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Abstract—We analyze the impact of drain current (IDS) vari-
ation in 28 nm high-K metal-gate Ferroelectric FET devices on
FeFET-based processing-in-memory (PIM) deep neural network
(DNN) accelerators. Non-Normal variation in IDS is observed
due to repeated read operation on FeFET devices with different
channel dimensions at various read frequencies. Device-circuit
co-analysis using the measured current distribution shows a
1 to 3 percent accuracy degradation of an FeFET-based PIM
platform when classifying the Fashion-MNIST dataset with the
LeNET-5 DNN model. This accuracy drop can be fully recovered
with variation-aware training methods, showing that individual
FeFET device current variation over many read cycles is not
prohibitive to the design of DNN accelerators.

Index Terms—DNN Accelerator, FeFET, PIM

I. INTRODUCTION

Ferroelectric FETs (FeFETs) based on silicon doped

hafnium oxide (Si:HfO2) have shown promise in a variety of

applications for non von Neumann computing [1]–[9]. This

includes applications such as logic-in-memory [5], reconfig-

urable computing [6], [7], coupled oscillators [8] and content-

addressable memory [9]. One notable application for FeFETs

is in the area of processing-in-memory (PIM) based machine

learning (ML) accelerators [1]–[4]. The key function of a PIM

accelerator is vector matrix multiplication (VMM), wherein

the memory (FeFET crossbar array) stores the synapse matrix

(weights), the input vector is applied from the rows, and the

output is obtained from the columns. Some designs utilize

FeFETs as analog synapses with the channel transconductance

acting as an analog weight that can be tuned to achieve

symmetric potentiation and depression characteristics [2], [3].

A different approach is to consider a multi-bit representation

of the weights and use each FeFET in the crossbar to represent

one bit of the weight [1]. Thus, a high or low current through

the device represents a stored bit of ‘1’ or ‘0’, respectively [1].

The FeFET device structure includes a ferroelectric oxide layer

of Si:HfO2 in the gate stack that can be electrically polarized to

two distinct states to produce high and low threshold voltages

(Fig. 2). These Vth can be used to store logic high and logic

low states in the device such that each FeFET stores ‘1’ or

‘0’ depending on the programmed Vth. With the VGS as the

input, the combination of different Vth (stored bit) and VGS

(input bit) states produces a logic AND function with the

drain current IDS as the output [1] (Fig. 1). This AND logic

creates single-bit multiplication between the input bit VGS and

Fig. 1. A FeFET crossbar based PIM for DNN acceleration, similar to [1].

the weight bit Vth. The IDS of each FeFET in each column

are summed in the analog domain to enable multiply-and-

accumulate operation for each bit (Fig. 1). The final output is

obtained by digitizing the currents of each column, followed

by a hierarchical shift-and-add logic to generate the final multi-

bit result. Thus the design creates a VMM engine that can be

used for deep neural network (DNN) acceleration [1].

A key challenge in the design of FeFET based PIM systems

is IDS variation in devices within the crossbar leading to

inaccuracies in PIM computation [1]. Although prior works

have acknowledged this [1], [5], to the best of our knowledge,

there are no measurement-based studies which characterize the

impact of IDS variation from individual FeFETs over time on

the accuracy of PIM based ML Accelerators. Characterization

of IDS in FeFETs with various piezoelectric materials has

been done for sources of variation such as retention time and

VDS and VGS variation [10], [11], but by our knowledge

characterization has not been performed on IDS variation

due to repeated read operation, nor has this characterization

been applied to the accuracy of PIM-based DNN accelerators.

This study characterizes variation in the IDS of two 28 nm

HKMG FeFET devices with differing channel dimensions

due to repeated read operations at different frequencies. The

measured IDS distributions under different channel dimension

and read frequency conditions are used to emulate perfor-

mance variation in a PIM-based vector matrix multiplication

(VMM) engine. Device-circuit co-analysis is used to estimate

the potential drop in classification accuracy of a PIM-based

DNN accelerator in implementing the LeNet-5 convolutional

neural network to classify the Fashion-MNIST dataset [12].
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Fig. 2. FeFET device: (a) an FeFET device in its two polarization states,
high Vth (left) and low Vth (right) and (b) summary of parameter values and
bit-wise AND operation using FeFET.

