ConvertStrategies(s)
17 ε := Verification(s∗)
18 return (s∗, ε)

outer

loop

inner

loop

search

phase

verification

phase

in this domain (though this simplification is not essential to our algorithm). Thus, the whole strategy

profile in LLG can be described by a single function slocal : [0, 1] 7→ R≥0.

3. BNE Algorithm Framework

In this section, we present a high-level overview of our BNE algorithm. At its core, the algorithm

is based on iterated best response, which simulates the process of each bidder repeatedly updating

his strategy to be a best response to the other bidders’ previous strategies, terminating when the

utility loss across all bidders is small enough. As such, our algorithm belongs to a broad class

of algorithms based on adaptive dynamics (Milgrom & Roberts, 1990), which also includes the

well-known fictitious play algorithm (Brown, 1951). Reeves and Wellman (2004) provide a brief

historical overview of this type of algorithm.

The key difference between our algorithm and the standard iterated best response procedure

is that our algorithm is separated into a search phase and a verification phase (with the search

phase being further split into an inner loop and an outer loop). Our full algorithm is presented as

Algorithm 1 and described below at a high level.

In the first step, we initialize the strategy profile to be used during the search at truth (Line 1).10

The search phase constitutes the first part of the algorithm (Lines 2-15). The core of the search

10. The algorithm can alternatively be initialized at any other strategy profile, which could lead to finding different

equilibria. However, starting at the truthful strategy profile is quite natural, and we expect it to lead to equilibria more

likely to be encountered in practice. With the proper experiment setup and given enough computational resources,

our algorithm can be used to investigate questions regarding equilibrium multiplicity and robustness as well.
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phase consists of the inner loop (Lines 3-9), in which iterated best response is performed. Each

iteration consists of calculating a best response for each bidder in turn (Lines 4-6), computing the

utility loss (Line 7), updating the current strategy profile (Line 8), and checking for convergence

(Line 9). Note that the strategy update we perform is a dampened update such that each bidder’s

new strategy is a mixture of his old strategy and his best response.11 When the inner loop converges,

we repeat the same steps in the outer loop (Lines 10-15), this time configured with higher precision.

If the outer loop fails to converge, we go back into the inner loop again, and so on. These two

nested loops help the algorithm to converge reliably without expending too much computational

effort; we will discuss the role of the outer loop in more detail in Section 6. Once the outer loop has

converged as well (Line 15), we have arrived at a strategy profile that is an equilibrium candidate,

which concludes the search phase. We then proceed to the verification phase (Lines 16-17), where

the ε corresponding to this equilibrium candidate is computed. Finally, we return a strategy profile

s∗ and ε (Line 18), such that s∗ is an ε-BNE.

To instantiate Algorithm 1, we still need to define how to compute best responses (Line 5) and

how to perform verification (Line 17). Turning to the former, the best response BRi is a strategy

for bidder i maximizing i’s expected utility ūi(vi, bi) for each possible valuation vi:

BRi(vi) := argmax
bi∈Rr

≥0

ūi(vi, bi). (5)

Here, the expected utility ūi(vi, bi) is calculated with respect to the strategy profile s-i of the previ-

ous round.12 In the rest of this section, we go into the details of how to compute the best response

according to Equation (5), and we provide an overview of the verification phase.

3.1 Modeling Strategies

To compute best responses efficiently, we construct bidders’ strategies using linear interpolation.

The strategy si is constructed by specifying a series of control points, which are simply valuations

(e.g., elements of [0, 1] in the case of LLG), and then assigning a bid to each control point. To

extend this to a strategy over the full value space, we perform linear interpolation between the bids

at neighboring control points.13 There are many other methods that one might use to interpolate

strategies (e.g., piecewise constant interpolation, splines, etc); we find piecewise linear interpolation

to be particularly attractive as it is simple (and thus fast to evaluate) but the resulting strategy can

approximate any bounded function well, given a sufficient number of control points.

Using piecewise linear interpolation, the task of constructing the best response BRi given in

Equation (5) simplifies to finding the bid BRi(vi) for each control point vi, which we call the

pointwise best response at vi. We will discuss the subproblem of finding pointwise best responses

in the next subsection. Note that this algorithm design implies that there are many valuations for

which a bidder’s expected utility is not directly optimized. However, this is not problematic since

we later verify that the final ε-BNE is valid for all possible valuations.

11. This is a standard method to prevent oscillations around the solution, a phenomenon typical of any procedure that

iteratively searches for fixed points.

12. Note that a best response need not always exist due to discontinuities in the utility function (as discussed in Sec-

tion 2.1.2). Because of this, in our algorithm, we must accept a bid bi with utility very close to the best response

utility ūBR
i (vi) in place of a true best response.

13. For strategies in more than one dimension, we place the control points on a grid and perform multilinear interpolation

between them. The grid structure of the control points will be helpful for applying our theoretical results (Section 5),

which is why we prefer this method over alternatives such as linear interpolation on an arbitrary triangulation.
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Here, f-i is the joint PDF associated with the distribution of v-i. The dimensionality of the integral

is (n−1) ·d for an auction with n bidders and value space dimension d. Consequently, to solve this

integral, we use Monte Carlo (MC) integration, a technique that works by averaging the integrand

ui(vi, bi, s-i(v-i))f-i(v-i) over many samples of the variable of integration v-i, taken uniformly at

random over all its possible realizations.15

Remark 2. In the simple LLG setting, the integral in Equation (6) is only two-dimensional and thus

may alternatively be solved via numerical quadrature in less time. In larger domains, however, only

Monte Carlo techniques will scale efficiently with the problem dimension. To keep the presentation

of the algorithmic techniques comparable throughout the paper, we exclusively evaluate their per-

formance using Monte Carlo integration. Our released source code includes both implementations.

3.3 Verification

In the search phase, we are free to simplify the strategy space or make use of any other heuristics

to speed up the search. As a consequence, we only have an estimate of the ε of our current strategy

profile, i.e., the maximum of the utility loss li at all control points. This estimate is precise enough

to decide when to break out of the search phase. But to know that we have found an ε-BNE strategy

profile, we need to make sure that the utility loss is indeed less than ε at all valuations.

At first sight, it is not obvious how to achieve this, given that the value space is continuous, and

we can thus not simply evaluate the utility loss at every possible valuation. To address this problem,

we have developed Theorem 2 which enables us to bound the epsilon over the full value space using

only a finite number of verification points (as illustrated in Figure 1b). We devote Section 5 to

a detailed explanation of this approach. For now, we highlight that the verification phase of the

algorithm (Lines 16-17) is significantly enhanced by this theory. Note that in those settings where

the conditions of the theorem are not met, we fall back on an alternative verification method that

computes an estimate of the ε (Section 5.3).

In the next section, we describe the design of the search phase in detail. Note that our experi-

mental setup in that section will already require us to be able to compute the ε of a given strategy

profile using a verification method. For the moment, we will simply treat the verification phase as

a black box that provides us with the ε for any given strategy profile. Then, in Section 5, we will

explain our verification methods in detail.

4. The Search Phase

In this section, we turn our attention towards the details of the search phase. Recall that in the search

phase, our goal is to find an ε-BNE as quickly as possible. For this, it is important to observe that

the runtime of each iteration of our inner loop depends on three key parameters: (1) the number of

Monte Carlo samples used for integrating the expected utility, (2) the number of times the expected

utility is evaluated to find each pointwise best response, and (3) the number of control points at

which the pointwise best response is computed. To achieve a fast runtime of our algorithm, these

15. Note that Monte Carlo integration only computes an estimate of the true value of the integral. We could use a

concentration inequality (Hoeffding, 1963) to derive a confidence interval around this estimate. In our experiments,

we choose a very large number of Monte Carlo samples such that the estimate becomes very accurate (by the central

limit theorem); given this, we forego computing confidence intervals, following standard practice using Monte Carlo

integration. However, in Section 6.2, we provide an analysis of the numerical robustness of the overall algorithm.
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parameters need to be kept as small as possible, while ensuring that we are still able to find ε-BNEs

across a wide variety of settings. This whole section shows how to achieve this. Towards this end,

we first present a baseline algorithm for computing best responses, and then provide a series of

algorithmic improvements, explaining and testing each of them in turn. The application of all of our

techniques leads to a cumulative 203.1-fold speedup of our algorithm over the baseline, allowing us

to find ε-BNEs in only a few seconds in LLG.

