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Abstract—We analyze the impact of drain current (/ps) vari-
ation in 28 nm high-K metal-gate Ferroelectric FET devices on
FeFET-based processing-in-memory (PIM) deep neural network
(DNN) accelerators. Non-Normal variation in /ps is observed
due to repeated read operation on FeFET devices with different
channel dimensions at various read frequencies. Device-circuit
co-analysis using the measured current distribution shows a
1 to 3 percent accuracy degradation of an FeFET-based PIM
platform when classifying the Fashion-MNIST dataset with the
LeNET-5 DNN model. This accuracy drop can be fully recovered
with variation-aware training methods, showing that individual
FeFET device current variation over many read cycles is not
prohibitive to the design of DNN accelerators.

Index Terms—DNN Accelerator, FeFET, PIM

I. INTRODUCTION

Ferroelectric FETs (FeFETs) based on silicon doped
hafnium oxide (Si:HfO3) have shown promise in a variety of
applications for non von Neumann computing [1]-[9]. This
includes applications such as logic-in-memory [5], reconfig-
urable computing [6], [7], coupled oscillators [8] and content-
addressable memory [9]. One notable application for FeFETs
is in the area of processing-in-memory (PIM) based machine
learning (ML) accelerators [1]-[4]. The key function of a PIM
accelerator is vector matrix multiplication (VMM), wherein
the memory (FeFET crossbar array) stores the synapse matrix
(weights), the input vector is applied from the rows, and the
output is obtained from the columns. Some designs utilize
FeFETs as analog synapses with the channel transconductance
acting as an analog weight that can be tuned to achieve
symmetric potentiation and depression characteristics [2], [3].

A different approach is to consider a multi-bit representation
of the weights and use each FeFET in the crossbar to represent
one bit of the weight [1]. Thus, a high or low current through
the device represents a stored bit of ‘1” or ‘0’, respectively [1].
The FeFET device structure includes a ferroelectric oxide layer
of Si:HfO,, in the gate stack that can be electrically polarized to
two distinct states to produce high and low threshold voltages
(Fig. 2). These V;;, can be used to store logic high and logic
low states in the device such that each FeFET stores ‘1’ or
‘0’ depending on the programmed V;;. With the Vg as the
input, the combination of different V;;, (stored bit) and Vg
(input bit) states produces a logic AND function with the
drain current Ipg as the output [1] (Fig. 1). This AND logic
creates single-bit multiplication between the input bit Vi; s and
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Fig. 1. A FeFET crossbar based PIM for DNN acceleration, similar to [1].

the weight bit V};,. The Ipg of each FeFET in each column
are summed in the analog domain to enable multiply-and-
accumulate operation for each bit (Fig. 1). The final output is
obtained by digitizing the currents of each column, followed
by a hierarchical shift-and-add logic to generate the final multi-
bit result. Thus the design creates a VMM engine that can be
used for deep neural network (DNN) acceleration [1].

A key challenge in the design of FeFET based PIM systems
is Ipg variation in devices within the crossbar leading to
inaccuracies in PIM computation [1]. Although prior works
have acknowledged this [1], [5], to the best of our knowledge,
there are no measurement-based studies which characterize the
impact of Ipg variation from individual FeFETs over time on
the accuracy of PIM based ML Accelerators. Characterization
of Ips in FeFETs with various piezoelectric materials has
been done for sources of variation such as retention time and
Vps and Vg variation [10], [11], but by our knowledge
characterization has not been performed on Ipg variation
due to repeated read operation, nor has this characterization
been applied to the accuracy of PIM-based DNN accelerators.
This study characterizes variation in the Ipg of two 28 nm
HKMG FeFET devices with differing channel dimensions
due to repeated read operations at different frequencies. The
measured [pg distributions under different channel dimension
and read frequency conditions are used to emulate perfor-
mance variation in a PIM-based vector matrix multiplication
(VMM) engine. Device-circuit co-analysis is used to estimate
the potential drop in classification accuracy of a PIM-based
DNN accelerator in implementing the LeNet-5 convolutional
neural network to classify the Fashion-MNIST dataset [12].
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Fig. 2. FeFET device: (a) an FeFET device in its two polarization states,
high V;p (left) and low V4, (right) and (b) summary of parameter values and
bit-wise AND operation using FeFET.