II. MEASURED DEVICE CHARACTERISTICS

We characterize two 28 nm FeFET devices [13] with

channel dimensions 500 nm × 80 nm (D1) and 80 nm × 34

nm (D2). Fig. 3 shows measured IDS-VGS hysteresis curves of

D1 and D2. These hysteresis curves are measured by applying

a voltage sweep to the gate (to implement a program cycle and

an erase cycle), ground to the source and body and 50 mV to

the drain to measure IDS . Based on the measured hysteresis,

VGS of -1 V and 0 V are chosen for low and high logic inputs,

respectively (Fig. 2b). The only combination of Vth and VGS

which will produce an output current of greater than 1 μA

is the case where Vth and VGS are logic 1. All other cases

produce a current less than 0.1 nA for D1 and less than 0.01

nA for D2, resulting in an Ion/Ioff ratio of greater than 104

in D1 and greater than 106 in D2. This large Ion/Ioff ratio

creates robustness in the full system to noise in Ioff .

The logic 1 output current Ion occurs where VGS and Vth

are logic 1. Ion of the FeFET is measured by applying 50 mV

to the drain, ground to the source and body, and a voltage

pulse to the gate. The gate pulse waveform is generated with

a base of -1 V and a pulse of 0 V at a pulse width of 10 μs.

The IDS measured at each 0 V pulse with Vth programmed

to be logic 1 represents Ion. Measurement is taken over many

read cycles after the device is programmed to a logic 1 Vth

and is not reprogrammed between read cycles.

Measurements are taken for gate pulse frequencies of 15

Hz, 30 Hz, 60 Hz, and 120 Hz. As each device weight in the

FeFET crossbar array is read once while processing an image,

the different read frequencies represent different frame rates

of the VMM engine. For example, in a design where the entire

DNN can be loaded into the FeFET crossbar arrays, each layer

is accessed individually, feeding into the next layer, and is not

accessed again until the next image is passed. Thus the FeFETs

Fig. 3. Measured IDS -VGS hysteresis for 28 nm HKMG FeFET with
transistor dimensions (a) 500 nm × 80 nm (Device 1, or D1) and (b) 80
nm × 34 nm (Device 2, D2). VDS of 50 mV is applied and a voltage sweep
is applied to VG. Low VGS of -1 V and high VGS of 0 V are chosen to
maximize Ion/Ioff ratio. Vth is defined where IDS = 1 μA.

are on but not read until the layer they are in is accessed during

the next image pass, and a 15 Hz read frequency represents

processing images at 15 frames per second (FPS).

Fig. 4 shows IDS measurements for both devices for various

read frequencies over 30000 read cycles, as well as standard

deviation and skewness of the measurement datasets when

normalized to mean 1 and fit to normal distributions. In each

case, there is a noticeable “ramp up” period in the first 2000

cycles. We hypothesize that this trend could be caused by a

parasitic capacitance present in the device or the measurement

setup. To account for the ramp up period, we analyze PIM

performance over the ramp up period via bootstrap sampling

of the first 2000 samples, as well as over many read cycles via

bootstrap sampling of the full dataset. We also observe abrupt

changes in measured output current in some instances, such as

in D2 measured at 60Hz at approximately 20000 cycles, which

we attribute to PVT variations and Vth retention loss after

repeated measurement. The original device characterization

[13] shows no ferroelectric degradation until 1010 cycles,

which we do not approach in this study, so this is ruled out

as a potential cause of the abrupt current changes.

The original device characterization measures IDS variation

due to bipolar stress, though this test shows only the average

IDS rather than individual measurement results, and does not

show ferroelectric breakdown until approximately 1010 cycles.

The original characterization does not analyze variation due
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Fig. 4. (a) Measured IDS for D1 and D2. The device is programmed
once before the first measurement and is not reprogrammed. Distributions
are normalized based on mean IDS and fit to Gaussians of mean 1. Standard
deviation and skewness of the full set and the first 2000 points are measured.
(b) 120 Hz distributions are shown for D1 and D2 with bootstrap sampling
of the full 30000 measurement set and the 2000 sample ramp up period.

to repeated read operations on single devices, as we perform

here. In the same way that measuring many different devices

tends to draw the distributions in the original device char-

acterization close to Gaussian, we expect that characterizing

more devices would help bring our measured distributions

closer to Gaussian. Therefore, as we apply measurements from

individual devices to many instances in a PIM architecture, our

study is representative of a potential worst case as far as PIM

classification accuracy is concerned, wherein all of the devices

show non-Gaussian variation in individual IDS measurements.

