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Abstract

Image-based cell classification has become a common tool to identify phenotypic changes in
cell populations. However, this methodology is limited to organisms possessing well
characterized species-specific reagents (e.g., antibodies) that allow cell identification, clustering
and convolutional neural network (CNN) training. In the absence of such reagents, the power of
image-based classification has remained mostly off-limits to many research organisms. We have
developed an image-based classification methodology we named Image3C (Image-Cytometry
Cell Classification) that does not require species-specific reagents nor pre-existing knowledge
about the sample. Image3C combines image-based flow cytometry with an unbiased, high-
throughput cell cluster pipeline and CNN integration. Image3C exploits intrinsic cellular features
and non-species-specific dyes to perform de novo cell composition analysis and to detect
changes in cellular composition between different conditions. Therefore, Image3C expands the
use of imaged-based analyses of cell population composition to research organisms in which
detailed cellular phenotypes are unknown or for which species-specific reagents are not

available.

Impact statement

Image3C analyzes cell population composition through image-based clustering and neural
network training, in research organisms devoid of species-specific reagents or pre-existing

knowledge on cell phenotypes.
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Introduction

Single-cell analysis have proven crucial to our understanding of fundamental biological
processes such as development, homeostasis, regeneration, aging and disease (Goolam et al.,
2016; Kimmel et al., 2019; Pepe-Mooney et al., 2019; Philippeos et al., 2018; Tirosh et al.,
2016). High-throughput analyses of these and other biological processes at single cell-resolution
require technologies capable of describing individual cells and subsequently clustering them
based on similarities of features like morphology, cell surface protein expression or
transcriptome profile. Recent advances in image-based cell profiling and single-cell RNA
sequencing (scRNA-seq) allow quantification of differences between cell populations and
comparisons of cell type composition between samples (Caicedo et al., 2017). Single-cell studies
that use traditional research organisms (e.g., mouse, rat or fruit fly) benefit from the availability
of genomic platforms and established antibody libraries. However, the same cannot be said for a
growing number of important, yet understudied research organism lacking such reagents and
whose biological interrogation would benefit immensely from single-cell analyses. In these
cases, classical histochemical methods are often used to identify and characterize specific cells.
Yet, the successful identification and enumeration of biologically meaningful cell types in such
studies can be harmed by both the limited number and variety of cellular attributes (few features
or low dynamic range) available for determination of cell types, and by observer bias when using
traditional, hand-counting approaches (e.g., hemocytometer and Giemsa stain) (van der Meer,
Scott, & de Keijzer, 2004). These shortcomings, together with the lack of extensive knowledge
on cell-specific phenotypes available for training or for a priori assumptions usually results in
the underestimation of the complexity of cellular composition or interactions among cell types

within tissues.
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Automated classification of cells using convolutional neural networks (CNN, machine
learning method specialized in image recognition and classification) has become a promising
approach for accurate high-throughput cell analysis that is free from observer bias (Blasi et al.,
2016; Eulenberg et al., 2017; Kobayashi et al., 2017; Lei et al., 2018; Nassar et al., 2019; Suzuki
et al., 2019). To date, CNN-based automated clustering and classification techniques require pre-
existing knowledge about the organism or cell type of interest (e.g., cell specific morphological
traits within an image set) or the availability of cell-specific reagents (e.g., antibodies), or
genomic sequence (e.g., single-cell sequencing) (Table 1 shows an overview of the existing
methods) (Baron et al., 2019; Blasi et al., 2016; Cheng et al., 2021; Eulenberg et al., 2017;
Hennig et al., 2017; Kobayashi et al., 2017; Lei et al., 2018; Nassar et al., 2019). This means that
to make effective use of artificial intelligence (AI) approaches for single-cell analysis, one must
have information available to train the algorithm or for machine learning (ML) models, which
often arises in the form of information gleaned from the use of reagents like antibodies. Research
areas that rely on inter-species comparisons or studies on emerging research organisms would
benefit from single cell-based analyses that do not require pre-existing knowledge of cell types
(i.e., which is required for training a CNN for example) and/or availability of antibodies or
molecular databases. For example, within the interdisciplinary field of eco-immunology, a
growing number of researchers is investigating immune system adaptation to different
environments by studying immune cell compositions in diverse animals (Maizels & Nussey,
2013). Given the influences of immune cell composition on the immune system response of an
organism (Kaczorowski et al., 2017), applying modern single cell analysis in eco-immunological
research would substantially increase our knowledge about the plasticity and conservation of

immune responses in a variety of different animals and conditions (PeuB3 et al., 2020).
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To make sophisticated cellular composition analysis available to any research organism
without the need for either pre-existing knowledge about the cell populations or species-specific
reagents, we developed Image-Cytometry Cell Classification (Image3C). This method analyzes,
visualizes, and quantifies, in a high-throughput and unbiased way, the composition of cell
populations by using cell morphological traits and non-species-specific fluorescent probes (e.g.,
nuclear staining or dyes for metabolic states that function well in a variety of organisms) (Figure
1; Table 1). By taking advantage of cell morphology and/or fluorescent dyes related to function
or metabolic state, Image3C can analyze single cell suspensions derived from any experimental
design, de novo cluster cells present in the sample of interest and compare their abundance
between each other or among different assays. Once the de novo clustering based on cell intrinsic
features is obtained, Image3C employs a CNN that uses these clusters as training sets, avoiding
in this way user bias or manual classification (Figure 1; Table 1). This produces a CNN-based
cell classifier ‘machine’ used to quantify subsequently acquired image-based flow cytometry
data and to compare cellular composition of samples across multiple experiments, in a high-
throughput manner without the need for repeating time-consuming steps for de novo clustering.
The combination of the clustered cell images, the outputs of their functional assays and the
published literature about closely related organisms might allow the identification and
description of cell types of interest. In comparison to existing label-free cell clustering methods,
Image3C does not require initial antibody staining (Cheng et al., 2021; Hennig et al., 2017;
Lippeveld et al., 2020; Nassar et al., 2019), pre-existing knowledge of specific cell morphology
(Suzuki et al., 2019; Yakimov et al., 2019) and is not limited to a specific cellular phenotype
(Blasi et al., 2016) for a priori identification of certain cell types (Table 1). This makes Image3C

extremely versatile and applicable to virtually any research organism and tissue from which
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dissociated single cells can be obtained. Parallelly to this de novo clustering approach, Image3C
can take advantage of species-specific reagents and prior knowledge to be combined with
transcriptomic dataset and provide a new and complimentary layer of information based on cell
morphology and function. In sum, Image3C combines modern high-throughput data acquisition
by image-based flow cytometry, advanced and unbiased clustering analysis, statistics to compare
cellular compositions across different samples and a CNN classifier component to easily

determine changes in cell composition across multiple experiments.

Results and Discussion

Image-Cytometry Cell Classification (Image3C)

Image3C is an imaging tool developed to study tissue composition at single-cell resolution in
research organisms for which antibodies and pre-existing knowledge about cell types are not
readily available (Figure 1; Table 1). Image3C allows for high-throughput and unbiased analysis
in scenarios where manual counting and observer-based cell identification are currently the only
options. Image3C includes all the components required for compensating captured images,
quantifying multiple features for each event, clustering the events, visualizing and exploring the
data, training and using the CNN for analyzing subsequent samples and integrating multiple
experiments (Figure 1; Figurel-figure supplement 1).

Once a single-cell suspension is prepared from the organism of interest, the cells are stained
with a combination of dyes that are expected to function independently irrespective of the
species used, and which have high affinity for specific cellular organelles such as nuclei, or
molecules associated with metabolic states such as reactive oxygen species. We validated

reagents experimentally by determining that nuclear dyes stain intracellular material matching
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expected characteristics of nuclear DNA or by activation of cells with drugs to change their
metabolic state. The labelled samples are then run on the ImageStream®” Mark II (Amnis
Millipore Sigma) (Figure 1A). ImageStream is a commercially available image-based flow-
cytometer, whose diffusion in laboratory settings is increasing and that provides highly
reproducible images of cells that can be compared across days of acquisitions and experiments.
For this approach, no microfluidic devices or custom-made and highly specialized microscopes
are required (Table 1), but, if desired, the users can test the Image3C pipeline also on images
acquired at standards microscopes, remembering to carefully control for batch effects.

Once images of individual events are collected for each channel of interest, feature values
from both morphological and fluorescent data, such as cell size and nuclear size, are extracted
from the cell images using IDEAS software (Amnis Millipore, free for download upon creation
of Amnis user account) (Figure 1B; Supplementary File 1,2 for feature description). Correlation
between features is calculated and redundant features are trimmed as well as samples that,
among replicates, are outliers (Figure 2-figure supplement 1,2). This prevents clustering artifacts
potentially caused by having multiple features providing the same information or including
samples that are not representative (Figure 1B). During this step, while the number of features
was usually reduced significantly, the correlation between replicates was always high and
outliers were rarely observed (Figure 2-figure supplement 1,2). Finally, fluorescence intensity
features are transformed to improve homogeneity of variance of distributions and, if used, DNA
staining is normalized to remove intensity drift between samples and thus align the 2N and 4N
DNA content histogram peaks (Figure 1B; Figure 2-figure supplement 3).

Exported feature quantifications are used for clustering the events. Dimensionality reduction

and visualization of clusters is achieved by generating force directed layout (FDL) graphs in the
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VorteX clustering environment (Figure 1C) (free to install) (Samusik, Good, Spitzer, Davis, &
Nolan, 2016). Cell images for events within each cluster can be visualized using FCS Express
Plus together with custom R scripts (Figure 1D). These visualization tools and the cluster feature
averages (i.e., the mean value of each feature for each cluster) (Figure 1E) allow to explore the
images of selected groups of events and the features that differ between cells belonging to
separate clusters. If control and treatment samples are included, a statistical analysis using
negative binomial regression to compare cell counts per cluster between samples is also available
in the Image3C pipeline. This high-throughput and unbiased analysis provides a comprehensive
understanding of a cell population composition at higher resolution than what is possible with
traditional histological methods.

