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Hyperspectral Super-Resolution via Interpretable
Block-Term Tensor Modeling

Meng Ding, Xiao Fu, Ting-Zhu Huang, Jun Wang, and Xi-Le Zhao

Abstract—Hyperspectral super-resolution (HSR) aims at fusing
a pair of hyperspectral and multispectral images to recover a
super-resolution image (SRI). This work revisits coupled tensor
decomposition (CTD)-based HSR. The vast majority of the HSR
approaches take a low-rank matrix recovery perspective. The
challenge is that theoretical guarantees for recovering the SRI
using low-rank matrix models are either elusive or derived under
stringent conditions. A couple of recent CTD-based methods
ensure recoverability for the SRI under relatively mild conditions,
leveraging algebraic properties of the canonical polyadic decom-
position (CPD) and the Tucker decomposition models, respectively.
However, the latent factors of both the CPD and Tucker models
have no physical interpretations in the context of spectral
image analysis, which makes incorporating prior information
challenging—but using priors is often essential for enhancing
performance in noisy environments. This work employs an idea
that models spectral images as tensors following the block-term
decomposition model with multilinear rank-(Lr, Lr, 1) terms
(i.e., the LL1 model) and formulates the HSR problem as
a coupled LL1 tensor decomposition problem. Similar to the
existing CTD approaches, recoverability of the SRI is shown
under mild conditions. More importantly, the latent factors of
the LL1 model can be interpreted as the key constituents of
spectral images, i.e., the endmembers’ spectral signatures and
abundance maps. This connection allows us to incorporate prior
information for performance enhancement. A flexible algorithmic
framework that can work with a series of structural information
is proposed to take advantages of the model interpretability. The
effectiveness is showcased using simulated and real data.

Index Terms—hyperspectral super-resolution, block-term ten-
sor decomposition, recoverability, regularization.
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I. INTRODUCTION

The spatial and spectral resolution tradeoff in spectral
image sensing has been a well-known effect [1]. To be
specific, hyperspectral sensors acquire data with high spectral
resolution but low spatial resolution. Roughly speaking, in
spectral image sensing (especially remote sensing), images are
captured by sensing the sunlight reflected from objects/scenes.
The total energy of sunlight reflected from the scene is limited.
Producing a pixel at a spectral band is only possible when
the signal-to-noise ratio reaches a certain level. Hence, the
limited amount of energy carried by the reflected sunlight
has to be allocated to different pixels (spatial locations) and
frequency bands—which naturally presents a tradeoff [1], [2].
However, multispectral sensors produce images that exhibit
high spatial resolution—but the spectral resolution is often
coarse. Since both types of information are of great interest,
many hyperspectral super-resolution (HSR) approaches have
been proposed [1]. The goal of HSR is to fuse a pair of co-
registered hyperspectral image (HSI) and multispectral image
(MSI) to produce a super-resolution image (SRI) that has the
“best of the two”—i.e., high resolutions in both the spectral
and spatial domains.

Many early HSR techniques (e.g., [3]–[5]) view the SRI as
a low-rank matrix, which is reminiscent of the linear mixture
model (LMM) for spectral images [6]. The HSI and MSI are
modeled as “compressed” data of the SRI by degrading from
the spatial and spectral modes, respectively. Consequently,
recovering the SRI can be understood as low-rank matrix
estimation from downsampled data—which is an ill-posed
inverse problem. Recoverability for the SRI using low-rank
estimation techniques had been elusive until a couple of recent
works [7], [8]. Nevertheless, as pointed out in [7], [8], matrix
estimation-based approaches have recoverability guarantees
for the SRI under stringent conditions, e.g., when every pixel
only contains a small number of endmembers.

In 2018, Kanatsoulis et al. proposed a coupled tensor
decomposition (CTD) framework for HSR [9]. There, the
spectral images are modeled as tensors with low-rank canoni-
cal polyadic decomposition (CPD) representations. Utilizing
the algebraic properties of CPD, recoverability of the SRI
is shown to hold under mild conditions. Later on, the work
in [10] adopted a similar idea but used the Tucker tensor
model, which facilitates a fast algorithm leveraging on the
higher-order singular value decomposition (SVD); also see
a pre-print [11] that extends the coupled Tucker model to
handle more complex cases where the spectral images exhibit
certain variability. Note that a number of works from the
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computer vision and remote sensing communities also take
tensor perspectives for HSR; see, e.g., [12], [13]. Nonetheless,
these works put more emphasis on the computation side, but
no recoverability support was offered.

Compared to the low-rank matrix-based methods, e.g., those
in [3]–[5], the tensor methods in [9], [10] are advantageous
in terms of recoverability guarantees. Nevertheless, the per-
formance gain obtained by the tensor methods is not always
obvious. One possible reason is that the model parameters
(or, the latent factors) of the tensor models used in [9], [10]
do not have physical interpretations in the context of HSR.
Consequently, it is hard to incorporate prior information into
the CTD frameworks for performance enhancement. On the
other hand, since the matrix-based approaches have clear
connections to the LMM, the latent factors there can be
interpreted as two key constituents of spectral images, i.e.,
the spectral signatures of endmembers (i.e., materials captured
in the image) and the corresponding abundance maps—which
makes using prior information (e.g., nonnegativity and spatial
smoothness of the abundance maps) fairly natural through
adding constraints and regularization terms to their optimiza-
tion criteria—see examples in [14]–[16]. Note that for real
data, since noise and modeling errors always exist, taking
advantage of prior information oftentimes plays an essential
role in producing high-quality image fusion results.

In this work, our objective is an alternative CTD approach
offers similar recoverability guarantees as in the CPD and
Tucker-based methods [9], [10]—and at the same time has
physical interpretations for its model parameters. This way,
prior information can be swiftly incorporated in the framework
to enhance the HSR performance under challenging scenarios.
To this end, our idea is to employ the tensor decomposition
model with multilinear rank-(Lr, Lr, 1) block-terms (or, the
LL1 model for short) [17] for modeling the spectral images.
The LL1 model was recently connected to HSIs in [18],
where the latent factors of the LL1 model were linked to the
LMM model. This connection was exploited for hyperspectral
unmixing in [18]. Nonetheless, using the LL1 model for HSR
has not been considered, to our best knowledge.
Contributions: Our detailed contributions are as follows:
• Recoverability Guarantees. We formulate the HSR prob-
lem as a coupled LL1 tensor decomposition problem, and
show that the formulated criteria can provably recover the SRI
under mild conditions. Similar properties have been observed
in existing tensor approaches that are based on the CPD or
Tucker models. Nonetheless, our analysis and recoverability
conditions are new and specialized for the LL1 modeling. As
in [9], [10], we also show that the LL1 model guarantees
recoverability under a realistic yet challenging scenario, i.e.,
the case where the spatial degradation process is unknown.
The recoverability analysis ensures that one does not lose
theoretical guarantees when using the advocated LL1 model.
• Flexible Algorithmic Framework. We recast the formu-
lated criteria to optimization forms that are convenient to
incorporate regularization and constraints. In particular, we
propose a change of variable scheme together with a Shatten-p
function-based low-rank promotion regularization, for approx-
imating the LL1 model. This way, the working optimization

problems admit continuously differentiable objectives, and
thus many off-the-shelf optimization tools for smooth cost
functions can be used for tackling them. More importantly,
this reformulation strategy makes the spectral signatures and
abundance maps explicitly present in the optimization objec-
tives, and thus constraints and regularization can be naturally
imposed. We showcase the flexibility of this framework via
incorporating nonnegativity of the endmembers and the spatial
smoothness of the abundance maps. We propose to handle the
formulated problems using a unified inexact and accelerated
block coordinate descent (BCD) algorithmic framework.
• Extensive Experiments. We test the proposed algorithms
over four different semi-real datasets (namely, semi-real data
derived from the Salinas, Pavia University, Indian Pines, and
Jasper Ridge datasets1) and different performance metrics. In
addition, we test the algorithms on a pair of co-registered real
HSI and MSI that were provided in the recent paper [19].

A conference version that contains part of the work was
published in Proc. IEEE CAMSAP 2019 [20]. In the journal
version, we additionally included more recoverability analysis
results, the flexible algorithmic framework, extensive semi-real
experiments, and the real experiment.

Notation. A scalar, a vector, a matrix, and a tensor are
denoted as x, x, X , and X , respectively. [x]i, [X]i,j , and
[X]i,j,k denote the i-th, (i, j)-th, and (i, j, k)-th element of
x ∈ RI , X ∈ RI×J , and X ∈ RI×J×K , respectively.
The notation X(:, j) or xj represents the j-th column of a
matrix X ∈ RI×J in an exchangeable manner. X(i, j, :) and
X(:, :, k) denote the (i, j)-th tube and the k-th slab of X ,
respectively. The Frobenius norms of X and X are denoted
as ‖X‖F =

√∑
i,j [X]2i,j and ‖X‖F =

√∑
i,j,k[X]2i,j,k,

respectively. Given two vectors x ∈ RM , y ∈ RN and
two matrices X ∈ RI×J , Y ∈ RP×Q, the outer product
x ◦ y, X ◦ y, and the Kronecker product X ⊗ Y are a
M × N matrix, a I × J × N tensor, and a IP × JQ
matrix, respectively. The Khatri-Rao product �c is defined
as X �c Y = [x1 ⊗ y1, · · · ,xJ ⊗ yJ ] ∈ RIP×J when
J = Q. Let X = [X1, · · · ,XR] ∈ RI×

∑
r Jr and Y =

[Y1, · · · ,YR] ∈ RP×
∑

r Qr be two partitioned matrices, the
partitioned Khatri-Rao product � is defined as X � Y =
[X1 ⊗ Y1, · · · ,XR ⊗ YR] ∈ RIP×

∑
r JrQr [17]. The i-th

singular value of X is denoted as σi(X) and the largest one
as σmax(X). X̂ is used as the estimator of X .

II. BACKGROUND

In this section, we first briefly introduce some preliminaries
pertaining to our framework.

A. Tensor Modeling for Spectral Images

Third-order tensors (three-dimensional arrays) X ∈
RI×J×K can be understood as generalization for vectors
and matrices (see Fig. 1). Apparently, spectral images are
tensors, which admit two spatial dimensions and one spectral
dimension—also see Fig. 1.

