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ABSTRACT

We investigate the internal structure of elliptical galaxies at z ~ 0.2 from a joint lensing—
dynamics analysis. We model Hubble Space Telescope images of a sample of 23 galaxy—galaxy
lenses selected from the Sloan Lens ACS (SLACS) survey. Whereas the original SLACS
analysis estimated the logarithmic slopes by combining the kinematics with the imaging data,
we estimate the logarithmic slopes only from the imaging data. We find that the distribution of
the lensing-only logarithmic slopes has a median 2.08 + 0.03 and intrinsic scatter 0.13 +0.02,
consistent with the original SLACS analysis. We combine the lensing constraints with the
stellar kinematics and constrain the amount of adiabatic contraction in the dark matter (DM)
halos. We find that the DM halos are well described by a standard Navarro—Frenk—White halo
with no contraction on average for both of a constant stellar mass-to-light ratio (M /L) model
and a stellar M /L gradient model. For the M /L gradient model, we find that most galaxies
are consistent with no M /L gradient. Comparison of our inferred stellar masses with those
obtained from the stellar population synthesis method supports a heavy initial mass function
(IMF) such as the Salpeter IMF. We discuss our results in the context of previous observations
and simulations, and argue that our result is consistent with a scenario in which active galactic

nuclei feedback counteracts the baryonic-cooling-driven contraction in the DM halos.
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1 INTRODUCTION

Measurements of structural properties of elliptical galaxies can test
prediction of galaxy formation theories in the cold dark matter
(CDM) paradigm (e.g., Dubinski 1994; Kazantzidis et al. 2004; De-
battista et al. 2008; Read 2014). In this paradigm, small haloes merge
to hierarchically form larger halos. CDM-only N-body simulations
predict that the dark matter is universally distributed according to the
Navarro-Frenk—White (NFW) profile with a ‘cuspy’ central slope,
i.e., the 3D density scales as p o r~!in the inner region (Navarro
etal. 1996, 1997). Such slopes have been observed in galaxy clusters
(e.g., Limousin et al. 2007; Caminha et al. 2017). However, shal-
lower central density slopes also have been observed in some galaxy
clusters and in dwarf and low-surface-brightness galaxies (e.g., de
Blok et al. 2001; Sand et al. 2008; Oh et al. 2011; Newman et al.
2013). One possible explanation of these shallower slopes is given
by alternative dark matter models, e.g., self-interacting dark matter
and warm dark matter (e.g., Dodelson & Widrow 1994; Spergel &
Steinhardt 2000; Colin et al. 2000). Another possible explanation,
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instead, is related to the astrophysics of galaxy formation and evo-
lution. In fact, as massive elliptical galaxies are believed to be the
end-product of the hierarchical merging and accretion processes,
their mass density profiles are a sensitive probe of the physics of
galaxy formation and evolution.

In the galaxy formation process, baryons play an important
role that can affect the central density slope of the dark matter dis-
tribution. If gas cools and inflows slowly towards the center, then the
dark matter distribution can be adiabatically contracted (Blumen-
thal et al. 1986). In contrast, the dark matter distribution can expand
in dissipationless mergers or due to gas outflows driven by super-
nova feedback, stellar feedback, or active galactic nucleus (AGN)
feedback (e.g., El-Zant et al. 2001; Nipoti et al. 2003; Peirani et al.
2008; Pontzen & Governato 2012). Observational avenues to study
these processes and their importance in galaxy formation have been
limited. The combination of lensing and dynamics has been one of
the most informative probes of the dark and luminous matter dis-
tributions in the inner region of galaxies and clusters (e.g., Treu &
Koopmans 2002; Czoske et al. 2008; Barnabe et al. 2011). The el-
liptical galaxies in the Sloan Lens ACS (SLACS) survey were found
to have no contraction on average (Dutton & Treu 2014; Newman
et al. 2015), although individual galaxies can have contracted (or,
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expanded) dark matter distributions (e.g., Sonnenfeld et al. 2012).
As many or all of the above mentioned baryonic processes happen
at various points of the galaxy formation process, the degree of con-
traction or expansion depends on the relative importance of these
baryonic processes.

The interplay between baryon and dark matter in galaxy for-
mation is also highlighted by the so-called ‘bulge-halo conspiracy’
(Treu et al. 2006; Humphrey & Buote 2010; Cappellari 2016). This
conspiracy refers to the nearly isothermal profiles of the total matter
distribution with small scatter (~0.1-0.2) observed within half of
the half-light radii to 100 half-light radii of elliptical galaxies (e.g.,
from strong and weak lensing: Treu & Koopmans 2004; Gavazzi
et al. 2007; Auger et al. 2010b; Ritondale et al. 2019; from stellar
dynamics: Thomas et al. 2007; Tortora et al. 2014; Bellstedt et al.
2018). As neither of the baryonic and dark matter distributions fol-
lows a power law, fine tuning between these two distributions is
required to produce the isothermal distribution for the total mass.
To understand the origin of this conspiracy through simulation, we
can use two parameters: the dark matter fraction fy,, within the
inner region and the distribution of logarithmic slope y for the
total mass profile. Near the half-light radius, dark matter has as
a logarithmic slope of y < 1.5 and the baryonic distribution has
a logarithmic slope of y ~ 2.3 for a de Vaucouleurs profile (de
Vaucouleurs 1948). Thus, fine-tuning in fy,,, is required to achieve
y ~ 2 for the combination of baryonic and dark matter. However,
cosmological hydrodynamic simulations have been unable to match
both the observed f, and slope distribution. The y distribution can
be reproduced in simulations by having no or weak feedback, but
this leads to an overestimated galaxy formation efficiency and un-
derestimated fy,, (Naab et al. 2007a; Dufty et al. 2010; Johansson
et al. 2012). Conversely, reproducing the observed fy, requires
strong feedback, but then the predicted y distribution is too shal-
low. Dubois et al. (2013) similarly find that simulation with AGN
feedback can predict the observed fy,, in 0.4-8 x10'3 Mg halos
at z = 0, but underestimate the y distribution. Without the AGN
feedback, overestimated galaxy formation efficiency leads to un-
derestimated fy,, and overestimated y distribution. More recently,
Xu et al. (2017) studied simulated elliptical galaxies from the 1L-
LUSTRIS hydrodynamic simulation that incorporates a number of
baryonic processes (Vogelsberger et al. 2014). These authors find
higher f3,, and lower average y in 1LLusTRIS galaxies than those
observed in lens elliptical galaxies (Auger et al. 2009; Oldham &
Auger 2018). These mismatches point to either inadequacy in the
theoretical model or systematic biases in the observational methods.

