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Abstract— Deep neural networks (DNNs) are becoming an
integral part of most software systems. Previous work has
shown that DNNs have bugs. Unfortunately, existing debugging
techniques don’t support localizing DNN bugs because of the
lack of understanding of model behaviors. The entire DNN model
appears as a black box. To address these problems, we propose
an approach and a tool that automatically determines whether
the model is buggy or not, and identifies the root causes for
DNN errors. Our key insight is that historic trends in values
propagated between layers can be analyzed to identify faults,
and also localize faults. To that end, we first enable dynamic
analysis of deep learning applications: by converting it into
an imperative representation and alternatively using a callback
mechanism. Both mechanisms allows us to insert probes that
enable dynamic analysis over the traces produced by the DNN
while it is being trained on the training data. We then conduct
dynamic analysis over the traces to identify the faulty layer or
hyperparameter that causes the error. We propose an algorithm
for identifying root causes by capturing any numerical error and
monitoring the model during training and finding the relevance of
every layer/parameter on the DNN outcome. We have collected a
benchmark containing 40 buggy models and patches that contain
real errors in deep learning applications from Stack Overflow
and GitHub. Our benchmark can be used to evaluate automated
debugging tools and repair techniques. We have evaluated our
approach using this DNN bug-and-patch benchmark, and the
results showed that our approach is much more effective than
the existing debugging approach used in the state-of-the-practice
Keras library. For 34/40 cases, our approach was able to detect
faults whereas the best debugging approach provided by Keras
detected 32/40 faults. Our approach was able to localize 21/40
bugs whereas Keras did not localize any faults.

Index Terms—Deep Neural Networks, Fault Location, Debug-
ging, Program Analysis, Deep learning bugs

I. INTRODUCTION

Deep neural networks are a class of machine learning
algorithms that have gained significant popularity in recent
years due to their remarkable success in tasks that defy
traditional algorithm techniques. A deep neural network can
be thought of as a graph where nodes, called neurons, are
functions with adjustable weights. The neurons of a DNN are
organized in layers and edges feed output from a neuron to
neurons in the next layer, and eventually to the last layer called
the output layer. During the training step, each training input
is passed through the network to produce output. This output
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is compared to the expected output. The difference between
the actual output and the expected output, measured using a
function called the loss function, is then used to adjust the
weights of the neurons in the layers using a process called back
propagation. DNNs are utilized in various software systems
to make decisions. Thus, software engineering for DNNs has
become essential.

To aid integration of the DNN in software systems, a num-
ber of developers have produced industrial-strength libraries
and frameworks such as TensorFlow [1], Cafe [2|], MXNet
[3], PyTorch [4], Theano [5] and Keras [6] to assist the
programmers in designing reliable deep learning applications.
Recent work has shown that applications that use DNN have
bugs [7]-[9]. Same group of researchers have also studied
repair strategies for DNN [[10]. Zhang et al. 8] describe the
challenges and limitations in detecting and localizing the bugs
in the DNN model, and indicate that current approaches are not
effective to examine the state of the model at some point, like
the regular programs. Islam et al. observe that DNN bug fix
patterns are distinctive compared to traditional bug fix patterns,
and that DNN bug localization is among the major challenges
faced by developers when fixing bugs [10].

Despite the growing number of software debugging tech-
niques such as automated bug repair [11], [[12f], fault localiza-
tion [13]], [14]], delta debugging [|15]], and slicing [16]], these
techniques are still not applicable to identify the bugs in the
DNN models and identify the faulty statements that cause the
problem at a particular layer in the model. Regular software
programs and the DNN models are fundamentally different
with respect to fault and fault detection. For example, regular
software programs are tested by comparing the actual output
and the expected output. If actual output doesn’t match the
expected output, then we consider the program has a bug.
On the other hand, the DNN-based software has a complex
structure, and it is learning from a training dataset. If the DNN
produces incorrect classification during training, we call it fail-
ure case, it is not necessarily that DNN contains a bug, because
a DNN model cannot guarantee 100% correct classifications.
Furthermore, the logic of a regular program is represented
in terms of control flow, while DNN programs use weights
between neurons and different kinds of activation functions



for similar purposes. These differences make debugging and
testing of software that deploys DNNs challenging.

Traditional practices for debugging uses aides such as print

statements, breakpoints, and tracing the failing test case. These
manual debugging processes take a long time and effort from
developers [[17]. Researchers have proposed several automated
fault localization techniques [[13], [[18]], [19]. These techniques
are used to locate the root causes and understand the faulty
states. Unfortunately, current automated fault localization tech-
niques cannot be applied directly to DNN since existing
techniques are not able to identify plausible and distinct root
causes for unexpected behavior (known as failure) in DNNs.

To overcome these challenges, this work introduces a white

box based fault localization technique for DNNs. Our approach
requires the source code of the DNN model and the training
data. Given the source code, our approach enables dynamic
trace collection for DNN. We propose two techniques. The
first technique, inspired by [20], translates the code into an
intermediate form which we call imperative representation
of the DNN. The purpose of the imperative representation is
to make certain (ensure) that internal states of the DNN are
observable, thus our method uses a white box approach. This
conversion to an imperative representation allows us to insert
probes that enable dynamic analysis over the traces produced
by the DNN while it is being trained on the training data. The
second technique uses a novel callback mechanism to insert
probes that also achieve the same purpose. We then conduct
dynamic analysis over the traces to identify the faulty layer
or hyperparameter that causes the error. We also propose an
algorithm to identify root causes by capturing any numerical
error and monitoring the model during training and finding the
relevance of every layer/parameter on the DNN outcome.

We have implemented our approach as an extension of the

widely used Keras library for deep learning. To evaluate, we
have collected a benchmark containing 40 buggy models and
patches that contain real errors in deep learning application
from Stack Overflow, and GitHub. Our benchmark can be used
to evaluate automated debugging tools and repair techniques.
We compare our approach with three built-in mechanisms
for debugging in the Keras library, the state-of-the-art in
DNN libraries. These mechanisms were TerminateOnNaN(),
EarlyStopping (’loss’), and EarlyStopping (’accuracy’). We
have evaluated our approach using this DNN bug-and-patch
benchmark, and the result shows that our approach is much
more effective than the existing debugging approach used
in the state-of-the-practice Keras library. For 34/40 cases,
our approach was able to detect faults whereas the best
debugging approach provided by Keras detected 32/40 faults.
Our approach was able to localize 21/40 bugs whereas Keras
did not localize any faults. In summary, this paper makes the
following contributions:

o We propose the first fault localization approach for
DNNs including callback and translation mechanisms for
collecting dynamic traces and a localization algorithm.

o We have built a DNN bug-and-patch benchmark with 40
different types of buggy models from Stack Overflow and

GitHub. This benchmark serves as the ground truth to
evaluate our approach. We also hope it can serve other
researchers to validate their debugging and repair tools.
This benchmark is available from GitHub [21]].

e Our results show that our approach can effectively and
efficiently identify 34 out of 40 buggy model and deter-
mine the root causes for 21 out of 40 buggy model.