Once this pipeline is run on a first set of samples (e.g., homeostatic state) and the cell clusters
are defined for the tissue of interest, the images and the relative clustering IDs can be used to
train a CNN classifier in an unbiased way (Figure 1F), including the ability to score frequency of
“new” cell types that do not match any of the clusters identified at homeostasis. Therefore, future
experiments in the same tissue used for training the CNN classifier can be analyzed directly
through the CNN (Figure 1G). This significantly reduces the number of steps and time required
to process data collected from following experiments with treated conditions. An even greater
advantage is represented by the fact that, in the absence of CNN, every time new experimental
sets are run it would be necessary to go again through the de novo clustering part of the pipeline
(Figure 1B-E) and the new set of clusters would need to be cross-annotated to be compared with
cell population composition observed in previous experiments. Manually matching clusters
between different experimental sets might be a source of mistakes, mainly if the user is not

familiar with the cell types present in the sample and if specific biomarkers or pre-existing
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knowledge about cell types and morphology are not available. The CNN splits all the cell images
in the classes defined during the training step and allows to compare the abundance of cells with
same morphology among different samples without the need to cross-annotate clusters (Figure
1F,G). The CNN inclusion in Image3C and the reproducibility of image acquisition through
image-based flow cytometry allows use of the clusters defined from one experiment (e.g.,
homeostatic state) to setup a classifier in an unbiased way for later use as a reference in
analyzing experimental manipulations of these cell populations. We conclude from these results
that Image3C can perform de novo high-throughput characterizations and define specific cell
type behavior or population composition in both homeostatic and experimentally perturbed cell

populations across multiple experiments.

Image3C recapitulates cell composition of zebrafish whole kidney marrow (WKM) tissue

To test whether Image3C could identify homogeneous and biologically meaningful cell
populations, we used the research organism Danio rerio. We obtained cells from adult female
zebrafish WKM (location of the hematopoietic tissue) in homeostasis condition, stained them
and run on the ImageStream®™ Mark II. We analyzed intrinsic morphological and fluorescent
features, such as cell and nuclear size, shape and darkfield signal (side scatter, SSC). Feature
values were extracted from each cell image and processed through our pipeline (Supplementary
File 1 for feature description). Clustering by the final set of normalized and non-redundant
morphological and fluorescent features produced distinct cell populations (Figure 2A-C; Figure
2-figure supplement 1-3).

Image3C can distinguish between the major classes of cells present in zebrafish WKM (Figure

2; Supplementary File 3,4) that were described using standard sorting flow cytometry and
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morphological staining approaches (D. Traver et al., 2003). It is noteworthy that Image3C can
clearly identify dead cells and debris (Figure 2A,B) allowing to optimize experimental protocols
in order to minimize cell death and to run the subsequent analysis only on the intact, live cells.
Image3C can identify cells with outstanding morphological features, such as neutrophils from
other myelomonocytes (Figure 2B,C). Based on zebrafish neutrophil characteristics such as high
granularity, high complexity and low circularity of the nuclei (Lugo-Villarino et al., 2010), this
type of granulocytes can be easily distinguished. Other types of myelomonocytes, such as
monocytes and eosinophils are here merged in the same cluster, since in zebrafish they share
many morphological characteristics (Lugo-Villarino et al., 2010). Similarly, using only intrinsic
morphological features for the clustering, different lymphocytes (B and T-cells) and
hematopoietic stem cells cannot be separated from each other, but they can be clearly
distinguished from the myelomonocytes (Figure 2A,B). Within the Lymphocytes/Progenitors
fraction we find two clusters (Drl and Dr7) that mainly differ in cell diameter (Figure 2C).
Whether this morphological difference has a biological implication needs to be studied in future
experiments.

Image3C also enables the quantification of cell population (clusters or CNN classes) relative
abundance, an important tool for comparing population composition across different treatment
groups under different environmental conditions (Peuf3 et al., 2020). Here, we compared our
results with previously published data to validate our method. Although a direct comparison with
results from classical approaches (David Traver et al., 2003) is not possible since we gated out
(removed analytically) mature erythrocytes before clustering (Material and Methods), the
myelomonocyte to lymphocyte ratio (M/L ratio = 1.59) is similar to the one obtained with classic

histological approaches (mean M/L ratio = 1.35) (Figure 2D) (David Traver et al., 2003).
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Image3C identifies professional phagocytes in zebrafish WKM tissue

Next, we sought to determine whether Image3C could be used to characterize and quantify
biological processes by identifying a tissue of interest and then comparing cellular composition
dynamic, function, and physiological responses of specific cell types across a range of
experimental conditions. Our goal was to detect statistically significant changes in cluster
relative abundance between control and treated samples to gain a more detailed understanding of
cell population dynamics and individual cell function.

As proof-of-concept, we performed a standard phagocytosis assay using WKM tissue from
adult zebrafish. The single cell suspension was incubated with CellTrace Violet labeled
Staphylococcus aureus (CTV-S. aureus) and with dihydrorhodamine-123 (DHR), a reactive
oxygen species that becomes fluorescent if oxidized to report oxidative bursting following
phagocytosis. As controls, we inhibited phagocytosis through cytoskeletal impairment with CCB
incubation or through incubation with bacteria at lowered temperature by placing culture plates
on ice. Events collected on the ImageStream®™ Mark II were analyzed with Image3C and
clustered in 26 distinct clusters using quantifications of morphological and fluorescent features
(Supplementary File 2 for feature description), including nuclear staining, phagocytized S.
aureus and DHR positivity (Figure 3A; Figure 3-figure supplement 1). Professional phagocytes
are defined by their ability to take up S. aureus (CTV staining lies within the cell boundary) and
induce a reactive oxygen species (ROS) response (bright DHR signal) (Rabinovitch, 1995). In
zebrafish, professional phagocytes are mainly granulocytes and monocytic cells and can be
discriminated from each other based on morphological differences, such as cell size, granularity

and nuclear shape (Wittamer, Bertrand, Gutschow, & Traver, 2011). To compare samples
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incubated with CTV-S. aureus and the samples where phagocytosis is inhibited (CTV-S. aureus
+ CCB and CTV-S. aureus + Ice), we used the statistical analysis included in Image3C based on
a negative binomial regression model (Figure 3B,C; Figure 3-figure supplement 2;
Supplementary File 5,6). Statistical analyses reported clusters with differences in relative
abundance between phagocytosis and phagocytosis-inhibited samples. Visualizing these
clustered event images (Supplementary File 7) while considering the values and intensities of
morphological and fluorescent features for these clusters (Supplementary File 3) allowed
identification of 4 clusters of professional phagocytes: granulocytes within clusters Dr4 P,
Dr12 P and Dr13 P and monocytic cells in cluster Dr21 P (Figure 3A,B). The morphology of
cells in cluster Dr12 P is characteristic of phagocytic neutrophils (Figure 2B; Figure 3A) that
become adhesive and produce extracellular traps upon recognition of bacterial antigens (Pali¢,
Andreasen, Ostoji¢, Tell, & Roth, 2007). Overall, the relative abundance of professional
phagocytes is 5-10% (Figure 3C), which is in line with previous studies that estimated the
number of professional phagocytes in WKM tissue of adult zebrafish using classical
morphological approaches (Wittamer et al., 2011). It is also noteworthy that in line with other
studies (Page et al., 2013), we did not observe a cluster of lymphocytes (e.g., B-cells) that
actively phagocytize CTV-S. aureus bacteria (Figure 2; Supplementary File 7). Compared to the
classical morphological approaches, Image3C allows to analyze thousands of events in a high-
throughput and unbiased fashion, allowing the study of rare cell morphology and increasing
results confidence and reproducibility. These results show that Image3C can successfully analyze
biological processes since we were able to recapitulate the presence, cell type and frequency of

professional phagocytes in adult zebrafish WKM organ.
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A new aspect that Image3C highlighted is that CCB selectively affects cell viability based on
cell identity, introducing artifacts and cell damage, actions not specific to inhibition of
phagocytosis (Figure 3B). All mature erythrocyte containing clusters had a significantly higher
cell count in the CTV-S. aureus samples compared to the CTV-S. aureus + CCB ones (Figure
3B; Supplementary File 3,5). Cluster analysis revealed that erythrocytes were almost absent in
samples incubated with CCB (Supplementary File 3), while there was a significant increase in
the relative abundance of clusters containing dead and apoptotic cells (Figure 3B; Supplementary
File 5). Both outcomes are likely due to reduced cell viability of erythrocytes upon CCB
incubation. Moreover, we excluded the possibility of higher cell death in the professional
phagocytes upon CCB incubation, since pseudo-phagocytes (phagocytes with DHR response but
no internalized CTV-S. aureus) were significantly more abundant in the CTV-S. aureus + CCB
sample (Figure 3B; Supplementary File 5). These results are remarkable since Image3C allowed
us to observe a specific effect of CCB on erythrocytes viability in zebrafish that, as far as we
know, was not described before.

