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Abstract 25 

Image-based cell classification has become a common tool to identify phenotypic changes in 26 

cell populations. However, this methodology is limited to organisms possessing well 27 

characterized species-specific reagents (e.g., antibodies) that allow cell identification, clustering 28 

and convolutional neural network (CNN) training. In the absence of such reagents, the power of 29 

image-based classification has remained mostly off-limits to many research organisms. We have 30 

developed an image-based classification methodology we named Image3C (Image-Cytometry 31 

Cell Classification) that does not require species-specific reagents nor pre-existing knowledge 32 

about the sample. Image3C combines image-based flow cytometry with an unbiased, high-33 

throughput cell cluster pipeline and CNN integration. Image3C exploits intrinsic cellular features 34 

and non-species-specific dyes to perform de novo cell composition analysis and to detect 35 

changes in cellular composition between different conditions. Therefore, Image3C expands the 36 

use of imaged-based analyses of cell population composition to research organisms in which 37 

detailed cellular phenotypes are unknown or for which species-specific reagents are not 38 

available. 39 

 40 

Impact statement 41 

Image3C analyzes cell population composition through image-based clustering and neural 42 

network training, in research organisms devoid of species-specific reagents or pre-existing 43 

knowledge on cell phenotypes. 44 

45 
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Introduction  46 

Single-cell analysis have proven crucial to our understanding of fundamental biological 47 

processes such as development, homeostasis, regeneration, aging and disease (Goolam et al., 48 

2016; Kimmel et al., 2019; Pepe-Mooney et al., 2019; Philippeos et al., 2018; Tirosh et al., 49 

2016). High-throughput analyses of these and other biological processes at single cell-resolution 50 

require technologies capable of describing individual cells and subsequently clustering them 51 

based on similarities of features like morphology, cell surface protein expression or 52 

transcriptome profile. Recent advances in image-based cell profiling and single-cell RNA 53 

sequencing (scRNA-seq) allow quantification of differences between cell populations and 54 

comparisons of cell type composition between samples (Caicedo et al., 2017). Single-cell studies 55 

that use traditional research organisms (e.g., mouse, rat or fruit fly) benefit from the availability 56 

of genomic platforms and established antibody libraries. However, the same cannot be said for a 57 

growing number of important, yet understudied research organism lacking such reagents and 58 

whose biological interrogation would benefit immensely from single-cell analyses. In these 59 

cases, classical histochemical methods are often used to identify and characterize specific cells. 60 

Yet, the successful identification and enumeration of biologically meaningful cell types in such 61 

studies can be harmed by both the limited number and variety of cellular attributes (few features 62 

or low dynamic range) available for determination of cell types, and by observer bias when using 63 

traditional, hand-counting approaches (e.g., hemocytometer and Giemsa stain) (van der Meer, 64 

Scott, & de Keijzer, 2004). These shortcomings, together with the lack of extensive knowledge 65 

on cell-specific phenotypes available for training or for a priori assumptions usually results in 66 

the underestimation of the complexity of cellular composition or interactions among cell types 67 

within tissues. 68 
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Automated classification of cells using convolutional neural networks (CNN, machine 69 

learning method specialized in image recognition and classification) has become a promising 70 

approach for accurate high-throughput cell analysis that is free from observer bias (Blasi et al., 71 

2016; Eulenberg et al., 2017; Kobayashi et al., 2017; Lei et al., 2018; Nassar et al., 2019; Suzuki 72 

et al., 2019). To date, CNN-based automated clustering and classification techniques require pre-73 

existing knowledge about the organism or cell type of interest (e.g., cell specific morphological 74 

traits within an image set) or the availability of cell-specific reagents (e.g., antibodies), or 75 

genomic sequence (e.g., single-cell sequencing) (Table 1 shows an overview of the existing 76 

methods) (Baron et al., 2019; Blasi et al., 2016; Cheng et al., 2021; Eulenberg et al., 2017; 77 

Hennig et al., 2017; Kobayashi et al., 2017; Lei et al., 2018; Nassar et al., 2019). This means that 78 

to make effective use of artificial intelligence (AI) approaches for single-cell analysis, one must 79 

have information available to train the algorithm or for machine learning (ML) models, which 80 

often arises in the form of information gleaned from the use of reagents like antibodies. Research 81 

areas that rely on inter-species comparisons or studies on emerging research organisms would 82 

benefit from single cell-based analyses that do not require pre-existing knowledge of cell types 83 

(i.e., which is required for training a CNN for example) and/or availability of antibodies or 84 

molecular databases. For example, within the interdisciplinary field of eco-immunology, a 85 

growing number of researchers is investigating immune system adaptation to different 86 

environments by studying immune cell compositions in diverse animals (Maizels & Nussey, 87 

2013). Given the influences of immune cell composition on the immune system response of an 88 

organism (Kaczorowski et al., 2017), applying modern single cell analysis in eco-immunological 89 

research would substantially increase our knowledge about the plasticity and conservation of 90 

immune responses in a variety of different animals and conditions (Peuß et al., 2020).  91 
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To make sophisticated cellular composition analysis available to any research organism 92 

without the need for either pre-existing knowledge about the cell populations or species-specific 93 

reagents, we developed Image-Cytometry Cell Classification (Image3C). This method analyzes, 94 

visualizes, and quantifies, in a high-throughput and unbiased way, the composition of cell 95 

populations by using cell morphological traits and non-species-specific fluorescent probes (e.g., 96 

nuclear staining or dyes for metabolic states that function well in a variety of organisms) (Figure 97 

1; Table 1). By taking advantage of cell morphology and/or fluorescent dyes related to function 98 

or metabolic state, Image3C can analyze single cell suspensions derived from any experimental 99 

design, de novo cluster cells present in the sample of interest and compare their abundance 100 

between each other or among different assays. Once the de novo clustering based on cell intrinsic 101 

features is obtained, Image3C employs a CNN that uses these clusters as training sets, avoiding 102 

in this way user bias or manual classification (Figure 1; Table 1). This produces a CNN-based 103 

cell classifier ‘machine’ used to quantify subsequently acquired image-based flow cytometry 104 

data and to compare cellular composition of samples across multiple experiments, in a high-105 

throughput manner without the need for repeating time-consuming steps for de novo clustering. 106 

The combination of the clustered cell images, the outputs of their functional assays and the 107 

published literature about closely related organisms might allow the identification and 108 

description of cell types of interest. In comparison to existing label-free cell clustering methods, 109 

Image3C does not require initial antibody staining (Cheng et al., 2021; Hennig et al., 2017; 110 

Lippeveld et al., 2020; Nassar et al., 2019), pre-existing knowledge of specific cell morphology 111 

(Suzuki et al., 2019; Yakimov et al., 2019) and is not limited to a specific cellular phenotype 112 

(Blasi et al., 2016) for a priori identification of certain cell types (Table 1). This makes Image3C 113 

extremely versatile and applicable to virtually any research organism and tissue from which 114 
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dissociated single cells can be obtained. Parallelly to this de novo clustering approach, Image3C 115 

can take advantage of species-specific reagents and prior knowledge to be combined with 116 

transcriptomic dataset and provide a new and complimentary layer of information based on cell 117 

morphology and function. In sum, Image3C combines modern high-throughput data acquisition 118 

by image-based flow cytometry, advanced and unbiased clustering analysis, statistics to compare 119 

cellular compositions across different samples and a CNN classifier component to easily 120 

determine changes in cell composition across multiple experiments.  121 

 122 

Results and Discussion 123 

Image-Cytometry Cell Classification (Image3C) 124 

Image3C is an imaging tool developed to study tissue composition at single-cell resolution in 125 

research organisms for which antibodies and pre-existing knowledge about cell types are not 126 

readily available (Figure 1; Table 1). Image3C allows for high-throughput and unbiased analysis 127 

in scenarios where manual counting and observer-based cell identification are currently the only 128 

options. Image3C includes all the components required for compensating captured images, 129 

quantifying multiple features for each event, clustering the events, visualizing and exploring the 130 

data, training and using the CNN for analyzing subsequent samples and integrating multiple 131 

experiments (Figure 1; Figure1-figure supplement 1).  132 

Once a single-cell suspension is prepared from the organism of interest, the cells are stained 133 

with a combination of dyes that are expected to function independently irrespective of the 134 

species used, and which have high affinity for specific cellular organelles such as nuclei, or 135 

molecules associated with metabolic states such as reactive oxygen species. We validated 136 

reagents experimentally by determining that nuclear dyes stain intracellular material matching 137 



 
 
 

7 

expected characteristics of nuclear DNA or by activation of cells with drugs to change their 138 

metabolic state. The labelled samples are then run on the ImageStream®X Mark II (Amnis 139 

Millipore Sigma) (Figure 1A). ImageStream is a commercially available image-based flow-140 

cytometer, whose diffusion in laboratory settings is increasing and that provides highly 141 

reproducible images of cells that can be compared across days of acquisitions and experiments. 142 

For this approach, no microfluidic devices or custom-made and highly specialized microscopes 143 

are required (Table 1), but, if desired, the users can test the Image3C pipeline also on images 144 

acquired at standards microscopes, remembering to carefully control for batch effects.  145 

Once images of individual events are collected for each channel of interest, feature values 146 

from both morphological and fluorescent data, such as cell size and nuclear size, are extracted 147 

from the cell images using IDEAS software (Amnis Millipore, free for download upon creation 148 

of Amnis user account) (Figure 1B; Supplementary File 1,2 for feature description). Correlation 149 

between features is calculated and redundant features are trimmed as well as samples that, 150 

among replicates, are outliers (Figure 2-figure supplement 1,2). This prevents clustering artifacts 151 

potentially caused by having multiple features providing the same information or including 152 

samples that are not representative (Figure 1B). During this step, while the number of features 153 

was usually reduced significantly, the correlation between replicates was always high and 154 

outliers were rarely observed (Figure 2-figure supplement 1,2). Finally, fluorescence intensity 155 

features are transformed to improve homogeneity of variance of distributions and, if used, DNA 156 

staining is normalized to remove intensity drift between samples and thus align the 2N and 4N 157 

DNA content histogram peaks (Figure 1B; Figure 2-figure supplement 3).  158 

Exported feature quantifications are used for clustering the events. Dimensionality reduction 159 

and visualization of clusters is achieved by generating force directed layout (FDL) graphs in the 160 
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VorteX clustering environment (Figure 1C) (free to install) (Samusik, Good, Spitzer, Davis, & 161 

Nolan, 2016). Cell images for events within each cluster can be visualized using FCS Express 162 

Plus together with custom R scripts (Figure 1D). These visualization tools and the cluster feature 163 

averages (i.e., the mean value of each feature for each cluster) (Figure 1E) allow to explore the 164 

images of selected groups of events and the features that differ between cells belonging to 165 

separate clusters. If control and treatment samples are included, a statistical analysis using 166 

negative binomial regression to compare cell counts per cluster between samples is also available 167 

in the Image3C pipeline. This high-throughput and unbiased analysis provides a comprehensive 168 

understanding of a cell population composition at higher resolution than what is possible with 169 

traditional histological methods.  170 

Once this pipeline is run on a first set of samples (e.g., homeostatic state) and the cell clusters 171 

are defined for the tissue of interest, the images and the relative clustering IDs can be used to 172 

train a CNN classifier in an unbiased way (Figure 1F), including the ability to score frequency of 173 

“new” cell types that do not match any of the clusters identified at homeostasis. Therefore, future 174 

experiments in the same tissue used for training the CNN classifier can be analyzed directly 175 

through the CNN (Figure 1G). This significantly reduces the number of steps and time required 176 

to process data collected from following experiments with treated conditions. An even greater 177 

advantage is represented by the fact that, in the absence of CNN, every time new experimental 178 

sets are run it would be necessary to go again through the de novo clustering part of the pipeline 179 

(Figure 1B-E) and the new set of clusters would need to be cross-annotated to be compared with 180 

cell population composition observed in previous experiments. Manually matching clusters 181 

between different experimental sets might be a source of mistakes, mainly if the user is not 182 

familiar with the cell types present in the sample and if specific biomarkers or pre-existing 183 
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knowledge about cell types and morphology are not available. The CNN splits all the cell images 184 

in the classes defined during the training step and allows to compare the abundance of cells with 185 

same morphology among different samples without the need to cross-annotate clusters (Figure 186 

1F,G). The CNN inclusion in Image3C and the reproducibility of image acquisition through 187 

image-based flow cytometry allows use of the clusters defined from one experiment (e.g., 188 

homeostatic state) to setup a classifier in an unbiased way for later use as a reference in 189 

analyzing experimental manipulations of these cell populations. We conclude from these results 190 

that Image3C can perform de novo high-throughput characterizations and define specific cell 191 

type behavior or population composition in both homeostatic and experimentally perturbed cell 192 

populations across multiple experiments. 193 

 194 

Image3C recapitulates cell composition of zebrafish whole kidney marrow (WKM) tissue  195 

To test whether Image3C could identify homogeneous and biologically meaningful cell 196 

populations, we used the research organism Danio rerio. We obtained cells from adult female 197 

zebrafish WKM (location of the hematopoietic tissue) in homeostasis condition, stained them 198 

and run on the ImageStream®X Mark II. We analyzed intrinsic morphological and fluorescent 199 

features, such as cell and nuclear size, shape and darkfield signal (side scatter, SSC). Feature 200 

values were extracted from each cell image and processed through our pipeline (Supplementary 201 