1https://rslab.ut.ac.ir/data
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Fig. 1. Left: A vector, matrix, and a tensor. Right: A spectral image can be
understood as a third-order tensor. Every spectral pixel is measured over a
large number of spectral bands.

One of the key differences between tensors and matrices
is that the rank decomposition for tensors have various forms.
The arguably most popular tensor rank decomposition model is
the so-called canonical polyadic decomposition (CPD) model
[21], which is also known as the parallel factor analysis
(PARAFAC) model. Under the CPD model, a tensor with
canonical polyadic (CP) rank R can be written as

X =
R∑
r=1

A(:, r) ◦B(:, r) ◦C(:, r).

Besides, the Tucker model [22] has also been widely used
in the imaging society. Under the Tucker model, a tensor can
be decomposed as

X =

I∑
i=1

J∑
j=1

K∑
k=1

G(i, j, k)A(:, i) ◦B(:, j) ◦C(:, k).

Both the CPD and Tucker models are able to “encode”
dependence across different dimensions of the data, and thus
are meaningful low-rank models (see illustrations in Fig. 2).
In fact, both the CPD and Tucker models have been utilized
for modeling spectral images, and the recoverability of SRI
was shown under tensor modeling with mild conditions [9],
[10]. Note that most low-rank matrix modeling based HSR
approaches, e.g., [3], [4], [14], [16], do not have recoverability
guarantees (except for some recent ones under relatively
stringent conditions [7], [8]).

B. Linear Mixture Model (LMM) and Matrix-based HSR

The CPD and Tucker based HSR frameworks are appealing
due to the SRI recoverability guarantees under mild conditions.

Fig. 2. Illustration of three tensor decompositions. Top: CPD. Middle: Tucker.
Bottom: LL1.

However, the performance in practice is not always better
than the low-rank matrix estimation-based approaches that do
not have recoverability support. One reason may be that the
matrix models often exploit the physical interpretations of their
latent factors. Imposing structural information of the latent
factors helps regularize the HSR criteria with prior knowledge.
This is often essential for performance enhancement when
noise and modeling errors are present. On the other hand,
both the CPD and the Tucker models do not have physical
interpretations for their latent factors. Therefore, in spite of
the recoverability appeal, the challenge for incorporating prior
information makes it hard to further improve the performance
of the CPD/Tucker-based HSR approaches.

To see how the matrix factorization-based approaches ex-
ploit the physical interpretations, consider the LMM [6] of
spectral pixels. In the noise-free case, a spectral pixel of an
I × J ×K image can be written as follows:

y` = Cs` ∈ RK , ` = 1, 2, . . . , N,

where K denotes the number of spectral bands, C =
[c1, . . . , cR] ∈ RK×R collects R different spectral signatures
of materials (endmembers) contained in the pixel, N is the
total number of pixels, and s`(r) is the proportion of end-
member r in pixel ` (i.e., the abundance of endmember r).
Putting all the pixels together one has

Y = CS>, (1)

where
S = [s1, . . . , sN ]

> (2)

and Y = [y1, . . . ,yN ]. Note that S(:, r) can be reshaped to
an I × J matrix, which is often referred to as the abundance
map of endmember r (see Fig. 3). Both the HSI and MSI can
be expressed following the above LMM. If the HSI and MSI
are co-registered, the two LMMs’ latent factors are coupled
together. Then, the HSR problem can be formulated as a
coupled matrix factorization problem; see details in [5], [14],
[16]. In addition, the latent factors in the LMM (i.e., C
and S) both have strong physical interpretations, and thus
a variety of prior knowledge can be readily utilized. For
example, both C and S should be nonnegative [5], [14],
and the abundance map mat(S(:, r)) should exhibit low total
variation (TV) across both the row and the column dimensions
[4]. As a consequence, these priors can be incorporated into the
computational frameworks to enhance the HSR performance.

C. Interpretable Tensor Modeling for Spectral Images

Recently, tensor model, namely, the block-term decomposi-
tion into multilinear rank-(Lr, Lr, 1) terms model (or simply
the LL1 model) [17], was connected to spectral images [18].
The model is very similar to the LMM, but has an extra
assumption—i.e., the abundance maps are low-rank matrices.
To be specific, instead of looking at the LMM model from a
matrix view as in (1), one can re-write the LMM as follows:

Y =
R∑
r=1

Sr ◦C(:, r), (3)
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Fig. 3. The LMM of spectral images. The vector cr denotes the spectral
signature of material r; the matrix Sr denotes the corresponding abundance
map.

where
Sr = mat(S(:, r)) ∈ RI×J (4)

represents the abundance map in its (more natural) matrix
form, and C(:, r) = cr ∈ RK the r-th endmember; see Fig. 3
for illustration. Let rank(Sr) = Lr ≤ min{I, J}, the above
can be re-written as

Y =
R∑
r=1

(ArB
>
r) ◦C(:, r), (5)

where Ar ∈ RI×Lr and Br ∈ RJ×Lr are full column-rank
matrices and Sr = ArB

>
r . The tensor model in (5) is exactly

the LL1 model. The LL1 model admits the following important
model uniqueness property:

Lemma 1: [17] Let ({Ar ∈ RI×Lr ,Br ∈ RJ×Lr}Rr=1,C ∈
RK×R) be the latent factors of the LL1 tensor Y =∑R
r=1(ArB

>
r) ◦C(:, r) where Lr = L. Assume that Ar, Br,

and C are drawn from any absolutely continuous distributions.
Then, the LL1 decomposition of Y is essentially unique almost
surely, if IJ ≥ L2R and min

(⌊
I
L

⌋
, R
)

+ min
(⌊

J
L

⌋
, R
)

+
min(K,R) ≥ 2R + 2. Here, essentially uniqueness means
that if Y =

∑R
r=1(A∗r(B

∗
r )>) ◦ C∗(:, r), then, we must

have S∗ = SΠΛ, C∗ = CΠΛ−1, where Π and Λ
denote a permutation matrix and a nonsingular scaling matrix,
respectively, S? = [vec(S?1), . . . , vec(S?R)], S?r = A?

r (B?
r )
>

and S = [vec(S1), . . . , vec(SR)], Sr = ArB
>
r .

More details and properties of the LL1 model can be found
in [17].

The LL1 model was used in hyperspectral imaging for
unmixing the endmembers [18], [23]. This is well motivated.
First, since the abundance maps are correlated across the two
spatial dimensions, assuming Sr to be low-rank is plausible.
Second, since the LL1 model is unique under mild conditions,
the abundance maps and the endmembers can be identified up
to certain trivial ambiguities with provable guarantees.

In Fig. 4, we present the singular values of the abundance
maps of two datasets, i.e., Jasper Ridge and Samon, whose
ground-truth abundance maps are available online (https://
rslab.ut.ac.ir/data). One can see that for Jasper, the first 20
principal components of Sr (i.e., first 20 left, right singular
vectors and singular values) contain more than 90% of its
energy. For Samon, the first 10 principal components contain
more than 95% of Sr’s energy. This result supports the
postulate that Sr’s are approximately low-rank matrices.

Using the LL1 model for HSR seems to be appealing,
since physical interpretations of the key constituents in spectral
images are reflected in the model. Nevertheless, although the
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Fig. 4. The abundance maps and the corresponding singular values of Jasper
Ridge (first two rows) and Samon (last two rows), respectively.

LL1 model exhibits promising advantages in hyperspectral
unmixing (HU), the HU problem has very different settings
and objectives relative to HSR. Particularly, there are a number
of challenges of utilizing the LL1 model for HSR. First,
it is unclear if certain SRI recoverability guarantees, e.g.,
those were shown under the CPD and Tucker models, still
exist under the LL1 model. Second, optimization involving
the LL1 model while considering structural constraints on the
abundance maps and endmembers is a challenging problem.

III. COUPLED LL1 TENSOR DECOMPOSITION FOR HSR

In this section, we propose an LL1 model-based HSR
approach, and discuss its recoverability properties.

A. Problem Formulation

We follow the setup in [9] for tensor-based HSR. Specif-
ically, we use Y H ∈ RIH×JH×KH , Y M ∈ RIM×JM×KM

and Y S ∈ RIM×JM×KH to denote the HSI, MSI, and SRI,
respectively (note that IM � IH , JM � JH , and KH � KM

usually hold). All the spectral images are represented in a
“space× space× spectrum” format. We assume that the HSI
and MSI are downsampled/degraded from a SRI. Note that the
SRI has the spatial resolution of the MSI (i.e., IM ×JM ) and
the spectral resolution of the HSI (i.e., KH ).

We assume that the abundance maps are low-rank matrices.
Consequently, the SRI follows the LL1 model:

Y S =
R∑
r=1

(ArB
>
r ) ◦C(:, r), (6)

where Ar ∈ RIM×Lr , Br ∈ RJM×Lr for r = 1, . . . , R,
C = [c1, . . . , cR] ∈ RKH×R. The HSI can be understood
as a spatially blurred and downsampled version of the SRI
[14], [16]. This can be modeled by multiplying two blurring
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Fig. 5. Illustration of spatial and spectral degradation procedures from SRI
to HSI and MSI, respectively.

and compressing matrices to the row and column dimensions
to every slab Y S(:, :, k), i.e.,

Y H(:, :, k) = P1Y S(:, :, k)P>2 , k = 1, . . . ,KH , (7)

where P1 ∈ RIH×IM and P2 ∈ RJH×JM represent two spatial
blurring and downsampling matrices along the two spatial di-
mensions, respectively. In hyperspectral imaging, the blurring
operator can be modeled by some kernel functions, e.g., the
widely used Gaussian kernel—see detailed discussions in [9].

If Y S follows the LL1 model and the spatial degradation
model in (7) holds, we have the following:

Y H =

R∑
r=1

(P1SrP
>
2 ) ◦C(:, r)

=
R∑
r=1

(P1Ar(P2Br)
>) ◦C(:, r). (8)

Similarly, the MSI can be modeled as spectral band-aggregated
version of the SRI, i.e.,

Y M (i, j, :) = PMY S(i, j, :), ∀i, j, (9)

where PM ∈ RKM×KH is a band aggregation matrix that is
related to sensor specifications; see [9]. The above leads to the
following compact representation:

Y M =

R∑
r=1

(ArB
>
r ) ◦ PMC(:, r). (10)

The spatial and spectral degradation procedures are illustrated
in Fig. 5. A side comment is that the operations in (7) and (9)
are the so-called “mode products” in tensor algebra; see more
details in [9] and references therein.