4.1 Experimental Set-up

We evaluate the runtime of each algorithmic improvement on the test set of 16 different variations

of the LLG domain (as introduced in Section 2.2). We use this test set because finding ε-BNEs is

still tractable in this small setting, and it enables us to compare our results against known analytical

BNEs, as we will do in Section 6.2. We run each version of our algorithm 50 times on each of the

16 auction settings, and we report the average of these 800 runs.16 Runtime results for finding a

0.00001-BNE are presented in Table 1. Each run is performed single-threaded on a 2.8Ghz Intel

Xeon E5-2680 v2.

Note that several of our techniques make a trade-off between speed and accuracy, so it is im-

portant to evaluate their effectiveness as a whole to capture how changes in accuracy affect the

convergence rate and thus the speed of the overall algorithm. Therefore, we do not just measure a

single best response calculation in isolation, but measure the runtime of the entire algorithm from its

start at the truthful strategy profile until reaching convergence. However, the runtime of the whole

algorithm is also affected by (a) how the transition between search and verification is done, and (b)

the runtime of the verification phase itself. This introduces additional ambiguity regarding the true

performance of our search techniques. For this reason, in this section, we separate these effects by

only measuring the runtime of the inner loop of Algorithm 1 (i.e., the core of the search phase). We

do this by skipping the convergence check in Line 9 and running the inner loop for a large, fixed

number of iterations instead. For each of the strategy profiles visited by this process, we then run

our verification phase to determine the first iteration at which ε falls below the threshold of 0.00001
(our target ε), at which point we consider the search to have converged. Importantly, the runtime

numbers we report in this section exclude the time needed for verification. To understand the per-

formance of the full algorithm, we will perform an end-to-end analysis in Section 6, including the

outer loop of the search phase and the verification phase.

4.2 Naive Monte Carlo Sampling and the Problem of Variance

We first present a straightforward implementation of our BNE algorithm. We lay an evenly-spaced

grid of 160 control points over the value space, and at each control point vi, we maximize ūi(vi, .)
by running Brent search, a commonly-used form of unconstrained optimization over the space of

possible bids (Brent, 1971). Each evaluation of ūi(vi, bi) is done via Monte Carlo integration as

described in Section 3.2.

This version of the algorithm is a reasonable first step, but it fails to converge to our target

ε = 0.00001, even when using 200, 000 Monte Carlo samples. The reason for this is that the com-

putation of the expected utility ūi has very high variance. In MC integration methods, any reduction

16. To simplify replicability, we use a different but fixed random seed for each of the runs. This set-up makes our experi-

ments deterministic (in the sense that they are perfectly repeatable) while still capturing the effects of randomness on

our algorithm’s runtime.
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Algorithm
Average

Iterations

Average Runtime

in Seconds

Cumulative

Speedup

Naive Monte Carlo - - -

+ Importance Sampling - - -

+ Quasi-Random Numbers (baseline) 8.9 (0.082) 950.5 (10.94) -

+ Common Random Numbers 8.4 (0.073) 26.7 (0.37) 35.7 x

+ Adaptive Dampening 5.9 (0.049) 18.7 (0.24) 50.7 x

+ Pattern Search 5.9 (0.048) 15.0 (0.14) 63.2 x

+ Adaptive Control Points 6.1 (0.052) 4.7 (0.04) 203.1 x

Table 1: Runtimes for the inner loop of our algorithm, with standard errors shown in paretheses. We compare

the time required for different variants of our algorithm to achieve an estimated 0.00001-BNE, averaged over

50 runs in each of our 16 auction settings. Note that the first two variants of the algorithm did not converge

on all 800 instances.

in variance is always desirable, of course, but in our application this consideration is especially

important. In an iterated best response algorithm, computing an equilibrium is fundamentally a dy-

namic process, where the output of one iteration is fed as input into the next. When we have high

variance in the expected utility computation, this causes the computed best response to deviate from

the true best response in a random direction at each control point. Since an ε-BNE is defined by the

worst-case utility loss over all valuations of all bidders, a large error at a single control point during

the best response computation prevents the entire algorithm from converging. This can produce the

counter-intuitive effect that increasing the number of control points actually decreases the accuracy

of the algorithm.

Our first two algorithmic improvements address this issue, reducing the variance of the Monte

Carlo integration to acceptable levels. The third version of the algorithm is the first one that con-

verges to our target ε, so we will use that one as the baseline algorithm against which we measure

the performance impact of later improvements.

4.3 Importance Sampling

When using MC integration to determine the expected utility of bidder i, it is often desirable to

adapt the sampling process to exclude realizations of other bidders’ valuations V-i that lead bidder i
to win the empty bundle. This is because, in most auctions, the utility in this situation is simply zero,

and the computational effort used to evaluate that sample is wasted without providing any additional

information about the expected utility. Excluding such valuations can be achieved by implementing

a variant of importance sampling (Press et al., 2007), where we truncate the distribution that we

sample from, and correct for this change by appropriately weighting the samples obtained.

In general, importance sampling is difficult to implement in CAs, as it requires characterizing

the realizations of V-i where bidder i wins the empty bundle. Thus, the implementation of this

technique is domain specific, as it must exploit the properties of the domain at hand to be efficient.

In LLG, we know that local bidder 1 wins exactly when b1 + s2(v2) > s3(v3). Therefore, we can

provide the following implementation in LLG: we first draw the valuation v2 from U [0, 1] as usual,

but then we draw the valuation v3 from U [0, b1 + s2(v2)] instead of from U [0, 2]. This guarantees

that the local bidders are winners, because we know that the global bidder is truthful and thus

s3(v3) = v3. The resulting sample is then multiplied with the factor (b1 + s2(v2))/2 to correct
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the bias we have introduced. This technique is especially important for small bids where bidder 1

only wins rarely, where otherwise very few samples would fall in the winning region, leading to

high variance. We have added this LLG-specific implementation to our algorithm, but we leave the

exploration of more general implementations to future work.

While highly useful, even with this improvement our algorithm still fails to converge on all

instances, so this version of the algorithm is also not suitable as a baseline. For that, we need to add

another improvement.

4.4 Quasi-Random Numbers

Another effective method for reducing variance is to replace pseudo-random numbers (i.e., the

standard random number implementation available in most programming languages) with quasi-

random numbers in the sampling process. While pseudo-random numbers try to reproduce the

properties of true random numbers as closely as possible (including their tendency to form clumps),

quasi-random numbers cover the sampled region more evenly (Morokoff & Caflisch, 1995). In our

algorithm, we use a multi-dimensional Sobol sequence. This improvement enables convergence to

our target of ε = 0.00001, using 200,000 MC samples. On average, the search converges in 8.9
iterations and 950.5 seconds (see Table 1). As this is the first variant of the algorithm that reaches

convergence, we use it as the baseline algorithm against which we compare additional techniques.

Remark 3. The number of MC samples required for convergence might seem surprisingly high.

Many of our auction instances would also converge using considerably fewer samples, but 200,000

is the minimum number required to make each of our 16 auction settings converge in all 50 out of

50 runs. In fact, most of the auction instances converge with as little as 20,000 - 50,000 samples,

but some specific instances, in particular those using the proxy payment rule, need larger numbers

for convergence. We have also observed a small trend for instances with non-uniform value distri-

butions (α = 2) to require more samples for convergence than their uniform counterparts. To keep

our experimental set-up simple and consistent, we did not optimize the number of samples for each

setting individually, but rather chose a single number that makes our full set of 800 runs converge.

4.5 Common Random Numbers

When computing a pointwise best response for a given valuation, we repeatedly compare the ex-

pected utility of two different bids. If X and Y are the random variables representing the expected

utility associated with two bids, then we want to determine if E[X]−E[Y ] is greater or smaller than

zero to decide which bid is better. Using common random numbers (Glasserman & Yao, 1992),

we can compute E[X − Y ] instead and get the same result with lower variance. We integrate this

idea by using the same sequence of samples to compute both E[X] and E[Y ]. The samples used for

both integrals are pairwise perfectly correlated but still quasi-random when considering each of the

integrals in isolation. Adding this technique improves the convergence behavior of our algorithm

substantially. Correspondingly, we reduce the number of samples used to 10,000, which is enough

for all runs to converge to our target ε. This is only 5% of the samples needed by the baseline

algorithm, resulting in a 35.7-fold speedup. Note that we get more than a 20-fold speedup because,

in addition to saving a factor 20 in the expected utility computation, this change decreases the num-

ber of function evaluations required by Brent search for finding the best response, and additionally

makes the algorithm converge in slightly fewer iterations.
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4.6 Adaptive Dampening of Strategy Updates

As mentioned in Section 3, in each iteration of the inner loop we perform a dampened update of

the strategy profile. This means that instead of just replacing the previous strategy with its best

response (as would be done in a naive implementation of iterated best response), we make the

current strategy at each control point vi a weighted combination of the previous strategy and the

best response: si(vi) = (1 − w) · si(vi) + w · BRi(vi, s-i), for some update weight w ∈ [0, 1].
However, if w is chosen too high, the iterative process might fall into an oscillating behavior around

the solution and converge very slowly or not at all. Conversely, if w is chosen too low, convergence

is slowed down when the current strategy is far from equilibrium. In the baseline algorithm, we use

an update weight w = 0.5 to balance these two concerns, but of course a fixed update weight is

suboptimal.