File 1 for feature description). Clustering by the final set of normalized and non-redundant 202 

morphological and fluorescent features produced distinct cell populations (Figure 2A-C; Figure 203 

2-figure supplement 1-3). 204 

Image3C can distinguish between the major classes of cells present in zebrafish WKM (Figure 205 

2; Supplementary File 3,4) that were described using standard sorting flow cytometry and 206 
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morphological staining approaches (D. Traver et al., 2003). It is noteworthy that Image3C can 207 

clearly identify dead cells and debris (Figure 2A,B) allowing to optimize experimental protocols 208 

in order to minimize cell death and to run the subsequent analysis only on the intact, live cells. 209 

Image3C can identify cells with outstanding morphological features, such as neutrophils from 210 

other myelomonocytes (Figure 2B,C). Based on zebrafish neutrophil characteristics such as high 211 

granularity, high complexity and low circularity of the nuclei (Lugo-Villarino et al., 2010), this 212 

type of granulocytes can be easily distinguished. Other types of myelomonocytes, such as 213 

monocytes and eosinophils are here merged in the same cluster, since in zebrafish they share 214 

many morphological characteristics (Lugo-Villarino et al., 2010). Similarly, using only intrinsic 215 

morphological features for the clustering, different lymphocytes (B and T-cells) and 216 

hematopoietic stem cells cannot be separated from each other, but they can be clearly 217 

distinguished from the myelomonocytes (Figure 2A,B). Within the Lymphocytes/Progenitors 218 

fraction we find two clusters (Dr1 and Dr7) that mainly differ in cell diameter (Figure 2C). 219 

Whether this morphological difference has a biological implication needs to be studied in future 220 

experiments. 221 

Image3C also enables the quantification of cell population (clusters or CNN classes) relative 222 

abundance, an important tool for comparing population composition across different treatment 223 

groups under different environmental conditions (Peuß et al., 2020). Here, we compared our 224 

results with previously published data to validate our method. Although a direct comparison with 225 

results from classical approaches (David Traver et al., 2003) is not possible since we gated out 226 

(removed analytically) mature erythrocytes before clustering (Material and Methods), the 227 

myelomonocyte to lymphocyte ratio (M/L ratio = 1.59) is similar to the one obtained with classic 228 

histological approaches (mean M/L ratio = 1.35) (Figure 2D) (David Traver et al., 2003). 229 
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 230 

Image3C identifies professional phagocytes in zebrafish WKM tissue  231 

Next, we sought to determine whether Image3C could be used to characterize and quantify 232 

biological processes by identifying a tissue of interest and then comparing cellular composition 233 

dynamic, function, and physiological responses of specific cell types across a range of 234 

experimental conditions. Our goal was to detect statistically significant changes in cluster 235 

relative abundance between control and treated samples to gain a more detailed understanding of 236 

cell population dynamics and individual cell function.  237 

As proof-of-concept, we performed a standard phagocytosis assay using WKM tissue from 238 

adult zebrafish. The single cell suspension was incubated with CellTrace Violet labeled 239 

Staphylococcus aureus (CTV-S. aureus) and with dihydrorhodamine-123 (DHR), a reactive 240 

oxygen species that becomes fluorescent if oxidized to report oxidative bursting following 241 

phagocytosis. As controls, we inhibited phagocytosis through cytoskeletal impairment with CCB 242 

incubation or through incubation with bacteria at lowered temperature by placing culture plates 243 

on ice. Events collected on the ImageStream®X Mark II were analyzed with Image3C and 244 

clustered in 26 distinct clusters using quantifications of morphological and fluorescent features 245 

(Supplementary File 2 for feature description), including nuclear staining, phagocytized S. 246 

aureus and DHR positivity (Figure 3A; Figure 3-figure supplement 1). Professional phagocytes 247 

are defined by their ability to take up S. aureus (CTV staining lies within the cell boundary) and 248 

induce a reactive oxygen species (ROS) response (bright DHR signal) (Rabinovitch, 1995). In 249 

zebrafish, professional phagocytes are mainly granulocytes and monocytic cells and can be 250 

discriminated from each other based on morphological differences, such as cell size, granularity 251 

and nuclear shape (Wittamer, Bertrand, Gutschow, & Traver, 2011). To compare samples 252 
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incubated with CTV-S. aureus and the samples where phagocytosis is inhibited (CTV-S. aureus 253 

+ CCB and CTV-S. aureus + Ice), we used the statistical analysis included in Image3C based on 254 

a negative binomial regression model (Figure 3B,C; Figure 3-figure supplement 2; 255 

Supplementary File 5,6). Statistical analyses reported clusters with differences in relative 256 

abundance between phagocytosis and phagocytosis-inhibited samples. Visualizing these 257 

clustered event images (Supplementary File 7) while considering the values and intensities of 258 

morphological and fluorescent features for these clusters (Supplementary File 3) allowed 259 

identification of 4 clusters of professional phagocytes: granulocytes within clusters Dr4_P, 260 

Dr12_P and Dr13_P and monocytic cells in cluster Dr21_P (Figure 3A,B). The morphology of 261 

cells in cluster Dr12_P is characteristic of phagocytic neutrophils (Figure 2B; Figure 3A) that 262 

become adhesive and produce extracellular traps upon recognition of bacterial antigens (Palić, 263 

Andreasen, Ostojić, Tell, & Roth, 2007). Overall, the relative abundance of professional 264 

phagocytes is 5-10% (Figure 3C), which is in line with previous studies that estimated the 265 

number of professional phagocytes in WKM tissue of adult zebrafish using classical 266 

morphological approaches (Wittamer et al., 2011). It is also noteworthy that in line with other 267 

studies (Page et al., 2013), we did not observe a cluster of lymphocytes (e.g., B-cells) that 268 

actively phagocytize CTV-S. aureus bacteria (Figure 2; Supplementary File 7). Compared to the 269 

classical morphological approaches, Image3C allows to analyze thousands of events in a high-270 

throughput and unbiased fashion, allowing the study of rare cell morphology and increasing 271 

results confidence and reproducibility. These results show that Image3C can successfully analyze 272 

biological processes since we were able to recapitulate the presence, cell type and frequency of 273 

professional phagocytes in adult zebrafish WKM organ.  274 
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A new aspect that Image3C highlighted is that CCB selectively affects cell viability based on 275 

cell identity, introducing artifacts and cell damage, actions not specific to inhibition of 276 

phagocytosis (Figure 3B). All mature erythrocyte containing clusters had a significantly higher 277 

cell count in the CTV-S. aureus samples compared to the CTV-S. aureus + CCB ones (Figure 278 

3B; Supplementary File 3,5). Cluster analysis revealed that erythrocytes were almost absent in 279 

samples incubated with CCB (Supplementary File 3), while there was a significant increase in 280 

the relative abundance of clusters containing dead and apoptotic cells (Figure 3B; Supplementary 281 

File 5). Both outcomes are likely due to reduced cell viability of erythrocytes upon CCB 282 

incubation. Moreover, we excluded the possibility of higher cell death in the professional 283 

phagocytes upon CCB incubation, since pseudo-phagocytes (phagocytes with DHR response but 284 

no internalized CTV-S. aureus) were significantly more abundant in the CTV-S. aureus + CCB 285 

sample (Figure 3B; Supplementary File 5). These results are remarkable since Image3C allowed 286 

us to observe a specific effect of CCB on erythrocytes viability in zebrafish that, as far as we 287 

know, was not described before.  288 

Image3C analysis also uncover another important biological observation. When we inhibited 289 

phagocytosis by incubating the single cell suspension on ice (CTV-S. aureus + Ice) and 290 

compared the specificity of inhibition with the CTV-S. aureus + CCB sample (Figure 3C; 291 

Supplementary File 6), we discovered that the inhibition of phagocytosis through low 292 

temperature only affects adhesive neutrophils (cluster Dr12_P) (Figure 3C). This is suspected to 293 

occur as ice inhibits adhesion, while CCB effectively blocks phagocytosis in all professional 294 

phagocytes in zebrafish WKM tissue by acting on the cytoskeleton. The use of Image3C allowed 295 

us to specifically identify cell types that are sensible to low temperature and those that are not, 296 

confirming the existence of different phagocytosis mechanisms and providing additional 297 
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knowledge about pro and cons of different protocols that can be applied to inhibit phagocytosis 298 

based on specific goals and needs. 299 

 300 

Image3C recapitulates cell composition of a freshwater snail hemolymph 301 

Since we aim to provide a tool that is widely applicable, we tested Image3C versatility on the 302 

apple snail P. canaliculata an emerging organism for which molecular and cell biological tools 303 

have yet to be fully developed. As such, we repeated the same experiments done in zebrafish on 304 

the hemolymph of P. canaliculata. For morphological examination of the cellular composition of 305 

the hemolymph collected from female adults in homeostasis conditions, we stained the single 306 

cell suspensions with Draq5 (DNA dye) and ran on the ImageStream®X Mark II. We used 307 

Image3C to analyze the images of the events and we identified 9 cell clusters (Figure 4A; Figure 308 

4-figure supplement 1). Two of these clusters were comprised of cell doublets, debris and dead 309 

cells (clusters Pc5 and Pc8) and the other clusters, based on inspection of cell images, were 310 

grouped into 2 main categories (Figure 4A; Supplementary File 8). The first category includes 311 

small blast-like cells (cluster Pc4) and intermediate cells (clusters Pc2 and Pc3) with high 312 

nuclear-cytoplasmic (N/C) ratio. These cells morphologically resemble the Group I hemocytes 313 

previously described using a classical morphological approach (Accorsi, Bucci, de Eguileor, 314 

Ottaviani, & Malagoli, 2013). The second category was comprised of larger cells with lower N/C 315 

ratio and abundant membrane protrusions (clusters Pc1, Pc6, Pc7 and Pc9). Likely, these cells 316 

correspond to the previously described Group II hemocytes that include both granular and 317 

agranular cells (Accorsi et al., 2013).  318 

To identify which of these clusters were enriched for granular cells, we looked at the heatmap 319 

with feature values for each individual cluster (Figure 4B; Supplementary File 1 for feature 320 
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description). Cluster Pc6 had the highest values for the features related to cytoplasm texture and 321 

granularity (i.e., area granularity, intensity granularity and signal granularity) amongst all 322 

clusters other than cell doublets (Figure 4B; Supplementary File 3,8). Based on these data, we 323 

identified cluster Pc6 as the one containing the granular hemocytes. The clusters obtained by 324 

Image3C were not only homogeneous and biologically meaningful but were also consistent with 325 

published P. canaliculata hemocyte classification obtained by classical morphological methods 326 

(Accorsi et al., 2013). Such remarkable consistency was observed both in terms of identified cell 327 

morphologies and their relative abundance in the population of circulating hemocytes (Figure 328 

4C; Supplementary File 8). For example, the relative abundance of the previously reported small 329 

blast-like cells is 14.0%, a value almost identical to the abundance of the corresponding cluster 330 

Pc4 (13.8%). 331 

Similarly, the category of larger hemocytes, or Group II hemocytes represents 80.4% of the 332 

circulating cells as measured by traditional morphological methods, while clusters Pc1, Pc6, Pc7 333 

and Pc9 combined represent 72.4% of the events analyzed with Image3C (Figure 4C; 334 

Supplementary File 3). A sub-set of these cells are the granular cells (cluster Pc6), which 335 

correspond to 7.7% of all hemocytes by classical histological methods and 8.9% by Image3C. 336 

The intermediate cells (clusters Pc2 and Pc3) are less well represented in both approaches, with a 337 

relative difference in abundance of 5.6% versus 10.6% of the manually and Image3C analyzed 338 

events, respectively (Figure 4C; Supplementary File 3). This difference is likely best explained 339 

by the remarkable difference in both the number of cells and the number of features that can be 340 

considered for analysis by Image3C. Only a few hundred hemocytes were visually analyzed 341 

using traditional histological methods based only on cell diameter and N/C ratio (Accorsi et al., 342 

2013). In contrast, the automated pipeline used by Image3C facilitated the analysis of 10,000 343 
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nucleated events for each sample and considered 25 morphological features for each cell. The 344 

significantly higher number of morphological features simultaneously considered by Image3C 345 

also explains the higher number of clusters and improved resolution to distinguish cell types 346 

compared to the traditional methods. Hence, Image3C, not only can properly analyze cells 347 

obtained from an emerging research organism generating biologically meaningful and 348 

informative clusters but also represents an unprecedented increase in the accuracy of cell type 349 

identification over traditional histological methods, while also allowing high-throughput 350 

capability. 351 

 352 

Image3C identifies phagocytosis competent cells in the hemolymph of a freshwater snail 353 

As with zebrafish, we also performed a phagocytosis experiment on hemocytes from P. 354 

canaliculata. Our goal was to test if it is possible with an emerging research organism to 355 

successfully discover cell phenotypes and functions and to obtain information about specific 356 

biological processes of interest by using Image3C to compare cell populations among treated and 357 

control samples. 358 

Here, we setup the phagocytosis assay incubating the cells with CTV-S. aureus and DHR at 359 

room temperature. The phagocytosis was inhibited, as control, either adding EDTA (CTV-S. 360 

aureus + EDTA) or using low temperature by incubating samples on ice (CTV-S. aureus + Ice). 361 