Many of the observational constraints on fg, and y come from
strong lensing systems with elliptical galaxies as deflector. Strong
gravitational lensing provides a robust probe of the total projected
mass within the Einstein radius. Thus, combining the stellar kine-
matics with the lensing information can constrain the mass distri-
bution in the deflector galaxy (e.g., Auger et al. 2009; Sonnenfeld
et al. 2015). To constrain fy,,, decoupling the baryonic and dark
components in the total mass is necessary. In previous studies, the
stellar mass was inferred from the spectral energy distribution to de-
couple the dark and baryonic components (e.g., Auger et al. 2009;
Spiniello et al. 2011). This stellar mass depends on the assumption
of the stellar initial mass function (IMF) introducing an uncertainty
by a factor of ~3. However, the IMF can be constrained by making
assumption on the mass profile (Treu et al. 2010), or by decoupling
the baryonic and dark components with other external constraints
(e.g., Spiniello et al. 2012; Barnabe et al. 2013; Sonnenfeld et al.
2019b).

In this paper, we aim to constrain the y distribution and fy,,

of elliptical galaxies from the lensing and kinematics data — in-
dependent of the SED-based stellar mass measurements — and to
constrain the amount of adiabatic contraction (or expansion) in
these galaxies. We model a sample of 23 galaxy—galaxy lenses to
study their structural properties. These lenses are assembled from
the SLACS survey (Bolton et al. 2006, 2008). Previous SLACS
analyses measured only the Einstein radius from the imaging data
and then constrained the radially averaged logarithmic slope using
stellar kinematics in combination with the imaging data. Due to sev-
eral improvements in lens modelling techniques in the past decade,
we can now constrain the logarithmic slope only from the imaging
data, exploiting the richness of pixel-level information in the lensed
arcs (e.g., Suyu & Halkola 2010; Birrer et al. 2015). We model the
SLACS lenses in our sample using state-of-the-art lens modelling
techniques that simultaneously reconstruct the sources to extract the
information contained in the lensed arcs. Thus, we measure the local
logarithmic slope at the Einstein radius only from the imaging data,
independent of the stellar kinematics. We then combine the stel-
lar kinematics with the lensing constraints to individually constrain
the stellar and dark matter distributions, and infer the amount of
adiabatic contraction in the dark matter distribution. Lensing-only
measurement of the mass distribution is prone to the mass-sheet
degeneracy (MSD; Falco et al. 1985). We adopt MSD-invariant
quantities as the lensing constraints in our joint lensing—dynamics
analysis, and combining these constraints with the stellar kinematics
allows us to constrain the MSD in the inferred mass distribution.

This paper is organized as follows. In Section 2, we describe our
lens sample and the imaging data. Next in Section 3, we describe
our uniform modelling procedure for this sample. We report the
structural properties of elliptical lens galaxies from the lens models
in Section 4. We discuss our results in Section 5 and summarize the
paper in Section 6. Additionally in Appendix A, we investigate the
alignment between mass and light distributions. We adopt a flat A
cold dark matter model as the fiducial cosmology with Hy=70 kms™!
Mpc'l, and Qp, = 0.3. The reported uncertainties are obtained from
16" and 84t percentiles of the corresponding posterior probability
distributions. We use log x to express the natural logarithm and
log;( x to express the common logarithm.

2 LENS SAMPLE

Our lens sample consists of 23 galaxy—galaxy lenses from the
SLACS survey. We first selected 50 galaxies from the full SLACS
sample of 85 lenses by visually inspecting the lens images and
selecting those: (i) without nearby satellite or line-of-sight galax-
ies, (ii) without highly complex source morphology, (iii) with HST
imaging data in the F555W/F606W bands (hereafter, V-band), and
(iv) not disc-like. Criteria (i) and (ii) are adopted so that we can uni-
formly apply our modelling procedure to the whole sample without
needing to tweak the lens model settings on lens-by-lens basis. We
adopt criterion (iii), because in the V-band the deflector galaxy is
relatively fainter in comparison with the lensed arcs than in the
F814W band (hereafter, /-band), which makes it easier to decouple
the deflector light from the lensed arcs during lens modelling. We
provide the list of selected galaxies in Appendix C.

2.1 Imaging data

Among the selected galaxies, some have imaging data from Ad-
vanced Camera for Surveys (ACS), and the rest from Wide Field
and Planetary Camera 2 (WFPC2). The ACS images were taken
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with the F555W filter and the WFPC2 images were taken with the
F606W filter. The images are obtained under the HST GO programs
10494 (PI: Koopmans), 10798 (PI: Bolton), 10886 (PI: Bolton), and
11202 (PI: Koopmans).

The WFPC2 images were reduced for the original SLACS
analysis (Auger et al. 2009). We reduce the ACS images using the
standard AsTRODRIZZLE software package (Avila et al. 2015). The
final pixel scale after drizzling is 0.05 arcsec.

We obtain the point spread function (PSF) for each filter and
camera combination using TINYTIM (Krist et al. 2011).

2.2 Stellar kinematics data

We use the line-of-sight velocity dispersions of the lenses in our
sample measured from the Sloan Digital Sky Survey (SDSS) spec-
tra. The fibre radius is 1.5 arcsecond and the typical seeing for the
observations is 1.4 arcsec. Bolton et al. (2008) first measured the
velocity dispersions from the SDSS reduction pipeline. Shu et al.
(2015) improved the measurements by updating the set of templates
used to fit the spectra. We use this improved kinematics measure-
ments in this study. These measurements are in good agreement
with the Very Large Telescope (VLT) X-Shooter measurements of
a subsample presented by Spiniello et al. (2015).

Birrer et al. (2020) find a residual scatter in the joint lensing—
dynamics analysis using the same kinematics data used in this study,
which accounts for ~6 per cent unaccounted systematic uncertainty
in the measured kinematics. Therefore, we add 6 per cent uncertainty
in quadrature to the measured uncertainties.

2.3 Weak lensing data

We incorporate weak lensing shear measurements of a sample of 33
SLACS lenses. The measurement pipeline is described by Gavazzi
et al. (2007), and the sample size of the analyzed SLACS lenses is
increased by Auger et al. (2010a). Sonnenfeld et al. (2018) find that
the shear measurements of these 33 lenses is consistent with the
shear measurement of the Hyper-Suprime Cam (HSC) survey weak
lensing measurements after weighting the HSC sample to match the
stellar mass distribution of the SLACS lenses.