To make the convergence process of the algorithm smoother, we now design an adaptive form

of strategy updates (see the work of Fudenberg and Levine (1995) and Lubin and Parkes (2009)

for earlier examples of adaptive dampening). Concretely, we set the update weight dynamically for

each individual control point, based on how close to a solution we expect to be:

w(vi) =
2

π
arctan(c · li(vi, si(vi))) · (wmax − wmin) + wmin. (7)

To understand the effect of the rule, observe that 2

π
arctan maps all positive numbers into the

[0, 1) interval, and therefore Equation (7) creates a weight between wmin and wmax, separately for

each control point.17 Thus, when the utility loss li at the control point vi is large, the weight w(vi) is

also large, resulting in an aggressive update step that reaches the neighborhood of an equilibrium in

few iterations. Conversely, when the utility loss is small, the update step is much more conservative,

reducing the risk of overshooting the equilibrium. This adaptive dampening technique combines the

benefits of a rule with a fixed large weight (which allows taking big steps) and a rule with a fixed

small weight (which leads to high stability). Adding adaptive dampening results in another 1.42-fold

speedup, leading to a cumulative 50.7-fold speedup over the baseline algorithm.

4.7 Pattern Search

So far, we have used Brent search to compute pointwise best responses. While Brent search is a very

accurate method for function maximization, it has two problems. First, it evaluates the function to

be maximized many times. Second, it can only be applied to single-dimensional functions and thus

prevents us from applying our algorithm to larger, multi-dimensional auction settings (including

those we will study in Section 7). What we need is an optimization procedure that requires fewer

function evaluations and scales to an arbitrary number of dimensions.

To this end, we replace Brent search with a slightly modified version of pattern search (Hooke &

Jeeves, 1961). Pattern search is a type of hierarchical local search that evaluates a number of points

around a center according to a fixed pattern. The center is initialized to a guess of the solution (in our

case, we use the current strategy at the given control point). Whenever a better solution is found,

pattern search moves the center of the pattern there and continues searching. If a better solution

could not be found, it reduces the size of the pattern by half and continues searching around the

center at a smaller scale. Thus, there are two kinds of steps that can occur during the search: moving

steps and shrinking steps. Standard pattern search terminates when the pattern reaches a sufficiently

17. In our experiments we use the constants wmin = 0.2, wmax = 0.7, and c = 1

2ε
.

545
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small scale. However, choosing the correct scale to stop the search is particularly challenging in

our case, which we resolve as follows. Recall that, in our BNE algorithm, each bidder’s strategy

is repeatedly updated to be a best response to the other bidders’ previous strategies. In the early

iterations of this process, high precision is not needed, because we are far away from an ε-BNE, and

thus very small differences in utilities can be ignored because strategies will undergo major changes

from one iteration to the next anyway. In contrast, once the iterative process has roughly settled on

the final strategies, high precision is required to actually converge with the ε we are aiming for.

To properly serve both of these needs, we slightly modify pattern search to choose its precision

adaptively. Concretely, we equip the algorithm with a budget that denotes the maximal number of

steps the algorithm is allowed to take. We subtract two steps from the budget whenever the algorithm

takes a moving step, and only one step whenever the algorithm takes a shrinking step. This has the

effect of only allowing the algorithm to take many steps when pattern search stays close to the

initial strategy at the given control point (which is an indicator that we are close to convergence). In

LLG, we use a pattern of 3 points and a budget of 12 steps. Overall, this budgeted pattern search

technique requires fewer evaluations of the expected utility than Brent search when high precision

is unnecessary, and is almost as accurate when high precision is needed. Adding budgeted pattern

search to our algorithm results in a 1.24-fold speedup, leading to a cumulative 63.2-fold speedup

over the baseline algorithm.

4.8 Adaptive Control Point Placement

A bidder’s BNE strategy often has regions of both high and low curvature (see, e.g., Figure 1b in

Section 3). Thus, when constructing a piecewise linear function to approximate this BNE strategy,

using an equal spacing of control points either has too many unnecessary points in flat regions (wast-

ing computational effort) or not enough points in curved regions (not achieving sufficient accuracy

when needed). In particular, if we used a spacing of control points that is too coarse, then the linear

interpolation between the control points may not approximate the true best response well enough in

those regions where the best response is strongly curved (or even non-smooth). This can lead to a

large utility loss at some valuations in the value space (and thus a large ε), even when the utility loss

at the control points themselves is very small.

To avoid this, we use an adaptive control point placement method which iteratively constructs

an irregular grid with a higher density of control points in regions where this is deemed necessary.

This is a well-known technique (Huang & Russell, 2010); however, applying it to a specific problem

requires specifying a criterion by which to determine the highest priority region where the next

control point should be placed. In LLG, we initialize this method with an evenly spaced grid of

only 10 control points. We then iteratively place additional control points at the midpoint between

two neighboring control points where the estimated curvature of the best response function is largest.

Using this adaptive method, the control points are spaced further apart in regions of low curvature,

allowing us to reduce the overall amount of work done in the best response computation, while

retaining the same accuracy where needed. We provide pseudocode for this method in Appendix A.

Using adaptive control point placement, we obtain convergence in all 16 auction settings with

only 40 control points (10 in the initial grid plus 30 adaptively placed) instead of the 160 previously

required. Adding adaptive control points to our algorithm results in a 3.21-fold speedup, leading

to an overall 203.1-fold speedup. The cumulative improvement achieved by adding all of the tech-
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niques in this section means that our algorithm can find very precise ε-BNEs in the LLG domain

using only a few seconds of computation time.

5. The Verification Phase

Now that we have a fast algorithm to find an ε-BNE candidate, it remains to show how to accurately

compute ε. This is the task of the verification phase. We have already established that the utility

loss is small at each control point used in the search phase; otherwise, the algorithm would not have

broken out of the iterated best response loop. However, a computation of ε requires us to find the

maximum utility loss at every point in the continuum of valuations. Unfortunately, the maximum is

not a well-behaved statistic, in the sense that even if we were to check the utility loss at more and

more control points, we would never be sure that there is no gap remaining between the worst utility

loss we have observed and the worst utility loss that exists.18 This is why we need to think carefully

about the design of the verification phase.

On a high level, our verification method (and main technical contribution of the paper) involves

reasoning about the utility loss in terms of intervals [vi, v
′
i] of valuations. The key insight lies in

using certain properties of the endpoints vi and v′i to provide an upper bound that holds for any

valuation contained in the interval. This approach is almost fully general: it works for auctions with

any allocation and payment rule, but we must make a few assumptions on the bidders’ valuations

and utilities. We formalize our results as Theorems 1 and 2 in Section 5.1, and we then discuss how

to compute the upper bound on ε based on these theorems in Section 5.2.19

For those settings where the assumptions of Theorems 1 and 2 are not satisfied, we fall back on

an alternative verification method that computes an estimate of ε instead of an upper bound. We

present this alternative verification method in Section 5.3. In Section 5.4, we show that, when using

sufficient computation time, the upper bound on ε as well as the estimated ε are very close to the

true ε.

5.1 Deriving an Upper Bound on ε

Our upper bound on ε requires three properties to hold regarding the bidders in the CA:

Assumption 1 (Linear Utilities). Each bidder’s utility function is of the form

ui(vi, b,X, p) = vi(Xi(b))− pi(b), (8)

i.e., linear in the valuation vi.

Assumption 2 (Bounded Value Spaces). Each bidder’s value space Vi is bounded.