Events collected on the ImageStream®X Mark II were analyzed with Image3C and clustered in 362 

20 distinct clusters using quantifications of morphological and fluorescent features 363 

(Supplementary File 2 for feature description), including nuclear staining, phagocytized S. 364 

aureus and DHR positivity (Figure 5A; Figure 5-figure supplement 1). We compared the 365 

phagocytosis permissive samples (CTV-S. aureus) with samples where phagocytosis was 366 
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inhibited by EDTA incubation or low temperature using the statistical analysis included in 367 

Image3C based on a negative binomial regression model (Figure 5B,C; Figure 5-figure 368 

supplement 2; Supplementary File 9,10). The clusters with relative abundance significantly 369 

higher in the phagocytosis samples (Figure 5B; Supplementary File 3,11) and with high 370 

intensities of both DHR and bacteria signals (Figure 5-figure supplement 3,4), are the two 371 

clusters that we identify as enriched with professional phagocyte (cluster Pc5_P and Pc17_P) 372 

(Figure 5B; Figure 4-figure supplement 1; Figure 5-figure supplement 4; Supplementary File 373 

11). The two clusters show a different DHR signal intensity (ROS response) from one another 374 

upon bacteria exposure (cluster Pc5_P with high DHR signal, cluster Pc17_P with low DHR 375 

signal) (Figure 5-figure supplement 3; Supplementary File 3,11). Both Pc5_P and Pc17_P 376 

relative abundance is significantly higher in the phagocytosis samples compared to the EDTA 377 

treated sample (Figure 5C; Supplementary File 9), showing that EDTA effectively inhibits 378 

phagocytosis for both types of professional phagocytes. In the sample where the phagocytosis 379 

was inhibited by low temperature, however, only cluster Pc17_P had a significantly lower 380 

relative abundance compared to the phagocytosis sample (Figure 5C; Figure 3-figure supplement 381 

2; Supplementary File 10). We can conclude that similar to CCB inhibition in the zebrafish 382 

phagocytosis experiment, EDTA is a more effective and generalized (not cell-type-specific) 383 

inhibitor of phagocytosis than low temperature. These results show that also in an emerging 384 

research organism, Image3C allowed discovery of new aspects of this biological process and 385 

highlighted differences among professional phagocytes that would have been difficult to detect 386 

with other methods. 387 

The data analysis with Image3C clearly highlighted that CCB and EDTA, two classical 388 

phagocytic inhibitors commonly used in controls for phagocytosis experiments in vertebrates and 389 
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invertebrates, respectively, result in a drastic change of cell morphology and cell viability. This 390 

consequence is not easily detectable by other methods and is therefore often overlooked. In the 391 

present work, these changes significantly modified the overall cell cluster number and 392 

distribution and indicates that the effects of CCB and EDTA on cell morphology should be taken 393 

into consideration in any study of morphological features of cells with phagocytosis properties 394 

because artifacts might be significant. 395 

 396 

Convolutional Neural Network (CNN) allows unbiased comparison between experiments 397 

When determining differences between control and experimental treatments, Image3C 398 

necessarily combines images and data from all samples and then clusters the cells. This must be 399 

taken into consideration for experimental planning. Experiments meant to analyze cell 400 

composition and morphological diversity in one biological domain (e.g., homeostasis condition) 401 

(Figure 2; Figure 4) should be carried out separately from those in other domains that are likely 402 

to introduce changes in the cell population composition or cell morphologies that would be a 403 

confounding factor for the de novo clustering in homeostasis condition. Image3C clustering 404 

works best when used, at the same time, only on samples belonging to a single experimental 405 

domain, such as homeostasis or the phagocytosis assay. An issue that emerges when analyzing 406 

different experimental sets independently is the increase of time requirement for analytical steps, 407 

the likelihood of introducing errors, and the need to repeatedly annotate the clusters in the FDL 408 

graph obtained from each experimental set. This last element is required for comparing cell type 409 

behaviors among multiple experiments and have a global understanding of their functions and 410 

response to treatments (i.e., cluster #1 from one analytical run cannot be expected to match cell 411 
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morphologies with cluster #1 from another run, since there is a stochastic element to the 412 

process).  413 

This last point is probably the most challenging since mistakes can easily be introduced based 414 

on user-biases or lack of sufficient pre-existing knowledge about cell morphologies or of cell 415 

biomarkers that would allow a confident cross-annotation between multiple FDL graphs. In 416 

addition, we observed that the number of clusters drastically increases when including treatments 417 

that influence cell morphological properties of the cell. As an example, while we detected 9 418 

unique clusters in naïve hemolymph samples, we detected 20 clusters in the phagocytosis 419 

experiment (Figure 3A; Figure 4A). This is in part due to the fact that professional phagocytes 420 

change their morphology upon detection of pathogens (Palić et al., 2007), thus creating new 421 

clusters. Similarly, the complexity of the clustering is also increased by treatments, such as CCB 422 

and EDTA incubations, that are necessary to ensure identification of professional phagocytes, 423 

but have a strong impact on the morphology of the cells making the clustering and annotation 424 

steps more challenging and prone to mistakes since treated samples contain aberrant populations 425 

not found at homeostasis (Figure 5A; Supplementary File 11). 426 

To provide an alternative for streamlining the analysis of multiple experimental sets upon 427 

initial de novo clustering and cell type identification in homeostasis samples, we included in 428 

Image3C the possibility to use these initial images and their cluster IDs to train a CNN without 429 

manually classifying the images (Figure 1). This trained classifier can then be used to assign the 430 

cell images subsequently collected from additional experimental sets to one of the clusters 431 

defined in the homeostasis condition in a high-throughput way. In this way it will be possible to 432 

determine the behavior of a specific cell type through multiple experimental sets without re-433 

clustering whenever new data is acquired. A crucial element that allows this approach is also 434 
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represented by the ImageStream®X Mark II system that provides highly reproducible and 435 

comparable images of cells coming from different experiments and acquired in different days, 436 

introducing much less variability then standard light or electron microscopy.  437 

For our pipeline, then, a CNN (LeCun et al., 1989) based on the architecture of DenseNet 438 

(Huang, Liu, Maaten, & Weinberger, 2017) was deployed to: 1. use, as training set, images and 439 

clusters obtained from a first group of samples (e.g., homeostasis conditions, naïve cells or WT 440 

samples) analyzed in an unbiased way by de novo clustering and 2. assign new cell images 441 

acquired through ImageStream®X Mark II system to their respective classes. As proof-of-442 

concept, we used the clusters identified for P. canaliculata hemocytes in homeostasis condition 443 

with the first part of the pipeline (Figure 4A) for training and setting up the CNN classifier. This 444 

approach would define the classes based on the unbiased de novo clustering of thousands of cells 445 

with no need for formal annotation or previous knowledge about cell types and tissue 446 

composition. To prepare a data set for training the classifier, we first combined clusters that 447 

strongly overlapped with one another in terms of morphological characteristics (e.g., doublets 448 

and dead cells) to increase accuracy of the classifier (Figure 6A). We used 80% of the cells 449 

obtained in the original P. canaliculata dataset together with their cluster IDs to train the 450 

classifier through over 25,000 iterations. After each iteration, we tested the training with 10% of 451 

the original dataset and we determined the relative accuracy by scoring numbers of cells whose 452 

cluster ID assigned by the classifier matched the original cluster ID (Figure 6B,C). The 453 

remaining 10% of the original dataset was used to calculate the precision of the trained classifier. 454 

Clusters with higher support numbers obtained higher precision scores. The weighted average 455 

precision score (f1-score, precision average score across clusters controlling for support 456 

numbers) of 0.75 is relatively high considering the complexity of the phenotype (BF, darkfield 457 
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and Draq5 images) (Figure 6D) and comparable to other studies using machine learning for cell 458 

classification (Blasi et al., 2016). The true probability match for each individual cell (probability 459 

for each cell that the class assigned by the classifier would match the original cluster ID) 460 

demonstrated that lower true probability matches occurred where clusters strongly overlapped or 461 

where cell phenotypes are intermediate between clusters, providing an additional layer of 462 

information about our dataset (Figure 6D).  463 

To test the efficiency of this pipeline, we extracted all the images belonging to the two 464 

clusters identified in the phagocytosis assay as cluster-containing phagocytes and determined to 465 

which naïve cell-type they correspond using the CNN classifier and only the BF, SSC and Draq5 466 

channels (i.e., DHR and labeled bacteria signals where not used). We found that 59.4%, 6.2% 467 

and 9.2% of the phagocytes belonged to cluster Pc1_CT, Pc6_CT and Pc7_CT, respectively 468 

(Figure 6E), where CT stands for Classifier Training. These results confirmed a previously 469 

published result that used classical morphological staining and manual annotation to conclude 470 

that the hemocytes able to phagocytize were primarily Group II hemocytes (Accorsi et al., 2013). 471 

Only 8% of the phagocytes were clustered in the Group I hemocytes, here represented by cluster 472 

Pc2_CT, Pc3_CT and Pc4_CT, while the remaining 17.2% were assigned by the CNN to the 473 

cluster Pc5_CT, constituted by doublets and dead cells (Figure 6E). This result can be explained 474 

by the fact that in vitro phagocytosis triggers microaggregate formation (hemocyte-hemocyte 475 

adhesion) in invertebrate hemocytes that resembles the nodule formation observed in vivo 476 

(Walters, 1970). It is important to observe how this analysis allowed us to assign phagocytes to 477 

cell types using the annotation already performed in Figure 4A (de novo clustering of hemocytes 478 

in homeostasis condition) without the need to re-annotate the FDL obtained during the 479 

phagocytosis assay (Figure 5A). 480 
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To test the adaptability of the trained CNN to new datasets, we collected hemocytes from 481 

male apple snail specimens, we stained the cells with Draq5 and recorded BF, SSC and nuclei 482 

images from 10,000 cells on the ImageStream®X Mark II as previously described. We extracted 483 

the images of the cells, and we used the trained CNN classifier to determine the relative 484 

abundance of hemocytes collected from male snails in the 7 classes of the classifier (Figure 6F). 485 

First, we visually compared the female hemocytes clustered by the de novo clustering with the 486 

male hemocytes that were run on the ImageStream®X Mark II and were assigned to a class by 487 

the classifier (Figure 6F). This comparison shows that the female and male hemocytes belonging 488 

to the same cluster are morphologically extremely similar and different from the hemocytes 489 

assigned to other clusters (Figure 6F). This demonstrates that the CNN classifier can be trained 490 

with a first group of samples and then it can successfully analyze new datasets acquired later on. 491 

The comparison between female and male hemocyte compositions revealed that the clusters 492 

significantly different in terms of relative abundance are Pc1_CT and Pc7_CT (Group II 493 

agranular large hemocytes) and Pc6_CT (Group II granular large hemocytes) (Figure 6F). 494 

Significantly, prior studies detected no differences between females and males hemocytes 495 

composition through manual classification and counting using a classical morphological 496 

approach (Accorsi et al., 2013). The user-bias-free and high-throughput analysis presented here, 497 

in contrast, allowed us to determine that one of the two subpopulations of agranular large 498 

hemocytes was significantly more abundant in the female animals (Pc1_CT: 53% and 38% in 499 

females and males, respectively) while the other agranular (Pc7_CT ) as well as the granular 500 

large hemocytes (Pc6_CT) was significantly more abundant in the male animals (Pc7_CT: 14% 501 

and 20% in females and males, respectively; Pc6_CT: 6% and 10% in females and males, 502 

respectively) (Figure 6F).  503 
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While the biological significance of this observation is not going to be further investigated in 504 

this paper, the discovery highlights the power of Image3C analysis compared to traditional 505 

methods for determining and quantitating the composition of cell populations. These experiments 506 

demonstrate that Image3C, in combination with the presented convolutional classifier, can 507 

analyze large experimental datasets and identifying significances with small effect sizes. 508 

Importantly, Image3C analysis is independent of observer biases and does not require prior 509 

knowledge about expected tissue composition or the expected effect of treatment on cell 510 

morphology. 511 

 512 

Conclusion 513 

We have developed a powerful new method to analyze at single-cell resolution the 514 

composition of any cell population obtained from research organisms for which species-specific 515 

reagents (such as fluorescently tagged antibodies), biomarkers, single-cell atlases or a high-516 

quality genome for a scRNA-Seq approach are not available. We demonstrated that Image3C can 517 

identify different cell populations based on morphology and/or function through de novo 518 

clustering and highlight important changes in cell type abundance and cell population 519 

composition caused by experimental or natural perturbation (sex, treatment, experimental 520 

protocol). Image3C does not require, at any point, prior knowledge about the tissue composition 521 

or cell type specific markers, although, if available, they can be included and used. Furthermore, 522 

in combination with the CNN classifier trained on these clusters, we demonstrate that Image3C 523 

is capable of bias-free and high-throughput analysis of large experimental datasets making it 524 

possible to compare a specific cell type behavior or population composition across multiple 525 

experiments. Image3C is extremely versatile and can be applied to any tissue or cell population 526 
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of interest and is adaptable to a variety of experimental designs. Although, Image3C was develop 527 

in response to the need of analyzing cell composition of tissues in emerging research organisms, 528 

the Image3C tool could be potentially used also to add to transcriptomic dataset an additional 529 

and complementary layer of information based on cell morphology. Given the recent 530 

advancement in image-based flow cytometry that enables image capturing together with cell 531 

sorting (Nitta et al., 2018), a scRNA-Seq approach in combination with the Image3C pipeline 532 

would enable simultaneous analysis of both the morphological/phenotypic and genetic properties 533 

of a cell population at single cell resolution.  534 

  535 
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Materials and Methods 536 

