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To protect water resources, halt waterborne diseases, and prevent future water crises, photocatalytic
degradation of water pollutants arouse worldwide interest. However, considering the low degradation
efficiency and risk of secondary pollution displayed by most metal-based photocatalysts, highly efficient
and environmentally friendly photocatalysts with appropriate band gap, such as carbon dots (CDs), are in
urgent demand. In this study, the photocatalytic activity of gel-like CDs (G-CDs) was studied using
diverse water pollution models for photocatalytic degradation. The degradation rate constants demon-
strated a remarkably enhanced photocatalytic activity of G-CDs compared with most known CD species
and comparability to graphitic carbon nitride (g-C3N4). In addition, the rate constant was further
improved by 1.4 times through the embedment of g-C3N4 in G-CDs to obtain CD-C3N4. Significantly,
the rate constant was also higher than that of g-C3N4 alone, revealing a synergistic effect. Moreover,
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Mineralization
 the use of diverse radical scavengers suggested that the main contributors to the photocatalytic degrada-
tion with G-CDs alone were superoxide radicals (O2

��) and holes that were, however, substituted by O2
��

and hydroxyl radicals (�OH) due to the addition of g-C3N4. Furthermore, the photocatalytic stabilities of
G-CDs and CD-C3N4 turned out to be excellent after four cycles of dye degradation were performed con-
tinuously. Eventually, the nontoxicity and environmental friendliness of G-CDs and CD-C3N4 were dis-
played with sea urchin cytotoxicity tests. Hence, through various characterizations, photocatalytic
degradation and cytotoxicity tests, G-CDs proved to be an environmentally friendly and highly efficient
future photocatalyst.

� 2021 Elsevier Inc. All rights reserved.
1. Introduction

Water covers 70% of the Earth’s surface and 97% of it is present
in the ocean. In the remaining 3%, 2% of water resides in glaciers
and ice caps in the form of ice while fresh water only occupies less
than 1% of all the water present on Earth [1]. To make things even
worse, not all fresh water is drinkable. In fact, in some regions, par-
ticularly in the West and Southeast United States, the supplies of
drinking water are dramatically low due to drought and aquifer
depletion [2,3]. In many native reserves of Canada, clean drinking
water is even considered as a luxury [4]. Additionally, fresh water,
which includes drinking water, can be easily contaminated by
human activities and natural disasters [5–7]. The year 2020 wit-
nessed continuous natural disasters including Atlantic hurricanes,
wildfires in the United States, Australia and the Amazon rainforest,
as well as the COVID-19 pandemic. During or after these natural
disasters, clean drinking water may become a most desirable but
inaccessible resource [8]. The goal of this study is not only to call
for the preservation of natural water resources but also to provide
a novel solution to purify contaminated water and prevent future
water pollution caused by chemicals and/or microorganisms to
avoid accidents like the Deepwater Horizon oil spill in 2010 and
Walkerton E. coli outbreak in 2000. Therefore, degradation of
unwanted chemicals and organisms in water without harming
the body of water is of great significance to the future access of
clean water.

Photocatalytic degradation is a promising technology in water
purification [9]. It utilizes sunlight and an appropriate photocata-
lyst to induce the generation of reactive oxygen species (ROS) from
water and dissolved oxygen leading to the breakdown of organic
pollutants [10]. Currently, common wastewater treatment
methodologies include chemical oxidation, biological methods,
combustion, flocculation, adsorption on granular activated carbon,
air stripping, and precipitation [11]. In comparison with the afore-
mentioned techniques, the biggest advantage of photocatalytic
degradation is the complete mineralization of hazardous organic
pollutants to water, carbon dioxide and simple mineral acids
instead of converting them to secondary contaminants [12]. Addi-
tionally, photocatalytic degradation is efficient, low-cost and feasi-
ble at room temperature, which has enabled the removal of a wide
range of organic water pollutants such as pesticides, herbicides,
and micropollutants such as endocrine disrupting compounds
[13–15]. Furthermore, the generated ROS have the ability to act
on a broad spectrum of waterborne pathogenic microorganisms
by causing direct oxidative damage, or by a variety of nonoxidative
mechanisms including pattern recognition receptors (PRR) signal-
ing, autophagy, neutrophil extracellular trap formation, and T-
lymphocyte responses [16,17]. To be more specific, interactions
between ROS and thiol groups in protein, DNA, and cell membrane
of pathogens can induce their apoptosis [18]. Additionally, the
most damaging ROS, hydroxyl radicals (�OH) can promote lipid per-
oxidation by triggering the chain oxidation of polyunsaturated
phospholipids of bacterial cell membranes [19,20]. Moreover,
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hydrogen peroxide (H2O2)-dependent cytotoxicity arises with the
interactions of DNA bases that break the deoxyribose chains [21].
In summary, photocatalytic degradation is a thorough and trans-
formative water purification approach.