Assumption 3 (Independently Distributed Valuations). The valuations Vi are mutually independent

random variables.

18. This is a different dynamic than, e.g., computing the average of a function, where taking more and more samples

guarantees convergence towards the exact solution, even in continuous domains.

19. Note that Theorems 1 and 2 are significantly stronger versions of the theorem found in our earlier work (Bosshard

et al., 2017), producing much tighter bounds on ε. The general idea of using a finite subset of the value space to

obtain a bound on the whole value space was also used more recently by Balcan et al. (2019) who employ learning

theory to estimate approximate incentive compatibility of non-truthful mechanisms.
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Assumption 1 is relatively standard in auction theory. This class of utility functions is a subset of

quasi-linear utilities (Mas-Colell et al., 1995); it excludes some bidder models that are less common,

e.g., quasi-linear utilities with risk aversion. Assumption 2 is also standard and not very restrictive.

In contrast, Assumption 3 is more restrictive. It excludes all CAs with interdependent valuations

(which includes settings where bidders’ private values depend on publicly observable signals).

To derive a bound on ε, we need to know the gap between the expected utility ūi(vi, bi) obtained

at an equilibrium candidate s, and the expected utility ūBR
i (vi) that can be obtained by playing a best

response against s-i. To bound the gap between these two functions, we now make two observations.

First, the fact that utilities are linear in the valuation implies that the expected utilities are linear in

the valuation as well:

Lemma 1. In a CA satisfying Assumption 1 (linear utilities) and Assumption 3 (independently

distributed valuations), for a fixed bid bi, the expected utility ūi(vi, bi) is a linear function in vi.

Proof. This follows directly from linearity of expectation. In detail:

ūi(vi, bi) = E
v-i∼V-i|Vi=vi

[vi(Xi(bi, s-i(v-i)))− pi(bi, s-i(v-i))]

= E
v-i∼V-i|Vi=vi





∑

K⊆M

vi(K) · [Xi(bi, s-i(v-i)) = K]− pi(bi, s-i(v-i))





=
∑

K⊆M

vi(K) · E
v-i∼V-i|Vi=vi

[Xi(bi, s-i(v-i)) = K]− E
v-i∼V-i|Vi=vi

[pi(bi, s-i(v-i))]

=
∑

K⊆M

vi(K) · cKi − ci.

Note that cKi and ci are constants independent of vi because valuations are independently distributed.

Second, we show that the best response utility ūBR
i (vi) is convex:

Lemma 2. In a CA satisfying Assumption 1 (linear utilities) and Assumption 3 (independently

distributed valuations), the best response utility ūBR
i (vi) is convex.

Proof. Per Lemma 1, the expected utility ūi(vi, bi) is linear in vi for a particular bid bi and therefore

also convex. The best response utility ūBR
i (vi) is the pointwise supremum of the expected utilities

associated with each possible bid bi. Therefore, it is the upper envelope of a set of convex functions,

which is known to be convex.

In addition to Assumptions 1, 2 and 3, Theorems 1 and 2 require the use of piecewise constant

strategies. In Section 5.2, we provide a detailed description of how our BNE algorithm converts an

arbitrary (candidate) strategy profile into a piecewise constant strategy profile at the beginning of

the verification phase.

5.1.1 UPPER BOUND IN ONE DIMENSION

As a first step, we state a theorem for the upper bound for one-dimensional value spaces, i.e., when

bidders are single-minded. This will help in developing the necessary intuition. Afterwards, we will

state our result for the general case and provide a formal proof.
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boundary of the interval. Therefore, it is enough to check this distance at wj−1

i and wj
i to compute

a bound on the utility loss for all vi between them.

5.1.2 UPPER BOUND IN HIGHER DIMENSIONS

We now proceed to the general case, where bidders can be arbitrarily multi-minded. This is more

technically involved, as it requires considering the topology of high-dimensional partitions of the

value space, and the best response utility must be bounded by a set of simplices. We begin by

introducing the notation required to define piecewise constant strategies in the general case.

Definition 3 (Cell). A cell [x, y) ⊆ R
d
≥0

is a half-open multi-dimensional interval with lower corner

x and upper corner y, i.e.,

[x, y) :=
d
×
j=1

[xj , yj).

For convenience, we consider [x, x) to be the singleton {x}, instead of ∅.

Definition 4 (Vertex). The vertices of a cell [x, y) are

Vert(x, y) := {xi + (yi − xi) · z | z ∈ {0, 1}d}, (10)

where “·” denotes coordinate-wise vector multiplication.

Definition 5 (Cell Partition). A cell partition Pi of a bounded value space Vi ⊆ R
d
≥0

is a set of cells

such that each point in Vi falls into exactly one cell, i.e.,

∀vi ∈ Vi ∃! [wi, w
′
i) ∈ Pi : vi ∈ [wi, w

′
i).

See Figure 3 for some examples of cell partitions on the 2-dimensional unit cube. Note that

the upper boundary of the cube needs to be covered by cells as well, which is why the partitions

include not only 2-dimensional rectangles, but also 1-dimensional lines and even a 0-dimensional

point. Furthermore, note that cell partitions do not always form regular grids, but can contain cells

of different sizes that are not necessarily aligned with each other. This would be especially relevant

if one wanted to adaptively place control points in higher dimensions, e.g., by iteratively refining a

coarse initial partition through subdivision of some of its cells, producing a final partition that is not

a grid.

Definition 6 (Piecewise Constant Strategy on a Partition). Let Pi be a cell partition of bidder i’s
value space Vi ⊆ R

d
≥0

. A strategy si is piecewise constant on Pi if every value has the same bid as

the lower corner of the cell it belongs to, i.e.,

∀[w,w′) ∈ Pi ∀vi ∈ [w,w′) : si(vi) = si(w).

With all definitions properly in place, we are now ready to state and prove our main result, which

is an exact multi-dimensional analogue of Theorem 1.
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Note that both f and g are linear functions over Z. The utility loss li(vi, s
∗
i (vi)) is at most the

difference f(vi) − g(vi), which is also linear and thus attains its maximum at one of Z’s vertices.

Note that at a vertex zki , f(zki ) = ūBR
i (zki ), and by construction zki ∈ Vert(wmin

i , wmax
i ). Therefore,

the term f(zki ) − g(zki ) corresponding to each vertex of Z is included in the maximization of (11)

which implies that the utility loss at each valuation contained in the simplex Z is smaller than ε.

5.2 Efficiently Computing the Verified ε

Having proven a theoretical upper bound on ε, we now show how our algorithm computes this upper

bound in an efficient way in the verification phase. As a first step, this requires us to have a strategy

profile with piecewise constant strategies. Our BNE candidate s does not fulfill this requirement,

as the strategies are constructed through piecewise linear interpolation in the search phase of our

algorithm. To deal with this, Algorithm 1 includes the ConvertStrategies subroutine (Line

16), which takes an arbitrary strategy profile and converts all strategies therein into piecewise con-

stant strategies. To convert each strategy si, we first define a cell partition Pi and evaluate si at all

cell vertices of this partition. It is important that this partition Pi is based on a grid, as will become

clear in the following paragraph; in our implementation we use a regular grid. We then construct

the piecewise constant strategy s∗i such that the bid for a given valuation vi ∈ [wi, w
′
i) is equal to

si(wi) (i.e., the original bid at the lower corner of the cell that contains vi). Finally, even though our

algorithm searches in the space of piecewise linear strategies, it returns a pair (s∗, ε), where s∗ is

an ε-BNE which only contains piecewise constant strategies. This way, we eliminate any ambiguity

about the exact strategy profile to which the ε bound applies.

Now that we have a strategy profile s∗ consisting of piecewise constant strategies, we next com-

pute the corresponding ε bound according to Equation (11) in Theorem 2. This corresponds to the

Verification subroutine (Line 17) in Algorithm 1. Note that Equation (11) is a maximization

over terms of the form: ūBR
i (wi) − ūi

(

wi, s
∗
i

(

wmin
i

))

. When the value space is d-dimensional,

there are 2d such terms per cell. Fortunately, when computing all these terms, we do not need to

evaluate each of them individually (which would be very expensive); instead our algorithm only

requires one pointwise best response computation per grid point. Thus, the number of pointwise

best response calls made by our verification method is linear in the number of grid points. Note that

this is also the same number of pointwise best response calls made during one full best response

iteration (at the same grid size). Concretely, we save on evaluations of terms in Equation (11) by

observing two facts: the first sub-term (i.e., ūBR
i (wi)) is repeated many times (once for each cell

that has wi as a vertex), and can thus simply be cached and re-used. Furthermore, for the second

sub-term (i.e., ūi
(

wi, s
∗
i

(

wmin
i

))

), we can exploit that the expected utility is linear in the valuation

(Lemma 1), to jointly compute this sub-term for all vertices of a cell [wmin
i , wmax

i ). Specifically,

we only compute the expected utility ūi
(

wmin
i , s∗i

(

wmin
i

))

at a single vertex wmin
i , while now also

deriving and storing its linear coefficients (which are just the probabilities of winning each bundle).