Outline: §II| motivates our approach. §II| presents our
dynamic trace collection, faulty detection and localization
algorithms. presents evaluation. discusses the threats
to validity, discusses related works and concludes.

II. A MOTIVATING EXAMPLE

Listing[T] shows a simple example from Stack Overflow [22]
to motivate our work. In this example, the developer is
constructing a sequential model at line 1, adding a dense input
layer at lines 2-3, adding a dense hidden layer at lines 4-5,
compiling the model to convert it to a graphical form on line
6, and training this model on line 7. A dense layer is a layer
in a DNN where each neuron is connected to neurons in the
next layer. This DNN did not learn during training and in
the post, the developer asked why the model achieved low
accuracy. This DNN has a two problems. First, it handles a
classification problem, and thus categorical_crossen-—
tropy should be used as a loss function at line 6 instead
of mean_squared_error. Second, the user has not added
activation functions for the first two layers at lines 2 and 4.

Listing 1: DNN is not learning [22]]

model = Sequential ()

layerl = Dense (30, input_shape=input_shape,
kernel_initializer=RandomNormal (stddev=1)
, bias_initializer=RandomNormal (stddev=1)
)

model.add (layerl)

layer2 = Dense (10, kernel_initializer=
RandomNormal (stddev=1), bias_initializer=
RandomNormal (stddev=1))

model.add (layer?2)

model.compile (optimizer=SGD (1lr=3.0), loss=’
mean_squared_error’, metrics=[’accuracy’
1)

model.fit (x_train, y_train,
epochs=30, verbose=2)

batch_size=10,

Keras provides a set of callback methods [23] to give the
developers information about internal status of the training
process. Specifically, we can use TerminateOnNaN () to
monitor the loss and terminate the training when the loss
becomes NaN. We can use EarlyStopping () to moni-
tor the loss or accuracy and stop if there is no improve-
ment. We can pass a callback method as a parameter to
the £it () method. For Listing [I] when using Termina-
teOnNaN (), EarlyStopping ('’ loss’), EarlyStop-
ping ("accuracy’), and the union of the three Keras
methods, the training was terminated after 1.20, 12.21, 34.90
and 1.16 seconds respectively. Once the training is stopped,
Keras prints the epoch and the iteration number. Unfortunately,
such information cannot answer the developer’s question and
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Fig. 1: An Overview of DeepLocalize. Left component shows

two alternatives (callback and translation) for preparing models

to collect dynamic traces. Middle component collects and analyzes these traces. Right component detects/localizes bugs.

indicate which layer or hyperparameter prevented the model
from learning.

Our approach reports that the program has a bug after 0.14
seconds using our tool and 2.14 seconds using our callback
function. In addition, we report that the bug is located in the
back propagation stage of layer 2 at line 4. Therefore, the
message gives the developer hint that the issue in the parameter
of layer 2, since the description of the message indicates the
stage of the problem, the developer can quickly determine
previous calculation that causes the problem, which is the loss
function in our example. Compared to the existing methods
in Keras, our fault localization uses less time and provides a
report stating the layer that the bug is located at.

III. APPROACH
A. An Overview

Figure [I] provides an overview of our work. In the first step,
we prepare the DNN model to collect dynamic traces. We
propose two mechanism for this. Our first approach translates
the deep learning program into an imperative program [20],
[24]. Probes are inserted in this imperative program to capture
and save model variables such as weights, learning rate gra-
dients during training. Our second approach uses a callback
mechanism, and passes a specialized callback method as a
parameter during model training (to the £it () method). This
custom callback function allows the developers to capture and
save model variables. We record the key values during both
the feed-forward and backward propagation phases. During the
training, an online statistical analysis is performed to compare
the status of the program with the error conditions we defined.
Finally, we report if the program contains a bug, and in which
layer and phases the bug exists that prevented learning.

B. Model Preparation
Directly analyzing a deep learning program, e.g. one shown

in Listing [T] is hard, as the DNN libraries provide blackbox
APIs and it is hard to trace important values during training.

To use our approach, the developer either write extra code to
instrument DNN training inside f£it () function or rewrite
their code into an imperative form. For our second approach,
we identified a list of the Keras library APIs that are important
for training and implemented models/simplified versions of
these API calls, following the machine learning literature [25]—
[27]] and the Keras documentation [28]]. We inserted the probes
to these library models so that the analysis can observe the
internal behaviors of DNNs during training.

The callback-based approach of dynamic trace
collection is implemented by overriding the
keras.callbacks.Callback class. Since our work is
focusing on monitoring during the training phase, we override
the method «called (on_train_batch_end(self,
batch, logs=None)). This overridden method invokes
Algorithm [I] after each batch of training. To use this method,
the developer needs to pass this custom callback function as
a parameter to the £it () function.

Second imperative approach, as shown in Table[[Jon the left,
to build a training model, a DNN program typically starts with
creating a sequential model (line 4), then add all layers (lines
5-11) and optimizations (line 13), and finally call compile
and f£it atlines 14-15. On the right, we show the imperative
programs using our library models. First, lines 1, 2, 7 and
10 are not changed. Second, lines 5, 8, and 11 show the
conversions for the Dense layer. In our code, we added a name
for the layers, e.g., see name = "FC1” so that we can report in
which layer the fault is located. We inserted instrumentation
in the fit function (line 15) to observe the model variables.

Currently, our translation tool supports the Dense,
Dropout, Maxpooling, Convolution, BatchNor-—
malization, and Padding layers. Also, it supports popu-
lar optimization methods, losses, and activation functions. The
translation from a DNN program to the program that uses our
library models is currently done manually. The Keras library
is being rapidly evolved resulting in a large number of releases
[10]. Due to the library versioning and the frequently changing
API signatures, it is hard for our tool to remain compatible



TABLE I: Translation from Keras Code to an Imperative program

Keras Code Imperative Program
batch_size = 1 batch_size = 1
nb_epoch =3 nb_epoch =3
+1r=0.001

model = Sequential()
- model.add(Dense(units=50, activation="relu’, input_dim=128))

| myModel = mySequential ()
+ myModel.insert(myDense(num_inputs=128, num_outputs=50, Ir_rate=Ir, name="FC1"))

+ myModel.insert(ReLu())

model.add(Dropout(0.2))

‘ myModel.insert(myDropout(0.2))

- model.add(Dense(units=50, activation="relu’))

Z
so‘oo\lou-‘.hu‘m»—o

+ myModel.insert(myDense(num_inputs=50, num_outputs=50, Ir_rate=Ir, name="FC2’))
+ myModel.insert(ReLu())

10 | model.add(Dropout(0.2))

11 | - model.add(Dense(1,activation =’softmax’))

| myModel.insert(myDropout(0.2))
+ myModel.insert(myDense(num_inputs =50, num_outputs =1, Ir_rate =Ir, name="FC3”))

12
13 | - Adam = optimizers.Adam()

+ myModel.insert(Softmax())

14 | - model.compile(loss =’binary_crossentropy’, optimizer =Adam, metrics=["acc’])

W

test, Y_test))

- model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=3, verbose=1, validation_data=(X_-

+ myModel.myCompile(loss="binary_crossentropy’, optimizer="Adam’, metrics=["acc’])
+ myModel.fit_instrument(X_train, Y_train, batch_size=batch_size, epoch=3)

16 | - model.evaluate(X_test, Y_test, verbose =1)

+ myModel.myEvaluate(X_test, Y_test, 200)

This table is showing all of the changes to translate from Keras code to Our tool code. The color in each row indicates the change

type:

with the Keras library.