Key Resources Table 

Reagent type 
(species) or 

resource 
Designation Source or 

reference Identifiers Additional 
information 

strain, strain 
background 
(Staphylococcus 
aureus) 

Wood strain 
without 
protein A 

Thermo Fisher 
Scientific 

S2859  

biological sample 
(Danio rerio) 

Whole kidney 
marrow 

Stowers 
Institute for 
Medical 
Research 

Wild type, 
Adult 
females 

Freshly isolated 
from Danio rerio 

biological sample 
(Pomacea 
canaliculata) 

Hemolymph Stowers 
Institute for 
Medical 
Reserach 

Wild type, 
Adult 
females and 
males 

Freshly isolated 
from Pomacea 
canaliculata 

chemical 
compound, drug 

Dihydrorhoda
mine-123 
(DHR) 

Thermo Fisher 
Scientific 

D23806 5 uM 

software, 
algorithm 

IDEAS Amnis Millipore 
Sigma 

Version 6.2   

software, 
algorithm 

R code This paper  https://github.co
m/stowersinstitu
te/LIBPB-1390-
Image3C 

software, 
algorithm 

VorteX 
clustering 
environment 

https://github.co
m/nolanlab/vort
ex/releases 

   

software, 
algorithm 

FSC Express De Novo 
Software 

Image or 
Plus 
configuration
s - Version 7 

  

software, 
algorithm 

Python script This paper  https://github.co
m/stowersinstitu
te/LIBPB-1390-
Image3C 

other Draq5 Thermo Fisher 
Scientific 

62251 5 uM 

other CellTrace 
Violet 

Thermo Fisher 
Scientific 

C34571 5 uM 
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Collection of zebrafish whole kidney marrow (WKM) 537 

Twelve-month-old, wild type, female, adult zebrafish were euthanized with cold 500 mg/L 538 

MS-222 solution for 5 min. WKM was dissected as previously described (D. Traver et al., 2003) 539 

and transferred to 40 µm cell strainer with 1 mL of L-15 media containing 10% water, 10 mM 540 

HEPES and 20 U/mL Heparin (L-90). Cells were gently forced through the cell strainer with the 541 

plunger of a 3 mL disposable syringe. The strainer was washed once with 1 mL of L-90 and the 542 

resulting single cell suspension was centrifuged at 500 rcf at 4 ºC for 5 min. The supernatant was 543 

discarded, and the cells were resuspended in 1 mL of L-90 containing 5% fetal calf serum (FCS), 544 

4 mM L-Glutamine, and 10,000 U of both Penicillin and Streptomycin (L-90 media). The cells 545 

were counted in a 1:20 dilution on the EC-800 flow cytometer (Sony) using scatter properties. 546 

 547 

Collection of apple snail hemocytes 548 

Specimens of the apple snail Pomacea canaliculata (Mollusca, Gastropoda, Ampullariidae) 549 

were maintained and bred in captivity, in a water recirculation system filled with artificial 550 

freshwater (2.7 mM CaCl2, 0.8 mM MgSO4, 1.8 mM NaHCO3, 1:5000 Remineralize Balanced 551 

Minerals in Liquid Form [Brightwell Aquatics]). The snails were fed twice a week and kept in a 552 

10:14 light:dark cycle. Wild type adult snails, 7-9 months old and with a shell size of 45-60 mm 553 

were starved for 5 days before the hemolymph collection (Accorsi et al., 2013). If not differently 554 

specified, female snails were used for the experiments. The withdrawal was performed applying 555 

a pressure on the operculum and dropping the hemolymph directly into an ice-cold tube. The 556 

hemolymph collected from different animals was not pooled together. The hemolymph was 557 

immediately diluted 1:4 in Bge medium + 10% fetal bovine serum (FBS) and then centrifuged at 558 

500 rcf for 5 min. The pellet of cells was resuspended in 100 µl of Bge medium + 10% FBS. The 559 
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Bge medium (also known as Biomphalaria glabrata embryonic cell line medium) is constituted 560 

by 22% (v/v) Schneiders’s Drosophila Medium, 4.5 g/L Lactalbumin hydrolysate, 1.3 g/L 561 

Galactose, 0.02 g/L Gentamycin in MilliQ water, pH 7.0. 562 

 563 

Experiment 1: Morphology Assay in homeostasis conditions 564 

WKM cells from zebrafish were isolated as described before and plated at 4 x 105 cells/well in 565 

a 96-well plate in 200 µL of L-90 media and incubated for 3 h at room temperature. Cells were 566 

stained with 5 µM Draq5 (Thermo Fisher Scientific) for 10 min and subsequently run on the 567 

ImageStream®X Mark II (Amnis Millipore Sigma), where 10,000 nucleated and focused events 568 

were recorded for each sample (n=8). Erythrocytes were out-gated to enrich for immune relevant 569 

cells and to prevent over-clustering in the subsequent analysis. The latter is due to the fact that 570 

fish erythrocytes are nucleated and their biconcave shape results in different morphological 571 

feature values only depending on their orientation during image acquisition.  572 

The P. canaliculata hemocytes were stained with 5 µM Draq5 (Thermo Fisher Scientific) for 573 

10 min, moved to ice and subsequently run on the ImageStream®X Mark II (Amnis Millipore 574 

Sigma), where 10,000 nucleated and focused events were imaged for each sample (n=5). 575 

 576 

Experiment 2: Phagocytosis Assay  577 

Staphylococcus aureus (Thermo Fisher Scientific) were resuspended in PBS at the final 578 

concentration of 100 mg/ml and incubated with 5 uM CellTrace Violet (CTV; Thermo Fisher 579 

Scientific) for 20 min. Labelled bacteria were centrifuged and resuspended in PBS for 3 times to 580 

remove unbound dye and then stored at -20 ºC as single-use aliquots. Cells, obtained from fish 581 

WKM or snail hemolymph and in a single cell suspension, were plated in a 96-well plate at a 582 
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concentration of 4 x 105 cells/well in 200 µL of medium and incubated with 2 x 107 CTV-583 

coupled S. aureus/well for 3 h at room temperature. As control, the phagocytosis was inhibited 584 

incubating the cells + CTV-S. aureus mix either on ice (for both species) or with 0.08 mg/mL 585 

cytochalasin B (CCB) for zebrafish cells or with 30 mM EDTA and 10 mM HEPES for apple 586 

snail cells (Cueto, Rodriguez, Vega, & Castro-Vazquez, 2015; Li et al., 2006). After 2 h and 30 587 

min we added 5 µM dihydrorhodamine-123 (DHR) (Thermo Fisher Scientific) to the cell 588 

suspension to stain cells positive for reactive oxygen species (ROS) production. To control for 589 

this treatment with DHR, we incubated one aliquot of cells with 10 ng/mL phorbol 12-myristate 590 

13-acetate (PMA) to induce ROS production. At 2 h and 50 min since the beginning of 591 

incubation with CTV-S. aureus, all the samples were stained with 5 µM Draq5 for 10 min. After 592 

3 h incubation with bacteria, cells were moved and stored on ice and subsequently run on the 593 

ImageStream®X Mark II (Amnis Millipore Sigma), where 10,000 nucleated and focused events 594 

were imaged for each sample (at least n=4 snail and n=6 fish) at a speed of 1,000 images/sec. 595 

 596 

Data collection on ImageStream®X Mark II 597 

Following cell preparation, data were acquired from each sample on the ImageStream®X 598 

Mark II (Amnis Millipore Sigma) at 60x magnification, slow/sensitive flow speed (1,000 599 

images/sec), using 633, 488 and 405 nm laser excitation. Bright field was acquired on channels 1 600 

and 9, DHR (488 nm excitation) on channel 2, CTV-S. aureus (405 nm excitation) on channel 7, 601 

Draq5 (633 nm excitation) on channel 11, and SSC was acquired on channel 6. Single color 602 

controls were also acquired for each fluorescent channel to allow for fluorescence spillover 603 

correction.  604 

 605 
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Data analysis and de novo cluster identification 606 

An interactive map representing the pipeline, the software used, the format of the exported 607 

files and an approximation of time required for running the individual steps is provided in Figure 608 

1-figure supplement 1. Raw images from the ImageStream®X Mark II system (RIF files, a type 609 

of modified 16 bit TIFF file) were compensated (spillover and other corrections applied), 610 

background was subtracted, and features were calculated using IDEAS 6.2 software (Amnis 611 

Millipore, free for download once an Amnis user account is created). The resulting compensated 612 

image files (CIF files) were used to quantify features for all cells and samples. Supplementary 613 

File 1,2 report the list of features used for each organism and for each experiment and their 614 

description. These per-object feature matrices (DAF files) were then exported from IDEAS into 615 

FCS files. Exported FCS files were processed in R (R Core Team, 2014). In order to trim 616 

redundant features that contribute noise but little new information, Spearman’s correlation values 617 

for each pair of features were calculated using all events of a representative sample and one of 618 

the features of the pair was trimmed when correlation was  0.85 for the pair (Figure 2-figure 619 

supplement 1) (Caicedo et al., 2017). The Spearman’s correlation of the mean values of 620 

remaining features per each sample were then used to identify outliers among sample replicates. 621 

Samples with correlation of mean feature values below 0.85 with the set were discarded (Figure 622 

2-figure supplement 2; Figure 3-figure supplement 1; Figure 4-figure supplement 1; Figure 5-623 

figure supplement 1), although in general the replicates were consistent. Also, while 624 

morphological features did not require any transformation or normalization, fluorescence 625 

intensity features were transformed using the estimateLogicle() and transform() functions from 626 

the R flowCore package (Ellis et al., 2018; Hahne et al., 2009) to improve homoscedasticity 627 

(homogeneity of variance) of distributions. DNA intensity features were also normalized to align 628 
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all 2N and 4N peak positions and to remove intensity drift between samples (Figure 2-figure 629 

supplement 3) using the gaussNorm() function from flowStats package (Hahne, Gopalakrishnan, 630 

Khodabakhshi, Wong, & Lee, 2018). The processed data was exported from R (R Core Team, 631 

2014) using writeflowSet() function in flowCore package (Ellis et al., 2018; Hahne et al., 2009) 632 

as CSV or FCS files, depending on downstream needs for the file output. 633 

These processed data files were then imported into the VorteX clustering environment for X-634 

Shift k-nearest-neighbor clustering (free to install) (Samusik et al., 2016). X-Shift was selected 635 

as a clustering method for Image3C based on a previously published analysis and comparison of 636 

clustering methods (Weber & Robinson, 2016). From that work, we determined that X-shift 637 

represents an optimal trade-off: identifying low frequency populations, accurately identifying 638 

‘true’ clusters (i.e., F1 scores), not requiring for a priori knowledge of the number of clusters 639 

(populations) and having reasonable runtimes (due to hardware CPU requirements). We also did 640 

an early comparison of X-shift with K-means (data not shown) and determined that K-means was 641 

insufficient for our purposes as known cell populations were not well represented by clusters, 642 

and we did not want to specify the number of expected clusters into the method’s input 643 

parameters since this would not be known in experimental use. During the import into VorteX, 644 

all features were scaled to 1SD to equalize the contribution of features towards clustering. 645 

Clustering was performed in VorteX testing a range of k values (typically from 5 to 150), 646 

choosing a final k value using the ‘find elbow point for cluster number’ function in VorteX and 647 

confirming visually that over- or under-clustering did not occur. Force directed layout (FDL) 648 

graphs of a subset of cells obtained from each set of samples were also generated in VorteX and 649 

cell coordinates in the resultant 2D space were exported along with graphML representation of 650 

the FDL graph. Finally, tabular data (CSV files) was exported from VorteX including a master 651 
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table of every cell event with its cluster assignment and original sample ID, as well as a table of 652 

the average feature values for each cluster and counts of cells per cluster and per sample. 653 

Clustering results were further analyzed and plotted in R (R Core Team, 2014) by merging all 654 

cell events and feature values with cluster assignments and X/Y coordinates for FDL graph. 655 

Using this merged data and the graphML file exported from VorteX, new FDL graphs were 656 

created for each treatment condition using the igraph package (Csardi & Nepusz, 2006) in R (R 657 

Core Team, 2014). Statistical analysis of differences in cell counts per cluster by condition were 658 

performed using negative binomial regression of cell counts per cluster, plots of statistic results 659 

and other results were generated, and CSV files containing cell ID, sample ID, feature values, 660 

X/Y coordinates in FDL graph were exported for each sample. The subsequent use of FCS 661 