The result of this computation can then be easily extrapolated to all other vertices of the cell. Note

that our algorithm requires some small amount of bookkeeping, but the computational cost of this

is insignificant compared to the cost of the pointwise best response computations themselves.

Note that Theorem 2 can be applied no matter how we come up with the ε-BNE candidate s.

In this paper, we use an iterated best response algorithm, but this could be exchanged for any other

equilibrium finding procedure. For example, our verification step can also be applied to compute
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the incentives to deviate from truth-telling under a given mechanism, by simply using the truthful

strategy profile as the “ε-BNE candidate.”

While we have focused on the application of our results to infinite games, Theorem 2 can easily

handle finite, but very large value and action spaces. In either case, it is infeasible to perform

computations for each individual value or action, which is where our approach shines. The key

ingredient that makes our theory work is that for a fixed action, the payoffs in the auction game are

linear in the valuation.

5.3 An Estimate of ε

Theorems 1 and 2 only hold under certain conditions, given as Assumptions 1, 2 and 3 above. These

assumptions do not hold for all CAs that might be of interest: in particular, half of our set of 16 LLG

settings have correlated valuations (i.e, γ = 0.5), which violates Assumption 3. For such auction

instances, we fall back on a simpler verification procedure, which consists of computing pointwise

best responses on a densely spaced grid of valuations, and estimating ε as the highest utility loss

observed among these valuations. This ε estimate is obviously a lower bound for ε. However, as

mentioned earlier, the maximum is not a well-behaved (smooth) statistic, so it is not clear if our ε
estimate is close to the true ε or not.

In practice, we have found that this heuristic is a sensible fallback for domains where our the-

oretical assumptions do not hold. The worst case scenario for the heuristic is when two valuations

that are very close to each other in value space have very different utility losses. In the auction

games we have studied so far, this situation does not seem to arise.20 We reinforce this claim by

comparing both our verification methods with each other in Section 5.4.

Remark 4. Recall that, in the runtime experiments performed in Section 4 in the LLG domain, we

required an implementation of the verification phase as part of our experimental setup (to accurately

measure the performance of the search phase). In those experiments, half the auction settings

have correlated valuations, and thus Theorem 2 is not applicable. To keep our experimental set-up

simple and consistent, we chose to always use the heuristic method described above to compute an

estimated ε, even for settings where our theoretical assumptions hold. For this, we used a grid of

1, 000 evenly spaced verification points, which is a very large increase in precision when compared

to only 40 adaptively placed control points used during search.

5.4 The Theoretical Bound on ε vs. the Estimate of ε

We have now established the theory necessary to get an upper bound on the utility loss, but this

would not be very useful if the bound was far from the true ε. It is thus natural to ask: how tight

is our bound really? We can answer this question using our ε estimate, which is a lower bound on

the utility loss, since it is derived by considering a finite subset of all valuations. We consider the

8 of our 16 LLG auction settings to which Theorem 2 applies, namely those with independently

20. While we have never observed such a scenario, it is theoretically possible. For some joint value distributions, a small

change in bidder i’s valuation might imply a very large shift in the marginal distribution of other bidders’ bids, due to

correlations between bidders’ valuations. In this case, i’s utility could drastically change, even when i himself does

not change his bid. Furthermore, some payment rules might amplify this effect (e.g., by having discontinuities), such

that even a small shift in other bidders’ marginal distributions can have a large impact on i’s utility. Therefore, any

bound akin to Theorem 2 for correlated settings would need to be domain specific, placing restrictions both on the

payment rule and the correlation structure between bidders’ valuations.
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20, 000 instead of 10, 000). Furthermore, we increase the budget of steps for pattern search from 12
to 20, which implies that our pattern search can perform up to 20 halvings of the initial pattern size

and can thus achieve a search resolution in the action space on the order of 10−6. In Section 6.2, we

present an empirical convergence analysis, which shows that we set our parameters high enough in

relation to our target ε.

6. Putting it all Together

Now that we have detailed specifications of both the search and verification phases, we can put

them together into a full algorithm. Recall that, for the design of the search phase, we focused

on the performance of the inner loop of the algorithm, to keep our experimental set-up simple

(Section 4). We then designed the verification phase (Section 5). Now we analyze the performance

of the algorithm as a whole, which includes the decision regarding when to transition from search

to verification.

6.1 Transitioning from Search to Verification

Recall that our BNE algorithm has a target ε it is trying to achieve. During the search phase, the

algorithm only maintains an estimate ε̃ of the true current ε, but does not yet have an upper bound

on it. Thus, if the algorithm spends too little computational effort in search and stops early, there is

a high risk that the verification phase will show that the target ε has not in fact been reached. On the

other hand, if the algorithm expends lots of effort in the search phase, this risk can be minimized.

The question thus is how long to search, and when exactly to transition from search to verification.

The amount of computational effort spent is primarily driven by the number of control points

used, and this in turn determines to a large degree the accuracy of ε̃ which the search phase uses

for its decision regarding when to transition to verification. This motivates our design of two nested

loops, with an inner and an outer loop. When the inner loop converges, a best response calculation

with higher precision is performed in the outer loop, increasing the accuracy of the strategy update

and of the ε̃ calculation. If this increase in accuracy still leads to an acceptably small ε̃, the algo-

rithm proceeds to verification. Otherwise, the inner loop is resumed, and we require at least two

further iterations before breaking out of the inner loop again. In this way, the outer loop acts as a

gate between the inner loop and the verification phase, only letting through a strategy profile that

“generalizes” to higher precision parameters. For this to work properly, we eschew adaptive control

points when in the outer loop, instead using evenly spread out control points densely covering the

entire value space. Furthermore, to account for the lower accuracy of the inner loop, we consider

the inner loop to be converged only when an ε̃ less than or equal to 0.8 times our target ε is reached.

With this transition from search to verification in place, we can now measure the full runtime

of the algorithm from start to end, i.e., from the (truthful) starting strategy profile to a verified ε-

BNE. For this experiment only, we choose the number of control points in the outer loop to match

those in the verification phase. This simplifies interpreting our runtime results, because this set of

parameters achieves an ε below our target in all 800 out of 800 runs, and thus we don’t have to

account for the failure rate of the algorithm. In practice, tuning the configuration of the outer loop

involves a classical speed / accuracy trade-off, and it is up to the user of our BNE algorithm to make

this trade-off appropriately.
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Mechanism Standard Deviation of ε Max L∞ to

Search Verification Analytical BNE

Nearest-Bid, α = 1.0, γ = 0.0 4.2728× 10−7 2.3365× 10−7 0.0027
Nearest-Bid, α = 1.0, γ = 0.5 1.2367× 10−7 6.3426× 10−8 0.0014
Nearest-Bid, α = 2.0, γ = 0.0 4.4019× 10−7 1.8765× 10−7 0.0025
Nearest-Bid, α = 2.0, γ = 0.5 1.2306× 10−7 6.6614× 10−8 0.0016
Proportional, α = 1.0, γ = 0.0 1.2454× 10−9 2.0800× 10−9 0.0014
Proportional, α = 1.0, γ = 0.5 3.2826× 10−9 2.8195× 10−9 0.0009
Proportional, α = 2.0, γ = 0.0 1.6587× 10−9 2.5590× 10−9 0.0015
Proportional, α = 2.0, γ = 0.5 1.1225× 10−7 3.9069× 10−9 0.0011
Proxy, α = 1.0, γ = 0.0 1.4144× 10−9 1.6041× 10−9 0.0025
Proxy, α = 1.0, γ = 0.5 5.5414× 10−7 5.0385× 10−9 0.0016
Proxy, α = 2.0, γ = 0.0 2.0589× 10−7 1.5618× 10−9 0.0039
Proxy, α = 2.0, γ = 0.5 5.3069× 10−9 4.0216× 10−9 0.0017
Quadratic, α = 1.0, γ = 0.0 1.2856× 10−9 1.9825× 10−9 0.0014
Quadratic, α = 1.0, γ = 0.5 2.6187× 10−9 2.7807× 10−9 0.0009
Quadratic, α = 2.0, γ = 0.0 1.8548× 10−9 2.3149× 10−9 0.0015
Quadratic, α = 2.0, γ = 0.5 1.5953× 10−7 3.7011× 10−9 0.0011

Table 2: Robustness measures of our algorithm in the LLG setting. The second and third columns show how

much randomness is introduced by Monte Carlo integration in the search and verification phase, respectively,

measured as the standard deviation of ε over 50 runs each. The forth column shows the maximum L∞

distance between the known analytical BNEs and our ε-BNEs (ε = 0.00001), also measured over 50 runs.

perform 50 runs, this time using a fixed random seed during search (thus converging on the exact

same strategy profile), and different random seeds during verification. This tells us the variance of

ε caused by verification.