C. Instrumentation

The training of DNN has two phases: feedforward and
backpropagation. In the feedforward stage, we observe and
monitor: (1) the training data including both input and label;
(2) the results after applying forward function; (3) the results
after applying the activation function; (4) the loss value and (5)
the accuracy. All values are collected in each iteration during
training.

The second stage is the backpropagation, and it is used
to adjust the weight based on the errors obtained from the
feedforward stage. Backpropagation uses the gradient descent
method to update the weights and minimize the errors. It is
started from the output layer, and the result of the output
layer is reused to compute the gradient for the previous layer
until it reaches the input layer. Different optimizations can be
applied during backpropagation. In the backpropagation stage,
we can observe and monitor: (1) the update of weights, (2)
the update of bias values, and A weights from applying the
gradient descent for each layer.

The instrumentation is inserted in the fit () function we
implemented for modeling the Keras £it () function. It is
executed automatically when the DNN program runs during
training.

D. Statistical Analysis to Detect Suspect Behavior

Next, we discuss our approach for statistical analysis to
detect suspect behavior of the DNN during training. We
analyze three variables: the learning rate, the input data, and
activation/loss functions.

1) Incorrect learning rate: Backpropagation is important
to fine-tune the weights based on the loss value obtained
from the loss function. The learning rate has an effect on the
weight updates during the backpropagation process. During
the backpropagation process, the learning library computes
gradient descent iteratively. Our key insight is that the mean
and standard deviation of the weights in the correct model are
continuously changing during the training process. In contrast,

Red - removed an existing line.

the mean and standard deviation of the weights in the buggy
model are constant. If there is a problem in the learning
rate, we can detect it from the output of the gradient for the
output layer. Figure |2| and Figure |3| show an example of this
behavior. In Figure [2] the weight varies as it should in a correct
model, whereas in Figure [3] the weight is constant indicating
a potential bug. To utilize this insight, we compute the mean
and the standard deviation for the output of the gradient as
well as the weight parameter at each layer.

2) Incorrect input data: In some cases, the training data are
not properly normalized. For example, in the MNIST model,
the pixel should be in the range [-1, 1] and not [0, 255]. Also,
training data may have NaN value, and developers forget to
invoke the assert function to check if there is an NaN or not. In
the forward stage, we retrieve the output before/after applying
the activation function for each year. We then compute the
mean and standard deviation for the output at each layer. We
will check if the output of the first layer after/before applying
activation has numerical error such as NaN or Inf. Our second
approach for detecting this kind of error is to calculate how
frequent the mean of the output for the first layer is equal
to zero. Once we observe abnormal values, we will report in
which layer and whether it is before or after activation function
that the error occurs.

3) Incorrect activation/loss functions: After finishing the
forward stage, we compute loss and accuracy. There are two
indicators that the model has a problem. First, if one of the two
metrics has a numerical error like inf or NaN. Second, the
loss starts increasing instead, or the accuracy starts decreasing
after certain iterations.

E. DNN Fault Localization Algorithm

Algorithm || presents our DNN fault localization algorithm.
At its core, it augments the DNN learning algorithm with anal-
ysis and error checking inserted during learning. It serves three
purposes: (1) determining whether the deep learning program
contains a bug; (2) reporting the fault location, in which layer
and which phases (feed forward and backward propagation),
the deep learning program has a bug; (3) reporting failure
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information, in which iteration, the learning is stopped. It takes
as input the training data set (including input and labeling), the
translated imperative program, as well as the DNN parameters
(the batch size and the epoch). If the bug is found, the output is
a message including the fault location and failure information
for the bug.

At line 1, we define two lists to store the values of
loss and accuracy in each iteration. Line 2 represents how
many iterations we make through the whole training dataset.
During the training process, the training dataset is divided into
several smaller batches. For example, if the model has 2000
training examples divided into 500 batches, then the model
needs 4 iterations to complete one epoch. Line 3 shows the
division of the batch size. Lines 4-29 run for each batch in
the training dataset. At lines 5-11, the algorithm performs
dynamic analysis on the forward stage, and at lines 24-29, it
performs analysis on the backward stage. In our callback func-
tion, the override method on_train_batch_end(self,
batch, logs=None) will execute at the end of each batch,
and performs dynamic analysis on the forward/backward stage,
after retrieving the value of each layer before/after activation
function, loss, accuracy, updating weight and gradients.

1) Feedforward phase: At line 6, the algorithm computes
the output of a feed-forward layer before applying the activa-
tion function. At line 8, we compute the output after applying
the activation function. Then, we invoke ANA() procedure to
determine if the output contains a numerical error. As shown in
Table @ the message EBA indicates Error Before Activation,
EAA indicates Error After Activation, and L represents the
faulty layer number. At line 12, we compute the loss, and

TABLE II: Abbreviation of Crash Statements

No Statement Abbreviation
1 Error Before Activation EBA

2 Error After Activation EAA

3 Error in Loss Function, ELF

4 Error in Accuracy Function EAF

5 Error Backward in Weight EBW

6 Error Backward in A Weight EBDW

7 Model Does not Learn MDL

8 Correct Model CM

determine if there is any numerical error at line 13. As shown
int Table [II} the ELF indicates Error in Loss Function. If the
error is not detected here, we save the loss value for each
iteration at line 14. At line 15, we compute the accuracy and
check if there is a numerical error from accuracy at Lines
16-18. If the error is not detected here, we save the accuracy
value during training at Line 19. At lines 20-22, the algorithm
checks if loss is not decreasing and accuracy is not increasing
value for a long time. In both cases, The algorithm computes
the slope to compare the loss/accuracy for current step with
the loss/accuracy at a step which is at least num_steps behind
the current step. In this case, the algorithm reports a message
MDL to indicate that the model does not learn. Otherwise, the
training continues.

2) Backpropagation phase: During this stage, the algorithm
collects the weight and A weight for each layer in each
iteration. At line 25, the Weight and A Weight are the output
of a back-propagation. At line 26, the algorithm invokes the
ANA() procedure and pass A weight to check if there is any
numerical error. The algorithm will print error message if there
is any error in the A weight and determines which layer causes
this issue (Line 26). In the same way, at line 27, the algorithm
can determine if there is an issue in the weight in each layer
by invoke the ANA() procedure. If the procedure decide that
there is an issue in the weight, then the algorithm will return
message to indicate there is bug.