Under the degradation model, the main task of recovering
Y S boils down to estimating the latent factors {ArB

>
r }Rr=1

(high-resolution abandance maps) and C (high-resolution
endmembers) from Y H and Y M . Once {ArB

>
r }Rr=1 and

C are identified, one can readily reconstruct the SRI using
Y S =

∑R
r=1(ArB

>
r ) ◦C(:, r).

B. Recoverability Analysis
A key benefit for tensor modeling is that the recoverability

of the SRI can be established via exploiting the algebraic
properties of various tensor structures, e.g., the CPD and
Tucker decompositions, as shown in [9], [10]. It is also of
interest to consider the recoverability properties under the LL1
model. Note that the characteristics of the LL1 model are
different from those of the CPD and Tucker models. Hence,
custom analysis for the LL1 model is needed.

To answer the recoverability inquiry, we consider the fol-
lowing formulation:

find {Ar ∈ RIM×Lr ,Br ∈ RJM×Lr}Rr=1,C ∈ RKH×R

s.t. Y H =
R∑
r=1

(P1Ar(P2Br)
>) ◦C(:, r),

Y M =
R∑
r=1

(ArB
>
r ) ◦ PMC(:, r). (11)

The above can be understood as a coupled LL1 tensor de-
composition criterion: we aim at finding an LL1 tensor (i.e.,
the SRI) that fits both of the degraded tensors (the HSI and
MSI). The recoverability problem amounts to answering if the
solution to (11) always reconstructs Y S . Our analysis shows
the following:

Theorem 1: Assume that the SRI Y S follows the LL1 model
with Lr = L for all r. Let ({Ar,Br}Rr=1,C) be the ground-
truth latent factors of Y S . Assume that Y H and Y M follow
the degradation models in (8) and (10), respectively. Suppose
that each of Ar ∈ RIM×L, Br ∈ RJM×L, and C ∈ RKH×R

is drawn from any absolutely continuous distribution, that P1,
P2, and PM have full row rank, and that ({A?

r ,B
?
r}Rr=1,C

?)
represent any solution to Problem (11). Then, the ground-truth
Y S is uniquely recovered with probability one by

Y S =
R∑
r=1

(A?
r(B

?
r )
>

) ◦C?(:, r),

if IMJM ≥ L2R, IHJH ≥ LR, and

min

(⌊
IM
L

⌋
, R

)
+min

(⌊
JM
L

⌋
, R

)
+min(KM , R) ≥ 2R+2.

The proof of Theorem 1 is relegated to Appendix A. The
criterion and Theorem 1 consider the case where the spatial
and spectral degradation operators are both known. In [9],
[10], it was argued that in some cases the spatial degradation
operators may not be easy to estimate. Indeed, the spatial
degradation process may be complex and may vary from
case to case, caused by various reasons such as the sensor
specifications and the sensing environment—modeling this
process per se may be a challenging task. A side benefit of
using tensor modeling in [9], [10] is that the SRI recoverability
can still be ensured even if the spatial degradation operators P1

and P2 are unknown. In this work, we show that this benefit
remains under the LL1 model. To see this, we consider the
following criterion:

find {Ãr ∈ RIH×Lr , B̃r ∈ RJH×Lr ,Ar,Br}Rr=1,C

s.t. Y H =
R∑
r=1

(ÃrB̃
>
r ) ◦C(:, r), (12a)

Y M =
R∑
r=1

(ArB
>
r ) ◦ PMC(:, r) (12b)

In the above, Ãr and B̃r “absorb” the spatial degradation
operators (i.e., we use Ãr and B̃r to model P1Ar and P2Br,
respectively). For this more challenging case, we also show
recoverability as follows:
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Theorem 2: Under the same settings as in
Theorem 1, assume that KM ≥ 2 and that
({Ã?

r , B̃
?
r}Rr=1, {A?

r ,B
?
r}Rr=1,C

?) is any solution
to Problem (12). Then, if IHJH ≥ L2R and
min

(⌊
IH
L

⌋
, R
)

+ min
(⌊
JH
L

⌋
, R
)

+ min(KM , R) ≥ 2R + 2,
the ground-truth Y S is uniquely recovered by
Y S =

∑R
r=1 (A?

r(B
?
r )
>

) ◦ C?(:, r) with probability
one.
The proof of Theorem 2 is given in Appendix B. A remark is
that the conditions in Theorem 2 are more restrictive relative to
those in Theorem 1. In particular, smaller L and R are needed
for the conditions in Theorem 2 to hold—which stands for the
price to pay for not knowing P1 and P2.

Remark 1: The proofs of Theorems 1-2 are reminiscent
of a number of prior works that consider coupled tensor
decomposition [9], [24]–[26]. In particular, the work in [24],
[25] considered coupled LL1 decomposition under various
settings. Nonetheless, the recoverability results in [24], [25]
cannot be directly applied to our case. First, the work in [25]
does not consider “degradation” (e.g., compression by P1,
P2 and PM matrices in our case). Second, the work in [24]
considers special degradation matrices. There, the degradation
matrices are all slab/fiber selection matrices, which makes
the proof relatively simple. In our case, P1, P2 and PM are
general compression matrices, which requires more careful and
tailored derivations (e.g., invoking Lemma 2 in Appendix A) to
help establish recoverability. Our proof and theorems therefore
cover more cases that could not be covered by the recover-
ability theorems in [24]. Another remark is that our proofs
consider the generic case. One may also consider the worst-
case recoverability conditions via characterizing the so-called
k’-rank of the latent factors [17] in the LL1 model, which
may help remove the continuous distribution assumption on
Ar,Br and C.

Remark 2: Our recoverability analysis is built upon the LL1
identifiability (or, model essential uniqueness) of Y H and/or
Y M . Identifiability is critical to tie the physical interpretation
with the latent factors, i.e., ArB

>
r (abundance map) and

C(:, r) (endmember), which is problematic if the factorization
model is not unique. Although the LL1 identifiability does
not rely on prior information such as nonnegativity of the
abundance maps, such physical meaning can be used in our al-
gorithm design to combat noise for performance enhancement
in practice. A side note is that the recoverability condition
could be improved, since latent factor identification is not a
necessary condition for recovering the SRI; see, e.g., [10].
Also note that our recoverability analysis is based on a noise-
free model, as was in [9], [10], [24]. In practice, when noise is
present, efficient and effective HSR relies on custom algorithm
design and effective regularization/constraints to incorporate
prior knowledge, which will be addressed in the next section.

IV. ALGORITHM DESIGN: EXPLOITING PHYSICAL
INTERPRETATIONS

Besides the exact recoverability guarantees (i.e., recover-
ability guarantees under noiseless cases such as those in
Theorems 1-2), another important fact is that the LL1 ten-
sor model is consistent with the LMM of spectral images.

Therefore, the latent factors of the LL1 model admit physical
interpretations. This connection allows us to incorporate prior
information about the endmembers and the abundance maps of
the materials contained in the HSI and MSI. Note that utilizing
prior information is often important for parameter estimation,
especially in the presence of heavy noise or modeling errors.

A. Reformulation

To proceed, let us first recast the criterion in (11) using the
following form:

min
{Sr}Rr=1,C

1

2

∥∥∥∥∥Y H −
R∑
r=1

(
P1SrP

>
2

)
◦C(:, r)

∥∥∥∥∥
2

F

+
1

2

∥∥∥∥∥Y M −
R∑
r=1

Sr ◦ (PMC(:, r))

∥∥∥∥∥
2

F

(13)

+
R∑
r=1

θrϕ(Sr) +
λ

2
‖C‖2F

s.t. Sr ≥ 0, rank(Sr) = Lr, r = 1, . . . , R,C ≥ 0,

where θr, λ ≥ 0 are regularization parameters, and ϕ(·) is a
regularization function that promotes small 2D total variation.

To explain the above reformulation, first notice that we
have lifted the equality constraints in (11) to the cost function
using two fitting terms. The reason is that the criterion in
(11) is derived for the exact recovery of the HSI under the
noiseless case. If there is noise, the problem may not have any
feasible solution. Using a model fitting based approximation
may circumvent such situations. In addition, we have replaced
ArB

>
r by Sr under the constraint rank(Sr) = Lr. The

reason is that we hope to “bring out” Sr in our formulation,
since Sr is the abundance map of endmember r, and in
many cases structural constraints/regularization on Sr can
be added to enhance performance, especially in noisy cases.
Third, we have imposed nonnegativity constraints on Sr and
C, per their physical interpretations. For example, we have
added a spatial 2D TV regularizer ϕ(·) on Sr (which will
be detailed in Sec. IV-A1). This is motivated by the fact that
an endmember oftentimes exhibits very similar abundances
in neighboring pixels [27], [28]. The regularization on C is
to combat the scaling/counter-scaling effect in factorization
models; see discussions in [29].

The reformulation is still very hard to handle. One reason
is that (13) has a nonconvex rank constraint on Sr. In
addition, the commonly used 2D TV regularization for Sr
is `1-norm based—thereby being nonsmooth; see, e.g., [28],
[30], [31]. Hence, the problem is a nonconvex set-constrained
nonsmooth optimization criterion, making designing effective
and convergence-guaranteed algorithms challenging. To cir-
cumvent these difficulties, we propose to approximate the
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formulation in (13) using the following optimization surrogate:

min
{Sr}Rr=1,C

1

2

∥∥∥∥∥Y H −
R∑
r=1

(P1SrP
>
2 ) ◦C(:, r)

∥∥∥∥∥
2

F

+
1

2

∥∥∥∥∥Y M −
R∑
r=1

Sr ◦ (PMC(:, r))

∥∥∥∥∥
2

F

(14)

+
R∑
r=1

θrϕ
(
Sr
)

+
R∑
r=1

ηrφp,τ (Sr) +
λ

2
‖C‖2F

s.t. Sr ≥ 0, r = 1, . . . , R, C ≥ 0.

Here, ηr ≥ 0, ϕ(Sr) is a smoothed 2D TV regularizer
as before, and φp,τ (Sr) is low-rank promoting regularizer—
which is introduced to serve as a surrogate for the hard
constraint rank(Sr) = Lr, since dealing with the low-rank and
nonnegativity constraints simultaneously is computationally
challenging [32]. As we will see, if φp,τ (Sr) is properly
designed, an efficient optimization algorithm for handling (14)
can be devised. In the following, we provide design details of
the reqularization terms ϕ(Sr) and φp,τ (Sr), respectively.