Image3C analysis also uncover another important biological observation. When we inhibited
phagocytosis by incubating the single cell suspension on ice (CTV-S. aureus + Ice) and
compared the specificity of inhibition with the CTV-S. aureus + CCB sample (Figure 3C;
Supplementary File 6), we discovered that the inhibition of phagocytosis through low
temperature only affects adhesive neutrophils (cluster Dr12_P) (Figure 3C). This is suspected to
occur as ice inhibits adhesion, while CCB effectively blocks phagocytosis in all professional
phagocytes in zebrafish WKM tissue by acting on the cytoskeleton. The use of Image3C allowed
us to specifically identify cell types that are sensible to low temperature and those that are not,

confirming the existence of different phagocytosis mechanisms and providing additional
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knowledge about pro and cons of different protocols that can be applied to inhibit phagocytosis

based on specific goals and needs.

Image3C recapitulates cell composition of a freshwater snail hemolymph

Since we aim to provide a tool that is widely applicable, we tested Image3C versatility on the
apple snail P. canaliculata an emerging organism for which molecular and cell biological tools
have yet to be fully developed. As such, we repeated the same experiments done in zebrafish on
the hemolymph of P. canaliculata. For morphological examination of the cellular composition of
the hemolymph collected from female adults in homeostasis conditions, we stained the single
cell suspensions with Draq5 (DNA dye) and ran on the ImageStream®” Mark II. We used
Image3C to analyze the images of the events and we identified 9 cell clusters (Figure 4A; Figure
4-figure supplement 1). Two of these clusters were comprised of cell doublets, debris and dead
cells (clusters Pc5 and Pc8) and the other clusters, based on inspection of cell images, were
grouped into 2 main categories (Figure 4A; Supplementary File 8). The first category includes
small blast-like cells (cluster Pc4) and intermediate cells (clusters Pc2 and Pc3) with high
nuclear-cytoplasmic (N/C) ratio. These cells morphologically resemble the Group I hemocytes
previously described using a classical morphological approach (Accorsi, Bucci, de Eguileor,
Ottaviani, & Malagoli, 2013). The second category was comprised of larger cells with lower N/C
ratio and abundant membrane protrusions (clusters Pcl, Pc6, Pc7 and Pc9). Likely, these cells
correspond to the previously described Group II hemocytes that include both granular and
agranular cells (Accorsi et al., 2013).

To identify which of these clusters were enriched for granular cells, we looked at the heatmap

with feature values for each individual cluster (Figure 4B; Supplementary File 1 for feature
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description). Cluster Pc6 had the highest values for the features related to cytoplasm texture and
granularity (i.e.,, area granularity, intensity granularity and signal granularity) amongst all
clusters other than cell doublets (Figure 4B; Supplementary File 3,8). Based on these data, we
identified cluster Pc6 as the one containing the granular hemocytes. The clusters obtained by
Image3C were not only homogeneous and biologically meaningful but were also consistent with
published P. canaliculata hemocyte classification obtained by classical morphological methods
(Accorsi et al., 2013). Such remarkable consistency was observed both in terms of identified cell
morphologies and their relative abundance in the population of circulating hemocytes (Figure
4C; Supplementary File 8). For example, the relative abundance of the previously reported small
blast-like cells is 14.0%, a value almost identical to the abundance of the corresponding cluster
Pca (13.8%).

Similarly, the category of larger hemocytes, or Group II hemocytes represents 80.4% of the
circulating cells as measured by traditional morphological methods, while clusters Pcl, Pc6, Pc7
and Pc9 combined represent 72.4% of the events analyzed with Image3C (Figure 4C;
Supplementary File 3). A sub-set of these cells are the granular cells (cluster Pc6), which
correspond to 7.7% of all hemocytes by classical histological methods and 8.9% by Image3C.
The intermediate cells (clusters Pc2 and Pc3) are less well represented in both approaches, with a
relative difference in abundance of 5.6% versus 10.6% of the manually and Image3C analyzed
events, respectively (Figure 4C; Supplementary File 3). This difference is likely best explained
by the remarkable difference in both the number of cells and the number of features that can be
considered for analysis by Image3C. Only a few hundred hemocytes were visually analyzed
using traditional histological methods based only on cell diameter and N/C ratio (Accorsi et al.,

2013). In contrast, the automated pipeline used by Image3C facilitated the analysis of 10,000
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nucleated events for each sample and considered 25 morphological features for each cell. The
significantly higher number of morphological features simultaneously considered by Image3C
also explains the higher number of clusters and improved resolution to distinguish cell types
compared to the traditional methods. Hence, Image3C, not only can properly analyze cells
obtained from an emerging research organism generating biologically meaningful and
informative clusters but also represents an unprecedented increase in the accuracy of cell type
identification over traditional histological methods, while also allowing high-throughput

capability.

Image3C identifies phagocytosis competent cells in the hemolymph of a freshwater snail

As with zebrafish, we also performed a phagocytosis experiment on hemocytes from P.
canaliculata. Our goal was to test if it is possible with an emerging research organism to
successfully discover cell phenotypes and functions and to obtain information about specific
biological processes of interest by using Image3C to compare cell populations among treated and
control samples.

Here, we setup the phagocytosis assay incubating the cells with CTV-S. aureus and DHR at
room temperature. The phagocytosis was inhibited, as control, either adding EDTA (CTV-S.
aureus + EDTA) or using low temperature by incubating samples on ice (CTV-S. aureus + Ice).
Events collected on the ImageStream®™ Mark II were analyzed with Image3C and clustered in
20 distinct clusters using quantifications of morphological and fluorescent features
(Supplementary File 2 for feature description), including nuclear staining, phagocytized S.
aureus and DHR positivity (Figure 5A; Figure 5-figure supplement 1). We compared the

phagocytosis permissive samples (CTV-S. aureus) with samples where phagocytosis was
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inhibited by EDTA incubation or low temperature using the statistical analysis included in
Image3C based on a negative binomial regression model (Figure 5B,C; Figure 5-figure
supplement 2; Supplementary File 9,10). The clusters with relative abundance significantly
higher in the phagocytosis samples (Figure 5B; Supplementary File 3,11) and with high
intensities of both DHR and bacteria signals (Figure 5-figure supplement 3,4), are the two
clusters that we identify as enriched with professional phagocyte (cluster Pc5 P and Pcl7 P)
(Figure 5B; Figure 4-figure supplement 1; Figure 5-figure supplement 4; Supplementary File
11). The two clusters show a different DHR signal intensity (ROS response) from one another
upon bacteria exposure (cluster Pc5 P with high DHR signal, cluster Pc/7 P with low DHR
signal) (Figure 5-figure supplement 3; Supplementary File 3,11). Both Pc5 P and Pcl7 P
relative abundance is significantly higher in the phagocytosis samples compared to the EDTA
treated sample (Figure 5C; Supplementary File 9), showing that EDTA effectively inhibits
phagocytosis for both types of professional phagocytes. In the sample where the phagocytosis
was inhibited by low temperature, however, only cluster Pc/7 P had a significantly lower
relative abundance compared to the phagocytosis sample (Figure 5C; Figure 3-figure supplement
2; Supplementary File 10). We can conclude that similar to CCB inhibition in the zebrafish
phagocytosis experiment, EDTA is a more effective and generalized (not cell-type-specific)
inhibitor of phagocytosis than low temperature. These results show that also in an emerging
research organism, Image3C allowed discovery of new aspects of this biological process and
highlighted differences among professional phagocytes that would have been difficult to detect
with other methods.

The data analysis with Image3C clearly highlighted that CCB and EDTA, two classical

phagocytic inhibitors commonly used in controls for phagocytosis experiments in vertebrates and
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invertebrates, respectively, result in a drastic change of cell morphology and cell viability. This
consequence is not easily detectable by other methods and is therefore often overlooked. In the
present work, these changes significantly modified the overall cell cluster number and
distribution and indicates that the effects of CCB and EDTA on cell morphology should be taken
into consideration in any study of morphological features of cells with phagocytosis properties

because artifacts might be significant.

Convolutional Neural Network (CNN) allows unbiased comparison between experiments

When determining differences between control and experimental treatments, Image3C
necessarily combines images and data from all samples and then clusters the cells. This must be
taken into consideration for experimental planning. Experiments meant to analyze cell
composition and morphological diversity in one biological domain (e.g., homeostasis condition)
(Figure 2; Figure 4) should be carried out separately from those in other domains that are likely
to introduce changes in the cell population composition or cell morphologies that would be a
confounding factor for the de novo clustering in homeostasis condition. Image3C clustering
works best when used, at the same time, only on samples belonging to a single experimental
domain, such as homeostasis or the phagocytosis assay. An issue that emerges when analyzing
different experimental sets independently is the increase of time requirement for analytical steps,
the likelihood of introducing errors, and the need to repeatedly annotate the clusters in the FDL
graph obtained from each experimental set. This last element is required for comparing cell type
behaviors among multiple experiments and have a global understanding of their functions and

response to treatments (i.e., cluster #1 from one analytical run cannot be expected to match cell
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morphologies with cluster #1 from another run, since there is a stochastic element to the
process).

This last point is probably the most challenging since mistakes can easily be introduced based
on user-biases or lack of sufficient pre-existing knowledge about cell morphologies or of cell
biomarkers that would allow a confident cross-annotation between multiple FDL graphs. In
addition, we observed that the number of clusters drastically increases when including treatments
that influence cell morphological properties of the cell. As an example, while we detected 9
unique clusters in naive hemolymph samples, we detected 20 clusters in the phagocytosis
experiment (Figure 3A; Figure 4A). This is in part due to the fact that professional phagocytes
change their morphology upon detection of pathogens (Pali¢ et al., 2007), thus creating new
clusters. Similarly, the complexity of the clustering is also increased by treatments, such as CCB
and EDTA incubations, that are necessary to ensure identification of professional phagocytes,
but have a strong impact on the morphology of the cells making the clustering and annotation
steps more challenging and prone to mistakes since treated samples contain aberrant populations
not found at homeostasis (Figure 5A; Supplementary File 11).