Currently, the biggest obstacle in the optimization of photocat-
alytic degradation processes is the design of appropriate photocat-
alysts. Due to many unique properties that result from nanoscale
[22] nanomaterials have been widely studied for their photocat-
alytic activities, which include metal oxides (TiO2, Fe2O3, ZnO,
BiVO4, etc.) [23–26], metal chalcogenides (CdS, ZnS, MoS2, etc.)
[27–29], metal-free nanomaterials such as graphitic carbon nitride
(g-C3N4) [30] and their composites (Zn-CeO2, Si-Ti, CdS-TiO2, etc.)
[31–34]. However, since the majority of present photocatalysts
contain metals, their use will pose a risk of secondary pollution
to the body of water [35]. In contrast, metal-free nanomaterials
such as g-C3N4 are of great significance to environmental and eco-
logical protections so their development deserves more attention
[36–38]. Moreover, metal sulfides suffer from photocorrosion
[39]. And even though metal oxides are generally stable in aqueous
media, most of them possess large band gaps [40]. Band gap is one
of the most important characteristic properties of a semiconductor
[41]. It indicates the energy gap between the top of the valence
band and the bottom of the conduction band [42] and it also rep-
resents an energy range where no electronic states exist [43]. How-
ever, the introduction of heteroatoms such as O, N, B, P, S [44] and
related chemical bonds can add single or multiple electronic states
between the valence and conduction bands, which usually results
in the narrowing of band gap [45]. To be specific, in order to be a
good photocatalyst, the nanomaterial should possess a band gap
between 1.23 and 3.00 eV that will enable photocatalytic processes
to utilize visible and infrared wavelengths which make up more
than 90% of the overall solar radiation spectrum [46]. Thus, to
obtain versatile photocatalysts, future design has to take into con-
sideration many factors including the impact on environment and
ecology, photocatalytic stability, and band gap.

Meanwhile, considering numerous favorable characteristics
such as small size, high specific surface area, tunable surface func-
tionality, benign biocompatibility, low toxicity and unique optical
properties, carbon-based NPs including the aforementioned g-
C3N4 are being rapidly developed in the hope of replacing toxic
heavy metal-containing NPs in diverse application fields. Among
various carbon-based nanomaterials, carbon dots (CDs) are a rela-
tively new family member whose discovery can be traced back to
the early 21st century [47]. Since then, there have been an increas-
ing number of studies related to the synthesis, property character-
ization and application of CDs in the past two decades [48–51]. CDs
have been observed to be spherical NPs with a mean diameter of
between 1 and 10 nm. In terms of structure, CDs are compared
with traditional quantum dots (QDs) and defined as core-shell
nanostructures [52,53]. Also, CDs exhibit many unique properties
that are rarely centered on any other known nanomaterials. For
instance, different from many NPs, CDs can be directly obtained
from food and beverage such as barbecued food [54] honey [55]



Y. Zhou, A.E. ElMetwally, J. Chen et al. Journal of Colloid and Interface Science 599 (2021) 519–532
and beer [56] which reveals their good biocompatibility, low cost,
and convincingly demonstrates their reliable uses in human or the
environment. In addition, compared with traditional QDs and gold,
silver, zinc oxide NPs, CDs are carbon-based NPs with no metallic
toxicity. In comparison to liposomes, the mean diameter of CDs
is much smaller allowing for a high surface-area-to-volume ratio,
which is beneficial for their interactions with diverse contaminants
in water. In contrast to carbon nanotubes, CDs are easier to synthe-
size with just a domestic microwave oven and short heating time
[57]. CDs are also well characterized for their excellent light har-
vesting ability and photoluminescence (PL) properties [58–61].
Furthermore, due to abundant electron donors and acceptors pre-
sent on the surface [62], CDs are promising photocatalysts [63].
Nonetheless, photocatalytic activities of CDs alone were not char-
acterized in early studies and CDs were often coupled with those
well-established photocatalysts such as Fe2O3 [64], TiO2 [65–67],
ZnO [68], SnS2 [69], BiOBr [70], and g-C3N4 [71], to enhance their
photocatalytic performances especially under visible light. It was
not until 2017 that our research group initiated studies on photo-
catalytic activities of bare CDs which were found to be size-
dependent [35]. Subsequently, in the past few years, the research
on photocatalytic degradation of contaminants in water with CDs
alone as photocatalysts is rapidly increasing, but the main chal-
lenge for translation of research into practical applications is the
low degradation efficiency. Recently, a group of gel-like CDs (G-
CDs) showed a tremendously high photocatalytic efficiency in the
degradation of water contaminants, which might have achieved
the highest performance of current CD-based photocatalysts to
the best of our knowledge. Meanwhile, this finding also suggests
that G-CDs might be another metal-free fundamental photocat-
alytic material like g-C3N4.

Herein, the photocatalytic activity of G-CDs has been exten-
sively studied through data analysis of various degradation pro-
cesses. In addition, G-CDs have been systematically characterized
in our previous studies by UV/vis absorption, fluorescence emis-
sion, Fourier-transform infrared (FTIR), X-ray photoelectron spec-
troscopies (XPS), mass spectrometry (MS), thermogravimetric
analysis (TGA), atomic force microscopy (AFM), transmission elec-
tron microscopy (TEM), and zeta potential measurement [72,73]. In
this study, we only present a few important characterizations by
UV/vis absorption, fluorescence emission, FTIR spectroscopies, X-
ray powder diffraction (XRD), XPS, AFM and TEM. Moreover, the
fluorescence quantum yield (QY) of G-CDs was measured with
two standards for cross calibration. Then, the photocatalytic activ-
ity of G-CDs was evaluated by calculating the photocatalytic degra-
dation rate constants of diverse organic dyes and phenol, a
prevalent industrial effluent [74]. Each rate constant was com-
pared with that for g-C3N4 and other CDs. Furthermore, in order
to enhance the photocatalytic activity of G-CDs, g-C3N4 was incor-
porated in G-CDs to acquire the CD-C3N4 composite. In fact, combi-
nation of g-C3N4 and various NP species via composition and
surface modification has generally shown a high photocatalytic
activity in many applications due to the abundance of active sites
and desired surface, which thus reduces the recombination of
charge carriers and enhances the photocatalytic activity.[75–77]
The CD-C3N4 was characterized and applied as the photocatalyst
in the degradation of a wide spectrum of water contaminants
whose rate constants were compared with that of g-C3N4 and G-
CDs alone. Subsequently, the band gap of G-CDs and CD-C3N4 were
measured by diffuse reflectance spectroscopy while the determina-
tion of ROS was conducted with a comprehensive radical scavenger
test. Later, to test the photocatalytic stability of G-CDs and CD-
C3N4, dye degradation with multiple cycles was performed. The
cytotoxicity of G-CDs and CD-C3N4 were investigated by analyzing
the survival rate of sea urchins.
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2. Experimental