1) `q Function-Based Total Variation Regularization: To
explain, we use the following TV surrogate:

ϕ(Sr) = ϕq,ε(Hxqr) + ϕq,ε(Hyqr), (15)

where qr = vec(Sr) and ϕq,ε(x) =
∑

(x2i + ε)
q
2 with 0 <

q ≤ 1 and ε > 0. The matrices Hx and Hy are the two
“gradient matrices”, which are defined as Hx = H ⊗ I and
Hy = I⊗H , respectively, where I ∈ RJM×JM is an identity
matrix and

H =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 · · · 0 1 −1
−1 0 · · · 0 0 1

 ∈ RIM×IM .

Note that when q < 2, the `q function is known to be effective
in promoting sparsity [33]. The parameter ε > 0 is employed
for making the function smooth when 0 < q ≤ 1. As q → 0
and ε → 0, ϕ(Sr) → ‖Hxqr‖0 + ‖Hyqr‖0. Hence, ϕ(Sr)
promotes small 2D TV of Sr.

2) Schatten-p Function Based Low-rank Rank Regulariza-
tion: The regularization φp,τ (Sr) is introduced for promot-
ing a low-rank Sr—i.e., as a surrogate for the constraint
rank(Sr) = Lr. Here, we propose to employ the smoothed
Schatten-p function [34], [35] for this purpose. Specifically,
given a matrix X , the smoothed Schatten-p function is defined
as follows:

φp,τ (X) =
M∑
i=1

(σi(X)2 + τ)p/2 = tr((XX> + τI)p/2),

where p > 0. In the second line we have used the convention
Ap = UΛpU> for real symmetric matrix A, in which A =
UΛU> denotes the eigendecomposition of A. The Shattern-p
function can be understood as an `p function applied to the
singular values of the matrix X . The parameter τ > 0 is again
for smoothing the function when 0 < p ≤ 1. Also, as pointed

out in [2], [36], φp,τ (X) can be understood as a nonconvex
approximation for the nuclear norm.

The reformulation in (14) admits a continuously differen-
tiable objective function. The reformulation has also avoided
directly handling the hard rank constraint via using the Schat-
ten p-function. This allows us to design efficient first-order
optimization algorithms for tackling the problem. We should
mention that a similar reformulation for (12) can also be
readily obtained as follows:

min
{Sr,S̃r}Rr=1,C

1

2

∥∥∥∥∥Y H −
R∑
r=1

S̃r ◦C(:, r)

∥∥∥∥∥
2

F

+
1

2

∥∥∥∥∥Y M −
R∑
r=1

Sr ◦ (PMC(:, r))

∥∥∥∥∥
2

F

+
R∑
r=1

ηr
(
φp,τ

(
Sr
)

+ φp,τ
(
S̃r
))

+
R∑
r=1

θrϕ(Sr) +
λ

2
‖C‖2F

s.t. Sr ≥ 0, r = 1, . . . , R,C ≥ 0,

(16)

in which we use a low-rank S̃r (where the low-rank property
is promoted by φp,τ

(
S̃r
)
) to replace ÃrB̃

>
r ∈ RIH×JH in the

formulation in (12).

B. Inexact Alternating Accelerated Projected Gradient

Let us denote the optimization problem in (14) as

min
S,C
J1(S,C)

s.t. S ≥ 0, C ≥ 0. (17)

Note that by our reformulation, the function J1(S,C) is
continuously differentiable.

1) Basic Algorithmic Structure: To tackle the optimization
problem, we propose to employ the alternating projected
gradient (APG) strategy. To be specific, the updates can be
summarized as follows

C(t+1) ← max
{
C(t) − α(t)∇CJ1(S(t),C(t)),0

}
(18)

S(t+1) ← max
{
S(t) − β(t)∇SJ1(S(t),C(t+1)),0

}
,

where the thresholding operators (i.e., max{·,0}) are or-
thogonal projectors onto the nonnegativity orthant. Note that
both partial gradients exist, under our design of the regu-
larization terms. The expressions of ∇CJ1(S(t),C(t)) and
∇SJ1(S(t),C(t+1)) can be found in Appendix C.

The convergence properties of APG algorithm can be shown
under the framework in [37]. To be specific, under proper
choices of α(t) and β(t), one can show that the gradient
projection step decreases J1 by a sufficiently large quantity—
which is the key for establishing convergence of the solution
sequence. To be specific, we have the following:
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Proposition 1: Assume that α(t) ≤ 1/L
(t)
C and β(t) ≤

1/L
(t)
S in all iterations, where

L
(t)
C = σmax

(
(S(t))>(P2 ⊗ P1)>(P2 ⊗ P1)S(t)

)
(19)

+ σmax(P>MPM )σmax
(
(S(t))>S(t)

)
+ λ,

L
(t)
S = σmax

(
(C(t+1))>C(t+1)

)
σmax

(
(P2 ⊗ P1)>P2 ⊗ P1

)
+ σmax((C(t+1))>P>MPMC(t+1)) + pmax

r
ηrσmax(W (t)

r )

+ qmax
r
θr
(
σmax(H>x U (t)

r Hx) + σmax(H>y V (t)
r Hy)

)
,

where S is defined as in (2), W
(t)
r = (S

(t)
r (S

(t)
r )> +

τI)
p−2
2 , U (t)

r and V
(t)
r are diagonal matrices with [U

(t)
r ]i,i =

([Hxq
(t)
r ]2i + ε)

q−2
2 , and [V

(t)
r ]i,i = ([Hyq

(t)
r ]2i + ε)

q−2
2 ,

r = 1, . . . , R. In addition, assume that L(t)
C < ∞ and

L
(t)
S < ∞ for all t. Then, every limit point of the solution

sequence produced by the algorithm in (18) is a stationary
point of Problem (14).

The proof of Proposition 1 is relegated to Appendix D in
the supplementary materials.

2) Per-iteration Complexity: To implement the algorithm,
one needs to compute the gradients w.r.t. C and S, respec-
tively. The major computation burden lies in constructing
W

(t)
r since it involves full SVD of S

(t)
r . Consequently, the

per-iteration complexity is dominated by this step, which costs
O(RI2Mmax(IM , JM ,KH)) flops (which is approximately
O(I3M ) if IM ≈ JM ≥ KH ); see the detailed complexity
analysis in Appendix C.

Another part that may incur many computational flops is to
compute α(t) and β(t) in each iteration. To reduce the compu-
tational burden in each iteration, we first pre-compute a num-
ber of terms, i.e., σmax(P>MPM ) and σmax

(
(P2 ⊗ P1)>P2 ⊗

P1

)
, since they do not change over the iterations. Second, in-

stead of directly computing L(t)
C and L(t)

S , which need the exact
values of the terms σmax

(
(S(t))>(P2⊗P1)>(P2⊗P1)S(t)

)
,

σmax(H>x U
(t)
r Hx) and σmax(H>y V

(t)
r Hy), we compute their

upper bounds—since we only need the inequalities α(t) ≤
1/L

(t)
C and β(t) ≤ 1/L

(t)
S to hold. Take the first term as an

example. Its upper bound can be obtained via the following:

σmax
(
(S(t))>(P2 ⊗ P1)>(P2 ⊗ P1)S(t)

)
≤ σ2

max(S(t))σmax
(
(P2 ⊗ P1)>P2 ⊗ P1

)
.

Note that the right hand side only costs O(NR2) flops.
Similar, we compute the upper bound σmax(H>y V

(t)
r Hy) ≤

σmax(H>y )σmax(V
(t)
r )σmax(Hy), where σmax(V

(t)
r ) is the

largest diagonal entry of V
(t)
r and the other two terms are

pre-computed. Using the above approach, the step size com-
putation’s complexity is almost negligible relative to that of
the gradient computation.

In summary, the per-iteration complexity is in the order of
O(I3M ) (assuming IM ≈ JM ≥ KH ). For HSR tasks, IM
often lies in the range of several hundreds, which is affordable
in most cases. One way to reduce complexity is to consider
patch-by-patch execution of the coupled decomposition task.

3) Extrapolation: The APG algorithm is conceptually sim-
ple to implement. However, as a first-order optimization al-
gorithm, the iteration complexity is normally not low—i.e.,

empirically, it often takes many iterations for the algorithm to
converge to a reasonably “good” solution. One way to improve
this situation without increasing per-iteration complexity is
to employ the so-called extrapolation strategy. This strategy
was first proposed by Nesterov [38] for convex optimization,
and then was extended to handle multiblock nonconvex op-
timization in [37]. To be specific, instead of computing the
partial gradients w.r.t. C and S at the current iterates, one
can compute them at some extrapolated points Č(t+1) and
Š(t+1). In a nutshell, the extrapolated point, e.g., Č(t+1), is a
linear combination of the current C(t+1) and the previous C(t)

using specially designed combination coefficients—and we use
the combination coefficients designed by Nesterov [38] (cf.
line 9 in Algorithm 1). The variables are updated via gradient
projection at those extrapolated points (cf. Algorithm 1).
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Fig. 6. Comparison of the objective values under SC-LL1 with acceleration
or not. (The setting of this figure is same as the experiment shown in Table
II in Section V-B2.)

Algorithm 1: SC-LL1 for solving (14).
1 Input: HSI Y H , MSI Y M , starting points C(0), S(0), degraded

matrices P1, P2, PM .
2 Parameters: λ, {θr}Rr=1, {ηr}Rr=1, γ(0)

1 = γ
(0)
2 = 1, p, q, ε, τ .

3 Č(0) = C(0), Š(0) = S(0).
4 t = 0.
5 repeat
6 %% update C %%

7 C(t+1) ← max
{
Č(t) − α(t)∇ČJ1

(
S(t), Č(t)

)
,0
}

;

8 γ
(t+1)
1 =

1+

√
1+4

(
γ
(t)
1

)2
2

;

9 Č(t+1) = C(t+1) +

(
γ
(t)
1 −1

γ
(t+1)
1

)
(C(t+1) −C(t));

10 %% update S %%

11 S(t+1) ← max
{
Š(t) − β(t)∇ŠJ1

(
Š(t),C(t+1)

)
,0
}

;

12 γ
(t+1)
2 =

1+

√
1+4

(
γ
(t)
2

)2
2

;

13 Š(t+1) = S(t+1) +

(
γ
(t)
2 −1

γ
(t+1)
2

)
(S(t+1) − S(t));

14 t = t+ 1;
15 until some stopping criterion are satisfied.
16 Output: Ĉ = C(t) and Ŝ = S(t). Reconstruct Y S using

Ŷ S(i, j, k) =
∑R
i=1 Ŝr(i, j)Ĉ(k, r).