To provide an alternative for streamlining the analysis of multiple experimental sets upon
initial de novo clustering and cell type identification in homeostasis samples, we included in
Image3C the possibility to use these initial images and their cluster IDs to train a CNN without
manually classifying the images (Figure 1). This trained classifier can then be used to assign the
cell images subsequently collected from additional experimental sets to one of the clusters
defined in the homeostasis condition in a high-throughput way. In this way it will be possible to
determine the behavior of a specific cell type through multiple experimental sets without re-

clustering whenever new data is acquired. A crucial element that allows this approach is also
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represented by the ImageStream®” Mark II system that provides highly reproducible and
comparable images of cells coming from different experiments and acquired in different days,
introducing much less variability then standard light or electron microscopy.

For our pipeline, then, a CNN (LeCun et al., 1989) based on the architecture of DenseNet
(Huang, Liu, Maaten, & Weinberger, 2017) was deployed to: 1. use, as training set, images and
clusters obtained from a first group of samples (e.g., homeostasis conditions, naive cells or WT
samples) analyzed in an unbiased way by de novo clustering and 2. assign new cell images
acquired through ImageStream®” Mark II system to their respective classes. As proof-of-
concept, we used the clusters identified for P. canaliculata hemocytes in homeostasis condition
with the first part of the pipeline (Figure 4A) for training and setting up the CNN classifier. This
approach would define the classes based on the unbiased de novo clustering of thousands of cells
with no need for formal annotation or previous knowledge about cell types and tissue
composition. To prepare a data set for training the classifier, we first combined clusters that
strongly overlapped with one another in terms of morphological characteristics (e.g., doublets
and dead cells) to increase accuracy of the classifier (Figure 6A). We used 80% of the cells
obtained in the original P. canaliculata dataset together with their cluster IDs to train the
classifier through over 25,000 iterations. After each iteration, we tested the training with 10% of
the original dataset and we determined the relative accuracy by scoring numbers of cells whose
cluster ID assigned by the classifier matched the original cluster ID (Figure 6B,C). The
remaining 10% of the original dataset was used to calculate the precision of the trained classifier.
Clusters with higher support numbers obtained higher precision scores. The weighted average
precision score (fl-score, precision average score across clusters controlling for support

numbers) of 0.75 is relatively high considering the complexity of the phenotype (BF, darkfield
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and Draq5 images) (Figure 6D) and comparable to other studies using machine learning for cell
classification (Blasi et al., 2016). The true probability match for each individual cell (probability
for each cell that the class assigned by the classifier would match the original cluster ID)
demonstrated that lower true probability matches occurred where clusters strongly overlapped or
where cell phenotypes are intermediate between clusters, providing an additional layer of
information about our dataset (Figure 6D).

To test the efficiency of this pipeline, we extracted all the images belonging to the two
clusters identified in the phagocytosis assay as cluster-containing phagocytes and determined to
which naive cell-type they correspond using the CNN classifier and only the BF, SSC and Draq5
channels (i.e., DHR and labeled bacteria signals where not used). We found that 59.4%, 6.2%
and 9.2% of the phagocytes belonged to cluster Pcl CT, Pc6 CT and Pc7 CT, respectively
(Figure 6E), where CT stands for Classifier Training. These results confirmed a previously
published result that used classical morphological staining and manual annotation to conclude
that the hemocytes able to phagocytize were primarily Group II hemocytes (Accorsi et al., 2013).
Only 8% of the phagocytes were clustered in the Group I hemocytes, here represented by cluster
Pc2 CT, Pc3 CT and Pc4 CT, while the remaining 17.2% were assigned by the CNN to the
cluster Pc5_CT, constituted by doublets and dead cells (Figure 6E). This result can be explained
by the fact that in vitro phagocytosis triggers microaggregate formation (hemocyte-hemocyte
adhesion) in invertebrate hemocytes that resembles the nodule formation observed in vivo
(Walters, 1970). It is important to observe how this analysis allowed us to assign phagocytes to
cell types using the annotation already performed in Figure 4A (de novo clustering of hemocytes
in homeostasis condition) without the need to re-annotate the FDL obtained during the

phagocytosis assay (Figure 5A).
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To test the adaptability of the trained CNN to new datasets, we collected hemocytes from
male apple snail specimens, we stained the cells with Draq5 and recorded BF, SSC and nuclei
images from 10,000 cells on the ImageStream®™ Mark II as previously described. We extracted
the images of the cells, and we used the trained CNN classifier to determine the relative
abundance of hemocytes collected from male snails in the 7 classes of the classifier (Figure 6F).
First, we visually compared the female hemocytes clustered by the de novo clustering with the
male hemocytes that were run on the ImageStream®> Mark II and were assigned to a class by
the classifier (Figure 6F). This comparison shows that the female and male hemocytes belonging
to the same cluster are morphologically extremely similar and different from the hemocytes
assigned to other clusters (Figure 6F). This demonstrates that the CNN classifier can be trained
with a first group of samples and then it can successfully analyze new datasets acquired later on.
The comparison between female and male hemocyte compositions revealed that the clusters
significantly different in terms of relative abundance are Pcl CT and Pc7 CT (Group II
agranular large hemocytes) and Pc6 CT (Group II granular large hemocytes) (Figure 6F).
Significantly, prior studies detected no differences between females and males hemocytes
composition through manual classification and counting using a classical morphological
approach (Accorsi et al., 2013). The user-bias-free and high-throughput analysis presented here,
in contrast, allowed us to determine that one of the two subpopulations of agranular large
hemocytes was significantly more abundant in the female animals (Pc1 _CT: 53% and 38% in
females and males, respectively) while the other agranular (Pc7 CT ) as well as the granular
large hemocytes (Pc6_CT) was significantly more abundant in the male animals (Pc7_CT: 14%
and 20% in females and males, respectively; Pc6 CT: 6% and 10% in females and males,

respectively) (Figure 6F).
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While the biological significance of this observation is not going to be further investigated in
this paper, the discovery highlights the power of Image3C analysis compared to traditional
methods for determining and quantitating the composition of cell populations. These experiments
demonstrate that Image3C, in combination with the presented convolutional classifier, can
analyze large experimental datasets and identifying significances with small effect sizes.
Importantly, Image3C analysis is independent of observer biases and does not require prior
knowledge about expected tissue composition or the expected effect of treatment on cell

morphology.

Conclusion

We have developed a powerful new method to analyze at single-cell resolution the
composition of any cell population obtained from research organisms for which species-specific
reagents (such as fluorescently tagged antibodies), biomarkers, single-cell atlases or a high-
quality genome for a scRNA-Seq approach are not available. We demonstrated that Image3C can
identify different cell populations based on morphology and/or function through de novo
clustering and highlight important changes in cell type abundance and cell population
composition caused by experimental or natural perturbation (sex, treatment, experimental
protocol). Image3C does not require, at any point, prior knowledge about the tissue composition
or cell type specific markers, although, if available, they can be included and used. Furthermore,
in combination with the CNN classifier trained on these clusters, we demonstrate that Image3C
is capable of bias-free and high-throughput analysis of large experimental datasets making it
possible to compare a specific cell type behavior or population composition across multiple

experiments. Image3C is extremely versatile and can be applied to any tissue or cell population
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of interest and is adaptable to a variety of experimental designs. Although, Image3C was develop
in response to the need of analyzing cell composition of tissues in emerging research organisms,
the Image3C tool could be potentially used also to add to transcriptomic dataset an additional
and complementary layer of information based on cell morphology. Given the recent
advancement in image-based flow cytometry that enables image capturing together with cell
sorting (Nitta et al., 2018), a scRNA-Seq approach in combination with the Image3C pipeline
would enable simultaneous analysis of both the morphological/phenotypic and genetic properties

of a cell population at single cell resolution.
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Materials and Methods

Key Resources Table

Reage_n t type . . Source or ie Additional
(species) or Designation Identifiers . .
reference information
resource
strain, strain Wood strain Thermo Fisher S2859
background without Scientific
(Staphylococcus protein A
aureus)
biological sample Whole kidney Stowers Wild type, Freshly isolated
(Danio rerio) marrow Institute for Adult from Danio rerio
Medical females
Research
biological sample Hemolymph Stowers Wild type, Freshly isolated
(Pomacea Institute for Adult from Pomacea
canaliculata) Medical females and canaliculata
Reserach males
chemical Dihydrorhoda Thermo Fisher D23806 5 uM
compound, drug mine-123 Scientific
(DHR)
software, IDEAS Amnis Millipore Version 6.2
algorithm Sigma
software, R code This paper https://github.co
algorithm m/stowersinstitu
te/LIBPB-1390-
Image3C
software, VorteX https://github.co
algorithm clustering m/nolanlab/vort
environment ex/releases
software, FSC Express De Novo Image or
algorithm Software Plus
configuration
s - Version 7
software, Python script This paper https://github.co
algorithm m/stowersinstitu
te/LIBPB-1390-
Image3C
other Drag5 Thermo Fisher 62251 5uM
Scientific
other CellTrace Thermo Fisher C34571 5 uM
Violet Scientific
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Collection of zebrafish whole kidney marrow (WKM)

Twelve-month-old, wild type, female, adult zebrafish were euthanized with cold 500 mg/L
MS-222 solution for 5 min. WKM was dissected as previously described (D. Traver et al., 2003)
and transferred to 40 um cell strainer with 1 mL of L-15 media containing 10% water, 10 mM
HEPES and 20 U/mL Heparin (L-90). Cells were gently forced through the cell strainer with the
plunger of a 3 mL disposable syringe. The strainer was washed once with 1 mL of L-90 and the
resulting single cell suspension was centrifuged at 500 rcf at 4 °C for 5 min. The supernatant was
discarded, and the cells were resuspended in 1 mL of L-90 containing 5% fetal calf serum (FCS),
4 mM L-Glutamine, and 10,000 U of both Penicillin and Streptomycin (L-90 media). The cells

were counted in a 1:20 dilution on the EC-800 flow cytometer (Sony) using scatter properties.