2.1. Materials

Citric acid (99.5–100%), acetone (99.9%) and quinine sulfate
dihydrate (>99%) were bought from VWR (West Chester, PA). 1,2-
ethylenediamine (EDA) (�99.0%) was provided by MP Biomedicals
(Irvine, CA). Harmane (>98%) and phenol (99+%) were ordered from
Sigma-Aldrich (St. Louis, MO). Isopropanol alcohol (IPA) (99+%), p-
benzoquinone (98+%), methylene blue (MB) (>95%), methyl orange
(MO) (>95%), rhodamine B (RhB) (95%), and ethylenediaminete-
traacetic acid disodium salt (EDTA-Na) (99%) were purchased from
Alfa Aesar (Haverhill, MA). Compressed argon and nitrogen gases
with ultra-high purity were acquired from Airgas (Miami, FL).
Deionized (DI) water with resistivity of 18.2 MX�cm and surface
tension of 72.6 mN m�1 was obtained via a Modulab 2020 water
purification system (San Antonio, TX) at room temperature (20.0
± 0.5 �C). All chemicals were used without further treatment.
2.2. Characterization

UV/vis absorption spectroscopy was performed using a UV/Vis
spectrophotometer (Cary 100, Agilent Technologies, USA) and an
optical cell with a 1-cm pathlength. A spectrofluorometer
(Fluorolog-3, Horiba Jobin Yvon, USA) was applied to record fluo-
rescence emission spectra with a slit width of 5 nm for both exci-
tation and emission. FTIR spectroscopy was conducted on an FTIR
spectrometer (Frontier, PerkinElmer, USA) equipped with attenu-
ated total reflection (ATR) accessory. AFM was employed using
an atomic force microscope (5420, Agilent Technologies, USA) with
one drop of G-CDs, g-C3N4 or CD-C3N4 dispersion (1 mg/mL) trans-
ferred on a clean silica mica slide, which was followed by imaging
with tapping mode. TEM was performed with a transmission elec-
tron microscope (1200�, JEOL, USA). A drop of G-CDs, g-C3N4 or
CD-C3N4 dispersion (1 mg/mL) was placed on a carbon-coated
200 mesh copper grid and air dried. It is noteworthy that prior to
both AFM and TEM screening, 5-min ultrasonication was applied
to avoid self-aggregation. TGA of G-CDs, g-C3N4 and CD-C3N4 were
conducted using a thermo-microbalance (TG 209 F3 Tarsus, Net-
zsch, USA) while heating under a flow of nitrogen gas from 40 to
1000 �C at a rate of 10 �C/min. XRD was performed using a diffrac-
tometer (TTRIII, Rigaku, Japan) equipped with Cu Ka radiation (k =
1.5406 nm). XPS was measured on an XPS instrument (K-Alpha,
Thermo Fisher Scientific, USA) with a monochromatic Al Ka source
with a photon energy of 1486.6 eV, operated at 12 kV and 72 W. In
the constant analyzer energy (CAE) mode of full spectrum scan-
ning, the analyser pass energy was held constant at 100 eV with
a step size of 1 eV while for narrow spectrum scanning, the pass
energy was decreased to 50 eV with a step size of 0.1 eV. Calibra-
tion of binding energies was carried out with surface contamina-
tion C1s (284.8 eV) as the standard. To record the valence band
spectrum, a pass energy 50 eV with a step size of 0.05 eV was
applied. The corresponding binding energy calibration was carried
out using surface contamination C1s (284.8 eV) as the standard.
2.3. Synthesis of G-CDs

To prepare G-CDs, first a 50-mL round-bottom flask was filled
with argon gas for 5 min to expel O2. Subsequently, 30 mL EDA
was transferred to the flask and heated with constant stirring using
an oil bath. When the temperature reached 160 �C, 6 g of citric acid
was added to the flask. The reaction of citric acid and EDA pro-
ceeded for 50 min under the environment of argon gas for deaera-
tion.[78] After the solvothermal system was cooled to room
temperature, the G-CDs were deposited at the bottom of the flask
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below the layer of unreacted EDA. To purify the G-CDs, unreacted
EDA was removed with an acetone wash. (Note: In this study, the
selection of an acetone wash instead of traditional CD purification
methodologies such as dialysis and size exclusion chromatography
was based on their G-CDs purification effects [79].) Finally, 10 g of
G-CDs were dispersed in 100 mL DI water and heated by using a
rotary evaporator (Bechi, R-114) to completely evaporate water,
the remaining unreacted EDA and acetone at a constant tempera-
ture of 80 �C with reduced pressure until only G-CDs remained.

2.4. Assembly of CD-C3N4

Exfoliated g-C3N4 was prepared by following the procedures in
the literature reference [80], and then incorporated in G-CDs dur-
ing their syntheses. In detail, initially, 30 mL EDA was transferred
to a 50-mL round-bottom flask previously filled with argon gas
for 5 min. Subsequently, the round-bottom flask was heated with
constant stirring using an oil bath. When temperature climbed
up to 160 �C, 6 g of citric acid mixed with 50 mg of as-obtained
g-C3N4 was added to the flask containing boiling EDA. The reaction
lasted for 50 min under the environment of argon gas for deaera-
tion.[78] After the solvothermal system was cooled down to room
temperature, the g-C3N4-embedded G-CDs (CD-C3N4) were depos-
ited at the bottom of the flask below the layer of unreacted EDA.
The purification of CD-C3N4 followed the same procedures for G-
CDs but the physical appearance of CD-C3N4 was different from
that of G-CDs alone, which is exhibited in Fig. S1 in the supporting
information.