Out of the 23 SLACS lenses in our sample, 11 have directly
measured reduced shear ygpeqr /(1 — «). For the remaining 12 lenses,
we adopt the mean and scatter (which includes both the intrinsic
scatter and the noise) of the measured reduced shears for the 33
lenses as the measured value and uncertainty, respectively. We adopt
binned reduced shears only up to ~100 kpc as the weak lensing
constraint in our analysis. We do not use measurements beyond 100
kpc to avoid any potential bias from the 2-halo term as this term
is not accounted for in our model. The centres of the adopted four
bins are logarithmically spaced at 9.87 kpc, 17.78 kpc, 32.04 kpc,
and 57.72 kpc.

3 LENS MODELLING

We model the lenses using the lens modeling software LENSTRON-
omy, which is publicly available on GitHub! (Birrer et al. 2015;
Birrer & Amara 2018). We package our modelling code into the

" O nttps://github.com/sibirrer/lenstronomy
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pOLPHIN pipeline?, which is a wrapper for LENSTRONOMY t0 uni-
formly model large lens samples. First in Section 3.1, we describe
the components in our uniform lens model. Then in Section 3.2, we
describe the optimization procedure for the lens model and Bayesian
inference of the model parameters. Next in Section 3.3, we assess
the effect of the PSF on the measured logarithmic slopes.

3.1 Model components

We adopt the power-law ellipsoidal mass distribution (PEMD) for
the deflector (Barkana 1998). Although we aim to individually con-
strain the dark matter and stellar distributions from a joint lensing—
dynamics analysis, first we only need to constrain MSD-invariant
local lensing properties from our lens models, for which the PEMD
model is sufficient. We combine these local lensing constraints with
the stellar kinematics data in our joint lensing—dynamics analysis
to individually constrain the dark matter and stellar distributions in
Section 4.2. The convergence for the PEMD is given by

3 R !
k(. y) = 27( — ) : (1)
Vqmx* + y*/qm

where Rg is the Einstein radius, ¢ is the axis ratio, and 7y is the
logarithmic slope for the mass distribution in 3D. For an isother-
mal profile, the logarithmic slope is y = 2. The on-sky coordinates
(x, y) are rotated by position angle PAy, from the (RA, dec) coordi-
nates to align the x—axis with the major axis of the projected mass
distribution. We also adopt an external shear profile parametrized
with the shear magnitude yex: and the shear angle @ex.

We adopt a double Sérsic profile for the deflector’s light dis-
tribution, as a single Sérsic profile leaves significant residual at the
galaxy’s center (Claeskens et al. 2006; Suyu et al. 2013). The Sérsic

profile is given by
7\ /s
NESRR Iy

Ref

I(x,y) = loexp |-k , (2)

where Reg is the effective radius, I. is the surface brightness at
Ref, gL is axis ratio, ng is the Sérsic index, and & is a normalizing
constant so that R.¢ becomes the half-light radius (Sérsic 1968).
The position angle for the light distribution is PAy . To constrain the
degeneracy between the pairs of R.g¢ and ng in the double Sérsic
profile, we fix ng = 1 and ng = 4, i.e., the exponential profile
and the de Vaucouleurs profile respectively (de Vaucouleurs 1948).
For simplicity, we also join the ellipticity parameters gr, and PAy,
between the two Sérsic profiles.

We reconstruct the source galaxy’s light distribution with a
basis of shapelets and a Sérsic profile (Refregier 2003; Birrer
et al. 2015). The order parameter nmax determines the number of
shapelets as Nshapelets = (Mmax + 1)(tmax + 2)/2. The scale size of
the shapelets is ruled by the scaling parameter £.

3.2 Optimization and inference

We obtain the posterior probability distributions for our model pa-
rameters using the Markov chain Monte Carlo (MCMC) method.
If the MCMC sampling is started from a point close to the max-
ima of the posterior, the chain can converge with relatively less

2 O nttps://github.com/ajshajib/dolphin
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computational time. Therefore, we first optimize the lens model to
get a point close to the maxima of the posterior. We use the par-
ticle swarm optimization (PSO) method for this step (Kennedy &
Eberhart 1995). To further make this optimization computationally
efficient, we adopt the following optimization recipe:

1. Join the deflector mass and light centroids and fix the logarith-
mic slope ¥ = 2 and shear magnitude yexr = O for all the steps
below.

2. Create a mask for the lensed arcs. We provide the algorithm
to automatically make the mask for the arcs in Appendix B. Fix
all the model parameters except for the deflector’s light profile.
Optimize the deflector light parameters masking the lensed arcs.

3. To find a good starting point for the source light parameters,
fix the lens model parameters and the deflector light parameters.
Fix the Einstein radius Rg and ellipticity parameters {gm, PAm}
to the values measured by the SLACS analysis (Auger et al.
2009). If such pre-determined values are not available, Rg can
be fixed to an approximate guess and the ellipticity parameters
can be set to the values for the circular case. Fix the shapelet
scale parameter 8 = 0.1 arcsecond. Optimize only the remaining
source light parameters to find an approximate position of the
source on the source plane. Note, in this step the lensed arcs are
not masked.

4. Keep the deflector light parameters fixed and optimize for the
source parameters and the PEMD parameters together. Keep 8 =
0.1 arcsecond fixed in this step.

5. Free (8 and optimize all the non-fixed parameters together.

6. Repeat steps 2—5 with the current initial conditions from the
previous step.

We notice prominent residuals at the center of the deflector
after performing the above automated procedure. This is expected
because the centers of elliptical galaxies are not perfectly described
by Sérsic profiles and our signal-to-noise ratio is very high in the
center. To avoid bias in the model from this poor fitting of the deflec-
tor light profile at the center, we mask out the central 0.4 arcsecond
and rerun the whole fitting procedure. The deflector light profile pa-
rameters for these systems are constrained from the light distribution
that falls outside the central masked region. However for four sys-
tems — J0252+0039, J1112+0826, J1313+4615, and J1636+4707
— masking the deflector center leads to even poorer quality fits as
evaluated with the p-value of the y? statistic. Therefore, we do not
mask the deflector centers for these four systems.

We set nmax = 6 for most of the lens systems in our sample.
However, for the following systems we have adopted the following
nmax Values through trial-and-error with the above optimization
procedure — J0252+0039: 10, J0959+0410: 15, J1250+0523: 12,
J1313+4615: 10, J1630+4520: 15.

After the pre-sampling optimization, we then initiate the
MCMC sampling from the optimized lens model after step 6. Dur-
ing the sampling, we free the parameters y and yex; that were fixed in
the optimization step. We also independently sample the centroids
of the deflector mass and light distributions. We perform the MCMC
sampling using EMCEE, which is an affine-invariant ensemble sam-
pler (Goodman & Weare 2010; Foreman-Mackey et al. 2013). We
assure the convergence of the chain by checking that the median and
standard deviation of the EMcEE walkers at each step have reached
equilibrium.