The results are shown in columns two and three of Table 2. We observe that the standard

deviation of ε is extremely small in all cases, never exceeding 5.5414× 10−7. This shows that,

even though our algorithm is optimized to use as few Monte Carlo samples as possible, we can

expect the algorithm’s behavior to be very consistent across different runs.

Now that we have shown that our BNE algorithm converges in a very consistent way, one may

wonder about what BNE strategy profile it converges to. Recall that we have analytical results

for all of our 16 settings. Thus, we can measure the distance between the true, analytical BNEs

and the ε-BNEs our algorithm finds. However, we would like to emphasize that minimizing this

distance is not part of the definition of an ε-BNE and therefore not an objective of our algorithm.

Nevertheless, some readers may be interested in knowing this distance. To this end, we consider the

BNEs resulting from the previous experiment in each setting. In Table 2, we show the maximum

(across all 50 runs) of the L∞ distances between the analytical BNEs derived by Ausubel and

Baranov (2013) and the 0.00001-BNEs we find.22 As we can see, all analytical BNEs are very close

22. Originally, we found a discrepancy between some of the ε-BNEs reached by our algorithm (for Nearest-Bid with

α = 2 and 0 ≤ γ ≤ 1) and the analytical BNEs of Ausubel and Baranov (2013). We contacted the authors,

who promptly confirmed a small mistake in their analytical results and quickly provided us with the correct BNE

formula for this setting, which is: si(vi) = 1/
√

8 · (1− γ)
(

log(
√

2/(1− γ) + vi)− log(
√

2/(1− γ)− vi)
)

.
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The Source of Complexity. Note that LLLLGG is larger than LLG in several aspects: it has more

bidders, more goods, each bidder bids on more bundles, and no bidder has a truthful strategy. It is

thus natural to ask how exactly these characteristics influence the difficulty of finding ε-BNEs in

this domain. Some effects are very easy and intuitive to understand. First and most importantly, to

find a pointwise best response, a nonlinear optimization problem over the action space Rr
≥0

must be

solved, which is considerably harder when r = 2 than when r = 1. Second, our algorithm’s runtime

increases linearly with the number of (non-symmetric) bidders, because best responses need to be

computed for each of them. Third, the more atomic bids we have, the harder the implementation

of the mechanism itself becomes (e.g., because in general CAs, computing an efficient allocation or

computing core payments are both NP-hard problems).

However, there is a source of complexity that is much subtler, namely the combinatorial way

in which bidders interact. To this end, we now want to provide some intuition. First, consider a

first-price auction with a single good but many bidders. In this auction, finding a best response BRi

is not much more difficult than in the same auction with fewer bidders, because only the highest

competing bid is relevant for bidder i’s utility, and other bids can be safely ignored.23 Similarly,

having an auction with a large number of goods does not necessarily mean that finding an ε-BNE is

hard. For instance, if two goods are perfect complements for all bidders, then this pair of goods will

only ever be bid on together, effectively acting as a single good. It is thus possible for an auction

with many goods to have a combinatorial structure that is as simple as LLG.

The true difficulty of an auction setting is determined by the way in which the bundles that bid-

ders are interested in overlap with each other. To make this concrete, consider the integral that must

be solved each time the expected utility ūi is computed. It is well-known that the convergence rate

of Monte Carlo integration is directly proportional to the variance of the function to be integrated,

and is independent of the dimension (Press et al., 2007). Thus, the number of Monte Carlo samples

we need to ensure convergence only depends on how complex the distribution of bidder i’s utility is,

not on how many bidders and goods are involved. The ε-BNEs we compute next will demonstrate

that the LLLLGG domain is indeed complex in this sense, exhibiting several novel and interesting

equilibrium features.

7.2 Experimental Results

For our experiments, we consider two auction mechanisms in the LLLLGG domain. Both use the

efficient allocation rule, but they use different payment rules, namely VCG-nearest and first-price.

The first-price payment rule is straightforward: It charges each bidder his bid on the bundle he

wins. VCG-nearest is more involved: It produces a payment vector that minimizes the Euclidean

distance to the VCG payment vector, under the constraint that the payments are minimum-revenue

core-selecting. Informally, this means that the payments have to be large enough to ensure that no

coalition of bidders is willing to pay more in total than what the seller receives from the current

winners. Day and Raghavan (2007) and Day and Cramton (2012) provide formal definitions and

further discussion of VCG-nearest.

We apply our full BNE algorithm to find ε-BNEs for these two payment rules, using the verifi-

cation method that produces a theoretical upper bound on ε (as described in Section 5). The results

23. This idea has recently been formalized by Hoang et al. (2019), who define a variant of best response dynamics based

on return functions, which can explicitly model a large number of players by their aggregated effect on a game’s

outcome. Our algorithm framework is compatible with this concept, as are most of the techniques we discuss in

Section 4.
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Mechanism Grid Size MC Samples Runtime (core-hours) Upper

Bound on εInner Outer Verif. Search Verif. Search Verif. Total

VCG-nearest 15×15 25×25 35×35 100,000 200,000 959.7 2961.0 3920.7 0.0019
VCG-nearest 8×8 12×12 16×16 20,000 40,000 38.0 120.3 158.4 0.0091
First-price 50×50 75×75 100×100 100,000 200,000 82.6 115.2 197.8 0.0019
First-price 15×15 20×20 25×25 20,000 40,000 1.4 1.8 3.2 0.0097

Table 4: Results of our BNE algorithm applied to VCG-nearest and first-price in the multi-minded LLLLGG

domain (each row corresponds to one run of the BNE algorithm). For each payment rule, we show two runs,

one parameterized to achieve a small ε bound and one parameterized to achieve a looser ε bound.

are shown in Table 4. For each payment rule, we show two runs with different parameterizations.

The runs reported in rows one and three target a highly accurate epsilon bound of 0.002; this is the

lowest ε bound we could target with our algorithm using a reasonable number of core-hours. The

runs reported in rows two and four target a less accurate ε bound of 0.01; we include these runs

to illustrate the runtime improvement that is possible if a less accurate ε bound is acceptable. For

each run, we show the parameters that vary between the runs, i.e., the grid sizes and the number

of Monte Carlo samples used in the search and verification phases. For all runs, as the pattern in

pattern search, we use a grid of 3 × 3 points, with an initial grid spacing of 0.1, and a budget of 8

steps in search and 12 steps in verification.24

As the outcome, we report the runtime in core-hours and the obtained upper bound on ε.25 As

we see in rows one and three, our parameterizations for the highly accurate runs lead to an upper

bound on ε of 0.0019. Note that we used a large number of MC samples for verification (i.e.,

200,000) such that we have high confidence in the obtained ε bound.26 No prior work has been able

to compute an ε-BNE with this accuracy for a domain this complex.

As expected, we see that the runtime is significantly lower for the less accurate runs than for the

more accurate runs. This reduction in runtime is driven by multiple factors. First, when targeting

a higher ε bound, we can parameterize the search phase with coarser grid sizes and fewer MC

samples. Second, to verify an ε-BNE with a larger ε bound, a coarser grid in the verification phase

suffices, and we also need fewer MC samples because a larger ε bound can tolerate less precise

pointwise best response computations. Given that the verification phase is the most expensive part

of the BNE algorithm, the largest runtime gains come from the smaller grid size and the smaller

number of MC samples in that phase.