2.5. Fluorescence quantum yield calculation

The fluorescence QY of as-prepared G-CDs was calculated with
the absorbance at 350 nm and the integrated PL intensity obtained
at the excitation of 350 nm using both quinine sulfate dihydrate
and harmane as reference standards. It is well known that quinine
sulfate and harmane in 0.1 M H2SO4 aqueous solution possess a flu-
orescence QY of 54 and 83%, respectively [81,82]. The absorbances
of two standards and G-CDs were acquired with three runs each in
a quartz cuvette with a 1-cm pathlength. In addition, the concen-
trations of two standards and G-CDs have to be well adjusted to
ensure the absorbance at 350 nm lower than 0.05. Then, the fluo-
rescence emission spectra of the same solutions were recorded
three times each under the excitation of 350 nm. The average of
absorbances and integrated PL intensities were taken into the fol-
lowing equation:

U = UR � (I / IR) � (AR / A) � (g2 / g2
R)

In this equation, U, I, A and g represent fluorescence QY, inte-
grated PL intensity, absorbance at 350 nm, and refractive index
of water which is 1.33 [83], respectively. Subscript R is denoted
for the reference.

2.6. Photocatalytic degradation of organic pollutants

All photocatalytic degradation experiments were carried out in
a quartz cuvette with a 1-cm pathlength placed 10 cm in front of a
solar simulator (Oriel Instruments, Newport Corporation)
equipped with a high-power mercury-xenon light source (see
Fig. S2 in the supporting information for the spectrum). The cuv-
ette had been filled with 4 mL of aqueous solution (10 mg L�1) of
each dye and 12 mg of G-CDs or CD-C3N4. The used dyes included
RhB, MB andMO. G-CDs or CD-C3N4 was ultrasonically dispersed in
various dye solutions. Photocatalytic reactions were initiated by
switching on the lamp, adjusting the power to 310 W and record-
ing the initial absorbances at 554 (RhB), 664 (MB) and 464 nm
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(MO). Subsequently, in order to keep the concentration of photo-
catalysts and pollution models steady throughout the whole UV/
vis absorption measurement, instead of measuring out a few ali-
quots of samples, we directly used the cuvette containing both
photocatalyst and pollution model for UV/vis absorption measure-
ment, so the sample volume used for this purpose was constantly
4 mL. Absorbances were read out every 10 min by the UV/vis spec-
trophotometer. According to the Beer-Lambert law, the absor-
bances reflect on the concentration changes of each dye.
Furthermore, phenol degradation was conducted by following the
same procedures. However, due to overlap of absorption peaks of
G-CDs, CD-C3N4 and phenol, the phenol degradation extent was
monitored at the retention time of 3.25 min on an HPLC (Dionex
UltiMate 3000) equipped with Dionex UltiMate 3000 diode array
detector and Agilent Eclipse Plus C18 column (3.5 mm � 4.6 � 100
mm). The flow rate of the mobile phase (CH3CN:H2O = 30:70, v/v)
was adjusted to 1 mL min�1 during the analysis. Shimadzu TOC-L
analyzer was used to monitor the extent of mineralization after
photocatalytic reactions. All experiments were conducted at least
three times each, unless mentioned otherwise, to ensure the accu-
racy and reproducibility of our results.

2.7. Cytotoxicity studies of G-CDs and CD-C3N4

Sea urchins were employed to test the cytotoxicity of G-CDs and
CD-C3N4. Sea urchins (Lytechinus veriegatus) were acquired from
the Duke University Marine Lab (Beaufort, NC, U.S.A). Sea urchins
are invertebrates and as such research with these animals do not
require specific ethical care permits. The animal care protocol for
all procedures used in this study was approved by the University
of Miami Animal Care and Use Committee and complies with the
guidelines of the National Science Foundation. Fertilized sea urchin
eggs were grown in a 24-well plate. 100 embryos were placed in
each well with 200 mL of filtered seawater. Then, the embryos were
separately treated with different concentrations (0, 10, 25, 100 mM)
of G-CDs and CD-C3N4 dispersed in 400 mL of seawater and incu-
bated at 21 �C. After 24 h post fertilization at the gastrula stage
of sea urchin development, survival rates of the sea urchin
embryos were measured with three biological replicates. Signifi-
cance of sea urchin cytotoxicity studies were determined using
Student’s t-tests for all pairwise comparisons of the different treat-
ments that were tested. All the results are mentioned as the
mean ± standard error of the mean (SEM). Significance was set at
p < 0.05.
3. Results and discussion

The G-CDs in our study have a high product yield and can be
rapidly produced on large scale in one-pot hydrothermal reaction
which can be easily deactivated in a round-bottom flask and oil
bath. To be specific, within 1 h, 10 g of G-CDs can be produced from
6 g of citric acid and 30 mL EDA. Compared with many CD species
and nanomaterials in general, to the best of our knowledge, the
product yield is honestly good for industrial production. In addi-
tion, the excess of EDA can be reused to save the expense.