Express Plus version 6 (DeNovo software, free alternative are mentioned later in the text) 662 

allowed visualization of cell images using DAF/CIF files by cluster and by customized subsets of 663 

the FDL graphs. 664 

DAF files were opened in FCS Express Plus software and the “R add parameters” 665 

transformation feature with a custom script was used to merge the clustering data saved in the 666 

CSV files generated above with both DAF and CIF files (feature values and image sets, 667 

respectively). FCS Express Plus was utilized at this stage of work because it is the only platform 668 

currently available that works with Amnis DAF and CIF files while also running transformation 669 

processes driven by R scripting. ImageJ Bio-Formats allows reading images from DAF and CIF 670 

files but we got pixels with a value much higher than expected, probably due to a bug that has 671 

not been fixed, yet. This allowed to visualize image galleries of cells within each cluster and gate 672 

by features of interest on 2D plots (more traditional flow cytometry analysis) for exploring the 673 

clustering results and identifying clusters and populations of interest. FCS Express Plus is a 674 
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proprietary software, but similar results can be obtained with IDEAS software where a text file 675 

with cluster IDs for each image event can be imported and the cluster information can be 676 

matched to the event images.  677 

The full complement of R packages used includes flowCore (Ellis et al., 2018; Hahne et al., 678 

2009), flowStats (Hahne et al., 2018), igraph (Csardi & Nepusz, 2006), ggcyto (Jiang, 2015), 679 

ggridges (Wilke, 2018), ggplot2 (Wickham, 2016), stringr (Wickham, 2010), hmisc (Harrell & 680 

Dupont, 2019) and caret (Kuhn, 2008). Figure 1-supplement figure 1 can be used as an 681 

interactive map of Image3C pipeline, where, clicking on the different portions of the pipeline, 682 

the users will be automatically directed to the corresponding section of our GitHub repository. 683 

The GitHub repository at https://github.com/stowersinstitute/LIBPB-1390-Image3C reports a 684 

detailed description of all these processing steps and includes sample scripts, workflow files, 685 

example datasets and tutorials.  686 

 687 

Setup and use of a Convolutional Neural Network (CNN) Classifier 688 

Once the clusters were defined with the previously described de novo clustering analysis, we 689 

used a CNN (LeCun et al., 1989) based on the architecture of DenseNet (Huang et al., 2017) for 690 

image classification. Out of all the events captured with the ImageStream®X Mark II system, we 691 

selected only single nucleated objects applying gates on area vs aspect ratio plot and Draq5 692 

intensity plot to achieve this selection, respectively. For these objects, we exported 16 bit TIFF 693 

images (one channel per fluorescence/BrightField image ‘color’) using IDEAS 6.2 software 694 

(Amnis/Millipore, free for download once an Amnis user account is created).  695 

Because images from the ImageStream®X Mark II system have non-uniform sizes, each 696 

image was cropped or padded to 32x32 pixels using NumPy indexing (Walt, Colbert, & 697 

https://github.com/stowersinstitute/LIBPB-1390-Image3C
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Varoquaux, 2011) in a Python script. The CNN consists of three dense blocks that transition 698 

from three-channel image input of 32x32x3 to a final size of 4x4x87 with 87 feature maps. A 699 

dense block includes three convolution layers, each followed by leaky ReLU activation. The last 700 

step of the block is a strided convolution used to down-sample the width and height of the 701 

feature maps by a factor of 2. The final layer of the CNN flattens the 4x4x87 array into a 1D 702 

vector of length 1392 and is fully connected to the output layer that is a 1D vector with a length 703 

of the number of classes for prediction. The CNN used softmax cross entropy for the loss 704 

function with L2 regularization, and the Adam optimizer (Kingma & Ba, 2015) was used to 705 

minimize the loss function. The CNN was implemented in Python using the TensorFlow 706 

platform (Abadi et al., 2015) and the SciPy ecosystem (T. Oliphant, 2006; T. E. Oliphant, 2007; 707 

Pedregosa et al., 2011). 708 

The CNN was used to train a classifier using over 35,000 images of P. canaliculata 709 

hemolymph cell types in homeostasis condition acquired with the ImageStream®X Mark II 710 

system. The event images were randomly split in 80% for training, 10% for testing during 711 

training, and 10% for final validation. The first 80% of the images were used together with their 712 

cluster IDs obtained by the de novo clustering to train the classifier. The learning rate for the 713 

Adam optimizer was set to 0.0006 with a decaying learning rate starting at 0.001 and decreasing 714 

by 1% each step. The training proceeded for 25,000 iterations with a size of 256 randomly 715 

selected images for each iteration. After each iteration, 10% of the cells of the original P. 716 

canaliculata dataset was used to test the classifier. The loss and accuracy of the CNN were 717 

recorded after every 100 iterations to monitor the performance. The CNN loss was defined by the 718 

softmax of the cross entropy (Dahal, 2017) between the final output and the one-hot-encoded 719 

image labels. To avoid the CNN memorizing the training set, L2 regularization was applied to 720 
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the weights. The training and test set follow the same accuracy and loss trends over all iterations 721 

indicating the training set is not memorized and can generalize to predict the test set.  722 

The finally trained classifier was tested on the remaining 10% of images that were completely 723 

new for the CNN. The trained model was saved for future use, so new images can be inferred by 724 

the network to predict cell types. The inference is very fast because only one forward pass is 725 

made through the network and no back propagation occurs. The result of the inference is a vector 726 

with length equal to the number of cell type classes. Each element of the vector will be the 727 

probability of the cell belonging to the corresponding class; the sum of the vector must be 1. 728 

Inferring a complete experiment will provide a probability vector for each image; the list of 729 

probability vectors can be saved as CSV file. For new images, the inference results will need to 730 

be examined to ensure the predictions are reliable. A large majority of the probability vectors 731 

should have a maximum greater than 0.5, and a subset of the images should be visually inspected 732 

to verify proper class assignment.  733 

The interactive map of Image3C pipeline (Figure 1-figure supplement 1) includes also the 734 

training and the use of the CNN. The GitHub repository at 735 

https://github.com/stowersinstitute/LIBPB-1390-Image3C reports a detailed description of all 736 

these processing steps, includes sample scripts, workflow files, example datasets and tutorials 737 

and can be easily accessed clicking on the right side of the Image3C interactive map (Figure 1-738 

figure supplement 1).  739 

 740 

Statistical Analysis 741 

Negative binomial regression was performed on tables of cell counts per cluster and per 742 

sample and plots were generated using R (R Core Team, 2014) with the edgeR package 743 

https://github.com/stowersinstitute/LIBPB-1390-Image3C
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(Robinson, McCarthy, & Smyth, 2010), which was developed for RNAseq analysis, but includes 744 

generally applicable and user-friendly wrappers for regression and modeling analysis and 745 

plotting of results. For the comparison of cellular hemolymph composition between females and 746 

males of P. canaliculata a one-way ANOVA with subsequent FDR (Benjamini-Hochberg, 747 

correction for multiple testing) was used.  748 

 749 
  750 



 
 
 

36 

Acknowledgements  751 

We acknowledge Hua Li for her assistance on the statistical analysis and we also thank the 752 

Laboratory Animal Services and the Aquatics Facility at the Stowers Institute for Medical 753 

Research for animal husbandry. We would like to thank Blair Benham-Pyle, Carolyn Brewster, 754 

Viraj Doddihal, Julia Peloggia de Castro and Barbara Milutinović for their critical comments on 755 

an earlier version of this manuscript. This work was supported by institutional funding to ACB, 756 

CW, ASA and NR. ASA is a Howard Hughes Medical Institute Investigator. NR is further 757 

supported by the Edward Mallinckrodt Foundation, NIH Grant R01 GM127872, DP2AG071466 758 

and NSF EDGE award 1923372. AA was supported by the Emerging Models grant from the 759 

Society for Developmental Biology (SDB) and the postdoctoral fellowship from the American 760 

Association of Anatomists (AAA). RP was supported by a grant from the Deutsche 761 

Forschungsgemeinschaft (PE 2807/1-1).  762 

 763 

Author Contributions 764 

AA, ACB and RP conceived and designed the study with input from ASA and NR. RP 765 

performed D. rerio experiments. AA performed P. canaliculata experiments. ACB conceived 766 

and wrote the Image3C pipeline and associated R-scripts. CW designed and optimized the 767 

convolutional neural network. AA, ACB, RP and CW analyzed and interpreted the data. AA, 768 

ACB and RP wrote the paper. All authors read and edited the paper.  769 

 770 

Data availability statement 771 

All original data underlying this manuscript can be accessed from the Stowers Original Data 772 

Repository at http://www.stowers.org/research/publications/libpb-1390. Image3C code and 773 

http://www.stowers.org/research/publications/libpb-1390


 
 
 

37 

description, workflow files, example datasets, and tutorials are freely available at the GitHub 774 

repository https://github.com/stowersinstitute/LIBPB-1390-Image3C. 775 

 776 

Ethics statement 777 

This study was performed in strict accordance with the recommendations in the Guide for the 778 

Care and Use of Laboratory Animals of the National Institutes of Health. Research and animal 779 

care were approved by the Institutional Animal Care and Use Committee (IACUC) protocol 780 

(#2019-080) of the Stowers Institute for Medical Research. 781 

 782 

Conflict of interest 783 

The authors declare no conflict of interest.  784 

 785 
References 786 

Accorsi, A., Bucci, L., de Eguileor, M., Ottaviani, E., & Malagoli, D. (2013). Comparative analysis 787 
of circulating hemocytes of the freshwater snail Pomacea canaliculata. Fish Shellfish 788 
Immunol, 34(5), 1260-1268. doi:10.1016/j.fsi.2013.02.008 789 

Baron, C. S., Barve, A., Muraro, M. J., van der Linden, R., Dharmadhikari, G., Lyubimova, A., . . 790 
. van Oudenaarden, A. (2019). Cell Type Purification by Single-Cell Transcriptome-791 
Trained Sorting. Cell, 179(2), 527-542 e519. doi:10.1016/j.cell.2019.08.006 792 

Blasi, T., Hennig, H., Summers, H. D., Theis, F. J., Cerveira, J., Patterson, J. O., . . . Rees, P. 793 
(2016). Label-free cell cycle analysis for high-throughput imaging flow cytometry. Nat 794 
Commun, 7, 10256. doi:10.1038/ncomms10256 795 

Caicedo, J. C., Cooper, S., Heigwer, F., Warchal, S., Qiu, P., Molnar, C., . . . Carpenter, A. E. 796 
(2017). Data-analysis strategies for image-based cell profiling. Nat Methods, 14(9), 849-797 
863. doi:10.1038/nmeth.4397 798 

Cheng, S., Fu, S., Kim, Y. M., Song, W., Li, Y., Xue, Y., . . . Tian, L. (2021). Single-cell 799 
cytometry via multiplexed fluorescence prediction by label-free reflectance microscopy. 800 
Sci Adv, 7(3). doi:10.1126/sciadv.abe0431 801 

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research. 802 
InterJournal, Complex Systems, 1695(5), 1-9.  803 

Cueto, J. A., Rodriguez, C., Vega, I. A., & Castro-Vazquez, A. (2015). Immune Defenses of the 804 
Invasive Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae): 805 
Phagocytic Hemocytes in the Circulation and the Kidney. PLoS One, 10(4), e0123964. 806 
doi:10.1371/journal.pone.0123964 807 

https://github.com/stowersinstitute/LIBPB-1390-Image3C


 
 
 

38 

Ellis, B., Haaland, P., Hahne, F., Le Meur, N., Gopalakrishnan, N., Spidlen, J., & Jiang, M. 808 
(2018). flowCore: flowCore: Basic structures for flow cytometry data. R package version 809 
1.46.1.  810 

Eulenberg, P., Kohler, N., Blasi, T., Filby, A., Carpenter, A. E., Rees, P., . . . Wolf, F. A. (2017). 811 
Reconstructing cell cycle and disease progression using deep learning. Nat Commun, 812 
8(1), 463. doi:10.1038/s41467-017-00623-3 813 

Goolam, M., Scialdone, A., Graham, S. J. L., Macaulay, I. C., Jedrusik, A., Hupalowska, A., . . . 814 
Zernicka-Goetz, M. (2016). Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in 815 
4-Cell Mouse Embryos. Cell, 165(1), 61-74. doi:10.1016/j.cell.2016.01.047 816 

Hahne, F., Gopalakrishnan, N., Khodabakhshi, A. H., Wong, C., & Lee, K. (2018). flowStats: 817 
Statistical methods for the analysis of flow cytometry data. R package version 3.38.0.  818 

Hahne, F., LeMeur, N., Brinkman, R. R., Ellis, B., Haaland, P., Sarkar, D., . . . Gentleman, R. 819 
(2009). flowCore: a Bioconductor package for high throughput flow cytometry. BMC 820 
Bioinformatics, 10, 106. doi:10.1186/1471-2105-10-106 821 

Harrell, F. E., & Dupont, C. (2019). Hmisc: Harrell Miscellaneous. Retrieved from 822 
http://biostat.mc.vanderbilt.edu/Hmisc 823 

Hennig, H., Rees, P., Blasi, T., Kamentsky, L., Hung, J., Dao, D., . . . Filby, A. (2017). An open-824 
source solution for advanced imaging flow cytometry data analysis using machine 825 
learning. Methods, 112, 201-210. doi:10.1016/j.ymeth.2016.08.018 826 