After our uniform modelling procedure for the 50 initially
selected lenses, we vet for reliability of the lens models based on
the following criteria: (i) absence of prominent model residuals
indicative of poor source reconstruction, and (ii) the median of the

inferred logarithmic slope has not converged to too low (y < 1.4)
or too high (y = 2.8) values. The y distribution can converge
toward such extreme values if the lensed arcs are faint and thus the
lensing information contained in the imaging data is not sufficient to
constrain y. When y is too small (y < 1.4), a central image will be
produced in the lens models, which is not observed in the imaging
data by looking at the color distribution. However, since we mask out
the central region for most of our lens systems, a central image is not
directly penalized in the likelihood term. Moreover, since the lensed
arcs are relatively fainter, prominent residuals are not noticeable
in the lens models even if the source reconstruction is poor. We
treat such extreme values of y as numerical artifacts due to weak
constraining power of the imaging data and remove these systems
from our sample. Note that criterion (ii) is practically a uniform
prior median(y) ~ U(1.4, 2.8). After this vetting procedure, we
are left with 23 systems with reliable lens models. We show the
lens images and the models in Figures 1, 2, and 3. We tabulate the
marginalized posteriors of the lens model parameters in Table 1.

3.3 Effect of PSF on measured logarithmic slope

We check the effect of the PSF choice on the measured logarithmic
slopes. We adopt the following five PSF choices for this test:

(i) TinyTiM PSF with G2V star SED as our baseline PSF,

(i) Tinyrim PSF with Sc galaxy SED at redshift (zg) = 0.62,
which is the average source redshift in our sample,

(iii) TinyTim PSF with elliptical galaxy SED at redshift (z4) =
0.20, which is the average source redshift in our sample,

(iv) a PSF created from re-centering and stacking star cutouts
from the corresponding HST image, and

(v) effective PSF (ePSF) created from the stars from the corre-
sponding HST image (Anderson & King 2000).

For PSF choices (iv) and (v), reliable PSFs could be extracted only
for the ACS images. Therefore, we only check with PSF choice (iv)
and (v) for nine systems with ACS images from our sample. We
re-optimize our lens models for PSF types (ii) to (v). We compare
the measured logarithmic slopes with these PSF choices in Figure
4. The mean deviation |A| ~ 0.001-0.009 of the logarithmic slope
distribution is negligible relative to the uncertainty of the individual
logarithmic slope (typically o, 2 0.04) when the SED of the PSF is
varied. However, a scatter of approximately 0.02-0.03 is introduced
in the logarithmic slope distribution from the choice of PSF.

4 STRUCTURAL PROPERTIES OF LENS GALAXIES

In this section, we report our findings on the structural properties
of the lens galaxies. In Section 4.1, we present the distribution
of the logarithmic slopes constrained from the lensing-only data.
Next in Section 4.2, we combine stellar kinematics with the lensing
observables to infer the amount of contraction in our sample.

4.1 The distribution of logarithmic slopes

We plot the distribution of the SLACS lenses in our sample on the
v—RE/Reg plane in Figure 14 left-hand panel. For comparison, we
also plot the distribution of the 13 strongly lensed quasar systems
from Shajib et al. (2019). Strong lensing constrains the slope of the
projected mass profile at the Einstein radius. Therefore, if we assume
that elliptical galaxies are self-similar, then this plot illustrates the
distribution of slopes of the projected mass density at different

MNRAS 000, 1-23 (2020)
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Figure 1. Lens models for the first eight out of the 23 SLACS lenses in our sample. The first column shows the HST images in F555W or F606W band.
The second column shows the reconstructed image from the best-fit lens model and the third column shows the normalized residual for the reconstruction.
In the fourth column, we subtract the modelled deflector light distribution from the observed image to visualize the lensed arcs. The fifth column shows the
reconstructed source and the sixth column shows the magnification map of the lens model. The red arrow points to the North and the yellow arrow points to
the East. We mask the central 0.4 arcsecond of some deflectors where there would otherwise be large residuals in the deflector’s light profile fit without the

mask. The lens models for the remaining systems are shown in Figures 2 and 3.

scale sizes. The median of the distribution is 2.09f8:82 and the
intrinsic scatter of the distribution is 0.13 + 0.02. We account for
the uncertainty in individually measured y by sampling 1000 sets of
y’s assuming Gaussian uncertainty for each measurement and then
obtaining the distribution of the medians and scatters from these

1000 sets.

We find no correlation between observed y distribution and
ratio fSIg = 070s/0SIE between the observed velocity dispersion
and the SIE velocity dispersion (Figure 5). We calculate the SIE

MNRAS 000, 1-23 (2020)

velocity dispersion is given by

3

OSIE = €

where c is the speed of light. If the underlying true mass profile
follows a power law, then y should positively correlate with fsig
[see equation (2.3) of Koopmans (2004), cf. Figure 4 of Auger et al.
(2010b)]. Therefore, there are two possible explanations for this lack
of correlation: (i) the underlying true mass profile deviates from a
power-law, and/or (ii) the noise is large enough that any potential
correlation is washed away. We perform a linear regression for the
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v—fsig distribution with intrinsic scatter as a free parameter. We
find that only 3.5 per cent or less intrinsic scatter is necessary with
95 per cent confidence to fit the data. This result indicates that
the uncertainties in y and fgg are too large to detect the expected
correlation for a power-law profile. This is a case of absence of
evidence, not evidence of absence.

4.2 Dark matter contraction

When gas inside a dark matter halo cools and condensates at the
center as stars begin to form, the dark matter distribution also con-

(fmodet = faaa)/@ (fmodet = faata)/o (fmodel = faata)/o (fimodet = faata)/@ (fmodet = faaa)/o (fmodet = faaa)/o (fmodet = faara)/o

(fodel = faata)/@

Data — deflector

]
)

O]

Figure 2. Lens models for the next eight out of the 23 SLACS lenses continuing after Figure 1. The first column shows the HST images in FS55W or F606W
band. The second column shows the reconstructed image from the best-fit lens model and the third column shows the normalized residual for the reconstruction.
In the fourth column, we show subtract the modelled deflector light distribution from the observed image to visualized the lensed arcs. The fifth column shows
the reconstructed source and the sixth column shows the magnification map of the lens model. The red arrow points to the North and the yellow arrow points
to the East. We mask the central 0.4 arcsecond of some deflectors where there would otherwise be large residuals in the deflector’s light profile fit without the
mask.
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tracts in response. If the gas infall is slow and smooth, then the
dark matter contraction is adiabatic (Blumenthal et al. 1986). In-
versely, dark matter halo can also adiabatically expand, if there is
gas outflow.