3.1. Characterizations of G-CDs and CD-C3N4

In this study, UV/vis absorption, fluorescence emission, FTIR
spectroscopies, AFM and TEM were applied to briefly refresh the
optical properties, structure and morphology of G-CDs. In the
UV/vis absorption spectrum of G-CDs (Fig. 1a), it is clear that G-
CDs consist of C@C (245 nm) and C@O/C@N (287–335 nm) struc-
tures. Based on the fluorescence emission spectra as well as corre-
sponding normalized spectra (Fig. 1b), G-CDs possess an
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Fig. 1. Brief physicochemical characterizations of G-CDs. (a) UV/vis absorption spectrum of G-CDs in aqueous medium (0.9 mg/mL); (b) fluorescence emission spectra of G-
CDs in aqueous medium (0.01 mg/mL) with the normalized spectra as inset; (c) FTIR spectrum of G-CDs in gel state with air as background; (d) XRD of G-CDs; (e) XPS spectra;
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excitation-dependent PL and the maximum excitation and emis-
sion wavelengths are 350 and 450 nm, respectively. In addition,
to calculate the fluorescence QY of G-CDs, quinine sulfate and har-
mane were selected as two reference standards considering their
similar PL behaviors to G-CDs. Cross calibrations were conducted
and the fluorescence QY of quinine sulfate (literature: 54% [84])
and harmane (literature: 83% [85]) was measured as 55 and
81.5%, respectively. Based on these results, it can be concluded that
our methodology was reliable. Thereafter, the fluorescence QY of
G-CDs was measured to be 42% using both reference standards.
As to the determination of functional groups on G-CDs, FTIR spec-
trum (Fig. 1c) reveals –NH2 and/or –OH stretch (3344–3280 cm�1),
CAH stretch (2937–2822 cm�1), C@O/C@N/C@C stretch
(1652 cm�1), NAH bend (1550 cm�1), CAH rock (1370 cm�1) and
CAO stretch (1271 cm�1) [72]. Among them, the presence of –
NH2 and –OH ensures a good water dispersity of G-CDs. More
importantly, the peaks indicating –NH2 stretch (3344–
3280 cm�1) and CAH stretch (2937–2822 cm�1) were confirmed
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by the FTIR spectrum of EDA [86], which demonstrates the success-
ful condensation polymerization reaction between citric acid and
EDA. Moreover, the XRD pattern (Fig. 1d) of G-CD shows a wide
peak at 25�, which is caused by highly disordered carbon atoms
[87]. XPS of G-CDs (Fig. 1e) reveals 61.48% of carbon, and 21.07%
of oxygen, and 17.45% of nitrogen. In the C1s core levels (Fig. 1f),
the binding energies at 284.6, 286.1 and 287.6 eV were assigned
to CAH/CAC, CAOAC, and C@O, respectively [88]. The O1s core
level (Fig. 1g) showed a narrow peak at 531 eV, which was pre-
sumed to be C@O.[72] In the N1s spectrum (Fig. 1h), the binding
energies at 399.0 and 400.8 eV were ascribed to C@N and –NH2,
respectively.[35,72]

The AFM image in Fig. 1d exhibits plenty of spherical-shaped
nanostructures of G-CDs with a mean size of 1.6 nm along the z-
axis. Meanwhile, the TEM image in Fig. 1e shows an even distribu-
tion of G-CDs on the copper grid, which suggests that G-CDs have a
high water-dispersity and aqueous stability. In addition, according
to the narrow size distribution revealed by the TEM size distribu-
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Fig. 2. (a) Photocatalytic degradation with G-CDs as the photocatalyst and (b) pseudo-first-order rate constants of different dyes. (c) Photocatalytic degradation with G-CDs
as the photocatalyst and (d) pseudo-first-order rate constants of RhB degradation in the presence of IPA, benzoquinone, EDTA-Na, and no scavenger. Conditions: initial dye
concentration (10 mg L�1), photocatalyst weight (12 mg), light power (310 W), pH (neutral) and temperature (20 �C). Controls refer to photodegradation of dyes in the
absence of G-CDs. All experiments were conducted at least three times each.
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tion histogram, the mean size of G-CDs in the xy-plane is 3.2 ± 0.
5 nm. Thus, G-CDs are oval in shape.

CD-C3N4 was characterized by FTIR spectroscopy, XRD, XPS,
TGA, AFM and TEM and strong supports for the assembly of G-
CDs and g-C3N4 were provided by XRD, AFM and TEM images.
The XRD patterns (Fig. S3c) demonstrate that CD-C3N4 has a wider
peak at 25� than G-CD, which can be attributed to the doping of g-
C3N4 [89]. In the XPS analysis of CD-C3N4, CD-C3N4 showed slight
differences from G-CDs in the proportions of each element. For
instance, XPS of G-CDs (Fig. 1e) reveals 61.48%, 21.07%, and
17.45% for carbon, oxygen and nitrogen, respectively. However,
XPS spectra of CD-C3N4 (Fig. S3d-g) reveals 60.33% of carbon,
21.87% of oxygen, and 17.80% of nitrogen, which reveals a majority
of G-CDs in CD-C3N4. In comparison to the morphology of g-C3N4

alone (Fig. S3h and S3j), AFM and TEM images of CD-C3N4

(Fig. S3i and S3k) show a few particles on the edge or surface of
a g-C3N4 monolayer. However, since the majority of CD-C3N4 was
G-CDs (99.5% by mass), no clear difference was observed between
G-CDs and CD-C3N4 based on FTIR and TGA spectra (Fig. S3a and
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S3b). Nonetheless, they demonstrate a noncovalent interaction
between G-CDs and g-C3N4 in the CD-C3N4 composite.