II. MEASURED DEVICE CHARACTERISTICS

We characterize two 28 nm FeFET devices [13] with
channel dimensions 500 nm x 80 nm (D1) and 80 nm x 34
nm (D2). Fig. 3 shows measured I ps-Vs hysteresis curves of
D1 and D2. These hysteresis curves are measured by applying
a voltage sweep to the gate (to implement a program cycle and
an erase cycle), ground to the source and body and 50 mV to
the drain to measure Ipg. Based on the measured hysteresis,
Vs of -1 Vand 0 V are chosen for low and high logic inputs,
respectively (Fig. 2b). The only combination of Vy;, and Vg
which will produce an output current of greater than 1 uA
is the case where V;;, and Vgg are logic 1. All other cases
produce a current less than 0.1 nA for D1 and less than 0.01
nA for D2, resulting in an I,,/I,s; ratio of greater than 10*
in D1 and greater than 10% in D2. This large I,n/1,py ratio
creates robustness in the full system to noise in Iz y.

The logic 1 output current [,,, occurs where Vg and Vi,
are logic 1. I,,, of the FeFET is measured by applying 50 mV
to the drain, ground to the source and body, and a voltage
pulse to the gate. The gate pulse waveform is generated with
a base of -1 V and a pulse of 0 V at a pulse width of 10 us.
The Ipgs measured at each 0 V pulse with V};, programmed
to be logic 1 represents [,,. Measurement is taken over many
read cycles after the device is programmed to a logic 1 Vi
and is not reprogrammed between read cycles.

Measurements are taken for gate pulse frequencies of 15
Hz, 30 Hz, 60 Hz, and 120 Hz. As each device weight in the
FeFET crossbar array is read once while processing an image,
the different read frequencies represent different frame rates
of the VMM engine. For example, in a design where the entire
DNN can be loaded into the FeFET crossbar arrays, each layer
is accessed individually, feeding into the next layer, and is not
accessed again until the next image is passed. Thus the FeFETs
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Fig. 3. Measured Ipg-Vigs hysteresis for 28 nm HKMG FeFET with
transistor dimensions (a) 500 nm x 80 nm (Device 1, or D1) and (b) 80
nm X 34 nm (Device 2, D2). Vpg of 50 mV is applied and a voltage sweep
is applied to V. Low Vg of -1 V and high Vigg of 0 V are chosen to
maximize Ion/l,yf ratio. Vi, is defined where Ipgs = 1 uA.

are on but not read until the layer they are in is accessed during
the next image pass, and a 15 Hz read frequency represents
processing images at 15 frames per second (FPS).

Fig. 4 shows Ipg measurements for both devices for various
read frequencies over 30000 read cycles, as well as standard
deviation and skewness of the measurement datasets when
normalized to mean | and fit to normal distributions. In each
case, there is a noticeable “ramp up” period in the first 2000
cycles. We hypothesize that this trend could be caused by a
parasitic capacitance present in the device or the measurement
setup. To account for the ramp up period, we analyze PIM
performance over the ramp up period via bootstrap sampling
of the first 2000 samples, as well as over many read cycles via
bootstrap sampling of the full dataset. We also observe abrupt
changes in measured output current in some instances, such as
in D2 measured at 60Hz at approximately 20000 cycles, which
we attribute to PVT variations and V}; retention loss after
repeated measurement. The original device characterization
[13] shows no ferroelectric degradation until 1010 cycles,
which we do not approach in this study, so this is ruled out
as a potential cause of the abrupt current changes.

The original device characterization measures /pg variation
due to bipolar stress, though this test shows only the average
Ipg rather than individual measurement results, and does not
show ferroelectric breakdown until approximately 10'° cycles.
The original characterization does not analyze variation due
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Fig. 4. (a) Measured Ipg for DI and D2. The device is programmed

once before the first measurement and is not reprogrammed. Distributions
are normalized based on mean Ipg and fit to Gaussians of mean 1. Standard
deviation and skewness of the full set and the first 2000 points are measured.
(b) 120 Hz distributions are shown for D1 and D2 with bootstrap sampling
of the full 30000 measurement set and the 2000 sample ramp up period.

to repeated read operations on single devices, as we perform
here. In the same way that measuring many different devices
tends to draw the distributions in the original device char-
acterization close to Gaussian, we expect that characterizing
more devices would help bring our measured distributions
closer to Gaussian. Therefore, as we apply measurements from
individual devices to many instances in a PIM architecture, our
study is representative of a potential worst case as far as PIM
classification accuracy is concerned, wherein all of the devices
show non-Gaussian variation in individual /g measurements.