We infer the contraction in the dark matter distribution in
our lens galaxies by combining the lensing observables from our
models with their measured stellar kinematics. For the dark matter
distribution, we allow adiabatic contraction or expansion from the
‘pristine’ NFW distribution. We follow the contraction formalism
of Dutton et al. (2007), which is originally based on the formalism
of Blumenthal et al. (1986). In this formalism, the initial radius r;
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Figure 3. Lens models for the last seven out of the 23 SLACS lenses continuing after Figure 2. The first column shows the HST images in FS55W or F606W
band. The second column shows the reconstructed image from the best-fit lens model and the third column shows the normalized residual for the reconstruction.
In the fourth column, we show subtract the modelled deflector light distribution from the observed image to visualized the lensed arcs. The fifth column shows
the reconstructed source and the sixth column shows the magnification map of the lens model. The red arrow points to the North and the yellow arrow points
to the East. We mask the central 0.4 arcsecond of some deflectors where there would otherwise be large residuals in the deflector’s light profile fit without the

mask.

of a dark matter particle and its final radius ry after contraction is
related as

riMi(ri) = reMg(ry), )

where M(r) is the total 3D mass within radius r. Then, we have

Mg(re) = Mgay £(re) + Mam,£(rs)

gal,f(rf) +(1- fgal)Mi(ri),

where foal = Mgay i/ Mi = Mgy i/(Mam,i + Mgy,;) is the fraction of
the total mass that cools to form stars. We iteratively solve equations
(4) and (5) to obtain the contraction factor I'(r¢) = r¢/ri. Follow-
ing Dutton et al. (2007), we furthermore adopt the halo response

parameter v to modify the relation between r; and r¢ as
ri =T (rp) 1y (6)

By varying v in our models we can adjust the amount of contrac-
tion. For example, v = 0 corresponds to no contraction, v = 1

&)
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corresponds to full contraction as in Blumenthal et al. (1986), and
v < 0 corresponds to the case of adiabatic expansion. Cosmolog-
ical hydrodynamical simulations have found less contraction than
the model of Blumenthal et al. (1986), e.g., the result of Gnedin
et al. (2004) corresponds to v = 0.8 and the result of Abadi et al.
(2010) corresponds to v ~ 0.4 (Dutton & Treu 2014). However,
these simulations almost always find contracted dark matter halos
to some extent at the masses of interest (e.g., Schaller et al. 2015;
Xu et al. 2017; Peirani et al. 2017).

We adopt a composite mass distribution consisting of the con-
tracted dark matter distribution and the stellar distribution to model
the stellar kinematics of the lens galaxies in our sample. For com-
putational simplicity, we use spherical cases of these profiles. This
assumption is sufficient for the quality of the measured velocity
dispersions (Sonnenfeld et al. 2012). The line-of-sight velocity dis-
persion can be expressed by solving the spherical Jeans equation as
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Figure 4. Comparison of measured logarithmic slopes for various choices of PSF. The three choices are: (i) TinyTiM PSF with G2V star SED (baseline),
(ii) TinyTim PSF with Sc galaxy SED at (zg) = 0.62, (iii) TinyTim PSF with elliptical galaxy SED at (z;) = 0.2, (iv) centered and stacked stars from the
corresponding HST image, and (v) ePSF created from the stars in the corresponding HST image (Anderson & King 2000). The systems with ACS F555W
imaging are shown with green circles and the systems with WFPC2 F606W imaging are shown with pink squares. Reliable PSFs for PSF types (iv) and (v)
could be extracted only for the ACS images in our sample. The mean difference A between two corresponding PSF types is annotated within each panel. In all
cases, the deviation of the sample mean is negligible relative to the uncertainty of individual logarithmic slopes (typically 2 0.04).

Table 1. Point estimates of the parameters in our power-law lens models. Here, R is the Einstein radius, y'*"1"¢ js the logarithmic slope of the mass profile,
gm is the mass axis ratio, PAy, is the mass position angle, yex; is the external shear magnitude, ¢ey; is the external shear angle, R.g is the effective or half-light

radius in V-band, g is the light axis ratio, and PA[ is the light position angle.

Name Rg ylensing dm PAp (N of E) Yext Pext (N Of E) Refy qL PAL (N of E)
(arcsec) (deg) (deg) (arcsec) (deg)
J0029-0055  0.951*0-003  2.4770-07 0.69+0-04 6673 0.002+9-002 -22*0 2424005 0.83770-002  62.570-4
J0037-0942  1.509%0-0%  2.18%0-0°  0.6570-2 8243 0.013%0-089 21419 2.80£0.06  0.70170-901 82.9%0-1
J0252+0039  1.01170-005  2.1670-95  0.89%0-0} -10*3 0.009%0-087 -3343¢ 127£0.03  0.93170:00¢  -24.6*2-]
J0330-0020  1.077%0-993  2.1670-02  0.69%0-0% =743 0.025*3-007 269, 145+0.03  0.738°0-004  —18.7+04
J0728+3835  1.283*0-00¢  2.2370-03  (.59+0.03 24+1 0.061+9-007 163 1.79+0.04  0.75470-002  22.6*)-3
1073743216 0.973*0-01°  2.5170-%¢  0.6870-04 -5+2 0.117+9-909 787}, 3.49+0.07 0.85870-007  —11.4%}2
J0903+4116  1.27170-014 2.08%0-06  0.72%0-12 65%3, 0.089*9-009 5073, 353007 0.85570:09  -86.8713%;°
J0959+0410  0.96270-042  1.98%0-03  0.71%0-% 13726 0.058*9-010 -1 0.99£0.02  0.668*0-033  31.3%33
J1112+0826  1.42179-017 2.2170-06  0.5670-0¢ -57+2 0.066*0-017  —63*173 1.80+0.04  0.746*0-001  —46.5%0-2
J1204+0358  1.28570-00°  2.1970-05  .82+0-03 -4*3 0.056*-005 -41%3 1.59+0.03  0.98770-003  —48.7+3-2
7125040523 1.11579-005 1.9170-08  0.91+0-02 -60%33 0.020*9-0%7 -3+ 1.60£0.03  0.893*0-00¢  —_52*1-3
J1306+0600  1.299*0-011 2.1870-0¢  0.6670- 19 -39+ 0.006*9-00% 11738 2.30£0.05  0.90970-003  -50.2%0-8
J1313+4615  1.30270011  2.0870-0¢  0.6470-09 -13t3° 0.098%0-00% -20+%0 2.15£0.04  0.80670:0%  30.2732
J1402+6321  1.354*0-003  2.24+0-06  0.70+0-04 24+2 0.010%0-05 1+ 3.02+0.06  0.758+3-002 17.9*9-3
J1531-0105  1.705%0-9%  1.90%0-13  0.6870-2 -61*% 0.04670-00  -691% 3432007 0.67270000  -55.1%)]
7162143931 1.263*0-00¢ 2.0170-06  0.77+0-2 -50%2 0.007+9-007 41738 2444005 0.73970-002  -53.2+0-3
J1627-0053  1.22770-002 1.8470-13  0.8770-01 8073 0.02670-007  —96*17%  276+0.06 0.836*0-001  85.9*0-7
J1630+4520  1.788*0-00°  2.0070-02  0.83*0-02 20*2 0.019*9-00¢ 26%3, 2.11£0.04  0.82570-093 19.740-5
J1636+4707  1.100*0-00¢  1.78*0-07  0.6670-03 -4%2 0.055*9-019 -3¢ 1.79£0.04  0.797+-00  —14.2%03
12238-0754  1.272+9-002 2.33+0-07 0.7070-93 —44+2 0.003*9-003 -19+39 2.53+0.05 0.78470-002  _50.7+0-3
1230040022 1.243*0-008  1.8570-13  0.69+0-04 52 0.025+-020 172 1.86+0.04  0.790*-003 4.0%0:3
12303+1422  1.61170-009  2.0070-5%  0.59%0-93 54+3 0.002+9-003 1+8 348+0.07 0.659*0-002  52.5%)-2
J12343-0030  1.529*0-00¢  1.7570-13  0.65%0-02 54+1 0.088*9-005 34+ 246+0.05  0.66270-003  51.1+0-2
the Osipkov—Merritt anisotropy profile given by
oo
Ting(R) = IZ—G (L) M) o, 0) L 2
(R) Jr R/ r Br)=l-—=———- ®)
or  re+ag R