3.2. Photocatalytic degradation of organic pollutants

3.2.1. Degradation of organic dyes
When CDs were applied in photocatalytic degradation, the most

common pollution model was chosen from various organic dyes.
Nonetheless, the dye species are usually limited to 1–2 with either
positive or negative charges, which lacks generalization. In com-
parison, in our study, the photocatalytic reactivity of as-prepared
G-CDs was evaluated by degrading both negatively and positively
charged dyes. To be specific, MO represents the negatively charged
dye while RhB and MB represent the positively charged counter-
parts. To rule out the probability of dye degradation by photolysis,
each dye was irradiated in the absence of G-CDs for 1 h as controls
and the dye degradation extent was recorded and presented in
Fig. 2a. It is evident that photolysis was incapable to degrade any
of the tested dyes even after 1 h of irradiation, which highlights



Fig. 3. (a) Photocatalytic degradation and (b) pseudo-first-order rate constants of RhB using different photocatalysts. Conditions: dye concentration (10 mg L�1),
photocatalyst weight (12 mg) unless mentioned otherwise, light power (310 W), pH (neutral), temperature (20 �C). Control refers to photodegradation of RhB in absence of
any added photocatalyst. All experiments were conducted at least three times each.
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the significant role of as-prepared G-CDs in the photocatalytic
degradation of dyes. Next, the photocatalytic system (12 mg of
G-CDs in 4 mL of each dye) was irradiated using a solar simulator
while the absorbance at the aforementioned characteristic absorp-
tion peak of each dye was measured every 10 min and the obtained
A/A0 equal to C/C0 are presented in Fig. 2a. The data reveal a sub-
stantial performance as the G-CDs were able to completely degrade
all the three dyes after only 20, 40 and 60 min for MB, MO and RhB,
respectively.

The photocatalytic degradation rate constants of the three dyes
can be arranged as (kMB) > (kMO) > (kRhB) with values of 0.29, 0.12
and 0.06 min�1, respectively. Such high degradation rates displays
the extraordinary photocatalytic reactivity of G-CDs towards
degradation of the tested dyes especially when they were com-
pared to the degradation rates achieved with other CD species as
photocatalysts. Particularly, when 12 mg of the CDs (fraction 3
with the best performance) developed in our previous work [35]
were applied in this work with all other parameters the same for
G-CDs, their photocatalytic performance of RhB degradation was
recorded in Fig. S4 in the supporting information with a rate con-
stant of 0.02 min�1. In contrast, the RhB degradation rate constant
was enhanced by 300% with G-CDs. In addition, Bhati et al.
reported that red-emitting magnesium-nitrogen-embedded CDs
were able to degrade MB with a rate constant of 0.04 min�1 [10].
Araújo et al. found that their hydrophilic CDs were capable to
degrade indigo carmine dye with a rate constant of 0.0014 min�1

[90]. Li et al. analyzed the photocatalytic performance of their
CDs in the degradation of MB, which yielded a rate constant of
0.0030 min�1 [91]. Zhu et al. discovered that the rate constants
of RhB and MB degradations using biomass-derived CDs co-
doped with S/Cl are 0.027 and 0.064 min�1, respectively [92]. Ma
et al. reported a type of N-doped CDs that could degrade 90% of
MO after 120 min of visible light irradiation without any surface
modification [93]. Thus, in comparison with all the CD species
introduced above, our as-prepared G-CDs exhibited superior pho-
tocatalytic performance. Furthermore, it is worth noting that the
degradation rates for G-CDs are comparable to those obtained for
metal-free heterogenous photocatalysts such as g-C3N4. For
instance, Yuan et al. reported that the photocatalytic degradation
rate constants of RhB were 0.0087 and 0.0358 min�1 for bulk g-
C3N4 and thermally exfoliated g-C3N4, respectively [94]. Such
results prove that the as-prepared G-CDs are a potential alternative
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for traditional heterogenous photocatalysts in remediation of haz-
ardous contaminants in wastewater effluents.

To identify the ROS responsible for the photocatalytic perfor-
mances of G-CDs, photocatalytic experiments were conducted in
presence of diverse radical traps while collecting the reaction rates.
In detail, EDTA-Na, p-benzoquinone and IPA were used to trap
holes, O2

�� and �OH, respectively. When the photocatalytic experi-
ment was conducted in the presence of IPA, there was no notice-
able change in the degradation extent of RhB (Fig. 2c) but with a
slight reduction in the degradation rate (Fig. 2d). These results also
ruled out the possibility of water oxidation via the generated holes.
Nonetheless, when EDTA-Na was added, the degradation rate
started to dwindle, reflecting the noteworthy contribution of holes
to the degradation of RhB. Moreover, it is evident that the addition
of p-benzoquinone as a O2

�� trap, significantly hampered the degra-
dation of RhB, which could be ascribed to the dominant role of O2

��

in the degradation mechanism using the as-prepared G-CDs as
photocatalysts.

To validate the dominant role of O2
��, the photocatalytic degra-

dation of RhB was carried out in the absence of dissolved oxygen
by flushing the reaction medium with an ultrapure nitrogen flow
for 1 h prior to initiating the reaction. Next, the nitrogen environ-
ment was maintained during the reaction via a nitrogen-filled bal-
loon to simulate anerobic conditions. The data showed a
substantial reduction in the degradation rate of RhB in comparison
to aerobic conditions, indicating the crucial role of dissolved oxy-
gen as an electron acceptor for O2

�� generation. Moreover, it has
been reported that illumination of RhB molecules generated RhB*
radicals [95]. These radicals could facilitate electron transfer from
the valance to conduction band of the photocatalyst, which in turn
enhanced the degradation performance of the system [95].