Huang, G., Liu, Z., Maaten, L. v. d., & Weinberger, K. Q. (2017, 21-26 July 2017). Densely 827 
Connected Convolutional Networks. Paper presented at the 2017 IEEE Conference on 828 
Computer Vision and Pattern Recognition (CVPR). 829 

Jiang, M. (2015). ggcyto: Visualize Cytometry data with ggplot. R package version 1.8.0.  830 
Kaczorowski, K. J., Shekhar, K., Nkulikiyimfura, D., Dekker, C. L., Maecker, H., Davis, M. M., . . 831 

. Brodin, P. (2017). Continuous immunotypes describe human immune variation and 832 
predict diverse responses. Proc Natl Acad Sci U S A, 114(30), E6097-E6106. 833 
doi:10.1073/pnas.1705065114 834 

Kimmel, J. C., Penland, L., Rubinstein, N. D., Hendrickson, D. G., Kelley, D. R., & Rosenthal, A. 835 
Z. (2019). Murine single-cell RNA-seq reveals cell-identity- and tissue-specific 836 
trajectories of aging. Genome Res, 29(12), 2088-2103. doi:10.1101/gr.253880.119 837 

Kobayashi, H., Lei, C., Wu, Y., Mao, A., Jiang, Y., Guo, B., . . . Goda, K. (2017). Label-free 838 
detection of cellular drug responses by high-throughput bright-field imaging and machine 839 
learning. Sci Rep, 7(1), 12454. doi:10.1038/s41598-017-12378-4 840 

Kuhn, M. (2008). Building Predictive Models inRUsing thecaretPackage. Journal of Statistical 841 
Software, 28(5). doi:10.18637/jss.v028.i05 842 

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. 843 
(1989). Backpropagation Applied to Handwritten Zip Code Recognition. Neural 844 
Computation, 1(4), 541-551. doi:10.1162/neco.1989.1.4.541 845 

Lei, C., Kobayashi, H., Wu, Y., Li, M., Isozaki, A., Yasumoto, A., . . . Goda, K. (2018). High-846 
throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat Protoc, 847 
13(7), 1603-1631. doi:10.1038/s41596-018-0008-7 848 

Li, J., Barreda, D. R., Zhang, Y.-A., Boshra, H., Gelman, A. E., LaPatra, S., . . . Sunyer, J. O. 849 
(2006). B lymphocytes from early vertebrates have potent phagocytic and microbicidal 850 
abilities. Nat Immunol, 7(10), 1116-1124. doi:10.1038/ni1389 851 

Lippeveld, M., Knill, C., Ladlow, E., Fuller, A., Michaelis, L. J., Saeys, Y., . . . Peralta, D. (2020). 852 
Classification of Human White Blood Cells Using Machine Learning for Stain-Free 853 
Imaging Flow Cytometry. Cytometry A, 97(3), 308-319. doi:10.1002/cyto.a.23920 854 

Lugo-Villarino, G., Balla, K. M., Stachura, D. L., Banuelos, K., Werneck, M. B. F., & Traver, D. 855 
(2010). Identification of dendritic antigen-presenting cells in the zebrafish. Proceedings 856 

http://biostat.mc.vanderbilt.edu/Hmisc


 
 
 

39 

of the National Academy of Sciences, 107(36), 15850-15855. 857 
doi:10.1073/pnas.1000494107 858 

Maizels, R. M., & Nussey, D. H. (2013). Into the wild: digging at immunology's evolutionary 859 
roots. Nat Immunol, 14(9), 879-883. doi:10.1038/ni.2643 860 

Nassar, M., Doan, M., Filby, A., Wolkenhauer, O., Fogg, D. K., Piasecka, J., . . . Hennig, H. 861 
(2019). Label-Free Identification of White Blood Cells Using Machine Learning. 862 
Cytometry A, 95(8), 836-842. doi:10.1002/cyto.a.23794 863 

Nitta, N., Sugimura, T., Isozaki, A., Mikami, H., Hiraki, K., Sakuma, S., . . . Goda, K. (2018). 864 
Intelligent Image-Activated Cell Sorting. Cell, 175(1), 266-276 e213. 865 
doi:10.1016/j.cell.2018.08.028 866 

Page, D. M., Wittamer, V., Bertrand, J. Y., Lewis, K. L., Pratt, D. N., Delgado, N., . . . Traver, D. 867 
(2013). An evolutionarily conserved program of B-cell development and activation in 868 
zebrafish. Blood, 122(8), 1-12. doi:10.1182/blood-2012-12-471029 869 

Palić, D., Andreasen, C. B., Ostojić, J., Tell, R. M., & Roth, J. A. (2007). Zebrafish (Danio rerio) 870 
whole kidney assays to measure neutrophil extracellular trap release and degranulation 871 
of primary granules. J Immunol Methods, 319(1-2), 87-97. doi:10.1016/j.jim.2006.11.003 872 

Pepe-Mooney, B. J., Dill, M. T., Alemany, A., Ordovas-Montanes, J., Matsushita, Y., Rao, A., . . 873 
. Camargo, F. D. (2019). Single-Cell Analysis of the Liver Epithelium Reveals Dynamic 874 
Heterogeneity and an Essential Role for YAP in Homeostasis and Regeneration. Cell 875 
Stem Cell, 25(1), 23-38 e28. doi:10.1016/j.stem.2019.04.004 876 

Peuß, R., Box, A. C., Chen, S., Wang, Y., Tsuchiya, D., Persons, J. L., . . . Rohner, N. (2020). 877 
Adaptation to low parasite abundance affects immune investment and 878 
immunopathological responses of cavefish. Nat Ecol Evol. doi:10.1038/s41559-020-879 
1234-2 880 

Philippeos, C., Telerman, S. B., Oules, B., Pisco, A. O., Shaw, T. J., Elgueta, R., . . . Watt, F. M. 881 
(2018). Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct 882 
Human Dermal Fibroblast Subpopulations. J Invest Dermatol, 138(4), 811-825. 883 
doi:10.1016/j.jid.2018.01.016 884 

R Core Team. (2014). R: A language and environment for statistical computing: R Foundation 885 
for Statistical Computing, Vienna, Austria. Retrieved from http://www.R-project.org/. 886 

Rabinovitch, M. (1995). Professional and non-professional phagocytes: an introduction. Trends 887 
in Cell Biology, 5(3), 85-87. doi:10.1016/s0962-8924(00)88955-2 888 

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor package for 889 
differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 890 
139-140. doi:10.1093/bioinformatics/btp616 891 

Samusik, N., Good, Z., Spitzer, M. H., Davis, K. L., & Nolan, G. P. (2016). Automated mapping 892 
of phenotype space with single-cell data. Nat Methods, 13(6), 493-496. 893 
doi:10.1038/nmeth.3863 894 

Suzuki, Y., Kobayashi, K., Wakisaka, Y., Deng, D., Tanaka, S., Huang, C. J., . . . Ozeki, Y. 895 
(2019). Label-free chemical imaging flow cytometry by high-speed multicolor stimulated 896 
Raman scattering. Proc Natl Acad Sci U S A, 116(32), 15842-15848. 897 
doi:10.1073/pnas.1902322116 898 

Tirosh, I., Izar, B., Prakadan, S. M., Wadsworth, M. H., 2nd, Treacy, D., Trombetta, J. J., . . . 899 
Garraway, L. A. (2016). Dissecting the multicellular ecosystem of metastatic melanoma 900 
by single-cell RNA-seq. Science, 352(6282), 189-196. doi:10.1126/science.aad0501 901 

Traver, D., Paw, B. H., Poss, K. D., Penberthy, W. T., Lin, S., & Zon, L. I. (2003). 902 
Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless 903 
mutants. Nat Immunol, 4(12), 1238-1246. doi:10.1038/ni1007 904 

http://www.r-project.org/


 
 
 

40 

Traver, D., Paw, B. H., Poss, K. D., Penberthy, W. T., Lin, S., & Zon, L. I. (2003). 905 
Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless 906 
mutants. Nat Immunol, 4(12), 1238-1246. doi:10.1038/ni1007 907 

van der Meer, W., Scott, C. S., & de Keijzer, M. H. (2004). Automated flagging influences the 908 
inconsistency and bias of band cell and atypical lymphocyte morphological differentials. 909 
Clin Chem Lab Med, 42(4), 371-377. doi:10.1515/CCLM.2004.066 910 

Walt, S. v. d., Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array: A Structure for 911 
Efficient Numerical Computation. Computing in Science & Engineering, 13(2), 22-30. 912 
doi:10.1109/MCSE.2011.37 913 

Walters, D. R. (1970). Hemocytes of saturniid silkworms: Their behaviorin vivo andin vitro in 914 
response to diapause, development, and injury. Journal of Experimental Zoology, 915 
174(4), 441-450. doi:10.1002/jez.1401740407 916 

Weber, L. M., & Robinson, M. D. (2016). Comparison of clustering methods for high-917 
dimensional single-cell flow and mass cytometry data. Cytometry A, 89(12), 1084-1096. 918 
doi:10.1002/cyto.a.23030 919 

Wickham, H. (2010). stringr: modern, consistent string processing. R Journal, 2(2), 38-40.  920 
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. : Springer-Verlag New York. 921 
Wilke, C. O. (2018). ggridges, Ridgeline Plots in 'ggplot2' (Version 0.5.1). Retrieved from 922 

https://github.com/clauswilke/ggridges 923 
Wittamer, V., Bertrand, J. Y., Gutschow, P. W., & Traver, D. (2011). Characterization of the 924 

mononuclear phagocyte system in zebrafish. Blood, 117(26), 7126-7135. 925 
doi:10.1182/blood-2010-11-321448 926 

Yakimov, B. P., Gogoleva, M. A., Semenov, A. N., Rodionov, S. A., Novoselova, M. V., Gayer, 927 
A. V., . . . Shirshin, E. A. (2019). Label-free characterization of white blood cells using 928 
fluorescence lifetime imaging and flow-cytometry: molecular heterogeneity and 929 
erythrophagocytosis [Invited]. Biomed Opt Express, 10(8), 4220-4236. 930 
doi:10.1364/BOE.10.004220 931 

 932 
  933 

https://github.com/clauswilke/ggridges


 
 
 