The logic 0 output current (/,yy) is also measured for each
device by applying -1V to the gate. In all cases, the measured
I, remains below 0.1 nA, and is often in the noise floor
of the measurement system in the pA range. Thus, with the
Ion/l,py ratio remaining larger than 10% in all cases, noise
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Fig. 5. Device-circuit co-analysis (a) overall analysis flow and (b) different
operation modes for the PIM architecture. In ASIC Mode, the FeFET array
is large enough to store the full DNN. In Accelerator Mode, one layer of the
DNN is loaded into the array at a time and then overwritten by the next layer.

in I,y for the logic O outputs is considered negligible with
respect to the full system. For this reason, we focus on the
effects of noise in I,, on the accuracy of the PIM system.

III. DEVICE CIRCUIT CO-ANALYSIS

We perform device-circuit co-simulation using PyTorch
[14] to analyze the effect of FeFET Ipg variation on the
PIM architecture’s accuracy in classifying the Fashion-MNIST
dataset using the LeNet-5 convolutional neural network model
(Fig. 5a). The PIM architecture studied consists of many
coupled 256 x 256 FeFET crossbar arrays [1]. We simulate the
output of the PIM system considering bootstrap sampling of
the measured I pg distributions in two modes of PIM operation
which we call ASIC Mode and Accelerator Mode (Fig. 5b).

A. ASIC Mode

First, we consider ASIC mode, where we assume the system
of coupled FeFET crossbar arrays is large enough to store
the full DNN weight matrix. The weights are written to the
FeFET arrays once and streaming inputs (images) are used
for inference. In this case, the FeFET V}; are programmed
once and the Ipg is measured many times during inference
without the V}; being rewritten in between measurements.
Therefore, we perform bootstrapped sampling of the full
30000 measurement set to represent long-term variation in
Ipg after the weights are programmed. The read frequency
of the individual FeFET devices represents the frame rate of
the system in processing entire images, such that an FeFET
read frequency of 15 Hz represents a frame rate of 15 FPS.

B. Accelerator Mode

Second, we consider accelerator mode, where we assume
the on-chip storage is not sufficient to store the weight matrix
for the entire DNN and is time-multiplexed to compute a large
network (similar to [1]). In this case, as the cells are frequently
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Fig. 6. Fashion-MNIST accuracy drops by up to 3 % from the baseline 8-bit
quantization result of 85.86 % accuracy without variation-aware training.

rewritten during computation, we perform bootstrap sampling
from the first 2000 samples of each dataset to study the effect
of Ipg variation shortly after reprogramming (wherein Ipg
is measured during the ramp up period described previously).
In accelerator mode, the different frequency of read cycles
represents different ratios of the size of the weight matrix
to the total capacity of the crossbar. For example, processing
a batch of 20 images through a 5 layer neural network in
1 second (for a 20 FPS output) in which only one layer is
loaded into the FeFET crossbar at a time corresponds to a read
frequency on each FeFET of 100 Hz (considering write time
is in the ns range and is therefore negligible by comparison
[13]). In this example, the first layer of the neural network
would be programmed to the FeFET weights in the VMM
engine, each of the 20 images in the batch would be passed
through back to back, the weights would be rewritten for the
next layer of the DNN, and so on.

C. Co-Analysis

To perform device-circuit co-analysis in PyTorch, each
model parameter is quantized to 8 bits and noise is introduced
to each logic 1 bit to represent variation in I,, during the
VMM operation of the LeNet-5 network. The accumulation
of noise leads to degradation of the PIM architecture’s ability
to classify the Fashion-MNIST dataset using LeNet-5. Fig. 6
demonstrates that the magnitude of degradation depends on
the variance and skewness of the Ipg distributions, which
depend on the read frequency and device dimensions. We
observe accuracy reduction of up to 3 % from the baseline
noiseless classification accuracy of 85.86 %, wherein larger
read frequencies tend to result in worse classification accuracy.

In order to recover this accuracy loss, we use the measured
noise distributions to add noise during training of the DNN
(performing variation-aware training [15]). With this method,
we observe full recovery of the accuracy drop back to the
baseline of 85.86 %, negating the performance reduction
caused by the variation in the FeFET Ipg measurements.

IV. CONCLUSION

In conclusion, measurements of individual 28 nm FeFET
device output currents show non-Gaussian variation over many

read cycles. Device-circuit co-analysis demonstrates that this
variation in Ipg leads to only marginal (up to 3 %) drop in
classification accuracy of an FeFET-based PIM architecture,
even when performed on difficult datasets such as Fashion-
MNIST. Additionally, we observe that the loss caused by
Ipg variation can be fully recovered by variation-aware DNN
training by using the measured variation to add noise during
training of the DNN. Hence, we conclude that FeFET device
current variation due to many read cycles is not preventative
for our 28 nm FeFET-based DNN accelerator design.
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