Fig. 6 shows the convergence curves of the original al-
gorithm in (18) and the accelerated version. The curves are
averaged from 20 trials with Gaussian noise (the signal-to-
noise ratio is 30dB). The initialization and noise at each trial
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are generated randomly. Here, the goal is to fuse an HSI and
an MSI whose sizes are 64 × 64 × 103 and 256 × 256 × 4,
respectively; more details can be found in Section V. One can
see that, under this simulation setting, the accelerated version
uses about 50 iterations to reach a fairly low objective value
level, while the original algorithm takes more than 200 itera-
tions to reach the same level. Because of such effectiveness, in
the experiments, we will always use the accelerated version.

We summarize the proposed accelerated algorithm for solv-
ing (14) in Algorithm 1, which will be referred to as the
structured coupled LL1 decomposition (SC-LL1) algorithm in
the sequel.

Remark 3: In terms of convergence, the SC-LL1 algorithm
has similar properties as those of the original version in (18)
[37]. The subtlety is that the accelerated version does not
always produce a nonincreasing sequence of the cost function
value, which may pose difficulties in convergence analysis.
The work in [37] offered a fix via checking the cost value
in each iteration. Nevertheless, we observe that such a fix is
mostly for the theoretical proof purpose, while does not make
practical differences. Checking the objective value in every
iteration may increase the computational complexity. Hence,
we do not include it in our algorithm.

Algorithm 2: BSC-LL1 for solving (16).
1 Input: HSI Y H , MSI Y M , starting points C(0), S(0), S̃(0),

degraded matrix PM .
2 Parameters: λ, {θr}Rr=1, {ηr}Rr=1, γ(0)

1 = γ
(0)
2 = γ

(0)
3 = 1, p,

q, ε, τ .
3 Č(0) = C(0), S̄(0) = S̃(0), Š(0) = S(0).
4 t = 0.
5 repeat
6 %% update C %%

7 C(t+1) ← max
{
Č(t) − α(t)∇ČJ2

(
S(t), S̃(t), Č(t)

)
,0
}

;

8 γ
(t+1)
1 =

1+

√
1+4

(
γ
(t)
1

)2
2

;

9 Č(t+1) = C(t+1) +

(
γ
(t)
1 −1

γ
(t+1)
1

)(
C(t+1) −C(t)

)
;

10 %% update S %%

11 S(t+1) ← max

{
Š(t) − β(t)∇ŠJ2

(
Š(t), S̃(t),C(t+1)

)
,0

}
;

12 γ
(t+1)
2 =

1+

√
1+4

(
γ
(t)
2

)2
2

;

13 Š(t+1) = S(t+1) +

(
γ
(t)
2 −1

γ
(t+1)
2

)(
S(t+1) − S(t)

)
;

14 %% update S̃ %%

15 S̃(t+1) ← S̄(t) − ζ(t)∇S̄J2

(
S(t+1), S̄(t),C(t+1)

)
;

16 γ
(t+1)
3 =

1+

√
1+4

(
γ
(t)
3

)2
2

;

17 S̄(t+1) = S̃(t+1) +

(
γ
(t)
3 −1

γ
(t+1)
3

)(
S̃(t+1) − S̃(t)

)
;

18 t = t+ 1;
19 until some stopping criterion are satisfied.
20 Output: Ĉ = C(t) and Ŝ = S(t). Reconstruct Y S using

Ŷ S(i, j, k) =
∑R
i=1 Ŝr(i, j)Ĉ(k, r).

C. Algorithm for Semi-blind Cases

Consider the optimization problem (16) for handling HSR
when the spatial degradation operator is unknown. Similarly,

we express the problem in (16) as follows:

min
S,S̃,C

J2(S, S̃,C)

s.t. S ≥ 0, C ≥ 0. (20)

We again tackle the problem using APG with the acceleration
strategy, and refer the corresponding algorithm as blind struc-
tured coupled LL1 decomposition (BSC-LL1) algorithm. The
detailed steps are summarized in Algorithm 2. The expres-
sions of ∇CJ2(S(t), S̃(t),C(t)), ∇SJ2(S(t), S̃(t),C(t+1)),
and ∇S̃J2(S(t+1), S̃(t),C(t+1)), and the step sizes α(t), β(t)

and ζ(t) (and the corresponding Lipchitz constants L(t)
C , L(t)

S ,
and L(t)

S̃
) can be found in Appendix E.

V. EXPERIMENTS

In this section, we present various experiments on semi-
real data and real data to demonstrate the effectiveness of the
proposed HSR framework.

A. Experiment Setup

We benchmark our algorithm using CNMF [3], HySure
[4], FUSE [5], MFpoly [7], SCOTT [10], STEREO [9]. In
particular, SCOTT and STEREO are the Tucker and CPD
model based HSR approaches, respectively. All simulations
are coded using MATLAB 2019b and the experiments are run
on a desktop with 3.4 GHz i7 CPU and 16 GB RAM. The
Matlab code of our implementation can be downloaded from
https://github.com/MengDing56/Code_SCLL1_HSR.

1) Degradation Model: For the semi-real data experiments,
we follow the convention using a real hyperspectral image
to act as the “ground-truth" SRI—so that the recovery per-
formance can be measured [3]–[5], [9], [10]. The pair of
simulated HSI and MSI images are generated following the
Wald’s protocol [39]. The degradation from the SRI to the
HSI is as follows: the SRI is first blurred by a 9× 9 Gaussian
kernel and then downsampled every 4 pixels along each
spatial dimension. For the degradation from the SRI to the
MSI, we follow the setting in [9]. Specifically, we form the
degradation matrix PM according to the specifications of two
multispectral sensors, namely, LANDSAT2 and QuickBird3.
The spectral degradation matrix PM is a band selection and
aggregating matrix; see details in [9]. In addition, zero-mean
white Gaussian noise is added to HSI and MSI with signal-
to-noise ratio (SNR) being 30 dB, if not otherwise specified.
All the experiments are averaged from 20 random trials with
different noise terms.

2) Metrics: In the semi-real data simulations, to evaluate
the quality of the recovered SRIs, we employ a number of
widely used metrics from the literature [1], [40]. In particular,
we employ the reconstruction signal-to-noise ratio (R-SNR),
structural similarity index (SSIM), cross correlation (CC),
universal image quality index (UIQI), root mean square error
(RMSE), relative dimensional global error (ERGAS), and
spectral angle mapper (SAM). The detailed definitions can

2https://landsat.gsfc.nasa.gov/
3https://www.satimagingcorp.com/satellite-sensors/quickbird/
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Fig. 7. The recovered SRIs, the corresponding residual images (the 34-th band), and the SAM maps of Salinas. First row: the recovered SRIs of the 34-th
band; Second row: the corresponding residual images of the 34-th band; Third row: the SAM maps.

be found in [40], [41]. Higher R-SNR, SSIM, CC, and UIQI
values and lower RMSE, ERGAS, and SAM values indicate
a more preferred reconstruction performance.

3) Parameter Selection: In the proposed algorithms, we set
θ1 = · · · = θR = θ and η1 = · · · = ηR = η. The regular-
ization parameters θ, η and λ can be tuned by comparing the
reconstructed HSI and/or MSI (using the estimated SRI and the
degradation matrices) and the observed HSI and/or MSI [e.g.,
via observing metrics such as SAM and R-SNR computed
using Ŷ H (resp. Ŷ M ) and Y H (resp. Y M )] . Note that this
is a heuristic that may be prone to “overfitting” to the observed
data, but seems to work reasonably well in practice; also see
Sec. V-B6 for numerical results showing the effect of changing
these parameters. In addition, we fix the parameters p = 0.5,
τ = 1 in the Schatten-p function and q = 0.5, ε = 10−3

in the TV regularization (15). The entries of the initialization
terms S0, S̃0, and C0 are drawn uniformly at random from 0
to 1. We terminate the proposed algorithm when the relative
error of the objective value between two consecutive iterations
is below 10−4 or when the number of iterations exceeds 300
and 600 for SC-LL1 and BSC-LL1, respectively. We tune the
parameters of the baseline algorithms following the respective
papers’ instructions.

B. Semi-real Experiments with Known P1 and P2

We first test the proposed method in cases where all P1,
P2, and PM are known.

1) Salinas Dataset: The first experiment uses a subscene
of the Salinas dataset with a size of 80 × 84 × 204 (after
removing 20 bands corrupted by water absorption), which is
collected by AVIRIS sensor [42] over Salinas Valley [43].
Applying the described spatial degradation and the LANDSAT
spectral degradation, we generate Y H ∈ R20×21×204 and
Y M ∈ R80×84×6. We set R = 6, which is according to the
number of materials that was reported in the literature [43].
Fig. 7 presents the 34-th band of the estimated SRIs (a band
that is not contained in the MSI), the corresponding residual
images (i.e., Y S(:, :, k)−Ŷ S(:, :, k) for k = 34), and the SAM

maps. From Fig. 7, one can see that SC-LL1 has small residues
across all pixels, while other algorithms’ residual maps are
less smooth. The proposed method also outputs an SAM map
that is closer to the ideal one (cf. the rightmost column).
Both results indicate that the proposed method produces an
estimated SRI that captures the details of the SRI well.

TABLE I
PERFORMANCE FOR SALINAS WITH THE DEGRADATION KNOWN.