To foster the photocatalytic reactivity, exfoliated g-C3N4 was
incorporated into the as-prepared G-CDs and the performance of
the CD-C3N4 composite was assessed by the photocatalytic degra-
dation of RhB. The obtained results (Fig. 3) reveal that the addition
of g-C3N4 markedly enhanced the photocatalytic performance of G-
CDs in the degradation of RhB. To be specific, the complete degra-
dation of RhB was achieved by CD-C3N4 after only 20 min of irradi-
ation with a rate constant 4.5-fold higher than that of pristine G-
CDs. For comparison, the performance of bare g-C3N4 was also
evaluated in RhB degradation using a concentration equivalent to
that used for preparation of CD-C3N4 and the obtained data are dis-



Fig. 4. (a) Photocatalytic degradation with CD-C3N4 as the photocatalyst and (b) pseudo-first-order rate constants of RhB in the presence of IPA, benzoquinone, EDTA-Na, and
no scavenger. (c) Photocatalytic degradation with CD-C3N4 as the photocatalyst and (d) pseudo-first-order rate constants of different dyes. Conditions: initial dye
concentration (10 mg L�1), photocatalyst weight (12 mg), light power (310 W), pH (neutral), temperature (20 �C). Controls refer to photodegradation of dyes in the absence of
CD-C3N4. All experiments were conducted at least three times each.
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played in Fig. 3. It is clear that the degradation rate constant
achieved by CD-C3N4 was 3-fold higher than that of pristine g-
C3N4, demonstrating an outstanding performance, which was
attributed to a synergy between g-C3N4 and G-CDs.

Such synergy was capable to enhance the production of active
radicals that in turn, boost the degradation performance of the sys-
tem. Those active radicals were identified by carrying out a series
of radical trap experiments as presented in Fig. 4. The data show
that the addition of IPA markedly inhibited the degradation of
RhB, indicating the notable role of �OH produced within the system.
It is evident that the introduction of g-C3N4 to G-CDs was the rea-
son behind the generation of �OH as the G-CDs were incapable to
produce such radicals. Nevertheless, it has been reported that the
holes in the valence band of g-C3N4 were unable to oxidize either
adsorbed water molecules or surface hydroxyl groups for �OH gen-
eration [96]. Other reports suggested that those �OH could be pro-
duced as a result of the reaction of O2

�� with water molecules [97].
In addition, when p-benzoquinone was introduced to the sys-

tem, the degradation rate declined to a substantial level, elaborat-
ing the dominant role of O2

��. This dominant role was also validated
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using the data obtained from the anerobic photocatalytic experi-
ments as discussed earlier. The degradation rate obtained in the
absence of dissolved oxygen resembled that obtained in the pres-
ence of p-benzoquinone, indicating the pivotal role of dissolved
oxygen as an electron acceptor for O2

�� generation. For the EDTA-
Na trap experiment, the results showed that the addition of
EDTA-Na had almost no effect on the degradation rate of RhB as
shown in Fig. 4b, indicating the inability of the generated holes
to oxidize RhB molecules upon the introduction of g-C3N4 to G-
CDs.

The photocatalytic reactivity of CD-C3N4 was also tested in the
degradation of MB and MO, and the data (Fig. 4c) reveal that the
degradation of MB was much faster than that of MO and RhB,
where the complete degradation of MB and MO were achieved at
12 and 16 min, respectively. The rate constants for photocatalytic
degradation of the three dyes can be arranged as (kMB) > (kMO) >
(kRhB) with values of 0.57, 0.31 and 0.28 min�1, respectively. These
findings reveal the ability of CD-C3N4 to remediate the negatively
and positively charged dyes. The rate constants of photocatalytic
degradation of the tested dyes (Fig. 4d) also manifest that the



Fig. 5. Photocatalytic degradation of phenol using G-CDs and CD-C3N4 as separate photocatalysts. Conditions: initial phenol concentration (10 mg L�1), photocatalyst weight
(12 mg), light power (310 W), pH (neutral) and temperature (20 �C). All experiments were conducted at least three times each.

Fig. 6. Diffuse reflectance spectroscopy of CD-C3N4 in gel state. Plot of (ahʋ)2 vs.
photon energy for CD-C3N4.
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degradation rate was independent of the surface charge of CD-
C3N4.

To examine the ability of CD-C3N4 to mineralize the tested dyes
into carbon dioxide and water instead of converting them into
toxic intermediates, total organic carbon (TOC) analysis was car-
ried out before and after 60 min of irradiation for the three tested
dyes. The obtained data (Fig. S5) reveal that the extent of TOC
removal reached 71, 53.8 and 36% for MB, RhB and MO, respec-
tively. Thus, it is evident that the employed system was capable
of mineralizing the organic dyes into carbon dioxide and water.
However, the incomplete mineralization implies that more drastic
and/or longer treatments are required to entirely mineralize the
tested dyes. The mineralization extent for the three tested dyes
can be arranged as MB > RhB > MO, which can be ascribed to the
surface interaction between the CD-C3N4 and the three tested dyes
where the surface charge of CD-C3N4 was measured to be �4.7 mV.
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3.2.2. Degradation of phenol
In addition to dyes, as a prevalent industrial effluent, phenol

was also applied as a colorless contaminant model to investigate
the photocatalytic performance of both G-CDs and CD-C3N4 in
the treatment of industrial wastewater. Phenol is used primarily
in the production of phenolic resins and in the manufacture of
nylon and other synthetic fibers [98,99]. Severe exposure to phenol
can cause kidney and/or liver damage, tremors, skin burns, twitch-
ing and convulsions [100]. Every day, a considerable amount of
phenol enters the environment and the presence of such hazardous
contaminant in the environment can markedly threaten human
health. For phenol degradation experiments, 12 mg of G-CDs or
CD-C3N4 was ultrasonically dispersed in 4 mL of phenol stock solu-
tion. Next, the system was irradiated using a solar simulator and
the degradation extent was monitored using HPLC (Fig. 5). The data
shows that phenol was completely degraded after 160 and 180 min
of irradiation in the presence of CD-C3N4 and G-CDs, respectively. It
is evident that the introduction of g-C3N4 enhanced the degrada-
tion rate of phenol (Fig. 5b) with rate constants of 0.021 and
0.015 min�1 for CD-C3N4 and G-CDs, respectively. The extent of
phenol mineralization was also investigated using TOC analysis
and the results showed that almost 90% of phenol was mineralized
into carbon dioxide and water using the as-prepared CD-C3N4 as
photocatalysts after 3 h of irradiation. Such data highlight the out-
standing performance of CD-C3N4 in degradation and mineraliza-
tion of a wide spectrum of water contaminants.
3.3. Band gap measurement