Collection of apple snail hemocytes

Specimens of the apple snail Pomacea canaliculata (Mollusca, Gastropoda, Ampullariidae)
were maintained and bred in captivity, in a water recirculation system filled with artificial
freshwater (2.7 mM CaCl,, 0.8 mM MgSOg4, 1.8 mM NaHCOs3, 1:5000 Remineralize Balanced
Minerals in Liquid Form [Brightwell Aquatics]). The snails were fed twice a week and kept in a
10:14 light:dark cycle. Wild type adult snails, 7-9 months old and with a shell size of 45-60 mm
were starved for 5 days before the hemolymph collection (Accorsi et al., 2013). If not differently
specified, female snails were used for the experiments. The withdrawal was performed applying
a pressure on the operculum and dropping the hemolymph directly into an ice-cold tube. The
hemolymph collected from different animals was not pooled together. The hemolymph was
immediately diluted 1:4 in Bge medium + 10% fetal bovine serum (FBS) and then centrifuged at

500 rcf for 5 min. The pellet of cells was resuspended in 100 pl of Bge medium + 10% FBS. The
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Bge medium (also known as Biomphalaria glabrata embryonic cell line medium) is constituted
by 22% (v/v) Schneiders’s Drosophila Medium, 4.5 g/ Lactalbumin hydrolysate, 1.3 g/L

Galactose, 0.02 g/L Gentamycin in MilliQ water, pH 7.0.

Experiment 1: Morphology Assay in homeostasis conditions

WKM cells from zebrafish were isolated as described before and plated at 4 x 10° cells/well in
a 96-well plate in 200 pL of L-90 media and incubated for 3 h at room temperature. Cells were
stained with 5 uM Draq5 (Thermo Fisher Scientific) for 10 min and subsequently run on the
ImageStream®” Mark II (Amnis Millipore Sigma), where 10,000 nucleated and focused events
were recorded for each sample (n=8). Erythrocytes were out-gated to enrich for immune relevant
cells and to prevent over-clustering in the subsequent analysis. The latter is due to the fact that
fish erythrocytes are nucleated and their biconcave shape results in different morphological
feature values only depending on their orientation during image acquisition.

The P. canaliculata hemocytes were stained with 5 uM Draq5 (Thermo Fisher Scientific) for
10 min, moved to ice and subsequently run on the ImageStream®” Mark II (Amnis Millipore

Sigma), where 10,000 nucleated and focused events were imaged for each sample (n=5).

Experiment 2: Phagocytosis Assay

Staphylococcus aureus (Thermo Fisher Scientific) were resuspended in PBS at the final
concentration of 100 mg/ml and incubated with 5 uM CellTrace Violet (CTV; Thermo Fisher
Scientific) for 20 min. Labelled bacteria were centrifuged and resuspended in PBS for 3 times to
remove unbound dye and then stored at -20 °C as single-use aliquots. Cells, obtained from fish

WKM or snail hemolymph and in a single cell suspension, were plated in a 96-well plate at a
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concentration of 4 x 10° cells/well in 200 pL of medium and incubated with 2 x 10’ CTV-
coupled S. aureus/well for 3 h at room temperature. As control, the phagocytosis was inhibited
incubating the cells + CTV-S. aureus mix either on ice (for both species) or with 0.08 mg/mL
cytochalasin B (CCB) for zebrafish cells or with 30 mM EDTA and 10 mM HEPES for apple
snail cells (Cueto, Rodriguez, Vega, & Castro-Vazquez, 2015; Li et al., 2006). After 2 h and 30
min we added 5 pM dihydrorhodamine-123 (DHR) (Thermo Fisher Scientific) to the cell
suspension to stain cells positive for reactive oxygen species (ROS) production. To control for
this treatment with DHR, we incubated one aliquot of cells with 10 ng/mL phorbol 12-myristate
13-acetate (PMA) to induce ROS production. At 2 h and 50 min since the beginning of
incubation with CTV-S. aureus, all the samples were stained with 5 uM Draqg5 for 10 min. After
3 h incubation with bacteria, cells were moved and stored on ice and subsequently run on the
ImageStream®” Mark II (Amnis Millipore Sigma), where 10,000 nucleated and focused events

were imaged for each sample (at least n=4 snail and n=6 fish) at a speed of 1,000 images/sec.

Data collection on ImageStream®" Mark I

Following cell preparation, data were acquired from each sample on the ImageStream®™
Mark II (Amnis Millipore Sigma) at 60x magnification, slow/sensitive flow speed (1,000
images/sec), using 633, 488 and 405 nm laser excitation. Bright field was acquired on channels 1
and 9, DHR (488 nm excitation) on channel 2, CTV-S. aureus (405 nm excitation) on channel 7,
Draq5 (633 nm excitation) on channel 11, and SSC was acquired on channel 6. Single color
controls were also acquired for each fluorescent channel to allow for fluorescence spillover

correction.
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Data analysis and de novo cluster identification

An interactive map representing the pipeline, the software used, the format of the exported
files and an approximation of time required for running the individual steps is provided in Figure
1-figure supplement 1. Raw images from the ImageStream®> Mark II system (RIF files, a type
of modified 16 bit TIFF file) were compensated (spillover and other corrections applied),
background was subtracted, and features were calculated using IDEAS 6.2 software (Amnis
Millipore, free for download once an Amnis user account is created). The resulting compensated
image files (CIF files) were used to quantify features for all cells and samples. Supplementary
File 1,2 report the list of features used for each organism and for each experiment and their
description. These per-object feature matrices (DAF files) were then exported from IDEAS into
FCS files. Exported FCS files were processed in R (R Core Team, 2014). In order to trim
redundant features that contribute noise but little new information, Spearman’s correlation values
for each pair of features were calculated using all events of a representative sample and one of
the features of the pair was trimmed when correlation was > 0.85 for the pair (Figure 2-figure
supplement 1) (Caicedo et al.,, 2017). The Spearman’s correlation of the mean values of
remaining features per each sample were then used to identify outliers among sample replicates.
Samples with correlation of mean feature values below 0.85 with the set were discarded (Figure
2-figure supplement 2; Figure 3-figure supplement 1; Figure 4-figure supplement 1; Figure 5-
figure supplement 1), although in general the replicates were consistent. Also, while
morphological features did not require any transformation or normalization, fluorescence
intensity features were transformed using the estimateLogicle() and transform() functions from
the R flowCore package (Ellis et al., 2018; Hahne et al., 2009) to improve homoscedasticity

(homogeneity of variance) of distributions. DNA intensity features were also normalized to align
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all 2N and 4N peak positions and to remove intensity drift between samples (Figure 2-figure
supplement 3) using the gaussNorm() function from flowStats package (Hahne, Gopalakrishnan,
Khodabakhshi, Wong, & Lee, 2018). The processed data was exported from R (R Core Team,
2014) using writeflowSet() function in flowCore package (Ellis et al., 2018; Hahne et al., 2009)
as CSV or FCS files, depending on downstream needs for the file output.

These processed data files were then imported into the VorteX clustering environment for X-
Shift k-nearest-neighbor clustering (free to install) (Samusik et al., 2016). X-Shift was selected
as a clustering method for Image3C based on a previously published analysis and comparison of
clustering methods (Weber & Robinson, 2016). From that work, we determined that X-shift
represents an optimal trade-off: identifying low frequency populations, accurately identifying
‘true’ clusters (i.e., F1 scores), not requiring for a priori knowledge of the number of clusters
(populations) and having reasonable runtimes (due to hardware CPU requirements). We also did
an early comparison of X-shift with K-means (data not shown) and determined that K-means was
insufficient for our purposes as known cell populations were not well represented by clusters,
and we did not want to specify the number of expected clusters into the method’s input
parameters since this would not be known in experimental use. During the import into VorteX,
all features were scaled to 1SD to equalize the contribution of features towards clustering.
Clustering was performed in VorteX testing a range of k values (typically from 5 to 150),
choosing a final k value using the ‘find elbow point for cluster number’ function in VorteX and
confirming visually that over- or under-clustering did not occur. Force directed layout (FDL)
graphs of a subset of cells obtained from each set of samples were also generated in VorteX and
cell coordinates in the resultant 2D space were exported along with graphML representation of

the FDL graph. Finally, tabular data (CSV files) was exported from VorteX including a master
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table of every cell event with its cluster assignment and original sample ID, as well as a table of
the average feature values for each cluster and counts of cells per cluster and per sample.

Clustering results were further analyzed and plotted in R (R Core Team, 2014) by merging all
cell events and feature values with cluster assignments and X/Y coordinates for FDL graph.
Using this merged data and the graphML file exported from VorteX, new FDL graphs were
created for each treatment condition using the igraph package (Csardi & Nepusz, 2006) in R (R
Core Team, 2014). Statistical analysis of differences in cell counts per cluster by condition were
performed using negative binomial regression of cell counts per cluster, plots of statistic results
and other results were generated, and CSV files containing cell ID, sample ID, feature values,
X/Y coordinates in FDL graph were exported for each sample. The subsequent use of FCS
Express Plus version 6 (DeNovo software, free alternative are mentioned later in the text)
allowed visualization of cell images using DAF/CIF files by cluster and by customized subsets of
the FDL graphs.