where G is the gravitational constant, I(R) is surface brightness
distribution, M(R) is the 3D enclosed mass, [(r) is the 3D luminosity
density, and K is a function that depends on the parameterization
of the anisotropy parameter S (Mamon & Lokas 2005). We adopt

where o-r2 is the radial velocity dispersion, O'tz is the tangential ve-
locity dispersion, and aap; is the anisotropy scaling factor (Osipkov
1979; Merritt 1985a,b). For this parameterization, the function 7<B

MNRAS 000, 1-23 (2020)



lensing

N N N

o ES =)
T T T

Logarithmic slope, y
o S

=
=)
T

07 08 09 10 L1 12 13
JSIE= 0105/ 0515

e
=N

Figure 5. Distribution of y*™"8 and fyz = o0s/0sie for the SLACS
sample. The biweight midcorrelation r between these two parameters is
annotated in the figure. The measured logarithmic slopes have no correlation
with the f5ig. If the global mass distribution follows the power law, then
7y should positively correlate with f5jg [see equation (2.3) of Koopmans
(2004), cf. Figure 4 of Auger et al. (2010b)]. However, we find that the
uncertainty level in the measured y and f5g are too large for us to detect
a potential correlation. As a result, this comparison is inconclusive, and
it cannot confirm or rule out whether the global mass distribution is well
approximated by a power law. A more sophisticated analysis, such as that
presented later in this paper, or better data are required for this investigation.

has the form

2 2,2
Ka(u) = Uy *1/2 (u +uam)tan_l( Mz_l)

(ttani + 1)3/2 u uazni +1 ©
VLN P
u +1 u?’

ani

where uyni = daniRefr/R (Mamon & Lokas 2005).
We adopt the NFW profile for the initial distribution of the
dark matter, which is given by

ONEW
PNEW(r) = > 5 (10
(r/ryFW) (1 + r/ryFw)
where pISJI W is the density normalization and rSNI W is the scale

radius. For the stellar mass distribution we first adopt a constant
mass-to-light ratio (M /L) in Section 4.2.1, and then a M /L gradi-
ent in Section 4.2.2. We adopt a double Sérsic profile for the stellar
light distribution similar to our lens models. To ensure robustness
of the light profile fits, we fit the double Sérsic profile from 20x20
arcsec? cutouts around the lens galaxies, which sufficiently contain
more than twice the effective radii of these galaxies. Before fitting
the light profiles, we subtract the lensed arcs using our best fit lens
models. We only obtain the best fit double Sérsic profile and adopt
an uncertainty on the fit equivalent to 2 per cent uncertainty for
the effective radius. This 2 per cent uncertainty is a conservative
estimate, as the 2 per cent corresponds to 95 percentile of the uncer-
tainty distribution of the effective radii in our lens models. We use
the concentric Gaussian decomposition method from Shajib (2019)
to deproject the 2D stellar light or mass distribution into the corre-
sponding 3D distribution. We take 30 Gaussian components with
their standard deviations logarithmically spaced between 0.001 arc-
sec and 30 arcsec. This decomposition approximates the 2D stellar
mass profile shapes within ~0.2 per cent accuracy between 0.005
arcsec and 6 arcsec.

MNRAS 000, 1-23 (2020)
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4.2.1 Constant M /L for stellar mass distribution

We first constrain the model parameters w =
{v, aanis faals ryFW, pEIFW} for individual lens systems.
Here, rNFw is the scale radius of the NFW profile and po Npw is
the normalization. We impose a theoretical prior on the Mpgo—c200
relation corresponding to (z4) = 0.20 from Diemer & Joyce (2019)
for the initial NFW halo. To incorporate the lensing constraints into
this joint lensing—dynamics analysis, we fold in the posterior distri-
butions of Einstein radius Rg and the quantity REa'é’ /(1 = kg) from
our lens models in Section 4.1. Here, a/]’a’ is the double derivative of
the deflection angle at Rg and the g is the convergence at Rg. The
term REa/]’E’ /(1 — kg) is the mass-model-independent observable
quantity from imaging data (Kochanek 2020). We also use the
weak lensing measurements of the reduced shear, although weak
lensing do not provide tight constraints due to large uncertainty in
the measured shear of individual systems. We take uniform priors
onv ~ U(-0.5, 1), agni ~ U.1, 5), and fga ~ U(0, 0.25).
Additionally we impose a prior on log;y M>09 from Sonnenfeld
et al. (2018) that depends on the measured stellar mass from the
stellar population synthesis method assuming Chabrier IMF. We
obtain the Chabrier IMF based stellar masses for the galaxies in
our sample from Auger et al. (2009). The form of the prior is

pllogjg Magy | logjo M)
=N (/.lh + Bh [loglo pChab _ 11.3] , o'h) .

The parameters in this prior are obtained by Sonnenfeld et al. (2018)
by applying the SLACS selection function on SDSS galaxies that
have HSC weak lensing data and assuming a model with M /L
gradient for the stellar mass and an NFW profile for the dark matter.
We take the uncertainty on these parameters to match with the
dispersion observed in the SLACS galaxies by Sonnenfeld et al.
(2018) for the same mass model to have p, = 13.03 £ 0.25, B, =
1.42 +£0.92, and o, = 0.18 £ 0.16.