Finally, if there are no issues in the model, the algorithm
will terminate after finishing training at line 32 and print this
message Correct Model (CM).

ANA () is invoked at lines 7, 9, 26 and 27 to determine if
the error occurs based on the current values obtained from the
instrumentation. When the DNN does not learn, there can be
the following symptoms: (1) the update for weight, A weight
are incorrect, (2) the loss or accuracy is not measured on
the correct scale, and (3) the loss does not decease, and the
accuracy does not increase after the number of iterations. The
check is conducted in ANA ().

This procedure takes three parameters: input value, layer
number and location. Since ANA () is called at different
locations in the code, the location tracks whether the value
comes from feed-forward (FW), backward (BW) propagation,
or weight (WT). Line 2 defines a set of lists to store the mean
value from each location for each layer. Line 3 computes the
mean value for the input. At line 4, the procedure will check if
the mean reports NaN or inf. Also, the procedure will check
if the mean equal to zero at line 5; if yes, then we compute



how frequent zero occurs for all values for each layer. If the
number of zeroes is greater than a threshold (line 7), the error
is detected and the procedure will return true.

At line 11, we store the mean value in the list. Finally, the
procedure will return the last N element from the list as slice to
check if the mean value for last N iterations is changed or not.
From Figure [2] and Figure [3] we observe the model continues
to learn if the mean value is changing in each iteration. This
procedure returns true if there is a numerical error; otherwise,
it return false.

Algorithm 1: DNN Fault Localization

input : Training data (input, label), batchsize, epochs,
imperative program

output: A message regarding fault location and failure
information

1 LossList < [|; AccuList < ||
2 for e <— 0 to epoches do

3 for i < 0 to Length(input) Step batchsize do
4 X + inputli]; Y + label]i]
5 for L < 0 to Length(Layers) do
6 Vi + Layer|L].Forward(X)
7 if ANA(Vi, L, FW) then return EBA, L
8 Vo = Layer|L]. Activation(V1)
9 if ANA(V,, L, AF) then return EAA, L
10 XV
1 end
12 Loss < ComputeLoss(Va,Y)
13 if Loss is equal to NaN OR inf then return
ELF
14 LossList.append(Loss)
15 Accuracy < ComputeAccuracy(Va,Y)
16 if Accuracy is equal to NaN OR inf OR 0 then
17 | return EAF
18 end
19 AccuList.append(Accuracy)
20 if NOT Decreasing(AccuList) &&
NOTIncreasing(LossList) then
21 | return MDL
22 end
23 dy <Y
24 for L < Length(Layers) to 0 do
25 Vs, W[L] + Layer|[L].Backward(dy)
26 if ANA(V3, L, BW) then return EBDW, L
27 if ANA(WIL],L,WT) then return EBW,
L
28 dy — V3
29 end
30 end
31 end

32 return CM

IV. EVALUATION

In this section, we aim to answer the following research
questions:

e RQ1 (Validation): Can our technique find bugs in deep
learning programs effectively?

e RQ2 (Comparison): How effectively and how fast can
our technique localize the faults compared to existing
methodology in the Keras library?

1 Function ANA (input, LayerNo, Location) :

2 meanList[Layer No, Location] < [|
3 meanValue < math.mean(input)
4 if meanValue is equal NaN OR inf then return
True
5 if meanValue == 0 then
FreqZero[LayerNo, Location] + =1
if FreqZero|LayerNo, Location] >
threshold then
8 | return True
9 end
10 end
11 meanList[Layer No, Location].append(meanV alue)
12 slicing < meanList[Layer No, Location|[—N :]
13 if All(elem == slicing[0] for elem in slicing)
then
14 | return True
15 end
16 return False

TABLE III: Keras result VS Imperative result

Keras Our Tool
Runtime Result Runtime Result

Post # | Epoch | Iteration [sec] Loss Accuracy [sec] Loss Accuracy
48385830 30 60000 489.67 NaN 0.10 1429.60 NaN 0.10
31556268 | 1000 1 5.58 0.50 0.50 20.99 0.50 0.50
50306988 5 200 1.41 0.71 0.50 0.17 0.69 0.50
48251943 ‘ 17 500 5.40 0.37 - 2.10 0.30 -
38648195 20 48000 123.21 0.23 0.75 385.40 NaN 0.65
33969059 | 20 10000 129.85 | 349713063.30 - 1272.30 | 260179130.95 -
55328966 10 49999 104.95 2.30 0.10 [ 8025.54 229 0.11
34311586 | 20 6 1.23 0.67 - 0.11 0.50 -
31880720 3 20000 181.30 7.67 0.50 529.29 16.12 0.50
39525358 ‘ 150 13 3.15 0.67 0.62 5.16 0.67 0.61
48934338 1000 50 10.17 1358.22 0.00 28.58 781.75 0.00
47724077 | 50 32561 39.26 49.70 0.68 93.46 3.38 0.70
59278771 200 135 18.91 1.10 0.35 14.86 1.06 0.34
41372874 | 20 239 3.19 0.15 1.00 6.12 0.00 1.00
44066044 100 21 3.86 9.55 0.38 0.89 9.55 0.00
51930566 ‘ 50 75 4.04 0.51 0.67 1.87 0.48 0.64
45442843 100 200 2.74 0.50 0.50 2334 0.51 0.50
31627380 | 10 712 5.75 1.29 0.59 831 1.46 0.63
58609115 10 442 2.63 26169.69 0.09 13.10 4.05 0.02
50481178 | 50 200 11.82 0.02 0.99 6.13 0.01 0.98

o RQ3 (Limitation): In which cases does our technique fail
to report the bug and localize the faults?

A. Experimental setup

1) Implementation: To perform our experiments and evalu-
ation, we implemented our techniques using Python and Keras.
Our translation-based tool supports the Dense, Dropout,
Maxpooling, Convolution, BatchNormalization,
and Padding layers. Also, it supports popular optimization
methods, losses, and activation functions. We followed the
machine learning references [25]-[27] and used the Keras
documentation to implement simplified and instrumented ver-
sions of compile (), sequential () and fit () func-
tion. Our callback-based tool supports all of the layers and
optimization methods supported by Keras.

We set threshold = 1/4 * No. Iteration and N= 50 at line 6
and 12 in ANA () function respectively for both our tool and
callback function. Based on our empirical experience, these
settings helped best in detecting bugs during training.



2) Benchmark construction: We collected buggy models
from Stack Overflow posts and GitHub commits to construct
the benchmark. In Stack Overflow, we select the posts that
have a score > 5 and contains the buggy Keras code. We
used keywords "error", "bug" and synonyms to search for
posts. In the second step, we manually reviewed the retrieved
posts and removed all the posts that have partial code. In
the third step, we applied a second filter by checking if the
post provided the training data or used the existing known
training data. In the last step, we studied all the answers
corresponding to the post ids in the Stack Overflow, using
the methodology in a prior work [10] that studied the bug fix
patterns for deep learning model. We take into consideration
the acceptable quality metric and choose the answer that has
the highest score. We analyzed each Q&A and derived for each
post the fault location and a patch to fix the bug. In total, we
obtained 30 posts.