DAF files were opened in FCS Express Plus software and the “R add parameters”
transformation feature with a custom script was used to merge the clustering data saved in the
CSV files generated above with both DAF and CIF files (feature values and image sets,
respectively). FCS Express Plus was utilized at this stage of work because it is the only platform
currently available that works with Amnis DAF and CIF files while also running transformation
processes driven by R scripting. ImageJ Bio-Formats allows reading images from DAF and CIF
files but we got pixels with a value much higher than expected, probably due to a bug that has
not been fixed, yet. This allowed to visualize image galleries of cells within each cluster and gate
by features of interest on 2D plots (more traditional flow cytometry analysis) for exploring the

clustering results and identifying clusters and populations of interest. FCS Express Plus is a
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proprietary software, but similar results can be obtained with IDEAS software where a text file
with cluster IDs for each image event can be imported and the cluster information can be
matched to the event images.

The full complement of R packages used includes flowCore (Ellis et al., 2018; Hahne et al.,
2009), flowStats (Hahne et al., 2018), igraph (Csardi & Nepusz, 2006), ggcyto (Jiang, 2015),
ggridges (Wilke, 2018), ggplot2 (Wickham, 2016), stringr (Wickham, 2010), hmisc (Harrell &
Dupont, 2019) and caret (Kuhn, 2008). Figure 1-supplement figure 1 can be used as an
interactive map of Image3C pipeline, where, clicking on the different portions of the pipeline,
the users will be automatically directed to the corresponding section of our GitHub repository.

The GitHub repository at https://github.com/stowersinstitute/LIBPB-1390-Image3C reports a

detailed description of all these processing steps and includes sample scripts, workflow files,

example datasets and tutorials.

Setup and use of a Convolutional Neural Network (CNN) Classifier

Once the clusters were defined with the previously described de novo clustering analysis, we
used a CNN (LeCun et al., 1989) based on the architecture of DenseNet (Huang et al., 2017) for
image classification. Out of all the events captured with the ImageStream®™ Mark II system, we
selected only single nucleated objects applying gates on area vs aspect ratio plot and Draq5
intensity plot to achieve this selection, respectively. For these objects, we exported 16 bit TIFF
images (one channel per fluorescence/BrightField image ‘color’) using IDEAS 6.2 software
(Amnis/Millipore, free for download once an Amnis user account is created).

Because images from the ImageStream®> Mark II system have non-uniform sizes, each

image was cropped or padded to 32x32 pixels using NumPy indexing (Walt, Colbert, &
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Varoquaux, 2011) in a Python script. The CNN consists of three dense blocks that transition
from three-channel image input of 32x32x3 to a final size of 4x4x87 with 87 feature maps. A
dense block includes three convolution layers, each followed by leaky ReLU activation. The last
step of the block is a strided convolution used to down-sample the width and height of the
feature maps by a factor of 2. The final layer of the CNN flattens the 4x4x87 array into a 1D
vector of length 1392 and is fully connected to the output layer that is a 1D vector with a length
of the number of classes for prediction. The CNN used softmax cross entropy for the loss
function with L2 regularization, and the Adam optimizer (Kingma & Ba, 2015) was used to
minimize the loss function. The CNN was implemented in Python using the TensorFlow
platform (Abadi et al., 2015) and the SciPy ecosystem (T. Oliphant, 2006; T. E. Oliphant, 2007,
Pedregosa et al., 2011).

The CNN was used to train a classifier using over 35,000 images of P. canaliculata
hemolymph cell types in homeostasis condition acquired with the ImageStream®™ Mark II
system. The event images were randomly split in 80% for training, 10% for testing during
training, and 10% for final validation. The first 80% of the images were used together with their
cluster IDs obtained by the de novo clustering to train the classifier. The learning rate for the
Adam optimizer was set to 0.0006 with a decaying learning rate starting at 0.001 and decreasing
by 1% each step. The training proceeded for 25,000 iterations with a size of 256 randomly
selected images for each iteration. After each iteration, 10% of the cells of the original P.
canaliculata dataset was used to test the classifier. The loss and accuracy of the CNN were
recorded after every 100 iterations to monitor the performance. The CNN loss was defined by the
softmax of the cross entropy (Dahal, 2017) between the final output and the one-hot-encoded

image labels. To avoid the CNN memorizing the training set, L2 regularization was applied to
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the weights. The training and test set follow the same accuracy and loss trends over all iterations
indicating the training set is not memorized and can generalize to predict the test set.

The finally trained classifier was tested on the remaining 10% of images that were completely
new for the CNN. The trained model was saved for future use, so new images can be inferred by
the network to predict cell types. The inference is very fast because only one forward pass is
made through the network and no back propagation occurs. The result of the inference is a vector
with length equal to the number of cell type classes. Each element of the vector will be the
probability of the cell belonging to the corresponding class; the sum of the vector must be 1.
Inferring a complete experiment will provide a probability vector for each image; the list of
probability vectors can be saved as CSV file. For new images, the inference results will need to
be examined to ensure the predictions are reliable. A large majority of the probability vectors
should have a maximum greater than 0.5, and a subset of the images should be visually inspected
to verify proper class assignment.

The interactive map of Image3C pipeline (Figure 1-figure supplement 1) includes also the
training and the use of  the CNN. The GitHub repository at

https://github.com/stowersinstitute/LIBPB-1390-Image3C reports a detailed description of all

these processing steps, includes sample scripts, workflow files, example datasets and tutorials
and can be easily accessed clicking on the right side of the Image3C interactive map (Figure 1-

figure supplement 1).

Statistical Analysis
Negative binomial regression was performed on tables of cell counts per cluster and per

sample and plots were generated using R (R Core Team, 2014) with the edgeR package
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(Robinson, McCarthy, & Smyth, 2010), which was developed for RNAseq analysis, but includes
generally applicable and user-friendly wrappers for regression and modeling analysis and
plotting of results. For the comparison of cellular hemolymph composition between females and
males of P. canaliculata a one-way ANOVA with subsequent FDR (Benjamini-Hochberg,

correction for multiple testing) was used.
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Main Figure Legends

Figure 1: Schematic representation of Image3C workflow, a method for cell clustering based on
morphological features

(A) A single cell suspension is prepared for image-based flow cytometric analyses. The cells can be
labelled with any reagent working for the species of interest. The signal can highlight specific cell
components (e.g., nuclei), metabolic cell states or specific cell functions. The samples are run on the
ImageStream®X Mark Il and 10,000 nucleated and focused events are saved for each sample as
individual raw images.

(B) IDEAS software (Amnis Millipore) is used to open the raw images, compensate for correcting
fluorescent spillover, subtract background and quantify values for intrinsic morphological and fluorescent
features. R (or R studio) is used to calculate the correlation between features to allow to trim the features
that are redundant with others. Samples that are outliers among replicates are also removed prior the
final normalization of the fluorescence intensities.

(C) Images are clustered based on morphological and fluorescent feature values and visualized as a
Force Directed Layout (FDL) graph where each dot represents one event.

(D) R integration in FCS Express Plus software allows the visualization of cell images by clusters or
specifically selected with a gate. This step allows to evaluate the morphological homogeneity of the
clusters, determine if the number of clusters is appropriate and explore the phenotype/function of the cells
based on visualization of individual channels.

(E) Spearman’s correlation plot of feature values by clusters is one of the options available in Image3C
for plotting integrated data. This heatmap shows feature similarities and differences between cells
belonging to different clusters.

(F) If new experiments are run and new data needs to be analyzed two approaches can be taken. 1. If the
goal is comparing samples belonging to the same experiment (e.g., treatment vs its control) the steps
described so far from (A) to (E) can be re-applied to the new dataset including a statistical analysis to
compare cluster relative abundance. This approach will produce a new set of clusters that will need to be
re-annotated. Compare sets of clusters coming from multiple experiments and multiple rounds of analysis
can be challenging without pre-existing knowledge of cell-type, clearly different morphologies or
biomarkers that would allow to establish a unique correlation between clusters coming from different FDL
graphs. 2. If the goal is integrating experiments and comparing cell type abundance between them, the
use of steps (F) and (G) is suggested. A CNN classifier is trained using the images obtained from
homeostasis, naive or WT cells and already organized in clusters in an unbiased way through the first
part of our method. This will generate a trained classifier with CNN classes based on FDL clusters.

(G) This classifier is then used for deconvoluting data from new experimental sets and assigning each
event to a CNN class with a given probability. This provides high-throughput, and unbiased way to
compare different experiment sets without the requirement for pre-existing knowledge about the tissue
cell types, cell biomarkers or the need to cross-annotate cluster increasing the probability to introduce
errors.

The entire pipeline chart and step-by-step technical information, such as software used, time required for
processing and exported file format are reported in the interactive map Figure 1-figure supplement 1, that
automatically direct to the specific section of the GitHub.

Figure 2: Analysis of cell composition of adult zebrafish WKM

(A) WKM tissue obtained from zebrafish is prepared for image-based flow cytometric analyses and run on
the ImageStream®X Mark Il (n=8). Standard gating of focused and nucleated events and manual out-
gating of most erythrocytes was performed using IDEAS software (Amnis Millipore). The selected images
were processed through the pipeline described in Figure 1 and clustered based only on intrinsic
morphological and fluorescent feature values. FDL graph visualizes 16 clusters and each color represent
a unique cell cluster.

(B) Representative cell images belonging to each cluster are shown to evaluate the homogeneity of the
cluster and determine morphology of the cells for cluster annotation. Representative cells for all the
identified clusters are shown in Supplementary File 4. Merge represents the overlay of brightfield (BF),
side scatter signal (SSC) and Drag5 (nuclear staining) signal.
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(C) Spearman’s correlation plot shows the average feature values of the images in each cluster to
highlight morphological similarities and differences between events belonging to different clusters, such
as cell size or cytoplasm granularity (Supplementary File 1).

(D) Box plot of relative abundance of events within each cluster follows the same color-code used in A.