41 

Main Figure Legends 934 
 935 

Figure 1: Schematic representation of Image3C workflow, a method for cell clustering based on 936 
morphological features 937 
(A) A single cell suspension is prepared for image-based flow cytometric analyses. The cells can be 938 
labelled with any reagent working for the species of interest. The signal can highlight specific cell 939 
components (e.g., nuclei), metabolic cell states or specific cell functions. The samples are run on the 940 
ImageStream®X Mark II and 10,000 nucleated and focused events are saved for each sample as 941 
individual raw images.  942 
(B) IDEAS software (Amnis Millipore) is used to open the raw images, compensate for correcting 943 
fluorescent spillover, subtract background and quantify values for intrinsic morphological and fluorescent 944 
features. R (or R studio) is used to calculate the correlation between features to allow to trim the features 945 
that are redundant with others. Samples that are outliers among replicates are also removed prior the 946 
final normalization of the fluorescence intensities.  947 
(C) Images are clustered based on morphological and fluorescent feature values and visualized as a 948 
Force Directed Layout (FDL) graph where each dot represents one event. 949 
(D) R integration in FCS Express Plus software allows the visualization of cell images by clusters or 950 
specifically selected with a gate. This step allows to evaluate the morphological homogeneity of the 951 
clusters, determine if the number of clusters is appropriate and explore the phenotype/function of the cells 952 
based on visualization of individual channels.  953 
(E) Spearman’s correlation plot of feature values by clusters is one of the options available in Image3C 954 
for plotting integrated data. This heatmap shows feature similarities and differences between cells 955 
belonging to different clusters.  956 
(F) If new experiments are run and new data needs to be analyzed two approaches can be taken. 1. If the 957 
goal is comparing samples belonging to the same experiment (e.g., treatment vs its control) the steps 958 
described so far from (A) to (E) can be re-applied to the new dataset including a statistical analysis to 959 
compare cluster relative abundance. This approach will produce a new set of clusters that will need to be 960 
re-annotated. Compare sets of clusters coming from multiple experiments and multiple rounds of analysis 961 
can be challenging without pre-existing knowledge of cell-type, clearly different morphologies or 962 
biomarkers that would allow to establish a unique correlation between clusters coming from different FDL 963 
graphs. 2. If the goal is integrating experiments and comparing cell type abundance between them, the 964 
use of steps (F) and (G) is suggested. A CNN classifier is trained using the images obtained from 965 
homeostasis, naïve or WT cells and already organized in clusters in an unbiased way through the first 966 
part of our method. This will generate a trained classifier with CNN classes based on FDL clusters.   967 
(G) This classifier is then used for deconvoluting data from new experimental sets and assigning each 968 
event to a CNN class with a given probability. This provides high-throughput, and unbiased way to 969 
compare different experiment sets without the requirement for pre-existing knowledge about the tissue 970 
cell types, cell biomarkers or the need to cross-annotate cluster increasing the probability to introduce 971 
errors. 972 
The entire pipeline chart and step-by-step technical information, such as software used, time required for 973 
processing and exported file format are reported in the interactive map Figure 1-figure supplement 1, that 974 
automatically direct to the specific section of the GitHub. 975 
 976 
Figure 2: Analysis of cell composition of adult zebrafish WKM 977 
(A) WKM tissue obtained from zebrafish is prepared for image-based flow cytometric analyses and run on 978 
the ImageStream®X Mark II (n=8). Standard gating of focused and nucleated events and manual out-979 
gating of most erythrocytes was performed using IDEAS software (Amnis Millipore). The selected images 980 
were processed through the pipeline described in Figure 1 and clustered based only on intrinsic 981 
morphological and fluorescent feature values. FDL graph visualizes 16 clusters and each color represent 982 
a unique cell cluster. 983 
(B) Representative cell images belonging to each cluster are shown to evaluate the homogeneity of the 984 
cluster and determine morphology of the cells for cluster annotation. Representative cells for all the 985 
identified clusters are shown in Supplementary File 4. Merge represents the overlay of brightfield (BF), 986 
side scatter signal (SSC) and Draq5 (nuclear staining) signal. 987 
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(C) Spearman’s correlation plot shows the average feature values of the images in each cluster to 988 
highlight morphological similarities and differences between events belonging to different clusters, such 989 
as cell size or cytoplasm granularity (Supplementary File 1). 990 
(D) Box plot of relative abundance of events within each cluster follows the same color-code used in A.  991 
 992 
Figure 3: Identification of professional phagocytes in zebrafish WKM 993 
(A) A phagocytosis assay was performed on a cell suspension obtained from zebrafish WKM tissue and 994 
the samples were subsequently run on the ImageStream®X Mark II (n=6). FDL graph shows 26 clusters 995 
and each color represents a unique cell cluster. Representative cell images belonging to the 4 clusters 996 
containing professional phagocytes are shown. Representative cells for all the identified clusters are 997 
shown in Supplementary File 7. Merge represents the overlay of DHR (ROS indicator), CTV (S. aureus 998 
labeling) and Draq5 (nuclear staining) channels. Supplementary File 2 reports the features used for this 999 
clustering.  1000 
(B) Volcano Plot illustrates comparison of cluster relative abundance between phagocytosis samples 1001 
(CTV-S. aureus) and inhibited-phagocytosis samples (CTV-S. aureus + CCB). The log fold change 1002 
(logFC) is plotted in relation to the FDR (Fold Discovery Rate) corrected p-value (-log10) of each individual 1003 
cluster calculated with negative binomial regression model (n=6) (Supplementary File 5). Dot color follows 1004 
the same color-code used in A.  1005 
(C) Box plot of relative abundances of events within the 4 clusters containing professional phagocytes. 1006 
Phagocytosis samples (CTV-S. aureus), CCB inhibited-phagocytosis samples (CTV-S. aureus + CCB) 1007 
and ice inhibited-phagocytosis samples (CTV-S. aureus + Ice) (Figure 3-figure supplement 2). Statistically 1008 
significant differences are calculated using the negative binomial regression model between the 1009 
phagocytosis and the inhibited-phagocytosis samples (Supplementary File 5,6). ** indicates p ≤ 0.01 and 1010 
n.s. indicates not significantly different after FDR (n=6).  1011 
 1012 
Figure 4: Analysis of P. canaliculata hemocyte population using only intrinsic morphological 1013 
features of the cells 1014 
(A) Hemocytes obtained from the apple snail P. canaliculata are prepared for image-based flow 1015 
cytometric analyses and run on the ImageStream®X Mark II (n=5). Standard gating of focused and 1016 
nucleated events was performed using IDEAS software (Amnis Millipore). The selected images were 1017 
processed through the pipeline described in Figure 1 and clustered based only on intrinsic morphological 1018 
and fluorescent feature values. FDL graph is used to visualize the 9 identified clusters and each color 1019 
represent a unique cell cluster. Representative cell images belonging to each cluster are shown to 1020 
evaluate the homogeneity of the cluster and determine morphology of the cells for cluster annotation. 1021 
Additional representative cells for all the identified clusters are shown in Supplementary File 8. Merge 1022 
represents the overlay of brightfield (BF), side scatter signal (SSC) and Draq5 (nuclear staining) signal. 1023 
(B) Spearman’s correlation plot shows the average feature values of the images in each cluster to 1024 
highlight morphological similarities and differences between events belonging to different clusters, such 1025 
as cell size or cytoplasm granularity (Supplementary File 1). Cluster Pc6 is the one among large 1026 
hemocytes with higher values in features describing cytoplasm granularity (i.e., area granularity #2, 1027 
intensity granularity #18 and signal granularity #11). 1028 
(C) Box plot of relative abundance of events within each cluster following the same color-code used in A. 1029 
Clusters Pc5 and Pc8, constituted by duplets and dead cells, are those with the lowest number of events, 1030 
validating the protocol used to prepare these samples.  1031 
 1032 
Figure 5: Identification of professional phagocytes among P. canaliculata hemocytes  1033 
(A) A phagocytosis assay was performed on a cell suspension obtained from apple snail P. canaliculata 1034 
hemolymph and the samples were subsequently run on the ImageStream®X Mark II (n=5). FDL graph 1035 
shows 20 clusters and each color represents a unique cell cluster. Representative cell images belonging 1036 
to the 2 clusters containing professional phagocytes are shown. Representative cells for all the identified 1037 
clusters are shown in Supplementary File 11. Merge represents the overlay of DHR (ROS indicator), CTV 1038 
(S. aureus labeling) and Draq5 (nuclear staining) channels. Supplementary File 2 reports the features 1039 
used for this clustering. 1040 
(B) Volcano Plot illustrates comparison of cluster relative abundance between phagocytosis samples 1041 
(CTV-S. aureus) and inhibited-phagocytosis samples (CTV-S. aureus + EDTA). The log fold change 1042 
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(logFC) is plotted in relation to the FDR (Fold Discovery Rate) corrected p-value (-log10) of each individual 1043 
cluster calculated with negative binomial regression model (n=4) (Supplementary File 9). Dot color follows 1044 
the same color-code used in A.  1045 
(C) Box plot of relative abundances of events within the 2 clusters containing professional phagocytes. 1046 
Phagocytosis samples (CTV-S. aureus), EDTA inhibited-phagocytosis samples (CTV-S. aureus + EDTA) 1047 
and ice inhibited-phagocytosis samples (CTV-S. aureus + Ice) (Figure 5-figure supplement 2). Statistically 1048 
significant differences are calculated using the negative binomial regression model between the 1049 
phagocytosis and the inhibited-phagocytosis samples (Supplementary File 9,10). ** indicates p ≤ 0.01 and 1050 
n.s. indicates not significantly different after FDR (n=4).  1051 
 1052 
Figure 6: Classifier training and use of Convolutional Neural Network for integrating multiple 1053 
experiments  1054 
(A) The convolutional neural network (CNN) portion of Image3C allows the integration of multiple 1055 
experiments and the analysis of additional samples assigning new events to already defined and 1056 
annotated clusters without manual and potentially biased matching of clusters by the user. Images of cells 1057 
obtained from homeostasis, naïve or WT samples and already clustered de novo in an unbiased way by 1058 
Image3C are exported as TIFF files together with their cluster IDs. P. canaliculata hemocytes in 1059 
homeostasis condition obtained from female apple snails (35,000 images) is the dataset used for training 1060 
the CNN classifier. Before the training, clusters with cells with strongly overlapping morphology were 1061 
merged (Pc1 was merged with Pc9 and named Pc1_CT; Pc5 was merged with Pc8 and named Pc5_CT). 1062 
CT stands for Classifier Training. 1063 
(B) The training was performed on 80% of the exported images and the testing during the training was 1064 
performed on 10% of the exported images. Relative accuracy was recorded every 100 iterations for 1065 
25,000 iterations total. 1066 
(C) The training was performed on 80% of the exported images and the testing during the training was 1067 
performed on 10% of the exported images. Loss calculation was recorded every 100 iterations for 25,000 1068 
iterations total and indicates that the training set is not memorized.  1069 
(D) The True match probability (probability that trained classifier-assigned cluster matches original cluster 1070 
ID) is given for each cell of the remaining 10% of the original exported images. The detailed precision 1071 
score for each cluster together with the weighted average (correcting for support) is reported in the table.  1072 
(E) The CNN classifier allows for integrating experiments, such as phagocytosis assay and morphological 1073 
assay, with minimal probability of introducing errors because of lack of biomarkers. The plot shows the 1074 
distribution of the cells belonging to the snail professional phagocytes clusters (Pc5_P and Pc17_P from 1075 
Figure 5, phagocytosis assay) among the clusters defined by morphological features using homeostasis 1076 
conditions.  1077 
(F) The CNN classifier allows also for the analysis of new samples obtained from the same species and 1078 
the same tissue used for the training. The new events obtained running male P. canaliculata hemocytes, 1079 
are assigned to clusters defined by the de novo clustering step, allowing for comparison between 1080 
samples (females vs males) and statistical analysis for cluster relative abundance differences. The box 1081 
plot shows the comparison of the hemocyte population composition between females and males (n=5). 1082 
*** are clusters with abundances robustly significantly different between female and male animals. (*) are 1083 
cluster with p-value lower than 0.05, but whose abundances are no more significantly different after the 1084 
correction for multiple testing (FDR). 1085 
(G) Representative cell images for each cluster belonging to female and male hemocytes dataset allows 1086 
to visually compare the cells used to train the classifier (female) with cells assigned by the classifier and 1087 
coming from a new set of samples (males). Brightfield (BF), side scatter signal (SSC) and Draq5 (nuclear 1088 
staining) signal are shown in individual channels.   1089 
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Supplemental Figure Legends 1090 
 1091 

Figure 1-figure supplement 1: Interactive map of Image3C pipeline 1092 
Once the images are collected this pipeline can be followed step-by-step. Through this interactive map, it 1093 
is possible to click on the different portions of the pipeline and be automatically directed to the 1094 
corresponding section of the GitHub repository (https://github.com/stowersinstitute/LIBPB-1390-1095 
Image3C), where a detailed step-by-step description of the processing, sample scripts, workflow files and 1096 
example datasets are provided. The software used are color-coded throughout the pipeline, 1097 
approximation of the time needed to run the individual steps is provided in light gray. The central column 1098 
and the left side represent the de novo clustering portion of the pipeline, while the right side (green 1099 
arrows) represents the use of the CNN, being trained with the clusters defined in an unbiased way from 1100 
the de novo clustering and able to process new samples.  1101 

 1102 
Figure 2-figure supplement 1: Feature correlation for morphology assay on adult zebrafish WKM 1103 
An example of feature correlation and feature trimming step is shown. The correlation between feature is 1104 
calculated (a) and the redundant features are removed in order to leave only one representative feature 1105 
for each group of features with high correlation (b).  1106 
 1107 
Figure 2-figure supplement 2: Sample correlation for morphology assay on adult zebrafish WKM 1108 
Sample correlation and outlier sample removal step performed on samples of adult zebrafish WKM. The 1109 
correlation between samples is calculated and samples with clear outlier profile are removed from the 1110 
subsequent analysis.  1111 
 1112 
Figure 2-figure supplement 3: DNA normalization for morphology assay on adult zebrafish WKM 1113 
An example of DNA normalization step is shown. The fluorescent peaks of DNA staining for all the 1114 
samples of one experiment are shown before (a) and after (b) normalization that aims to align the 2N and 1115 
4N peaks across samples.  1116 
 1117 
Figure 3-figure supplement 1: Sample correlation for phagocytosis assay on adult zebrafish WKM   1118 
Sample correlation and outlier sample removal step performed on samples of adult zebrafish WKM after 1119 
phagocytosis assay. The correlation between samples is calculated and samples with clear outlier profile 1120 
are removed from the subsequent analysis.  1121 
 1122 
Figure 3-figure supplement 2: Phagocytosis assay on adult zebrafish WKM (ice phagocytosis 1123 
inhibition) 1124 
Volcano Plot illustrates comparison between phagocytosis samples (CTV-S. aureus) and inhibited-1125 
phagocytosis samples (CTV-S. aureus + Ice). The log fold change (logFC) is plotted in relation to the 1126 
FDR (Fold Discovery Rate) corrected p-value (-log10) of each individual cluster calculated with negative 1127 
binomial regression model (n=6) (Supplementary File 6). Dot color follows the same color-code used in 1128 
Figure 3A. 1129 
 1130 
Figure 4-figure supplement 1: Sample correlation for morphology assay on P. canaliculata 1131 
hemocytes  1132 
Sample correlation and outlier sample removal step performed on samples of P. canaliculata hemocytes. 1133 
The correlation between samples is calculated and samples with clear outlier profile are removed from 1134 
the subsequent analysis.  1135 
 1136 
Figure 5-figure supplement 1: Sample correlation for phagocytosis assay on P. canaliculata 1137 
hemocytes   1138 
Sample correlation and outlier sample removal step performed on samples of P. canaliculata hemocytes 1139 
after phagocytosis assay. The correlation between samples is calculated and samples with clear outlier 1140 
profile are removed from the subsequent analysis.  1141 
 1142 
Figure 5-figure supplement 2: Phagocytosis assay on P. canaliculata hemocytes (ice 1143 
phagocytosis inhibition) 1144 