24. Note that we do not use importance sampling and adaptive control points for the experiments described in this section,

as these two techniques are not yet implemented in our code base for higher-dimensional value spaces. Of course,

our algorithm would only get faster with these additions.

25. Note that the runtime for VCG-nearest is orders of magnitude higher than that for first-price. This is to be expected,

because the payment rule itself requires solving a quadratic program to find prices satisfying all core constraints,

which is very expensive, even employing constraint generation (Day & Raghavan, 2007; Bünz et al., 2015). Also note

that, in this experiment, we parallelized our BNE algorithm by performing the pointwise best response computations

for all grid points in parallel on different cores of a large compute cluster. However, we report the runtime in core-

hours in a linearized way, i.e., as if the whole algorithm had been run sequentially on a single machine.

26. Based on our experience, we believe that the number of MC samples we used in verification is a conservative choice

that produces a low-variance ε. In fact, our algorithm’s performance in LLLLGG can likely be improved by using

fewer MC samples. However, given that, in this domain, a detailed analysis of how the number of MC samples affects

the variance of the ε is quite costly, we leave this to future work.
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Figure 7: 0.0019-BNE of the multi-minded LLLLGG domain for the VCG-nearest payment rule. The top

two plots show the BNE strategies for the local bidders for the two bundles they bid on, and the bottom two

show the same for the global bidders.

The final strategy profiles found for the highly accurate runs (with an ε of 0.0019) for both VCG-

nearest and first-price are depicted in Figures 7 and 8, respectively. To enhance visual clarity, we

show the equilibrium strategies in their piecewise bilinear form, before being converted to piecewise

constant, as is required for our upper bound (see Section 5.2). We now discuss these strategies in

more detail.

Equilibrium of VCG-nearest. In Figure 7, we show the ε-BNE for the VCG-nearest payment

rule. The first thing we observe in the equilibrium is that strategies are overall very close to truthful

bidding. The most striking feature, however, is that the global bidders exhibit significant over-

bidding behavior. Specifically, the global bidders bid higher than their value on modestly valued

bundles when their other bundle has a very high value. At first sight, this may seem irrational.

However, by overbidding the bidder shifts the VCG reference point, which can indirectly decrease

his payment. For instance, suppose that bidders G1, L3 and L4 win bundles ABCD, EF and GH
respectively. Bidder G1 has an incentive to overstate the value for EFGH: this will cause the

VCG reference point to increase for L3 and L4. If the value for ABCD is very high for G1, then

this manipulation carries little risk of accidentally winning the low-valued EFGH bundle, and it

decreases the expected payment for ABCD. Of course, the bidder must balance the possible upside

of overbidding with the potential risk of winning the lower-valued bundle at negative utility. Thus,

it is somewhat surprising to find such a strong overbidding effect in BNE. Note that the general

concept of overbidding in CAs has first been identified by Beck and Ott (2013), who studied this

phenomenon analytically in LLG for a stylized payment rule. We are the first to demonstrate that

VCG-nearest, the rule most commonly used in practice, also exhibits this effect.
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Figure 8: 0.0019-BNE of the multi-minded LLLLGG domain for the first-price payment rule. The top two

plots show the BNE strategies for the local bidders for the two bundles they bid on, and the bottom two show

the same for the global bidders.

Equilibrium of first-price. In Figure 8, we show the ε-BNE for the first-price payment rule. We

observe that, in contrast to VCG-nearest, here the strategies involve significantly more shading.

This is to be expected, given the incentive properties of the two rules. We also see that, for the

local bidders, their strategy is to bid close to zero for one bundle in a large region of their value

space (specifically, where their value for that bundle is low). This behavior is known as free-riding.

It allows a bidder to still win when other bidders make high bids on complementary bundles and

obtain his bundle for low or even zero payment. If the bidder increased his own bid, the winning

probability would not increase enough to justify the resulting higher payment. While Baranov

(2010) has previously observed this effect in LLG (where each bidder only optimizes for a single

allocation), it is interesting that it also shows up so clearly in the LLLLGG domain (where bidders’

BNE strategies must take several possible allocations into account). For the global bidder, the most

striking feature of his equilibrium strategy is that, when the value for one bundle is high and the

value for the other is low, the bid for the low-valued bundle is strongly shaded. This can again be

explained by the structure of the LLLLGG domain, where the two bundles of interest of the global

bidder are non-overlapping. Thus, in ε-BNE, the global bidder’s optimal strategy requires him to

“get out of his own way” such that he avoids winning a low-profit bundle when instead he could be

winning a much higher-profit bundle.

As we have shown in this section, our algorithm scales well to a domain that is significantly

larger than LLG. We would like to emphasize that no prior analytical or algorithmic work has been

able to solve domains of the size of LLLLGG. We thus expect that other researchers will use this

domain as a benchmark for future algorithmic work.
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Our discussion of the VCG-nearest and first-price equilibria clearly demonstrates that optimiz-

ing the bidding strategy of a multi-minded bidder (as in LLLLGG) is significantly more complex

than optimizing the strategy of a single-minded bidder (as in LLG). Note that we consider our ex-

periments only as a first step towards exploring the properties of payment rules in larger domains

where there are still many open questions that can be analyzed using our algorithm.

8. Software Implementation of our BNE Algorithm

In this section, we describe the software implementation of our BNE algorithm, which is written

in Java 8. In particular, we briefly explain how to use the software and then discuss its main fea-

tures. We release the software publicly under an open-source license at https://github.com/

marketdesignresearch/CA-BNE. The code repository also contains three examples illustrat-

ing how to use our algorithm: the VCG-nearest rule applied to LLG, the first-price rule applied to

LLG (which is more challenging, since the global bidder is no longer truthful), and the first-price

rule applied to LLLLGG (with a modest default configuration that can be run on a laptop).

8.1 Usage

We provide example code in Listing 1 to show the overall structure of the code (we omit some

details in the listing for the purpose of clarity). The code is highly modular: it consists of a series

of different components, each responsible for one single aspect of the problem. Each component is

implemented as a Java class, so one implementation can easily be swapped out for another. These

components are plugged together via the BNESolverContext class. The overall algorithm is

then managed and executed via the BNEAlgorithm class. We first create the context that holds

the algorithm’s configuration (Line 1). Then we specify several of the algorithm’s core elements,

including pattern search (Line 3), Monte Carlo integration (Line 4), common random numbers

(Line 5), and dampened updates (Line 6). Next, we specify the auction setting which consists of a

mechanism class that specifies the allocation and payment rules (Line 8), and a sampler class that

specifies the value distributions of bidders (Line 9).27 Then the BNE Algorithm class is initialized

with the context carrying all the configuration data (Line 10). Finally, the actual BNE algorithm is

started (Line 12).

8.2 Main Features

We wrote our code with performance, ease of use, and extensibility in mind. Note that these three

goals are sometimes at odds with each other, but we have attempted to do justice to each of them,

through careful software engineering. Our code provides the following main features:

1. Flexible Bidder Models. The value distributions and utility functions are simply imple-

mented as classes. All possible joint value distributions are supported, even those with com-

plex correlation structures. Nonlinear utilities (e.g., risk aversion) can easily be added. The

action space is not restricted to R
r
≥0

, as our algorithm can also handle domain-specific bidding

languages, for example.

27. Note that the sampler class provides a method for sampling from the marginal value distribution V-i|Vi = vi for a

given vi. This design choice makes our Monte Carlo sampling more efficient, more so than if the valuations were

implemented explicitly as a joint probability distribution.
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1 BNESolverContext<Double,Double> context = new BNESolverContext<>();

2 ...

3 context.setOptimizer(new PatternSearch<>(...));

4 context.setIntegrator(new MCIntegrator<>(...));

5 context.setRng(2, new CommonRandomGenerator(...));

6 context.setUpdateRule(new UnivariateDampenedUpdateRule(...);

7 ...

8 context.setMechanism(new FirstPrice());

9 context.setSampler(new FirstPriceLLGSampler(context));

10 BNEAlgorithm<Double,Double> bneAlgo = new BNEAlgorithm<>(3,context);

11 ...

12 result = bneAlgo.run();

Listing 1: Example code for running our BNE Algorithm. The “...”s indicate code or function

arguments that we omit for clarity.

2. Flexible Mechanism Specification. It is straightforward to implement new allocation and

payment rules because they are simply provided by the user as new classes. This also allows

for writing fast, specialized implementations (e.g., for domains where special-purpose algo-

rithms for the winner determination problem are available) or the addition of features like

reserve prices.