As a green substitute for traditional semiconducting QDs,
except for the core-shell nanostructure, CDs also possess many
properties similar to that of semiconducting QDs such as valence,
conduction bands and a moderate band gap suitable for many pho-
tocatalytic activities. In this study, the band gap of G-CDs was mea-
sured by diffuse reflectance spectroscopy as 2.94 eV which was
close to that (2.9 eV) of as-prepared exfoliated g-C3N4 as indicated
by Fig. S6. In addition, it reveals the absorption band edge of G-CDs
at 420 nm, which signifies that G-CDs are able to utilize both UV
and visible lights for photocatalytic activities. Furthermore, the dif-
fuse reflectance spectrum of CD-C3N4 (Fig. 6) shows the co-
existence of the band gaps of G-CDs and g-C3N4, which confirms



Fig. 7. Sea urchin cytotoxicity studies for a) G-CDs and b) CD-C3N4 at varying concentrations. All experiments were conducted at least three times each.
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the aforementioned noncovalent interaction between G-CDs and g-
C3N4 in the CD-C3N4 composite. Based on these results, the as-
prepared G-CDs and CD-C3N4 can be considered as direct semicon-
ductors with appropriate band gap for photocatalytic reactions.
Nonetheless, the band gap of G-CDs and CD-C3N4 are still large,
which can be optimized by introducing heteroatoms such as O,
N, B, P, S during their syntheses with appropriate precursors or
after their syntheses with proper surface modifications.

3.4. 3.4. Photocatalytic stability test

G-CDs and CD-C3N4 were tested for their photocatalytic stabil-
ities via RhB degradation. Initially, RhB underwent a regular photo-
catalytic degradation in the presence of G-CDs or CD-C3N4. After
60 min (G-CDs) or 20 min (CD-C3N4) when the majority of RhB
was degraded, the same solution containing G-CDs or CD-C3N4

was exposed to the simulated sunlight for 20 min to completely
degrade RhB residues. Subsequently, 200 lL of fresh RhB solution
(0.2 mg/mL) was added to the solution containing G-CDs or CD-
C3N4 and irradiated by the solar simulator. The UV/vis absorption
spectrum was recorded every 15 and 4 min for G-CDs and CD-
C3N4, respectively until the peak at 554 nm disappeared. These
processes were repeated two more times. Fig. S7 records the RhB
degradation over time for evaluation of the photocatalytic stability
of G-CDs and CD-C3N4. After four cycles of RhB degradation, based
on their constant degradation rates, no significant decrease was
observed in the photocatalytic activities of G-CDs and CD-C3N4.
Also, after exposure to sunlight for 2 h, G-CDs were characterized
by UV/vis absorption, fluorescence emission and FTIR spectro-
scopies. The results were presented in the supporting information
as Fig. S8 and no appreciable differences were observed before and
after long time of irradiation. Meanwhile, since the majority of CD-
C3N4 is G-CDs, no additional characterizations were performed on
CD-C3N4 after 2 h of irradiation by the solar simulator. Therefore, it
can be concluded that both G-CDs and CD-C3N4 have excellent
photocatalytic stabilities.

3.5. Cytotoxicity studies of G-CDs and CD-C3N4

Sea urchins were selected as an in vivo model in this study to
investigate the cytotoxicity of G-CDs and CD-C3N4 considering its
acute toxic sensitivity [101]. As shown in Fig. 7a and 7b, more than
87% of the sea urchin embryos maintained their normal develop-
ment even in the presence of high concentrations of G-CDs or
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CD-C3N4 such as 100 mM. In addition, P > 0.05 so there was no sig-
nificant difference from % survival rate of control groups. In other
words, there was no significant difference observed between the
survival rates of the control group and both CDs’ treatments. Thus,
it can be concluded that both G-CDs and CD-C3N4 have good bio-
compatibility and very low cytotoxicity towards sea urchin
embryos at the tested concentrations.

Therefore, given the high photocatalytic reactivity of both pho-
tocatalysts, their negligible impact on the ecology upon the purifi-
cation of wastewater is going to enable their wide applications in
real life. In addition, since both photocatalysts will not harm the
environment or human health, the collection of both photocata-
lysts after use is not necessary.
4. Conclusion

In conclusion, G-CDs exhibit a substantial photocatalytic activ-
ity in comparison with most known CD species as they were able to
completely degrade all the three dyes and phenol in a short time
scale. Moreover, exfoliated g-C3N4 was incorporated into the as-
prepared G-CDs and it was found that the degradation rate con-
stant for CD-C3N4 was further improved by 1.4 times, demonstrat-
ing an outstanding performance, which is attributed to a synergy
between g-C3N4 and G-CDs. The radical trap experiments revealed
that O2

�� and holes were the dominant species generated within the
G-CDs system, while for the CD-C3N4 system, O2

�� and �OH were the
main active species. Furthermore, the excellent photocatalytic sta-
bility of G-CDs and CD-C3N4 were demonstrated with multiple
cycles of dye degradation. Eventually, the cytotoxicity of G-CDs
and CD-C3N4 were tested with a sea urchin in vivo model to
exclude the risk of secondary pollution. These findings reveal
insights into the development and design of CD species as a poten-
tial alternative for traditional heterogenous photocatalysts in
remediation of hazardous contaminants in wastewater effluents.
We anticipate that the use of G-CDs will open up new horizons
for diverse photocatalytic applications.
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