Method (ideal) CNMF HySure FUSE MFpoly SCOTT STEREO SC-LL1
R-SNR (∞) 24.30 21.16 25.24 19.55 29.89 30.25 33.94

SSIM (1) 0.9688 0.9588 0.9773 0.9579 0.9757 0.9751 0.9894
CC (1) 0.9337 0.9032 0.9204 0.7298 0.9607 0.9148 0.9762

UIQI (1) 0.6715 0.6484 0.6876 0.6486 0.7312 0.6484 0.8263
RMSE (0) 0.0122 0.0175 0.0109 0.0210 0.0064 0.0061 0.0040

ERGAS (0) 0.4768 0.4671 0.5396 1.1637 0.2895 0.8533 0.2128
SAM (0) 0.0348 0.0502 0.0315 0.0560 0.0283 0.0288 0.0154
Time (0) 0.70 1.47 0.21 2.33 3.09 0.74 23.93

We also test all the algorithms methods under different
SNRs that range from 20 dB to 50 dB. Fig. 8 shows the
averaged evaluation results under different noise levels. One
can see that the proposed SC-LL1 method consistently out-
performs the baselines under all metrics, showing promis-
ing performance. More detailed numerical comparison under
SNR=30dB can be found in Table I. One can see that our
method stands out under all accuracy metrics. As a price to
pay, the proposed algorithm is computationally more intensive
and costs more runtime.

TABLE II
PERFORMANCE FOR PAVIA UNIVERSITY WITH THE DEGRADATION

KNOWN.
Method (ideal) CNMF HySure FUSE MFpoly SCOTT STEREO SC-LL1
R-SNR (∞) 20.31 16.00 20.20 15.60 21.38 24.26 26.48

SSIM (1) 0.9420 0.8929 0.9344 0.9262 0.9178 0.9460 0.9730
CC (1) 0.9807 0.9449 0.9769 0.9522 0.9816 0.9898 0.9937

UIQI (1) 0.9100 0.8541 0.9009 0.8884 0.8767 0.9064 0.9467
RMSE (0) 0.0218 0.0357 0.0220 0.0374 0.0192 0.0138 0.0107

ERGAS (0) 0.5501 0.8582 0.5382 0.9407 0.4414 0.3290 0.2564
SAM (0) 0.0814 0.1116 0.0827 0.1109 0.0776 0.0709 0.0519
Time (0) 4.61 8.55 0.54 20.97 0.34 8.54 84.44

2) Pavia University Dataset: For the second experiment,
we use a subimage of the Pavia University. This dataset is
captured by the ROSIS sensor [44]. The sizes of the SRI and
the HSI are 256× 256× 103 and 64× 64× 103, respectively.
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Fig. 8. Reconstruction metrics for Salinas under different noises.
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Fig. 9. R-SNR, SSIM, UIQI, and RMSE values of each band of the Indian Pines image.

We generate the MSI with a size of 256 × 256 × 4 through
the QuickBird spectral degradation pattern. We set R = 4 as
the number of endmembers in this simulation.

Table II shows the reconstruction performance of algorithms
under SNR=30dB. Similar to the previous experiment, one can
see that SC-LL1 consistently evaluates the best over different
metrics. In particular, the R-SNR output by the proposed
algorithm is at least 2dB higher than that of the best baseline,
which is considered a notable margin (improvement by 58%).

3) Indian Pines Dataset: The third dataset that we use is a
subscene of the Indian Pines data, which is again acquired by
the AVIRIS sensor. This subscene consists of R = 16 different
prominent materials as reported in [45]. After removing water-
absorption contaminated bands, we have an SRI Y S that has
a size of 144× 144× 200. Then, the HSI Y H ∈ R36×36×200

is generated using the aforementioned spatial degradation and
the MSI Y S ∈ R144×144×6 is generated using the LANDSAT
spectral degradation specification.

TABLE III
PERFORMANCE FOR INDIAN PINES WITH THE DEGRADATION KNOWN.
Method (ideal) CNMF HySure FUSE MFpoly SCOTT STEREO SC-LL1
R-SNR (∞) 26.45 24.70 26.49 25.54 25.04 27.38 28.77

SSIM (1) 0.9113 0.9150 0.9269 0.9278 0.8932 0.9339 0.9514
CC (1) 0.8454 0.8494 0.8654 0.8123 0.8364 0.8505 0.9158

UIQI (1) 0.6190 0.6434 0.6704 0.6438 0.6111 0.6534 0.7685
RMSE (0) 0.0153 0.0188 0.0153 0.0170 0.0180 0.0138 0.0117

ERGAS (0) 0.2005 0.2226 0.1844 0.2423 0.2120 0.1790 0.1372
SAM (0) 0.0435 0.0510 0.0419 0.0491 0.0516 0.0406 0.0339
Time (0) 9.29 19.05 0.48 22.53 0.21 2.72 129.50

From Table III, one can see that the proposed method again
exhibits the most promising performance over all evaluation
metrics. In addition, Fig. 9 shows the R-SNR, SSIM, UIQI,

and RMSE curves against the spectral bands. Again, the
propose approach has a more favorable performance over
different frequency bands.

4) Jasper Ridge Dataset: The last dataset that we employ
under the settings where P1,P2 are known is the Jasper Ridge
data with a size of 100 × 100 × 198 (after removing bands
corrupted by dense water vapor and atmospheric effects). The
HSI and MSI are with sizes of 25×25×198 and 100×100×6,
respectively. We use R = 4 following [46]. Table IV shows the
performance of all methods. Similar as before, the proposed
SC-LL1 exhibits promising performance over this dataset.

TABLE IV
PERFORMANCE FOR JASPER RIDGE WITH THE DEGRADATION KNOWN.
Method (ideal) CNMF HySure FUSE MFpoly SCOTT STEREO SC-LL1
R-SNR (∞) 25.10 20.07 22.63 16.34 26.47 25.43 27.16

SSIM (1) 0.9524 0.9050 0.9320 0.8457 0.9555 0.9415 0.9731
CC (1) 0.9880 0.9701 0.9815 0.9512 0.9902 0.9840 0.9921

UIQI (1) 0.8651 0.7959 0.8449 0.7266 0.8589 0.8396 0.9022
RMSE (0) 0.0162 0.0288 0.0214 0.0445 0.0138 0.0155 0.0127

ERGAS (0) 0.3845 0.6308 0.4872 0.9681 0.3489 0.5205 0.3283
SAM (0) 0.0801 0.1169 0.0937 0.1658 0.0838 0.0935 0.0675
Time (0) 0.84 1.53 0.27 8.79 0.33 2.04 31.18

5) Effect of Regularization Terms: Table V shows the
recovered results with different combinations of priors (low-
rank (LR), TV, and combined as in SC-LL1) under known P1

and P2 under the proposed algorithmic structure. One can see
that, only using the LR regularization (i.e., the LL1 model)
the performance is already much improved compared to the
no prior case—showing the difference between LL1 based
tensor modeling and the matrix factorization models. With LR
and TV combined, the performance is further improved. This
suggests the recoverability-guaranteed LL1 modeling together
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with plausible prior information may offer the most promising
performance.

TABLE V
PERFORMANCE FOR INDIAN PINES WITH THE DEGRADATION KNOWN

UNDER DIFFERENT REGULARIZATION TERMS.

Method (ideal) Salinas Indian Pines
no Priors only LR only TV SC-LL1 no Priors only LR only TV SC-LL1

R-SNR (∞) 29.44 32.44 33.50 34.07 26.09 27.71 28.56 28.80
SSIM (1) 0.9659 0.9851 0.9880 0.9896 0.8814 0.9406 0.9503 0.9525

CC (1) 0.9411 0.9688 0.9739 0.9775 0.7893 0.8907 0.9182 0.9236
UIQI (1) 0.6521 0.7758 0.8102 0.8274 0.5429 0.7164 0.7769 0.7867

RMSE (0) 0.0067 0.0048 0.0042 0.0040 0.0160 0.0133 0.0120 0.0117
ERGAS (0) 0.3714 0.2425 0.2120 0.2014 0.2545 0.1576 0.1387 0.1347

SAM (0) 0.0307 0.0199 0.0166 0.0152 0.0471 0.0387 0.0347 0.0339

6) Effect of Parameter Tuning: In Fig. 10, we show the
sensitivity of the proposed method against the three key
parameters, i.e., θ, η and λ, under different SNRs. From the
figure, one can see that there is a relatively wide range of
values these three parameters could take, without affecting the
HSR performance heavily.
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Fig. 10. R-SNR (dB) under different SNR, θ, η and λ on the Salinas data.
When changing one parameter, the others are fixed to the “optimal values”
under the corresponding SNRs as revealed in the three figures.

C. Semi-real Experiments with Unknown P1 and P2

In this subsection, we test the proposed BSC-LL1 under
the case where the spatial degradation matrices P1 and P2

are unknown. Note that the coupled CPD and coupled Tucker
methods can also work under such a scenario. Hence, we
employ their “semi-blind” versions, namely, the BSTEREO [9]
and BSCOTT [10] algorithms, as our baselines in the pertinent
experiments. We use the same Pavia University and Jasper
Ridge datasets as before. All the settings remain the same,
except that the spatial degradation operators are assumed to
be unknown.

Fig. 11 shows the recovered SRIs, residual images, and the
SAM maps obtained on the Pavia Unversity dataset. One can
see that the proposed BSC-LL1 method keeps the edges of the
SRI better compared to the baselines. This again shows our
method’s ability for striking a good balance between spatial
smoothness and detail sharpness.

TABLE VI
PERFORMANCE FOR PAVIA UNIVERSITY WITH THE SPATIAL

DEGRADATION UNKNOWN.
Method (ideal) CNMF HySure FUSE MFpoly BSCOTT BSTEREO BSC-LL1
R-SNR (∞) 20.08 16.01 17.18 15.62 24.82 23.90 26.05

SSIM (1) 0.9406 0.8930 0.9038 0.9304 0.9551 0.9439 0.9710
CC (1) 0.9797 0.9450 0.9541 0.9540 0.9907 0.9890 0.9932

UIQI (1) 0.9088 0.8542 0.8582 0.8936 0.9212 0.9033 0.9422
RMSE (0) 0.0224 0.0356 0.0311 0.0372 0.0129 0.0144 0.0112

ERGAS (0) 0.5650 0.8576 0.7228 0.9373 0.3185 0.3447 0.2694
SAM (0) 0.0816 0.1115 0.0923 0.1084 0.0628 0.0736 0.0544
Time (0) 4.72 8.51 0.83 4.79 0.21 9.75 137.10

Tables VI and VII show the corresponding evaluation re-
sults on the Pavia Unversity dataset and the Jasper Ridge
dataset, respectively. Again, BSC-LL1 performs better than

TABLE VII
PERFORMANCE FOR JASPER RIDGE WITH THE SPATIAL DEGRADATION

UNKNOWN.
Method (ideal) CNMF HySure FUSE MFpoly BSCOTT BSTEREO BSC-LL1
R-SNR (∞) 25.15 20.08 16.37 15.66 25.11 24.25 27.02

SSIM (1) 0.9532 0.9051 0.8299 0.8524 0.9538 0.9302 0.9721
CC (1) 0.9883 0.9701 0.9523 0.9477 0.9847 0.9805 0.9919

UIQI (1) 0.8665 0.7962 0.6904 0.7263 0.8574 0.8238 0.8984
RMSE (0) 0.0161 0.0288 0.0441 0.0478 0.0161 0.0178 0.0129

ERGAS (0) 0.3818 0.6302 0.8283 1.0365 0.4333 0.5842 0.3339
SAM (0) 0.0807 0.1168 0.1386 0.1709 0.0883 0.1040 0.0696
Time (0) 0.86 1.47 0.37 1.44 0.16 2.01 45.88

other methods under all metrics. For both datasets, the R-SNR
performance of the proposed method largely exceeds that of
the baselines.