We also mine the GitHub commits to collect buggy models.
The process consists of three steps. First, we search for all
Keras repository. After that, we mine all the commits whose
title contains keywords used in the Stack Overflow mining
process described above. Then, we take only the last version
fix, and manually check if the commits are related to structure
bug or not, from these commits, we derived the fault location
and a patch to fix the bug. In the last step, we checked if
the repository provided the training data. As a result, we
randomly select 11 executable programs with training dataset.
For instance, Figure [4| shows the patch we derived for the
Stack Overflow post # [22]. Table [[V] and [V] present our
benchmark together with total number of parameters, the line
of code, its loss and accuracy before and after fix. Our tool
and benchmarks are available for download [21]].

Table shows a comparison between the original Keras
code and our imperative code in terms of accuracy, losses
and runtime. Over all benchmarks, our imperative code has
comparable accuracies and losseses compared to Keras. The
small deviation is due to additional optimizations applied in
Keras code. In terms of runtime, our imperative code takes
around 5 times more execution time compared to Keras during
training and testing phases. The reason behind that is the extra
work done by our imperative code to identify bugs and their
root causes. Our code is also able to terminate early when a
bug is found and later in our results, we show that we can
detect bugs faster than Keras callback methods.

All the experiments are run on a computer with Intel(R)
Core (TM) i7-6500U, 2.5 GHz processor, and 16 GB of RAM
running the 64-bit Windows 8.1 operating system.

B. Results and Analysis

In Table and the first column reports the Stack
Overflow post # with the corresponding link, and GitHub
repository reference respectively. To compare our results with
the results generated from the Keras methods, we listed the
columns of Time, Epoch, Iteration, IB, and FL, representing
how long the approach takes to find the bug, at which
epoch and at which iteration the bug is reported, whether the

model = Sequential()
layerl = Dense(30,

+ activation="sigmoid',
input_shape=input_shape,
kernel_initializer=RandomNormal(stddev=1),
bias_initializer=RandomNormal(stddev=1))

model.add(layerl)
layer2 = Dense(10,

+ activation="'softmax',
kernel_initializer=RandomNormal(stddev=1),
bias_initializer=RandomNormal(stddev=1))

model.add(layer2)

model.compile(optimizer=SGD(1r=3.0),
loss="mean_squared_error',
+ loss="'categorical_crossentropy’,
metrics=["'accuracy'])

Fig. 4: (Patch/Fix) the changing to fix a DNN bug [22]

TABLE IV: The Benchmark, we show (Post #) post id from
Stack Overflow, parameters #, line of code, (Result Before Fix)
the loss and accuracy before applying patch, and (Result After
Fix) the loss and accuracy value after applying patch

Result Before Fix Result After Fix

Post # ‘ Total params | LOC Loss | Accuracy Loss [ Accuracy
48385830 23,860 60 NaN 0.10 0.15 0.96
44164749 \ 6,931,610 49 0.38 0.89 0.20 0.92
31556268 17 39 0.25 0.50 0.00 1.00
50306988 | 12 45 0.70 0.50 0.67 1.00
48251943 17 30 0.37 - 0.63 —
38648195 \ 903 36 0.22 0.41 1.3 0.65
33969059 23 63 | 72181941.16 — | 9766327.81 —
55328966 \ 655,200 52 2.30 0.10 0.85 0.80
34311586 19 29 0.67 — 0.17 —
31880720 \ 9,051 46 7.67 0.50 0.00 1.00
39525358 91 34 0.67 0.62 0.31 1.00
39217567 \ 216 43 0.25 0.50 0.08 0.97
48934338 1,661 37 1335.72 — 341.09 —
47724077 ‘ 359 46 29.97 0.69 0.55 0.76
59325381 221,226 38 11023.33 0.10 0.03 0.99
59278771 \ 35 43 1.10 0.35 0.39 0.83
52800582 2,701 41 11112.00 — 0.00 —
41372874 ‘ 15 39 0.15 1.00 0.15 1.00
34673164 5,378 50 0.13 0.78 0.43 0.89
48221692 \ 16 28 2311.60 — 121.94 —
50079585 1,212,513 75 9297.00 0.33 0.94 0.55
45337371 \ 3,221 31 7.85 - 0.69 -
44066044 313 38 9.55 0.38 0.01 1.00
51930566 \ 35 52 0.77 0.64 0.30 0.91
47352366 3,274,634 50 NaN 0.06 0.10 0.98
45442843 ] 4 41 0.50 0.50 0.65 0.83
48594888 4,873,738 60 1.45 0.48 0.86 0.70
31627380 \ 6,658 64 1.24 0.58 0.83 0.63
58609115 9,798 43 44539.79 0.10 0.07 0.99
50481178 ] 4,241 43 0.02 0.99 0.02 1.00

TABLE V: The Benchmark, we show (GH | Ref) the GitHub
repository reference the number of parameters, line of code
(LOC), (Result Before Fix) the loss and accuracy value before
applying patch, and (Result After Fix) the loss and accuracy
after applying patch

Result Before Fix Result After Fix
GH | Ref | Total params | LOC Loss | Accuracy Loss | Accuracy
1] [29] 18989 79 0.39 0.90 0.38 0.90
2 | [30] 367107 39 0.82 0.76 0.83 0.75
3] [31] 468980 72 0.72 0.16 0.00 0.75
4] [32] 34438 107 0.65 0.61 0.80 0.71
51 133] 169431 73 0.30 0.91 0.46 0.86
6 | [34] 221 16 0.48 0.78 0.29 0.88
7| 135] 1941 915 | 44.85 - | 4475 —
8| [36! 341 183 0.02 0.99 0.00 1.00
9 1 137] 160305 40 0.28 0.92 0.18 0.94
10 | [38] 110627418 67 0.65 0.63 0.43 0.79
11 | [39] 9 30 | 1E-05 - | 1E-05 -




approach identifies the bug correctly, and whether the approach
successfully reports the fault location of the bug, respectively.
Under /B and FL, v'means that the approach is successful, X
means it fails, and — is not able to identify or fault the bug.

The results show that our tool is able to identify bugs
for 23 out of 29 buggy programs, and our callback func-
tion is able to identify bugs for 34 out of 40 buggy pro-
grams. In contrast, TerminateOnNaN (), EarlyStop-
ping (" loss’), EarlyStopping (’accuracy’), and
the three Keras methods together are able to identify 2, 24,
28, and 32 out of 40 bugs respectively. This is mainly because
our technique used a wider spectrum of important runtime
values for analysis compared to the other three methods,
which only used one metric such as the loss, or accu-
racy. Also, EarlyStopping (’ loss’) and EarlyStop—
ping (" accuracy’) sometimes do not give a good indi-
cation that the model has a problem. For example, the deep
neural network may be stuck at a local minimum at some point
that has values that are close to the global minimum [40].