Figure 3: Identification of professional phagocytes in zebrafish WKM

(A) A phagocytosis assay was performed on a cell suspension obtained from zebrafish WKM tissue and
the samples were subsequently run on the ImageStream®X Mark Il (n=6). FDL graph shows 26 clusters
and each color represents a unique cell cluster. Representative cell images belonging to the 4 clusters
containing professional phagocytes are shown. Representative cells for all the identified clusters are
shown in Supplementary File 7. Merge represents the overlay of DHR (ROS indicator), CTV (S. aureus
labeling) and Drag5 (nuclear staining) channels. Supplementary File 2 reports the features used for this
clustering.

(B) Volcano Plot illustrates comparison of cluster relative abundance between phagocytosis samples
(CTV-S. aureus) and inhibited-phagocytosis samples (CTV-S. aureus + CCB). The log fold change
(logFC) is plotted in relation to the FDR (Fold Discovery Rate) corrected p-value (-log+o) of each individual
cluster calculated with negative binomial regression model (n=6) (Supplementary File 5). Dot color follows
the same color-code used in A.

(C) Box plot of relative abundances of events within the 4 clusters containing professional phagocytes.
Phagocytosis samples (CTV-S. aureus), CCB inhibited-phagocytosis samples (CTV-S. aureus + CCB)
and ice inhibited-phagocytosis samples (CTV-S. aureus + Ice) (Figure 3-figure supplement 2). Statistically
significant differences are calculated using the negative binomial regression model between the
phagocytosis and the inhibited-phagocytosis samples (Supplementary File 5,6). ** indicates p < 0.01 and
n.s. indicates not significantly different after FDR (n=6).

Figure 4: Analysis of P. canaliculata hemocyte population using only intrinsic morphological
features of the cells

(A) Hemocytes obtained from the apple snail P. canaliculata are prepared for image-based flow
cytometric analyses and run on the ImageStream®X Mark Il (n=5). Standard gating of focused and
nucleated events was performed using IDEAS software (Amnis Millipore). The selected images were
processed through the pipeline described in Figure 1 and clustered based only on intrinsic morphological
and fluorescent feature values. FDL graph is used to visualize the 9 identified clusters and each color
represent a unique cell cluster. Representative cell images belonging to each cluster are shown to
evaluate the homogeneity of the cluster and determine morphology of the cells for cluster annotation.
Additional representative cells for all the identified clusters are shown in Supplementary File 8. Merge
represents the overlay of brightfield (BF), side scatter signal (SSC) and Drag5 (nuclear staining) signal.
(B) Spearman’s correlation plot shows the average feature values of the images in each cluster to
highlight morphological similarities and differences between events belonging to different clusters, such
as cell size or cytoplasm granularity (Supplementary File 1). Cluster Pc6 is the one among large
hemocytes with higher values in features describing cytoplasm granularity (i.e., area granularity #2,
intensity granularity #18 and signal granularity #11).

(C) Box plot of relative abundance of events within each cluster following the same color-code used in A.
Clusters Pc5 and Pc8, constituted by duplets and dead cells, are those with the lowest number of events,
validating the protocol used to prepare these samples.

Figure 5: Identification of professional phagocytes among P. canaliculata hemocytes

(A) A phagocytosis assay was performed on a cell suspension obtained from apple snail P. canaliculata
hemolymph and the samples were subsequently run on the ImageStream®X Mark 1l (n=5). FDL graph
shows 20 clusters and each color represents a unique cell cluster. Representative cell images belonging
to the 2 clusters containing professional phagocytes are shown. Representative cells for all the identified
clusters are shown in Supplementary File 11. Merge represents the overlay of DHR (ROS indicator), CTV
(S. aureus labeling) and Drag5 (nuclear staining) channels. Supplementary File 2 reports the features
used for this clustering.

(B) Volcano Plot illustrates comparison of cluster relative abundance between phagocytosis samples
(CTV-S. aureus) and inhibited-phagocytosis samples (CTV-S. aureus + EDTA). The log fold change
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(logFC) is plotted in relation to the FDR (Fold Discovery Rate) corrected p-value (-log+o) of each individual
cluster calculated with negative binomial regression model (n=4) (Supplementary File 9). Dot color follows
the same color-code used in A.

(C) Box plot of relative abundances of events within the 2 clusters containing professional phagocytes.
Phagocytosis samples (CTV-S. aureus), EDTA inhibited-phagocytosis samples (CTV-S. aureus + EDTA)
and ice inhibited-phagocytosis samples (CTV-S. aureus + Ice) (Figure 5-figure supplement 2). Statistically
significant differences are calculated using the negative binomial regression model between the
phagocytosis and the inhibited-phagocytosis samples (Supplementary File 9,10). ** indicates p < 0.01 and
n.s. indicates not significantly different after FDR (n=4).

Figure 6: Classifier training and use of Convolutional Neural Network for integrating multiple
experiments

(A) The convolutional neural network (CNN) portion of Image3C allows the integration of multiple
experiments and the analysis of additional samples assigning new events to already defined and
annotated clusters without manual and potentially biased matching of clusters by the user. Images of cells
obtained from homeostasis, naive or WT samples and already clustered de novo in an unbiased way by
Image3C are exported as TIFF files together with their cluster IDs. P. canaliculata hemocytes in
homeostasis condition obtained from female apple snails (35,000 images) is the dataset used for training
the CNN classifier. Before the training, clusters with cells with strongly overlapping morphology were
merged (Pc1 was merged with Pc9 and named Pc1_CT; Pc5 was merged with Pc8 and named Pc5_CT).
CT stands for Classifier Training.

(B) The training was performed on 80% of the exported images and the testing during the training was
performed on 10% of the exported images. Relative accuracy was recorded every 100 iterations for
25,000 iterations total.

(C) The training was performed on 80% of the exported images and the testing during the training was
performed on 10% of the exported images. Loss calculation was recorded every 100 iterations for 25,000
iterations total and indicates that the training set is not memorized.

(D) The True match probability (probability that trained classifier-assigned cluster matches original cluster
ID) is given for each cell of the remaining 10% of the original exported images. The detailed precision
score for each cluster together with the weighted average (correcting for support) is reported in the table.
(E) The CNN classifier allows for integrating experiments, such as phagocytosis assay and morphological
assay, with minimal probability of introducing errors because of lack of biomarkers. The plot shows the
distribution of the cells belonging to the snail professional phagocytes clusters (Pc5_P and Pc17_P from
Figure 5, phagocytosis assay) among the clusters defined by morphological features using homeostasis
conditions.

(F) The CNN classifier allows also for the analysis of new samples obtained from the same species and
the same tissue used for the training. The new events obtained running male P. canaliculata hemocytes,
are assigned to clusters defined by the de novo clustering step, allowing for comparison between
samples (females vs males) and statistical analysis for cluster relative abundance differences. The box
plot shows the comparison of the hemocyte population composition between females and males (n=5).
*** are clusters with abundances robustly significantly different between female and male animals. (*) are
cluster with p-value lower than 0.05, but whose abundances are no more significantly different after the
correction for multiple testing (FDR).

(G) Representative cell images for each cluster belonging to female and male hemocytes dataset allows
to visually compare the cells used to train the classifier (female) with cells assigned by the classifier and
coming from a new set of samples (males). Brightfield (BF), side scatter signal (SSC) and Drag5 (nuclear
staining) signal are shown in individual channels.
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Supplemental Figure Legends

Figure 1-figure supplement 1: Interactive map of Image3C pipeline

Once the images are collected this pipeline can be followed step-by-step. Through this interactive map, it
is possible to click on the different portions of the pipeline and be automatically directed to the
corresponding section of the GitHub repository (htips:/github.com/stowersinstitute/LIBPB-1390-
Image3C), where a detailed step-by-step description of the processing, sample scripts, workflow files and
example datasets are provided. The software used are color-coded throughout the pipeline,
approximation of the time needed to run the individual steps is provided in light gray. The central column
and the left side represent the de novo clustering portion of the pipeline, while the right side (green
arrows) represents the use of the CNN, being trained with the clusters defined in an unbiased way from
the de novo clustering and able to process new samples.

Figure 2-figure supplement 1: Feature correlation for morphology assay on adult zebrafish WKM
An example of feature correlation and feature trimming step is shown. The correlation between feature is
calculated (a) and the redundant features are removed in order to leave only one representative feature
for each group of features with high correlation (b).

Figure 2-figure supplement 2: Sample correlation for morphology assay on adult zebrafish WKM
Sample correlation and outlier sample removal step performed on samples of adult zebrafish WKM. The
correlation between samples is calculated and samples with clear outlier profile are removed from the
subsequent analysis.

Figure 2-figure supplement 3: DNA normalization for morphology assay on adult zebrafish WKM
An example of DNA normalization step is shown. The fluorescent peaks of DNA staining for all the
samples of one experiment are shown before (a) and after (b) normalization that aims to align the 2N and
4N peaks across samples.

Figure 3-figure supplement 1: Sample correlation for phagocytosis assay on adult zebrafish WKM
Sample correlation and outlier sample removal step performed on samples of adult zebrafish WKM after
phagocytosis assay. The correlation between samples is calculated and samples with clear outlier profile
are removed from the subsequent analysis.

Figure 3-figure supplement 2: Phagocytosis assay on adult zebrafish WKM (ice phagocytosis
inhibition)

Volcano Plot illustrates comparison between phagocytosis samples (CTV-S. aureus) and inhibited-
phagocytosis samples (CTV-S. aureus + Ice). The log fold change (logFC) is plotted in relation to the
FDR (Fold Discovery Rate) corrected p-value (-logqg) of each individual cluster calculated with negative
binomial regression model (n=6) (Supplementary File 6). Dot color follows the same color-code used in
Figure 3A.