D. Real-data Experiment

We also test the algorithms on real co-registered hyperspec-
tral and multispectral images, where are offered in a recent
work [19]. The HSI data with a size of 120 × 120 × 89 is
acquired by the Hyperison sensor. The 89 spectral bands are
obtained after removing heavily corrupted bands. The MSI
data with a size of 360×360×4 is acquired by the Sentinel-2A
satellite, which provides MSIs with 13 bands. We follow the
demosntration method in [2] and select 4 bands whose pixels
are 10m×10m areas on the ground. The central wavelengths
of these 4 bands are 490 nm, 560 nm, 665 nm, and 842 nm,
respectively. Note that the Sentinel-2A image has more than 4
bands, but the other bands admit different spectral resolutions
and thus are excluded in this experiment.

Note that both the spatial and spectral degradation operators
are unknown in the real experiment. Hence, we apply the
proposed BSC-LL1 for this dataset. As for the tensor-based
baselines, we employ the semi-blind versions, i.e., BSCOTT
[10] and BSTEREO [9]. For the matrix-based baselines, i.e.,
CNMF [3], HySure [4], FUSE [5], MFpoly [7], we use their
own modules for estimating P1, P2 and PM from the input
HSI and MSI. The spectral degradation matrix PM for the
tensor-based methods is estimated from the available HSI and
MSI images using the algorithm in [4]. For the number of
materials, we set R = 4, which is by visual inspection.

Fig. 12 shows the recovered performance of real data at two
selected bands, namely, the 23-th and 50-th bands—which are
not included in the MSI. One can see that all the algorithms
work to a certain extent, outputting higher spatial resolution
images compared to the HSI (see column (g)). Nevertheless,
one can observe that the FUSE, HySure, and MFpoly [7] al-
gorithms both have undesired strip noise in the recovered SRI.
The CNMF obtains sharp edges, which indicates satisfactory
performance. However, the recovered SRIs by CNMF loses
some objects and details in the spatial domain. The tensor
based baselines, i.e., BSCOTT and BSTEREO, both work
reasonably well. However, the proposed BSC-LL1 seems to
perform better in terms of keeping edges and smoothness of
the recovered SRI; see the highlighted regions.

VI. CONCLUSION

In this paper, we proposed a coupled LL1 block-term
tensor decomposition framework for HSR. We showed that
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the SRI recoveriability is guaranteed under mild conditions.
Hence, using the advocated LL1 modeling instead of the
CPD/Tucker modeling for spectral images does not lose theo-
retical guarantees. A salient feature of the proposed framework
is that the latent factors under the LL1 model admit physical
meaning. Therefore, structural constraints and regularization
terms that reflect prior information about the latent factors can
be flexibly incorporated in our HSR formulations—thereby
enhancing performance under noisy scenarios. We recast the
proposed HSR criteria into forms that take into consideration
of the physical characterizations of the endmembers’ spectral
signatures and abundance maps (e.g., nonnegativity and spatial
smoothness), and proposed a convergence-guaranteed acceler-
ated alternating gradient projection algorithmic framework to
tackle these problems. We tested the proposed algorithms over
extensive semi-real and real experiments, which both showed
consistently promising performance on HSR tasks. A future
direction is to study scalable algorithms that can reduce the
runtime while keeping a comparable HSR performance.

APPENDIX A
PROOF OF THEOREM 1

To proceed, let us consider the following important lemmas.
Lemma 2: [9] Let Ã = PA, where A is drawn from

any absolutely continuous joint distribution in RI×L and P ∈

RI
′×I is full row rank. Then, Ã follows a joint absolutely

continuous joint distribution in RI
′×L.

Let ({Ar,B
>
r }Rr=1,C) denote the ground-truth factors of

the SRI tensor. Assume that ({A?
r , (B

?
r )
>}Rr=1,C

?) represents
an optimal solution of the formulation (11). Then, we have

Y M =
R∑
r=1

(
A?
r(B

?
r )>
)
◦ PMC?(:, r)

=
R∑
r=1

(
ArB

>
r

)
◦ PMC(:, r), (21)

Y H

R∑
r=1

(
P1A

?
r(P2B

?
r )>
)
◦C?(:, r)

=
R∑
r=1

(
P1Ar(P2Br)

>) ◦C(:, r). (22)

To proceed, note that P1, P2 and PM all have full
row rank. By Lemma 2, P1A, P2B, and PMC all follow
certain joint absolutely continuous distributions. Therefore,
under the conditions IMJM ≥ L2R and min (bIM/Lc , R) +
min (bJM/Lc , R)+min(KM , R) ≥ 2R+2, and by Lemma 1,
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the LL1 decomposition of Y M is essentially unique—which
means that from (21) one can conclude the following:

S? = SΠΛ, PMC? = PMCΠΛ−1, (23)

where S? = [vec(S?1), . . . , vec(S?R)], S?r = A?
r (B?

r )
>

and S = [vec(S1), . . . , vec(SR)], Sr = ArB
>
r . Define

S̃ = [(P2B1 �c P1A1)1L . . . , (P2BR �c P1AR)1L]. One
can easily see that

S̃? = S̃ΠΛ, (24)

where S̃? = [(P2B
?
1�cP1A

?
1)1L . . . , (P2B

?
R�cP1A

?
R)1L].

Next, we show that S̃ has full column rank almost surely.
To see this, note that the matrix P2B � P1A = [P2B1 ⊗
P1A1, . . . ,P2BR ⊗ P1AR] admits full column rank al-
most surely if all Ar and Br are drawn from any joint
absolutely continuously distribution and if IHJH ≥ LR
[47, Lemma 3.3], where we have used the notation B =
[B1, . . . ,BR] and A = [A1, . . . ,AR]. Since the matrix
P̃ = [P2B1 �c P1A1, . . . ,P2BR �c P1AR] is a submatrix
of P2B � P1A, it also has full column rank. Note that
S̃ = [(P2B1 �c P1A1)1L . . . , (P2BR �c P1AR)1L]. Our
claim is that S̃ has to be full column rank. This can be seen
by contradiction. Suppose that S̃ is rank deficient. Then, there
exists (α1, . . . , αR) 6= 0 such that

(P2B1�cP1A1)1Lα1 + . . .+ (P2BR�cP1AR)1LαR = 0.
(25)

However, (25) also means that the columns of P̃ (and thus
those of P2B � P1A) are linearly dependent, which is a
contradiction.

To continue, we rearrange the tensor using the following
rule:

Y
(3)
H = [Y H(1, 1, :),Y H(2, 1, :), . . . ,Y H(IH , JH , :)]

>
.

The above matrix can also be represented as [17]: Y
(3)
H =

S̃C>. By our identification criterion and (22), we also have
Y

(3)
H = S̃?(C?)>. Combining the above two equalities and

using (24), we have

S̃C>= S̃ΠΛ(C?)>=⇒ C? = CΠΛ−1, (26)

where we have used the fact that S̃ has full column rank.
Combining (23) and (26), one can see that the matrix

unfolding of the SRI (following the same unfolding rule as
in Y

(3)
H ), i.e., Y (3)

S , can be recovered by Y
(3)
S = S?(C?)>.

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

The proof of Theorem 2 is by applying Lemma 1 to the HSI
and MSI individually. Then, the coupled tensor modeling is
utilized for “aligning” the permutation and scaling ambiguities
automatically.

Assume that ({Ã?
r , B̃

?
r}Rr=1, {A?

r ,B
?
r}Rr=1,C

?) is an opti-
mal solution of the formulation (12). Using Lemma 1 and the
assumptions, the following expressions hold

S? = SΠ1Λ1, PMC? = PMCΠ1Λ
−1
1 , (27)

where Π1 and Λ1 are a permutation matrix and a nonsingular
scaling matrix associated with the MSI decomposition, i.e.,
the decomposition model in (12b).

Moreover, applying Lemma 1 to the HSI and the equality
constraint in (12a), the following expressions also hold

S̃? = S̃Π2Λ2, C? = CΠ2Λ
−1
2 , (28)

where S̃? and S̃ are denoted as in Appendix A, and Π2 and
Λ2 are a permutation matrix and a nonsingular scaling matrix
associated with the decomposition model in (12a).

Plugging C? into (27), we have

PMCΠ2Λ
−1
2 = PMCΠ1Λ

−1
1 . (29)

By Lemma 2, PMC is drawn from an absolutely continu-
ous joint distribution. Hence, the Kruskal rank of PMC is
min(KM , R) almost surely.

First notice that if R = 1, then Π1 = Π2 and Λ1 = Λ2

hold trivially. Second, consider the case where R ≥ 2.
Under such cases and by assuming that KM ≥ 2, we have
min(KM , R) ≥ 2. Hence, any two columns of PMC are
linearly independent by the fact that PMC is drawn from
a joint absolutely continuous distribution. Our claim is that
Π1 = Π2 and Λ1 = Λ2 still hold under such circumstances.
To see this, let us re-write (29) as follows:

PMCZ1(:, r) = PMCZ2(:, r), r = 1, . . . , R, (30)

where Zi = ΠiΛ
−1
i for i = 1, 2. Consequently, we have

PMC (Z1(:, r)−Z2(:, r)) = 0, r = 1, . . . , R. (31)

Note that the vector (Z1(:, r)−Z2(:, r)) has at most two
nonzero elements. However, any two columns of PMC are
linearly independent. This means that (31) holds if and only if
Z1(:, r) = Z2(:, r) for r = 1, . . . , R, which leads to Λ1 = Λ2

and Π1 = Π2. As a result, we have the following equality:
C? = CΠ1Λ

−1
1 . Then, the matrix unfolding of the SRI, i.e.,

Y
(3)
S , can be recovered by Y

(3)
S = S?(C?)>. This completes

the proof.