We failed to detect bugs for 7 out of 30 models using our
tool. Our tool is not able to identify the buggy model that
predicts a wrong label. In the program [41]], the training data
are in the range [—o00,+o0c]. This model has an issue that
all the negative values are predicted to zeros, because the
developer used the ReLU activation function in the last layer
instead of activation functions that produce output in the same
range of output labels such as TanH.

In the program [42]], fit_generator () instead of
fit () is used, which our technique has not yet supported.
fit_generator () is used to train the model on data
generated batch-by-batch [28]]. This API is not yet supported
by our technique, we plan to cover and investigate other APIs
in our future work.

In the Stack Overflow post [43], the user asked about
the differences between two models, each one has different
input dimensions, both models are training correctly, but the
differences are in the performance. In this case, our tool will
not find any numerical error or misbehavior to detect the bug.

In our tool, we did not target problems such as: (1) lack of
dataset, (2) training dataset with distribution problems and (3)
incorrect number of epochs, batch sizes, the number of hidden
layers, and neural nodes in the layers. An example of these
problems can be found in programs [44]], [45]], these problems
make the model terminates training at an early stage, and our
tool will not detect the issue in the model.

We also compared our approach against three Keras meth-
ods in terms of fault localization, We found that none of
the three Keras approaches are able to determine the root
causes. Our tool is able to determine root causes for 19 out 29
programs, and our callback is able to determine root causes
for 21 out of 40 programs. We compared the results from our
tool and our callback method with the ground truth we built
for the benchmark. Our tool can precisely determine the layer
or the parameter that causes the error for 19 out 29 cases
and our callback method can precisely determine for 21 out
40 cases. In the rest of the models, the tool and the callback

method reported the root cause in another layer because the
training process is a cycle; the operation in one layer can
affect the adjacent layer. For example, the program [46],
mean_absolute_error is used as a loss function instead
of mean_squared_error, and the SGD optimizer is used
instead of Adam optimizer. Our tool reports that the bug is
EBW (error in weight in backward propagation) at layer. No
= 1. In the program [47]], the user assigned the learning rate
= 0.1 instead of learning rate = 0.001. Our tool reported EBA
(Error before activation function), layer. No = 2.

Comparison between Keras VS DeepLocalize Tool VS Debugger Callback
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Fig. 5: Comparison between Keras and Our Technique

We measured the analysis time for the three Keras methods,
our tool, and our callback function using Stack Overflow
(SOF) and GitHub (GH) benchmarks. Using SOF benchmarks,
TerminateOnNaN (), EarlyStopping(’loss’),
EarlyStopping (’ accuracy’), the three Keras
methods together, our callback method and our tool
take an average of 93.01, 78.98, 93.04, 73.55, 421.39,
and 107.99 seconds respectively overall all Stack
Overflow (SOF) benchmarks. While in GH benchmarks,
TerminateOnNaN (), EarlyStopping(’loss’),
EarlyStopping (’ accuracy’ ), the three Keras methods
together, and our callback take an average of 451.52, 310.57,
171.22, 172.02, and 2613.6 seconds respectively. The
average time for all Stack Overflow (SOF) and GitHub
(GH) benchmarks is 191.6, 142.67, 114.54, 100.63, and
1024.25 seconds respectively for the four corresponding
tools. In Figure [5] we plot the average time, and shown that,
TerminateOnNaN () terminates the program when there
is a NaN in the loss value; in other cases, the training will
continue. This is why it takes longer than other methods.
Our callback function needs more value than the three Keras
methods, such as update weight and gradient to perform
dynamic analysis. This leads to an overhead if the model has
a large number of parameters, but the overhead is usually
insignificant compared to the amount of time that takes other
callback functions. However, we anticipate that the time
needed to manually debug and fault localization would be
much more than the time required to execute our callback
function.

During building the benchmark from Stack Overflow and



GitHub and identifying the bugs using our technique, we
observed that the most frequent bugs that the developer made
are (1) choosing the activation, and loss function, as there are
many combinations to choose the activation and loss depend
on the type of the problem, (2) selecting the hyperparameters,
such as the learning rate, the number of neural nodes in the
layer, number of layers in the model and (3) preprocessing
the training dataset, for example, the MNIST model needs to
normalize the training dataset from the range [-256, + 256] to
[-1, 1]. Without fault localization information, the developers
will face the problem of determining the layers or parameters
that induce the bug in the model.

C. Summary

1) RQI (Validation): We provide the empirical evidence
(Table that training a DNN using our imperative program
is consistent with using the Keras library. For RQ1, we show
that our tool is able to identify 23 out of 29 faulty models,
and our callback function is able to identify 34 out of 40
faulty models. Also our technique is able to determine the
fault localization precisely for 19 out 29 using our tool, and
21 out 40 using our callback while Keras is not able to localize
bug.

2) RQ2 (Comparison): Our technique is able to identify
34 out of 40 faulty models using our callback functions, and
23 out of 29 using our tool. On the other hand, the Keras
library reported bugs for 2, 24, and 28 out of 40 models,
respectively. Also, if we take the union of three methods,
the Keras library reported bugs for 32 out of 40 models.
We also show that our technique can effectively locate the
root causes for 21 out of 40 programs using our callback
and 19 out 29 using our tool while Keras methods does
not support this feature. As it can be seen in Figure [5 our
tool using dynamic analysis is practical and faster than Keras
by identifying the bug. Three methods using Keras take on
average 191.6, 142.67, and 114.54 seconds respectively, while
our tool takes on average 107.99 seconds. On the other hand,
our callback needs more time to make dynamic analysis for
additional parameters than loss and accuracy. This overhead
is usually insignificant compared to the amount of time taken
by TerminateOnNaN ().

3) RQ3 (Limitation): We failed to detect bugs for 7 out
of 30 programs and failed to localize faults for 11 out of 30
programs using our tool, and our callback failed to localize
fault for 20 out of 41. These programs either predicted wrong
labels or have problems in the training dataset, the settings
of epoches, batch sizes, the number hidden layers, and the
number of neural nodes. In such cases, the training stopped
before the model finished learning. Thus our tool was not able
to handle these cases. Also, our prototype does not support all
the Keras APIs. As an example, one of the buggy program
in Stack Overflow [42]] used fit_generator () instead of
fit () function. fit_generator () is used to train the
model on data generated batch-by-batch [28]]. We plan to cover
and investigate other APIs in our future work.

V. THREATS TO VALIDITY

We were mainly concerned with the implementation of our
tool that may affect the evaluation and result. To minimize this
threat, we followed Keras code [70]] and carefully reviewed our
implementation between the authors to reduce the chances that
major errors were compared to our tool against Keras, as we
have shown in Table [Tl

Our tool currently handles the frequent layers/APIs in
the Keras library, including: Dense, Dropout, MaxPool—
ing2D, Conv2D, and BatchNormalization. We may
not yet able to handle deep learning programs whose bugs
are related to other APIs e.g., ConvLSTM2D (), Conv3D ().