The logic 0 output current (Ioff ) is also measured for each

device by applying -1V to the gate. In all cases, the measured

Ioff remains below 0.1 nA, and is often in the noise floor

of the measurement system in the pA range. Thus, with the

Ion/Ioff ratio remaining larger than 104 in all cases, noise

Fig. 5. Device-circuit co-analysis (a) overall analysis flow and (b) different
operation modes for the PIM architecture. In ASIC Mode, the FeFET array
is large enough to store the full DNN. In Accelerator Mode, one layer of the
DNN is loaded into the array at a time and then overwritten by the next layer.

in Ioff for the logic 0 outputs is considered negligible with

respect to the full system. For this reason, we focus on the

effects of noise in Ion on the accuracy of the PIM system.

III. DEVICE CIRCUIT CO-ANALYSIS

We perform device-circuit co-simulation using PyTorch

[14] to analyze the effect of FeFET IDS variation on the

PIM architecture’s accuracy in classifying the Fashion-MNIST

dataset using the LeNet-5 convolutional neural network model

(Fig. 5a). The PIM architecture studied consists of many

coupled 256 × 256 FeFET crossbar arrays [1]. We simulate the

output of the PIM system considering bootstrap sampling of

the measured IDS distributions in two modes of PIM operation

which we call ASIC Mode and Accelerator Mode (Fig. 5b).

A. ASIC Mode

First, we consider ASIC mode, where we assume the system

of coupled FeFET crossbar arrays is large enough to store

the full DNN weight matrix. The weights are written to the

FeFET arrays once and streaming inputs (images) are used

for inference. In this case, the FeFET Vth are programmed

once and the IDS is measured many times during inference

without the Vth being rewritten in between measurements.

Therefore, we perform bootstrapped sampling of the full

30000 measurement set to represent long-term variation in

IDS after the weights are programmed. The read frequency

of the individual FeFET devices represents the frame rate of

the system in processing entire images, such that an FeFET

read frequency of 15 Hz represents a frame rate of 15 FPS.

B. Accelerator Mode

Second, we consider accelerator mode, where we assume

the on-chip storage is not sufficient to store the weight matrix

for the entire DNN and is time-multiplexed to compute a large

network (similar to [1]). In this case, as the cells are frequently
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Fig. 6. Fashion-MNIST accuracy drops by up to 3 % from the baseline 8-bit
quantization result of 85.86 % accuracy without variation-aware training.

rewritten during computation, we perform bootstrap sampling

from the first 2000 samples of each dataset to study the effect

of IDS variation shortly after reprogramming (wherein IDS

is measured during the ramp up period described previously).

In accelerator mode, the different frequency of read cycles

represents different ratios of the size of the weight matrix

to the total capacity of the crossbar. For example, processing

a batch of 20 images through a 5 layer neural network in

1 second (for a 20 FPS output) in which only one layer is

loaded into the FeFET crossbar at a time corresponds to a read

frequency on each FeFET of 100 Hz (considering write time

is in the ns range and is therefore negligible by comparison

[13]). In this example, the first layer of the neural network

would be programmed to the FeFET weights in the VMM

engine, each of the 20 images in the batch would be passed

through back to back, the weights would be rewritten for the

next layer of the DNN, and so on.

C. Co-Analysis

To perform device-circuit co-analysis in PyTorch, each

model parameter is quantized to 8 bits and noise is introduced

to each logic 1 bit to represent variation in Ion during the

VMM operation of the LeNet-5 network. The accumulation

of noise leads to degradation of the PIM architecture’s ability

to classify the Fashion-MNIST dataset using LeNet-5. Fig. 6

demonstrates that the magnitude of degradation depends on

the variance and skewness of the IDS distributions, which

depend on the read frequency and device dimensions. We

observe accuracy reduction of up to 3 % from the baseline

noiseless classification accuracy of 85.86 %, wherein larger

read frequencies tend to result in worse classification accuracy.

In order to recover this accuracy loss, we use the measured

noise distributions to add noise during training of the DNN

(performing variation-aware training [15]). With this method,

we observe full recovery of the accuracy drop back to the

baseline of 85.86 %, negating the performance reduction

caused by the variation in the FeFET IDS measurements.

IV. CONCLUSION

In conclusion, measurements of individual 28 nm FeFET

device output currents show non-Gaussian variation over many

read cycles. Device-circuit co-analysis demonstrates that this

variation in IDS leads to only marginal (up to 3 %) drop in

classification accuracy of an FeFET-based PIM architecture,

even when performed on difficult datasets such as Fashion-

MNIST. Additionally, we observe that the loss caused by

IDS variation can be fully recovered by variation-aware DNN

training by using the measured variation to add noise during

training of the DNN. Hence, we conclude that FeFET device

current variation due to many read cycles is not preventative

for our 28 nm FeFET-based DNN accelerator design.
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