https://github.com/stowersinstitute/LIBPB-1390-Image3C
https://github.com/stowersinstitute/LIBPB-1390-Image3C
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Volcano Plot illustrates comparison between phagocytosis samples (CTV-S. aureus) and inhibited-1145 
phagocytosis samples (CTV-S. aureus + Ice). The log fold change (logFC) is plotted in relation to the 1146 
FDR (Fold Discovery Rate) corrected p-value (-log10) of each individual cluster calculated with negative 1147 
binomial regression model (n=4) (Supplementary File 10). Dot color follows the same color-code used in 1148 
Figure 5A.  1149 
 1150 
Figure 5-figure supplement 3: Feature heatmap after phagocytosis assay on P. canaliculata 1151 
hemocytes 1152 
Spearman’s correlation plot shows the average feature values of the images in each cluster to highlight 1153 
morphological similarities and differences between events belonging to different clusters, such as cell size 1154 
or cytoplasm granularity (Supplementary File 2). The clusters with higher DHR signal and high bacteria 1155 
are the one identified as containing professional phagocytes (Pc5_P and Pc17_P). This is also confirmed 1156 
by the statistical analysis performed between the phagocytosis samples (CTV-S. aureus) and inhibited-1157 
phagocytosis samples (CTV-S. aureus + EDTA) (Figure 5B; Supplementary File 9). 1158 
 1159 
Figure 5-figure supplement 4: Gallery of P. canaliculata hemocytes after phagocytosis assay  1160 
Representative cell images side-by-side of professional phagocytes and non-phagocytic hemocytes from 1161 
apple snail samples after phagocytosis assay. The signal of the bacteria labelled with cell-trace-violet is 1162 
showed in yellow and the value for the signal intensity has been reported on top of each individual image. 1163 
These images were obtained using the gallery function of the Amnis IDEAS software and manually gating 1164 
events double positive for both DHR and bacteria and events double negative.  1165 
  1166 
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Main Table 1167 

Table 1: Extensive overview on label-free cell clustering tools including a comparison of their main features. 1168 

Tool name Was tested on multiple cell types? 
Requires a priori knowledge of the sample and/or 

species-specific reagents for the clustering? 
Uses commercially available hardware? 

Uses free or open 
source softwares? 

Image3C 
(present work) 

YES 
(Zebrafish whole kidney marrow; Apple 

snail hemolymph) 

NO 
Does not require previous knowledge or species-specific 

reagents to cluster cell images and train the neural network. 

If available, they can be used/integrated. 

YES 
(ImageStream) 

YES 
(IDEAS; Vortex; R; Python) 

NO 
(FCS Express Plus) 

CellProfiler a 
YES 

(Fixed Jurkat cells; Live Jurkat cells; 
Fission yeast; Human white Blood Cells) 

YES 
Requires annotated datasets to train the machine learning 

algorithms, either by staining the samples with known 
markers, or by manually clustering the cells. 

YES 
(ImageStream; microscope) 

YES 
(IDEAS; CellProfiler; 

MATLAB) 

CellProfiler Analyst b NO 
(Jurkat cells) 

YES 
Requires the use of fluorescent markers to annotate the cells 

and use them as the ground truth to train the machine-
learning algorithms. 

YES 
(ImageStream) 

YES 
(IDEAS; CellProfiler or 

Phyton or MATLAB) 

Label-free reflectance 
microscopy c 

NO 
(Fixed HeLa cells) 

YES 
Requires Immuno-Fluorescence images with known markers 
to use as ground truth and for training multiple deep learning 

models. 

NO 
(Custom-built multimodal light-emitting diode 

(LED) array reflectance microscope) 

YES 
(Deep neural networks) 

Optofluidic time-
stretch microscopy d 

NO 
(Human breast adenocarcinoma cell line, 

MCF-7) 

YES 
Does not provide cell clustering and single cell resolution 
analysis. The changes are analyzed overall in the sample 

without assigning it to a cell type. 

NO 
(Optofluidic time-stretch microscope and 

microfluidic devices) 

YES 
(MATLAB) 

Raman scattering e 
YES 

(Microalgal cells; Circulating tumor cells 
in human blood) 

YES 
Requires homogenous cell cultures. After different 

treatments, these samples are used to create databases for 
training the deep learning. 

NO 
(High-speed multicolor stimulated Raman 

scattering (SRS) microscope and microfluidic 
platform) 

YES 
(Deep learning, neural 

network structure, VGG-16) 

                                                 
a Blasi et al., 2016; Nassar et al., 2019 
b Henning et al., 2017 
c Cheng et al., 2021 
d Kobayashi et al., 2017 

 
e Suzuki et al., 2019 
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Fluorescence lifetime 
imaging f 

NO 
(Human White Blood Cells) 

YES 
Dependent on other techniques to identify cell type to 

compare their autofluorescence signals and fluorescence 
decay for further analysis. 

YES 
(Fluorescence Microscopy, FLIM and 

Flowcytometer) 

YES 
(Python) 

                                                 
f Yakimov et al., 2019 
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Supplemental Data Files  1169 
 1170 
Supplementary File 1: Features used for the morphology assay 1171 
Names and descriptions of the features quantified by IDEAS software and used for clustering events 1172 
based on cell morphology in the homeostasis cell composition experiment. BF is Bright Field, CI is Cell 1173 
Intrinsic, CF is Cell Function. 1174 
 1175 
Supplementary File 2: Features used for the phagocytosis assay 1176 
Names and descriptions of the features quantified by IDEAS software and used for clustering events 1177 
based on cell morphology and function in the phagocytosis experiment. BF is Bright Field, CI is Cell 1178 
Intrinsic, CF is Cell Function. 1179 
 1180 
Supplementary File 3: Cell cluster properties 1181 
Cell cluster properties (e.g., cell numbers per cluster, cell feature used for clustering, feature values for 1182 
each cluster) for zebrafish WKM morphology and phagocytosis assay and for P. canaliculata hemocyte 1183 
morphology and phagocytosis assay. 1184 
 1185 
Supplementary File 4: Cell Gallery for zebrafish WKM in homeostasis condition 1186 
Representative cell images belonging to each individual cluster identified by Image3C for zebrafish WKM 1187 
in homeostasis condition are shown. BF is Bright Field, SSC is Side Scatter Signal and Draq5 is nuclear 1188 
staining. Merge represents the overlay of BF, SSC and Draq5.   1189 
 1190 
Supplementary File 5: Phagocytosis vs phagocytosis inhibited with CCB on zebrafish WKM 1191 
Results of negative binomial regression analysis comparing cluster relative abundance between 1192 
phagocytosis samples (CTV-S. aureus) vs phagocytosis inhibited with CCB samples (CTV-S. aureus + 1193 
CCB) in the zebrafish phagocytosis experiment. FC is Fold Change, CPM is Count Per Million, LR is 1194 
Likelihood Ratio, FDR is Fold Discovery Rate. Relative graph is reported in Figure 3B. 1195 
 1196 
Supplementary File 6: Phagocytosis vs phagocytosis inhibited with ice on zebrafish WKM 1197 
Results of negative binomial regression analysis comparing cluster relative abundance between 1198 
phagocytosis samples (CTV-S. aureus) vs phagocytosis inhibited with ice samples (CTV-S. aureus + Ice) 1199 
in the zebrafish phagocytosis experiment. FC is Fold Change, CPM is Count Per Million, LR is Likelihood 1200 
Ratio, FDR is Fold Discovery Rate. Relative graph is reported in Figure 3-figure supplement 2. 1201 
 1202 
Supplementary File 7: Cell Gallery for zebrafish WKM after phagocytosis assay  1203 
Representative cell images belonging to each individual cluster identified by Image3C for zebrafish WKM 1204 
after phagocytosis assay are shown. BF is Bright Field, DHR is a fluorescent ROS indicator, SSC is Side 1205 
Scatter Signal, Bac is CTV signal (S. aureus labeling) and Draq5 is nuclear staining. Merge represents 1206 
the overlay of DHR, Bac and Draq5.  1207 
 1208 
Supplementary File 8: Cell Gallery for P. canaliculata hemocytes in homeostasis condition 1209 
Representative cell images belonging to each individual cluster identified by Image3C for snail hemocytes 1210 
in homeostasis condition are shown. Ch01 is Bright Field, Ch06 is SSC (Side Scatter Signal) and Ch11 is 1211 
Draq5 (nuclear staining). Merge represents the overlay of Ch01, Ch06 and Ch11.  1212 
 1213 
Supplementary File 9: Phagocytosis vs phagocytosis inhibited with EDTA on P. canaliculata 1214 
hemocytes 1215 
Results of negative binomial regression analysis comparing cluster relative abundance between 1216 
phagocytosis samples (CTV-S. aureus) vs phagocytosis inhibited with EDTA samples (CTV-S. aureus + 1217 
EDTA) in the apple snail P. canaliculata phagocytosis experiment. FC is Fold Change, CPM is Count Per 1218 
Million, LR is Likelihood Ratio, FDR is Fold Discovery Rate. Relative graph is reported in Figure 5B. 1219 
 1220 
Supplementary File 10: Phagocytosis vs phagocytosis inhibited with ice on P. canaliculata 1221 
hemocytes 1222 
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Results of negative binomial regression analysis comparing cluster relative abundance between 1223 
phagocytosis samples (CTV-S. aureus) vs phagocytosis inhibited with ice samples (CTV-S. aureus + Ice) 1224 
in the apple snail P. canaliculata phagocytosis experiment. FC is Fold Change, CPM is Count Per Million, 1225 
LR is Likelihood Ratio, FDR is Fold Discovery Rate. Relative graph is reported in Figure 5-figure 1226 
supplement 2. 1227 
 1228 
Supplementary File 11: Cell Gallery for P. canaliculata hemocytes after phagocytosis assay  1229 
Representative cell images belonging to each individual cluster identified by Image3C for snail hemocytes 1230 
after phagocytosis assay are shown. Ch01 is Bright Field, Ch02 is DHR signal (ROS indicator), Ch06 is 1231 
SSC (Side Scatter Signal), Ch07 is CTV signal (S. aureus labeling) and Ch11 is Draq5 (nuclear staining). 1232 
Merge represents the overlay of Ch02, Ch06, Ch07 and Ch11.  1233 
 1234 















Image3C pipeline

Amnis IDEAS VorteX clustering 
environment FCS Express Plus

Export CSV or FCS files

Save DAF and CIF files
(tabular data and images)

that will be integrated
with clustering results

Export clustering results as CSV files

R / R Studio

Export clustering results as CSV file 
and save R scripts

Python

Crop or pad images to
32x32 pixels

Train the Convolutional Neural 
Network (CNN)

Use the CNN to assign the images 
into classes

Export DAF files into FCS files
(tabular data of feature values)

Remove features with high 
correlation values to each other

Identify and remove outlier 
samples 

Normalize and scale/center 
parameters

Transform fluorescence intensity 
values with Logicle transformation

Calculate and correct 
fluorescence spillover 

Create masks and calculate 
feature values

Export raw images

Start

Acquire images on Imagestream

Split merged clustering results 
back into original files

Plot FDL colored by cluster IDs

All subsequent samples obtained from 
the same species and the same 
tissues can be easily and directly 

analyzed with CNN

Clustering data obtained with the first 
experiment (e.g., homeostasis condition, WT or 

naïve cells) can be used for training a CNN

5-10 sec/file 
once scripts 

are configured

Up to 1000 cells/sec, 
2 min cleaning 

between samples

 several hours, time 
complexity is O(n2) 

and depends on 
number of events and 

dimensions 

~20 min

~30 min, depends 
on number of files

~1 hour, time complexity is O(n) 
where n is number of dimensions

a few sec/ 
1000 images

Generate Force Directed Graphs 
(FDL)

Calculate nearest neighbor 
clustering

Plot feature values, clutering 
results, FDL for further analysis

Use "R integration"  feaure to bind 
clustering results to images

Select subsets of events (gating) 
and display corresponding 

image galleries

Select single and nucleated events

Export images as 16-bit tiffs

https://github.com/stowersinstitute/LIBPB-1390-Image3C#analysis-of-clustering-results-in-r
https://github.com/stowersinstitute/LIBPB-1390-Image3C#instructions-for-training-and-prediction
https://github.com/stowersinstitute/LIBPB-1390-Image3C#fcs-file-pre-processing-in-r-for-clustering
https://github.com/stowersinstitute/LIBPB-1390-Image3C#clustering-the-events-in-vortex-clustering-environmentxshift
https://github.com/stowersinstitute/LIBPB-1390-Image3C#data-acquisition-on-the-imagestream
https://github.com/stowersinstitute/LIBPB-1390-Image3C#instructions-for-training-and-prediction
https://github.com/stowersinstitute/LIBPB-1390-Image3C#instructions-for-training-and-prediction
https://github.com/stowersinstitute/LIBPB-1390-Image3C#exporting-tiff-images-for-neural-network-training--analysis
https://github.com/stowersinstitute/LIBPB-1390-Image3C#data-acquisition-on-the-imagestream
https://github.com/stowersinstitute/LIBPB-1390-Image3C#data-exploration-and-event-visualization-in-fcs-express
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