We validated the output of our tool using the benchmarks
we created. The trustworthy of manually created benchmarks
could be a threat to the validity of our results. To alleviate this
threat, we follow the same methodology in prior works [13].
Also, we have evaluated the benchmark before/after fixing the
issue in the model.

VI. RELATED WORK

The closest related work in terms of technical ideas is by
Gopinath et al. [20], [24]. Gopinath et al. proposed a new
approach (DeepCheck) inspired from program analysis to test
a Deep Neural Network (DNN) using symbolic execution.
DeepCheck also uses a white box technique to enable symbolic
execution to find the important pixels, and find the attack
pixels by translating DNN to an imperative program that
has the same behavior as DNN. The experimental results
conducted using MNIST data set shows that their approach
is able to create 1-pixel and 2-pixel attacks by finding the
most important pixels that DNN fails to classify correctly. Our
imperative representation is inspired by this work. While this
work focuses on identifying adversarial attack, our work aims
to identify faults in DNNs and localize their fault.

A. Testing Deep Neural Networks

DeepTest [71] and follow-up work aim to automatically
generate test cases to examine corner cases corresponding
to real world inputs. These works have focused on test
case generation, whereas our work uses an existing training
dataset and focuses on localizing the root cause of a bug
by observing the runtime behavior of a deep neural network.
Zhang et al. |[72]] present a comprehensive survey of work
in this area. Eniser et al. [73|] proposed a new white box
analysis technique (DeepFault) inspired from spectrum-based
fault localization. DeepFault tests DNN models to achieve two
objectives: (i) detect suspicious neurons, i.e., neurons likely to
be more responsible for inadequate DNN performance; and (ii)
synthesis of new inputs, using correctly classified inputs, that
exercise the identified suspicious neurons. The experimental
results conducted on MNIST and CIFAR-10 datasets show
that DeepFault is effectively identifying suspicious neurons.
DeepFault does not focus on structure bugs, instead they
focus on training bug, and pre-trained DNNs analysis, given
a specific test set. While our tool identifies the buggy model
and faults the root causes of structure bug in DNN.



TABLE VI: Comparisons Between the Keras Methods and Our Tool, and Our Callback Using Stack Overflow Post

‘ TerminateOnNaN Ear i ="loss’) Early i ="accuracy’) Our Tool Our CallBack
Post # | Ref | Time Epoch | Tteration | 1B | FL Time Epoch | Tteration | 1B | FL Time | Epoch [ Tteration FL Time Epoch | Tteration | IB | FL Time Epoch | Tteration | 1B | FL
48385830 | [22 1.20 1 10 v - 12.21 1 60000 v - 34.90 60000 | v - 0.14 1 4| v v 2.14 1 20 | v v
44164749 | 48] | 175.23 S 60000 [ X - 175.23 5] 60000 | X | - 17523 ] S 60000 X - 22.93 1 50 v v 111.56 1 2000 v v
31556268 | [46 5.69 1000 4 X - 5.69 1000 4 X - 0.91 2 4 v - 4.57 98 394 | v X 1.20 1 41 v X
50306988 | [49] [ 144 5 200 [ X | - 144 5] 200 [ X [ - 130 | 2 200 | v [ - 1.03 I 100 [ v [ v 357 1 64| v | ¢
48251943 | [41 522 100 17 X - 0.93 27 17 v - 522 100 17 X - 20.45 100 17 X X 706.83 0 17 X X
38648195 | [50; ‘ 120.52 20 48000 ‘ X - 120.52 20 ‘ 48000 ‘ X ‘ - 120.00 ‘ 20 48000 X - 249 1 95 v X 25.92 1 100 v v
33969059 | [51 130.66 20 10000 X - 14.03 2 10000 v - 14.14 2 10000 | v = 0.95 1 50 | v v 1.52 1 32| v v
55328966 | |52 98.84 10 4999 [ X - 98.84 10 ] 4999 [ X [ - 98.84 10 49999 X - 272.70 1 737 v v | 9092.93 10 49999 X X
34311586 | [53 1.01 20 6 X = 0.87 2 6 v = 0.97 20 6 X = 0.73 8 50 | v v 1.02 1 32| v v
31880720 | [54] [ 176.02 3 20000 [ X - 110.25 2 20000 [ v [ - 11328 | 2 20000 | v - 111 1 50 | v v 2.12 1 1 v v
39525358 | |44 3.15 150 13 X - 3.15 150 13 X - 1.68 2 13 v - 28.36 150 13 X X 14.29 2 10 v v
39217567 | 155] | 16.97 1000 256 | X - 1.31 ] 256 | X [ - 118 ] 2 256 v - 329.46 100 256 X X 188.71 5 50 v X
48934338 | [47 11.03 1000 50 X - 0.91 10 50 v - 0.85 2 50| v - 0.33 1 13 v X 3.01 1 2| v X
47724077 [ 156 | 31.07 50 32561 | X - 2.92 3] 32561 | v [ - 3.46 | 4 32561 v - 0.66 1 50 v v 1.42 1 100 v v
59325381 | [57 758.04 10 60000 X - 260.06 3 60000 v - 239.52 3 60000 | v - 125.52 1 1750 | v X 24.66 1 160 | v v
59278771 58] | 194 200 135 [ X | - 524 62 | 135 [ v [ - 194 [ 200 135 | X | - 052 1 S0 v v 60.64 1 V| X
52800582 [ [59 10.04 1000 400 X - 1.79 2 400 v - 10.04 1000 400 X - 0.14 1 7 v v 12.79 4 400 v X
41372874 [ (60 | 686 20 29 ] X | - 6.86 20 ] 239 ] X ] - 240 | 3 39| v | - | 666 20 239 | X | X T42 T 2 vV |
34673164 | [61 1.93 9 20 X - 2.00 2 20 v = 2.09 6 2 | v = 2.04 11 100 | v v 26.00 B 9| v v
48221692 | [62] | 7.16 1000 150 [ X - 2.61 280 | 50 [ v [ - 095 2 150 | v - 24.24 13 150 | v v 8.02 4 150 v X
50079585 | [42 171.69 10 61 X = 172.00 10 61 X - 54.38 3 61 v - - - - - - - - - -
45337371 | [63] 12.52 5 1000 [ X - 6.79 2 ] 1000 [ v [ - 7.02 ] 2 1000 | v - 1.17 1 50 | v v 243 1 1 v v
44066044 | |64 3.87 100 21 X = 2.07 4 21 v = 1.97 2 21 v = 1.07 2 50 | v v 141 1 5 v v
51930566 | [43] | 4.07 50 75 X - 4.07 50 ] 5] X[ - 1.66 | 2 75 v - 38.65 50 75 X X 22.40 1 40 v X
47352366 | |65 3275 1 4950 v - 381.31 1 60000 v - 793.64 2 60000 | v - 75.46 1 50| v v | 1177.03 1 1050 | v X
45442843 | |66 [ 2.57 100 200 [ X - 1.17 3] 200 [ v [ - L15 ] 2 200 v - 0.48 1 50 v v 0.97 1 200 v v
48594888 | |67 1055.29 5 50000 X — | 1055.29 5 50000 X — | 1055.29 5 50000 X - 116.38 1 51 v v 4.24 1 2| v v
31627380 | |68 ‘ 6.28 10 712 ‘ X - 6.12 10 ‘ 712 ‘ X ‘ - 3.09 ‘ 3 712 v - 1.28 1 50 v v 1.76 1 4 v v
58609115 | [69 3.12 10 1767 X - 2.61 8 1767 v - 1.94 3 1767 v - 29.06 1 1350 | v v 343.78 1 1250 v X
50481178 | [45] | 12.66 50 200 | X | - 312 [ 200 ] v [ - 358 | 3 200 | v | - | 1963.13 50 200 | X | X | 37644 I 50 | v | X
TABLE VII: Comparisons Between the Keras Methods and Our Callback Using GitHub Repository
TerminateOnNaN [ EarlyStopping(monitor="loss’) EarlyStopping(monitor="accuracy’) Union Our CallBack
GH | Ref Time Epoch | Tteration [ IB | FL | Time Epoch | Tteration B | FL Time [ Epoch | Tteration | IB L Time Epoch | Tteration | IB [ FL Time Epoch | Tteration | 1B | FL
1]]29] | 35614 2| 1944601 | X | - | 34582 2 [ 1944601 | X | - | 35146 | 2| 1944601 | X | - | 34317 2 [ 1944601 | X | - 11.80 T % | v | X
21130 3427.71 50 100 X - 2602.44 36 100 v — | 1082.78 15 100 v - | 1073.39 15 100 v — | 8432.06 50 100 X X
37131 101.78 100 ‘ 100 ‘ X - ‘ 9.01 8 2140 v - 4.39 ‘ 3 2140 v - 720 5 2140 v ‘ - 31.69 1 ‘ 96 ‘ v v
41132 256.76 20 1999 X - 5246 4 1999 v - 54.10 4 1999 v - 52.88 20 1999 v - 102.44 1 300 v X
51133 163.86 10 ] 27839 [ X - | 169.24 10 27839 | X — | 17104 | 10 27839 | X - | 19171 10 27839 | X | - | 16470 1] 2560 | v | v
6] (34 19.92 25 768 X = 2.44 10 768 v = 1.54 2 768 v = 1.52 2 768 v — | 9568.09 25 768 X X
71135 19.33 0] 166 ] X | -] 1975 10 66 | X | - 790 | 3 1166 | v | - 795 3 166 | v | - 190 2] [ v | v
81136 2.66 2 125 X - 2.51 2 125 X - 2.74 2 125 X - 2.58 2 125 X — | 1022.32 2 125 X X
[l 13.30 4] 15000 | X - 12.67 4 15000 X - 1355 | 4 15000 X - 13.38 4 15000 X [ - [938121 4] 15000 | X X
[l 587.26 15 1440 X - 194.23 3 1440 v - 193.74 3 1440 v - 198.24 5 1440 v - 28.04 1 64 v v
Il 12.97 10 ] 10000 [ X | -] 573 1 10000 | v | - 320 | 2 10000 | v | - 323 ) 10000 | v [ - 538 1] 30 v | X