We then infer the distribution of population-level parameters
7 for our lens sample using hierarchical Bayesian inference. Ac-
cording to the Bayes’ theorem, we can express the posterior of the
population-level parameters as

p(t | D) e p(D | 7) p(7)

an

N
wp) [ ] / dw; p(D; | wi) plw; | 7) "

N . .
@) [ | [ 222 iy 1 ),

Here, D = {D;} refers to the data set containing all the data D; for
individual lenses, p(D | 7) is the likelihood term on the population-
level parameters 7, p(7) is the prior, p(w; | T) governs the distribu-
tion of individual lens parameters given the population level param-
eters, p(w; | D;) is the posterior of w; for an individual system given
its associated data D;, and p(w) is the prior for the parameter set w as
given above. We assume that aani, v, and fgy is Gaussian-distributed
for our lens sample with the Gaussians truncated where p(w) = 0.
Thus, we take 7 = {y, 0y, Uayi> Taum: > G-féal} as the popu-
lation level parameters. Here, ¢ and o refer to the mean and stan-
dard deviation of the population level Gaussian distribution for the
corresponding parameter. We take uniform priors p,, ~ U(-1,1),
Hagi ~ U(0.5,5), and Hfg ~ U(0,0.25). We take the same uni-
form prior U(=>5, 1) for logyo oy, logjg 0q,,. and logq o7s,,. We
perform the integral in equation (12) using Monte Carlo integra-
tion. In the Monte Carlo integration, we sample from p(w; | 7)
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and sum over p(w; | D;)/p(w;). We approximate p(w; | D;) with
a Gaussian mixture model (GMM) of the corresponding samples
drawn using MCMC. Before fitting the GMM, we smooth the distri-
butions of the MCMC samples using the kernel density estimation
(KDE) method with Silverman’s rule for the bandwidth (Silverman
1986). The number of components in the GMM for each individual
lens posterior p(w; | D;) is selected using Bayesian information
criterion (BIC) and it is typically within 5-10.

We illustrate the posterior distributions of the population-level
parameters in Figure 6, and tabulate their point estimates in Table 2.
In Figure 7, we highlight some of the important results from Figure
6 along with their interpretations for galaxy properties. We infer
the mean halo response parameter u, = —0.06 + 0.04 and intrinsic
scatter oy, < 0.092 (95 per cent upper limit), which is consistent
within 1.50 with no contraction on average for our lens sample.

We compute the dark matter fraction fy,, within Reg/2 di-
rectly from the decomposed dark and stellar mass distributions. We
show the y—fyy, distribution in Figure 8. We find moderate anti-
correlation between y and fy,, with the biweight midcorrelation
r = —0.39 + 0.15. The anti-correlation is expected as a shallower
total mass profile slope will require higher contribution from the
dark matter to lower the total mass profile’s slope. The distribution
of fym in our sample has a mean of (fyy,) = 0.27 £ 0.02 and a
scatter of 0.14 + 0.01.

4.2.2 M|/L gradient for stellar mass distribution

Next, we incorporate a M /L gradient for the stellar mass distribu-
tion. We parameterize a power-law M /L gradient as
R\

) , 13)

=T (Reff

where Y. is the M /L at R.¢. However, this parameterization di-
verges for n > 0 as R — 0, the total stellar mass computed using
the concentric Gaussian decomposition method stays finite. More-
over, the observed lensing properties and the kinematic properties
are mostly sensitive to the mass distribution near the Einstein radius
and the effective radius, respectively. As a result, the deviation from
the exact relation near the center (S0.01 arcsec) in our Gaussian-
decomposed approximation does not noticeably impact our analysis.

We perform the same analysis from Section 4.2.1, but with
the M /L gradient implemented in the stellar mass distribution. As
a result, the model parameters for individual lenses are extended
tow = {v, dani> faal> rNEW - oNFW ) We only allow positive
values for 77 as previous observations suggest that the M /L is higher
at the center than outer region of elliptical galaxies (e.g., Martin-
Navarro et al. 2015; van Dokkum et al. 2017). As we want to
adopt an uninformative prior on the order of magnitude of 1, we
take a Jeffrey’s prior on 57 as p(n) « 1/n, which is equivalent to
a uniform prior on logn. We set the bounds of the uniform prior
on logn as p(logn) ~ U(log 1073, 0). Furthermore, the population
level parameters for the Bayesian hierarchical inference are also
extended to 7 = {fy, Oy, Uags Tau» M Ofa Hlognp Tlogn -

We infer the 95 per cent upper limit of exp(tog ;) distribution
to be 0.02. The mean halo response parameter for the sample is
Hy = —0.031’8:8‘; with intrinsic scatter oy, < 0.074 (95 per cent
upper limit), which is consistent with no contraction in the NFW
halo (Figure 6). We show the distribution of the inferred fy,, and
the logarithmic slope vy in Figure 8. The distribution of fj,,, in our
sample for the M /L gradient model has a mean { fg,) = 0.28 +0.02
and an intrinsic scatter of 0.15 + 0.02.

To check for the impact of the M—c relation prior in this anal-
ysis, we perform the joint lensing—dynamics analysis without the
M—c relation prior. We find that the uncertainties on the model
parameters for each lens system expectedly increase without this
prior, and the posteriors from with or without the prior are consis-
tent within 1o (Figure 6, Table 2).

We also check for the impact of our fiducial cosmology, in
particular the Hubble constant, on our inference. We perform the
joint lensing—dynamics analysis with Hy = 67 km 57! Mpc_1 and
with Hy = 74 km s~} Mpc~!. We find all the posterior distributions
to be consistent within 1o. Therefore, our inference is not sensitive
to the choice of the Hubble constant.

We show the surface density profiles and the deprojected 3D
density profiles of the dark matter and stellar components of the
total mass distribution for all the lens galaxies in Figures 9 and 10,
respectively. In Figure 11, we illustrate the median deviation of the
NFW-+stars model from the power law in the total surface density
profile and the local logarithmic slope. The total density profile com-
bining dark matter and stars deviates higher by ~5 per cent (median
value) at the Einstein radius with a median absolute deviation of ~7
per cent within our sample. Here, the median absolute deviation is a
proxy for the intrinsic scatter. The local slope of the density profile
at the Einstein radius is shallower by ~2 per cent (median value)
with median absolute deviation of ~2 per cent. These deviations are
sensitive to our adopted prior on Mpq. If we choose a prior with
lower mean halo mass such as logy Moo ~ N(12.9,0.5) — which
corresponds to the BOSS constant-mass (CMASS) galaxies with
mean redshift z ~ 0.6 (Sonnenfeld et al. 2019a) — the resultant pro-
files would be within 0.8 per cent of the power laws at the Einstein
radius (Figure 11).