Figure 4-figure supplement 1: Sample correlation for morphology assay on P. canaliculata
hemocytes

Sample correlation and outlier sample removal step performed on samples of P. canaliculata hemocytes.
The correlation between samples is calculated and samples with clear outlier profile are removed from
the subsequent analysis.

Figure 5-figure supplement 1: Sample correlation for phagocytosis assay on P. canaliculata
hemocytes

Sample correlation and outlier sample removal step performed on samples of P. canaliculata hemocytes
after phagocytosis assay. The correlation between samples is calculated and samples with clear outlier
profile are removed from the subsequent analysis.

Figure 5-figure supplement 2: Phagocytosis assay on P. canaliculata hemocytes (ice
phagocytosis inhibition)
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Volcano Plot illustrates comparison between phagocytosis samples (CTV-S. aureus) and inhibited-
phagocytosis samples (CTV-S. aureus + Ice). The log fold change (logFC) is plotted in relation to the
FDR (Fold Discovery Rate) corrected p-value (-logqg) of each individual cluster calculated with negative
binomial regression model (n=4) (Supplementary File 10). Dot color follows the same color-code used in
Figure 5A.

Figure 5-figure supplement 3: Feature heatmap after phagocytosis assay on P. canaliculata
hemocytes

Spearman’s correlation plot shows the average feature values of the images in each cluster to highlight
morphological similarities and differences between events belonging to different clusters, such as cell size
or cytoplasm granularity (Supplementary File 2). The clusters with higher DHR signal and high bacteria
are the one identified as containing professional phagocytes (Pc5 P and Pc17_P). This is also confirmed
by the statistical analysis performed between the phagocytosis samples (CTV-S. aureus) and inhibited-
phagocytosis samples (CTV-S. aureus + EDTA) (Figure 5B; Supplementary File 9).

Figure 5-figure supplement 4: Gallery of P. canaliculata hemocytes after phagocytosis assay
Representative cell images side-by-side of professional phagocytes and non-phagocytic hemocytes from
apple snail samples after phagocytosis assay. The signal of the bacteria labelled with cell-trace-violet is
showed in yellow and the value for the signal intensity has been reported on top of each individual image.
These images were obtained using the gallery function of the Amnis IDEAS software and manually gating
events double positive for both DHR and bacteria and events double negative.
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Main Table

Table 1: Extensive overview on label-free cell clustering tools including a comparison of their main features.

Requires a priori knowledge of the sample and/or

Uses commercially available hardware?

Uses free or open

i ?
Tool name Was tested on multiple cell types? species-specific reagents for the clustering? source softwares?
YES NO YES
Image3C (Zebrafish whole kidney marrow: Apple Does not require previous knowledge or species-specific YES (IDEAS; Vortex; R; Python)
(present work) snail hemol };nph) +App reagents to cluster cell images and train the neural network. (ImageStream) NO
y If available, they can be used/integrated. (FCS Express Plus)
YES Requires annotated dataseIsEtgtrain the machine learning YES YES
CellProfiler i (F.'Xed Jurk?t cells; leg Jurkat cells algorithms, either by staining the samples with known (ImageStream; microscope) (IDEAS; CelProfier
ission yeast; Human white Blood Cells) . MATLAB)
markers, or by manually clustering the cells.
o YES s YES
] b N Requires the use of fluorescent markers to annotate the cells YE ) )
CellProfiler Analyst (Jurkat cells) and use them as the ground truth to train the machine- (ImageStream) (IDEAS; CellProfier or
learning algorithms. Phyton or MATLAB)
YES
NO YES

Label-free reflectance
microscopy ©

NO
(Fixed HeLa cells)

Requires Immuno-Fluorescence images with known markers
to use as ground truth and for training multiple deep learning

(Custom-built multimodal light-emitting diode
(LED) array reflectance microscope)

(Deep neural networks)

models.
YES

TR NO . . . . NO

Optoflu!dlc time- (Human breast adenocarcinoma cell line Does not provide cell clustering and single cell resolution (Optofluidic time-stretch microscope and YES
stretch microscopy 4 MCF-7) ' analysis. The changes are analyzed overall in the sample microfidic devices) (MATLAB)
without assigning it to a cell type.

YES NO

YES (High-speed multicolor stimulated Raman YES

Raman scattering ©

(Microalgal cells; Circulating tumor cells
in human blood)

Requires homogenous cell cultures. After different
treatments, these samples are used to create databases for
training the deep learning.

scattering (SRS) microscope and microfluidic
platform)

(Deep learning, neural
network structure, VGG-16)

a Blasi et al., 2016; Nassar et al., 2019

® Henning et al., 2017
¢ Cheng etal., 2021
4 Kobayashi et al., 2017

¢ Suzuki et al., 2019
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Fluorescence lifetime
imaging f

NO
(Human White Blood Cells)

YES
Dependent on other techniques to identify cell type to
compare their autofluorescence signals and fluorescence
decay for further analysis.

YES
(Fluorescence Microscopy, FLIM and
Flowcytometer)

YES
(Python)

T Yakimov etal., 2019
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Supplemental Data Files

Supplementary File 1: Features used for the morphology assay

Names and descriptions of the features quantified by IDEAS software and used for clustering events
based on cell morphology in the homeostasis cell composition experiment. BF is Bright Field, Cl is Cell
Intrinsic, CF is Cell Function.

Supplementary File 2: Features used for the phagocytosis assay

Names and descriptions of the features quantified by IDEAS software and used for clustering events
based on cell morphology and function in the phagocytosis experiment. BF is Bright Field, Cl is Cell
Intrinsic, CF is Cell Function.

Supplementary File 3: Cell cluster properties

Cell cluster properties (e.g., cell numbers per cluster, cell feature used for clustering, feature values for
each cluster) for zebrafish WKM morphology and phagocytosis assay and for P. canaliculata hemocyte
morphology and phagocytosis assay.

Supplementary File 4: Cell Gallery for zebrafish WKM in homeostasis condition

Representative cell images belonging to each individual cluster identified by Image3C for zebrafish WKM
in homeostasis condition are shown. BF is Bright Field, SSC is Side Scatter Signal and Drag5 is nuclear
staining. Merge represents the overlay of BF, SSC and Drag5.

Supplementary File 5: Phagocytosis vs phagocytosis inhibited with CCB on zebrafish WKM
Results of negative binomial regression analysis comparing cluster relative abundance between
phagocytosis samples (CTV-S. aureus) vs phagocytosis inhibited with CCB samples (CTV-S. aureus +
CCB) in the zebrafish phagocytosis experiment. FC is Fold Change, CPM is Count Per Million, LR is
Likelihood Ratio, FDR is Fold Discovery Rate. Relative graph is reported in Figure 3B.

Supplementary File 6: Phagocytosis vs phagocytosis inhibited with ice on zebrafish WKM

Results of negative binomial regression analysis comparing cluster relative abundance between
phagocytosis samples (CTV-S. aureus) vs phagocytosis inhibited with ice samples (CTV-S. aureus + Ice)
in the zebrafish phagocytosis experiment. FC is Fold Change, CPM is Count Per Million, LR is Likelihood
Ratio, FDR is Fold Discovery Rate. Relative graph is reported in Figure 3-figure supplement 2.

Supplementary File 7: Cell Gallery for zebrafish WKM after phagocytosis assay

Representative cell images belonging to each individual cluster identified by Image3C for zebrafish WKM
after phagocytosis assay are shown. BF is Bright Field, DHR is a fluorescent ROS indicator, SSC is Side
Scatter Signal, Bac is CTV signal (S. aureus labeling) and Drag5 is nuclear staining. Merge represents
the overlay of DHR, Bac and Drag5.

Supplementary File 8: Cell Gallery for P. canaliculata hemocytes in homeostasis condition
Representative cell images belonging to each individual cluster identified by Image3C for snail hemocytes
in homeostasis condition are shown. Ch01 is Bright Field, Ch06 is SSC (Side Scatter Signal) and Ch11 is
Draqg5 (nuclear staining). Merge represents the overlay of Ch01, Ch06 and Ch11.

Supplementary File 9: Phagocytosis vs phagocytosis inhibited with EDTA on P. canaliculata
hemocytes

Results of negative binomial regression analysis comparing cluster relative abundance between
phagocytosis samples (CTV-S. aureus) vs phagocytosis inhibited with EDTA samples (CTV-S. aureus +
EDTA) in the apple snail P. canaliculata phagocytosis experiment. FC is Fold Change, CPM is Count Per
Million, LR is Likelihood Ratio, FDR is Fold Discovery Rate. Relative graph is reported in Figure 5B.

Supplementary File 10: Phagocytosis vs phagocytosis inhibited with ice on P. canaliculata
hemocytes
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Results of negative binomial regression analysis comparing cluster relative abundance between
phagocytosis samples (CTV-S. aureus) vs phagocytosis inhibited with ice samples (CTV-S. aureus + Ice)
in the apple snail P. canaliculata phagocytosis experiment. FC is Fold Change, CPM is Count Per Million,
LR is Likelihood Ratio, FDR is Fold Discovery Rate. Relative graph is reported in Figure 5-figure
supplement 2.

Supplementary File 11: Cell Gallery for P. canaliculata hemocytes after phagocytosis assay

Representative cell images belonging to each individual cluster identified by Image3C for snail hemocytes

after phagocytosis assay are shown. Ch01 is Bright Field, Ch02 is DHR signal (ROS indicator), Ch06 is

SSC (Side Scatter Signal), Ch07 is CTV signal (S. aureus labeling) and Ch11 is Drag5 (nuclear staining).
| Merge represents the overlay of Ch02, Ch06, Ch07 and Ch11.
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