B. Empirical Study on Deep Learning Bugs

There have been several empirical studies that have analyzed
different kind of bugs in deep learning networks. These studies
have been conducted on real code and examples from the
Stack Overflow posts and GitHub issues. They have focused
on symptoms and root causes of bugs to have a better
understanding of deep learning bugs.

Zhang et al. 8] utilized Stack Overflow posts and GitHub
commits to investigate bugs in deep learning applications built
on top of TensorFlow. They focused on symptoms and root
causes of TensorFlow bugs to have a better understanding of
deep learning bugs. Islam et al. [9] also studied deep learning
bugs using Stack Overflow questions and GitHub commits.
They also adapted a taxonomy of bug type, root cause, and
bug impacts for deep learning software for five popular deep
learning libraries.

Another study has been conducted to understand the bug fix
pattern and how the developer can develop a tool to fix the
bugs automatically by Islam et al. [10]. They have conducted a
comprehensive study on 415 posts from Stack Overflow, and
555 from GitHub commits for five popular DNN packages
to understand the bug fix patterns, and how the bugs can be
fixed in DNN software. The main goal of this study to help the
developers to understand the characteristics of bug and how
they can design an automated repair tool.

C. Bugs Repairing in Deep Learning

In recent years, there are several proposals for debugging
deep neural networks. These techniques are often inspired

from software debugging and testing techniques.

Ma et al. [74] proposed and developed a technique called
MODE inspired by software debugging. MODE performs state
differential analysis to solve two types of problems: overfitting
problems and under-fitting problems. MODE can solve these
problems by identify the buggy features (or neurons) that
are responsible for the misclassification in the model, then
it constructs the degree of importance of features to retrain
the faulty neurons with new input samples selection. MODE
provides effective and efficient method to fix the buggy models
without introducing new bugs, and compromise on accuracy
and training time cost.

Zhang et al. [[75] introduced an automatic approach to fixing
deep learning models called Apricot. Apricot is able to adjust
the ill-trained weights without using additional training data or
any artificial parameters, Apricot using a set of reduced models
from the original model, and compare the differences between
the original model and correct/incorrect of reduced models
iteratively, to find these failing test case that are responsible for
the misclassification in the original model. The approach uses
three strategies to adjust the weight and achieve a higher test
accuracy. The experimental results using CIFAR-10 dataset
and five state-of-the-art of deep learning models have shown
that the approach can increase the test and training accuracy.

In recent years, several researchers are supporting automated
debugging and repair approaches for deep neural networks,
and recent research is summarized in [72]. This topic is still
at the early stages [74], [75]]. To the best of our knowledge, all
previous works are focused on the training bugs. Our technique
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is the first approach that automatically identifies the buggy
model and localizes the root causes of structure bug in DNNs
by applying the DNN Bug Detection algorithm.

VII. CONCLUSIONS AND FUTURE WORK

As deep neural networks are becoming integrated with soft-
ware systems from different domains, developing debugging
techniques to localize the root cause of the bug has become
urgent. Thus, recent work has developed techniques to inspect
the entire model and find faults. Inspired by program analysis
and software debugging techniques, we have presented an
automated approach powered by a dynamic analysis and
statistical analysis. It can help identify the buggy model and
the root causes of DNN error. An experimental evaluation
using 40 real deep learning applications shows the usefulness
of our technique. For 34/40 cases, our approach was able to
detect faults whereas the best debugging approach provided by
Keras detected 32/40 faults. Our approach was able to localize
21/40 bugs whereas Keras did not localize any faults.

Future work includes developing techniques to repair deep
neural network bugs, and exploring cases that our work was
unable to detect faults (6/40) and localize errors (19/40).
Recent work has also used analysis of the DNN structure
to decompose it into modules [76]. It would be interesting
to explore whether a similar mechanism can be utilized for
better localization. It would also be interesting to go beyond
accuracy bugs to detect and localize more non-functional bugs,
e.g. fairness bugs [77].
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