3. No hard-coded Assumptions. Our BNE algorithm can also be run in settings where the

assumptions we make in Section 5 to derive the theoretical upper bound on ε are not satisfied.

In these settings, our algorithm simply falls back to our alternative verification method that

computes an estimated ε.

With these features, our code is easy to use and extend. It can thus immediately be used in

exploratory research and as a basis for further algorithmic work. We hope that providing access

to our source code will enable the study of mechanisms and domains that were not previously

amenable to analytic or algorithmic analysis.

9. Conclusion

In this paper, we have presented a new algorithm for finding pure-strategy ε-BNEs in CAs with

continuous value and action spaces. The key difference between our approach and prior work is

that our algorithm is separated into a search phase and a verification phase. This has enabled us to

design a search phase that is highly optimized for speed while still obtaining a provable bound on ε
in the verification phase.

To address the high dimensionality that drives the difficulty of the BNE search problem, sampling-

based approaches are needed, which in turn introduces variance. Therefore, we have employed

multiple variance reduction techniques in the search phase. Additionally, the key to obtain large

speed improvements was to think carefully about when and where to exert computational effort

(e.g., using adaptive control points). In the theory section, our key assumption was the linearity of

the utility function. This enabled us to make the necessary convexity argument to characterize the

gap between the equilibrium utility and the best response utility and to ultimately derive our theoret-

ical bound. Surprisingly, we were able to derive this bound without making any assumptions about
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the allocation or payment rules, while at first sight, one may have expected that certain assumptions

(like Lipschitz-continuity) would have been necessary. For practical applications, it is important to

note that our algorithm computes an upper bound that is relatively ”tight,” in the sense that, with

sufficiently many verification points, the upper bound is very close to the true ε.

Our BNE algorithm can be used in several ways. First, researchers can use it, e.g., for the

purpose of auction design, for analyzing certain aspects of CAs, or for validating analytical re-

sults. Importantly, by enabling the algorithmic analysis of multi-minded domains like LLLLGG,

researchers can now explore many new effects that are not present in simple domains like LLG.

Second, bidders can use our algorithm, e.g., to analyze the effect of different strategies or when

contemplating whether to enter an auction in the first place. We hope that releasing our code under

an open-source license will enable those and many other applications in the future.

Finally, our work gives rise to promising directions for future research. First, an important

question is how to derive a bound for settings with correlation or non-linear utilities (which includes

risk-averse bidders). Note that without assumptions on the mechanism, no bound for correlated

settings can be derived. Thus, future work could explore which assumptions on the mechanism are

necessary/sufficient to extend our theoretical bound to richer settings. Second, in the long run, it

would be interesting to develop BNE algorithms that scale to real-world-sized problems. As we

have discussed, the main difficulty in scaling our algorithm lies in the richness of the bidding space.

Thus, future work targeting scalability could investigate how to exploit certain structure inherent to

the problem of interest (e.g., monotonicity properties of the mechanism) to focus the computational

effort on the most relevant parts of the value or action spaces.

Acknowledgments

This paper is a significantly extended version of our earlier work published in the conference pro-

ceedings of IJCAI (Bosshard et al., 2017). We thank the editor and the anonymous reviewers of

JAIR for their very helpful comments. Furthermore, we thank Enrique Areyan, Amy Greenwald,

Daniel Marszalec, and Alex Teytelboym for trying early versions of our BNE algorithm code and

for providing useful feedback. This material is based upon work supported by the National Science

Foundation under grant no. CMMI-1761163.

Appendix A. Pseudocode for Adaptive Control Point Placement

Here, we describe the details of our adaptive control point placement algorithm as introduced in

Section 4.8. We only describe it for the one-dimensional case (as needed for LLG) and it would

have to be generalized to work in multiple dimensions. Recall that the method is based on the

idea of repeatedly finding a valuation where the best response function has high curvature, such

that placing an additional control point there improves how well the corresponding piecewise linear

strategy approximates the best response.

The pseudocode for our adaptive control point placement method is provided in Algorithm 2.

The input to the algorithm is a function PointwiseBestResponse which, for a fixed bidder i,
takes a control point vi as its only argument and computes the bid bi that maximizes the expected

utility ūi(vi, bi). This function thus encompasses all the details about the auction mechanism M,

the joint value distribution V , and the current strategy profile s.
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input : function PointwiseBestResponse that computes a pointwise best

response for a fixed bidder i, at any valuation vi
parameters: initial number of control points initialPoints

maximum number of control points maxPoints
output : strategy s′i

1 controlPoints := list of valuations initialized to an evenly spaced grid of size initialPoints
2 bestResponses := map of (valuation, pointwise best response) pairs, initially empty

3 priorities := map of (valuation, priority) pairs, initially empty

4 foreach vi ∈ controlPoints: compute bi := PointwiseBestResponse(vi) and add

(vi, bi) to bestResponses
5 foreach vi ∈ controlPoints: compute πi :=

CurvatureBasedPriority(vi, bestResponses) and add (vi, πi) to priorities
6 repeat

7 vi := control point with highest priority in priorities
8 v′i := neighbor of vi in controlPoints furthest away from vi (and in case of a tie, select

the neighbor v′i where the difference between the best responses at vi and v′i is larger)

9 v′′i := (vi + v′i)/2
10 add v′′i to controlPoints in between vi and v′i
11 compute b′′i := PointwiseBestResponse(v′′i ) and add (v′′i , b

′′
i ) to bestResponses

12 foreach wi ∈ {vi, v
′
i, v

′′
i }: compute πi :=

CurvatureBasedPriority(wi, bestResponses) and add/update (wi, πi) to/in

priorities

13 until |controlPoints| = maxPoints
14 s′i := MakePiecewiseLinearStrategy(bestResponses)
15 return s′i
Algorithm 2: Computing a best response for one bidder with adaptive control point placement

Algorithm 2 works as follows. In Lines 1-3, we initialize the data structures that keep track of

all valuations we have selected as control points, their associated pointwise best responses, and a

priority score for each of them. The initial set of control points is a coarse, evenly spaced grid. In

Line 4, we compute the pointwise best responses for the initial control points. In Line 5, we then

compute a priority for each of those control points. For this, we make use of the helper function

CurvatureBasedPriority which assigns a priority score for a given control point based on

the curvature of the best response function at that control point (see Algorithm 3). In each iteration

of the main loop of the algorithm (Lines 6-13), we add one new control point. For this, we first

find the control point vi with the highest priority and then place a new control point at the midpoint

between vi and one of its neighbors (Lines 7-10). Concretely, the new control point is placed on

the side where the distance to the neighboring control point is larger; in case of a tie, we select the

side where the slope of the best response is estimated to be steeper. We then compute a pointwise

best response at the new control point and recompute all priority scores that might have changed

(Lines 11-12). When we reach the maximum number of allowed control points (Line 13), we con-

struct a piecewise linear strategy based on all the control points and their pointwise best responses

(Line 14). Finally, we return the new strategy (Line 15).
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function : CurvatureBasedPriority(vi, bestResponses)
input : control point vi, map of (valuation, bid) pairs bestResponses
parameters: smallest permissible interval size minIntervalSize
output : priority πi ∈ R≥0

1
¯
vi, v̄i := lower and upper neighbors of vi in bestResponses

2 bi,
¯
bi, b̄i := bids corresponding to vi,

¯
vi, and v̄i in bestResponses, respectively

3 if min (vi −
¯
vi, v̄i − vi) ≤ minIntervalSize then

4 return 0

5 end

6 lowerSlope := (bi −
¯
bi)/(vi −

¯
vi)

7 upperSlope := (b̄i − bi)/(v̄i − vi)
8 return |upperSlope− lowerSlope|

Algorithm 3: Computing the priority of a control point based on the curvature of a bidder’s

strategy

To complete the description of our method we provide pseudocode for the helper function

CurvatureBasedPriority in Algorithm 3. The inputs to the algorithm are the control point

vi for which we compute a priority and a map of best responses for the set of current control points.

In Lines 1-2, we find the two neighboring control points of vi and retrieve the best responses associ-

ated with vi and its two neighbors. If either of vi’s neighbors is too close to vi then we return 0 (the

lowest possible priority) to ensure that the grid is not subdivided too many times in any one region

(Lines 3-5). Otherwise, we approximate the second derivative of the best response at vi through

finite differences and return the magnitude of this derivative as the priority of vi (Lines 6-8).
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