APPENDIX C
GRADIENTS IN (18)

The C-subproblem is a quadratic program. The gradient can
be readily derived:

∇CJ1(S(t),C(t)) = C(t)(S(t))>(P2 ⊗ P1)>(P2 ⊗ P1)S(t)

+P>MPMC(t)(S(t))>S(t) + λC(t) (32)

−
(
Y

(3)
H

)>
(P2 ⊗ P1)S(t) + P>M

(
Y

(3)
M

)>
S(t),

where Y (3)
M = [Y M (1, 1, :),Y M (2, 1, :), . . . ,Y M (IM , JM , :)]

>.
The detailed computational complexity analysis for instan-

tiating ∇CJ1(S(t),C(t)) can be found in Table VIII. The
computational complexity may be reduced by exploiting the
structure of PH = P2 ⊗ P1. Note that P1 and P2 are often
sparse [5], [9]. For example, d× d Gaussian blurring kernels
and downsampling operators are widely used to model P1 and
P2, and such modeling makes these matrices sparse—the num-
ber of nonzero element nnz(P1) = dIH and nnz(P2) = dJH ;
see, e.g., [9], for details.
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TABLE VIII
COMPLEXITY OF COMPUTING ∇CJ1(S(t),C(t)).

Term Complexity
C(t)(S(t))>P>HPHS(t) O(R((d2 +R)IHJH +RKH))

P>MPMC(t)(S(t))>S(t) O(RIMJMKH)(
Y

(3)
H

)>
PHS(t) O(KH(RIMJM + d2IHJH))

P>M

(
Y

(3)
M

)>
S(t) O(RIMJMKH)

TABLE IX
COMPLEXITY OF COMPUTING ∇SJ1(S(t),C(t+1)).

Term Complexity
P>H

(
PHS(t)(C(t+1))> − Y

(3)
H

)
C(t+1) O(IHJH(d2R+RKH + d2KH))(

S(t)(C(t+1))>P>M − Y
(3)
M

)
PMC(t+1) O(RIMJMKH)

vec(W
(t)
r S

(t)
r ) O(RI2

M (IM + JM ))

H>x U
(t)
r Hxq

(t)
r , H>y V

(t)
r Hyq

(t)
r O(RIMJM )

To see the analytical form of ∇SJ1(S,C(t+1)), we con-
struct a tight upper bounded function F(S,C(t+1);S(t)) at tth
iteration such that F(S(t),C(t+1);S(t)) ≥ J1(S(t),C(t+1)),
and ∇SF(S(t),C(t+1);S(t)) = ∇SJ1(S(t),C(t+1)). Then,
we will compute ∇SJ1(S,C(t+1)) through computing
∇SF(S(t),C(t+1);S(t)).

It was shown in [2], [35] that, for 0 < p ≤ 1, φp,τ (Z)
admits a quadratic tight upper bound (i.e., a majorizer) at Z(t):

φ̃(Z,W (t))

=
p

2
tr
(
W (t)(ZZ> + τI)

)
+

2− p
p

tr
(
(W (t))

p
p−2
)
,

(33)

where W (t) =
(
Z(t)(Z(t))> + τI

) p−2
2 . In addition, it is

shown in [29] that a quadratic majorizer ϕ̃(z, z(t)) of ϕq,ε(z)
(0 < q ≤ 1) is as follows

ϕ̃(z, z(t)) =
∑
i

[w(t)]i[z]2i +
2− q

2

(2

q
[w(t)]i

) q
q−2

+ ε[w(t)]i

=
q

2
z>U (t)z + const, (34)

where [w(t)]i = q
2

(
([z(t)]i)

2+ε
) q−2

2 , U (t) is a diagonal matrix
with [U (t)]i,i = [w(t)]i and const is a constant. Combining
(33) and (34), we obtain the quadratic majorizer function
F(S,C(t+1);S(t)) as follows:

F(S,C(t+1);S(t)) =
1

2
‖Y (3)

H − (P2 ⊗ P1)S(C(t+1))>‖2F

+
1

2
‖Y (3)

M − S(C(t+1))>P>M‖2F +
R∑
r=1

φ̃(Sr,W
(t)
r )

+
R∑
r=1

(
ϕ̃(Hxqr,Hxq

(t)
r ) + ϕ̃(Hyqr,Hyq

(t)
r )
)
. (35)

The gradient of F(S,C(t+1);S(t)) w.r.t. S can be expressed
as follows:

∇SJ1(S(t),C(t+1))

=(P2 ⊗ P1)>
(
(P2 ⊗ P1)S(t)(C(t+1))> − Y

(3)
H

)
C(t+1)

+
(
S(t)(C(t+1))>P>M − Y

(3)
M

)
PMC(t+1)

+p[η1vec(W
(t)
1 S

(t)
1 ), . . . , ηRvec(W

(t)
R S

(t)
R )]

+q[θ1H
>
x U

(t)
1 Hxq

(t)
1 , . . . , θRH

>
x U

(t)
R Hxq

(t)
R ]

+q[θ1H
>
y V

(t)
1 Hyq

(t)
1 , . . . , θRH

>
y V

(t)
R Hyq

(t)
R ],

where W
(t)
r = (S

(t)
r (S

(t)
r )> + τI)

p−2
2 , [U

(t)
r ]i,i =(

[Hxq
(t)
r ]2i + ε

) q−2
2 , and [V

(t)
r ]i,i =

(
[Hyq

(t)
r ]2i + ε

) q−2
2 , r =

1, . . . , R. The complexity of constructing ∇CJ1(S(t),C(t))
can be seen in Table IX.
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APPENDIX D
PROOF OF PROPOSITION 1

With the derivations in Appendix C, it is readily seen that
the largest eigenvalue of the Hessian of J1(S(t),C(t)) w.r.t.
C(t) is upper boounded by the following:(

σmax
(
(S(t))>(P2 ⊗ P1)>(P2 ⊗ P1)S(t)

)
+ σmax(P>MPM )× σmax

(
(S(t))>S(t)

)
+ λ

)
,

since the subproblem is a quadratic program. Hence, the above
is a legitimate Lipschitz constant L(t)

C of the corresponding
gradient.

Similarly, a Lipschitz constant L(t)
S of ∇SJ1(S(t),C(t+1))

can be derived—which is as specified in Proposition 1.
With these two constants being bounded L

(t)
C < ∞ and

L
(t)
S < ∞, it can be seen that the alternating gradient

projection algorithm in Algorithm 1 falls into the category
of inexact block coordinate descent with sufficient decrease
guarantees in each iteration [37]—if the step sizes are chosen
following the rules stated in the statement of Proposition 1.
Then, invoking the convergence theory (i.e., Theorem 2.8 [37])
there, one can easily show that every limit point of solution
sequence produced by the proposed algorithm is a stationary
point of the optimization problem of interest.

APPENDIX E
GRADIENTS AND LIPSCHITZ CONSTANTS IN ALGORITHM 2

When the spatial degradation operators are unknown, simi-
lar gradient calculations as in Appendices C-D can be applied.
One can show the following:

∇CJ2(S(t), S̃(t),C(t))

= C(t)(S̃(t))>S̃(t)

+ P>MPMC(t)(S(t))>S(t) + λC(t)

− (Y
(3)
H )>S̃(t) + P>M (Y

(3)
M )>S(t),

∇SJ2(S(t), S̃(t),C(t+1))

=
(
S(t)(C(t+1))>P>M − Y

(3)
M

)
PMC(t+1)

+ p[η1vec(W
(t)
1 S

(t)
1 ), . . . , ηRvec(W

(t)
R S

(t)
R )]

+ q[θ1H
>
x U

(t)
1 Hxq

(t)
1 , . . . , θRH

>
x U

(t)
R Hxq

(t)
R ]

+ q[θ1H
>
y V

(t)
1 Hyq

(t)
1 , . . . , θRH

>
y V

(t)
R Hyq

(t)
R ],

∇S̃r
J2(S(t+1), S̃(t),C(t+1))

=
(
S̃(t)(C(t+1))> − Y

(3)
H

)
C(t+1)

+ p[η1vec(W̃
(t)
1 S̃

(t)
1 ), . . . , ηRvec(W̃

(t)
R S̃

(t)
R )].

In addition, we have

L
(t)
C = σmax(P>MPM )× σmax

(
(S(t))>S(t)

)
+ σmax

(
(S̃(t))>S̃(t)

)
+ λ,

L
(t)
S = σmax((C(t+1))>P>MPMC(t+1))

+ p max
r=1,...,R

ηrσmax(W (t)
r )

+ q max
r=1,...,R

θrσmax(H>x U (t)
r Hx)

+ q max
r=1,...,R

θrσmax(H>y V (t)
r Hy),

L
(t)

S̃
= σmax((C(t+1))>C(t+1))

+ p max
r=1,...,R

ηrσmax(W̃ (t)
r ),

where W̃
(t)
r = (S̃

(t)
r (S̃

(t)
r )> + τI)

p−2
2 , r = 1, . . . , R.

APPENDIX F
BRIEF DESCRIPTION OF THE BASELINE ALGORITHMS

We briefly describe the baseline algorithms including
CNMF [3], HySure [4], FUSE [5], MFpoly [7], SCOTT [10],
and STEREO [9].

The methods in [3]–[5], [7], i.e., CNMF, HySure, FUSE,
and MFpoly, all perform low-rank matrix estimation tech-
niques using the matricized HSI and MSI in order to es-
timate the SRI. In particular, MFpoly [7] uses a two-stage
matrix estimation-based approach that admits recoverability
guarantees and a polynomial time algorithm for the HSR task
under some stringent conditions, e.g., when every pixel only
contains a small number of endmembers and and the so-
called “pure pixels” (see definition in [48]) exist. The STEREO
algorithm [9] models the spectral images as tensors with low-
rank CPD representations. Utilizing the algebraic properties
of CPD, recoverability of the SRI is shown to hold under
mild conditions. Later on, the SCOTT algorithm [10] adopts a
similar idea but used the Tucker tensor model, which facilitates
a fast algorithm leveraging on the higher-order SVD.