5 DISCUSSION AND COMPARISON WITH PREVIOUS
STUDIES

In this section, we compare our results with previous studies based
on observations and simulations, and interpret them in the context
of elliptical galaxy evolution. First in Section 5.1, we discuss the
central results of this study on the elliptical galaxy structure. We
then place these results in the context of massive elliptical galaxy
evolution in Section 5.2. We discuss our results on the M / L-gradient
and its implication for the stellar IMF in Section 5.3. We discuss the
implication of our results for time-delay cosmography in Section
5.4. We state the limitations of this study in Section 5.5.

5.1 Elliptical galaxy structure

The main results of this study on the elliptical galaxy structure
are: (i) the dark matter distribution in massive elliptical galaxies at
z ~ 0.2 are not contracted and close to an NFW profile on average
(i.e., iy ~ 0), and (ii) the total density profile combining the dark
matter and stars is close to isothermal (i.e., (y) ~ 2).

5.1.1 Dark matter contraction

Our result on the dark matter contraction agrees with Dutton &
Treu (2014), who also find no contraction in SLACS galaxies using
the lens models from Auger et al. (2010b). Similarly, Sonnenfeld
et al. (2015) and Newman et al. (2015) find that the inner slope
of the dark matter distribution is consistent with the NFW profile
within the uncertainty for their samples of massive elliptical galaxy
halos and group-scale halos, respectively. Therefore, these findings

MNRAS 000, 1-23 (2020)
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Figure 6. Distribution of population-level parameters assuming Gaussian distribution for the halo response parameter v, the anisotropy scaling parameter dapi,
fraction of the total mass that cools to form stars fy,1, and log7 where 77 is the M /L gradient’s exponent. The three model setups illustrated are a constant
stellar M /L model with the M—c relation prior (blue dashed line), a stellar M /L gradient model with the M —c relation prior (red solid line), and a stellar
M /L gradient model without the M—c relation prior (dotted grey line). The darker and lighter regions represent 68 per cent and 95 per cent credible regions,
respectively. The 2D contours and 1D distributions are smoothed with a Gaussian kernel of 1.50- bandwidth. The point-estimate of these parameters are given
in Table 2. Figure 7 highlights the central parameters in our model along with their interpretations.

are consistent with our result. However, our result contradicts the
report of steeper central slopes (mean inner logarithmic slope (8) =
2. 01+8 lg) than that in the NFW profile (8 = 1) by Oldham &
Auger (2018). Interestingly, Oldham & Auger (2018) find their
slope distribution to be bimodal, and the steep value given above
corresponds to the mode with the larger mean. If Oldham & Auger
(2018) adopt a unimodal slope distribution, then the average inner
slope is consistent with the vanilla NFW profile within 0.50 for the

MNRAS 000, 1-23 (2020)

M /L gradient model and within 1.3¢ for the constant M /L model.
Albeit, the unimodal distribution requires higher intrinsic scatter.
Moreover, Oldham & Auger (2018) note that their inferred halo mass
is lower than the expectation of abundance matching studies due to
the lack of a strong prior to constrain the halo scale size or its mass.
Strong-lensing data is sensitive to the mass profile in the central
region within the Einstein radius, which is typically ~5-10 times
smaller than the NFW scale radius. Thus, additional data or prior
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Figure 7. Interpretation of 1D marginalized distributions of some central model parameters for our galaxy sample. Left-hand panel: distributions of the
sample mean w1, of the halo response parameter v for stellar M /L gradient (red solid line) and constant stellar M /L (blue dashed line) models. Both models
are consistent with zero contraction marked by the vertical grey dashed line. The full contraction scenarios in Blumenthal et al. (1986) model (v = 1), and the
simulations of Gnedin et al. (2004, v = 0.8) and Abadi et al. (2010, v ~ 0.4) are ruled out. Middle panel: distributions of the mean fraction of star-forming
baryons pif,, that has cooled from the initial distribution. We show along the top axis the corresponding star-forming efficiency esp = foa1Qm/Qp, Where
Qp/Qm is adopted from Planck Collaboration (2018). The uy,, distributions peaks at esp ~ 0.17, which is consistent with moderate to strong feedback
mechanisms on the star formation (Hopkins et al. 2014). Right-hand panel: The distribution of mean M / L-gradient-exponent in our M /L gradient model.
The distribution favors very small gradient, with the 95 per cent upper limit at 0.02.

Table 2. 1D marginalized distributions of the population level parameters from Bayesian hierarchical inference. The corner plot for these parameters are
illustrated in Figure 6. The baseline model settings are: M —c relation prior from (Diemer & Joyce 2019). Jeffrey’s prior for M /L-gradient exponent 77, and
Hy =70 km s~! Mpc~!. “Other settings” column indicates which setting from these baseline settings is varied. The columns for o, Tami> O fy> exp(Htiog 1 )>
and 07jog ,; provide the 95 per cent upper limit.

Stellar M /L Other settings My oy Hag Tayy Mo O fral exp(tiog 1) Tlogn
Constant M /L Baseline -0.06%00r <0092 1.54%033 <026 0.028*)003  <0.0040 - -

M /L gradient ~ Baseline -0.0370-0¢ <0074 1.60*0-37 <022 0.02670-00F  <0.0041  <0.017 <0.33
M /L gradient  No M~—c prior -0.08%0-07 <0069 1.60*03% <020 0.026*0-003  <0.0036  <0.017 <0.36
M /L gradient 7 prior~ U0, 1)~ 0.0270-%% <0054 1.52*0-2% <025 0.02570:00%  <0.0036  (<0.061)*  (<0.015)"

* For the model with uniform prior on 77, the column exp(uiog ;) gives the value for u;; and the column oo, gives the value for o, .

at scales larger than the NFW scale radius is necessary to robustly
constrain the halo mass. We find that the degree of contraction
depends on the halo mass prior in our analysis with a heavier prior
on Mjqo producing shallower inner slopes to fit the joint lensing—
kinematics data. The sample of Oldham & Auger (2018) has a
similar stellar mass range as our sample and the difference between
the mean redshifts of the samples A{z) = 0.15 does not leave
enough room to expand the halos from g ~ 2 to § ~ 1 within ~1.44
Gyr. Therefore, we conclude that the differences between our result
and that from Oldham & Auger (2018) are largely caused by the
difference in the adopted priors corresponding to the dark matter
halo.

5.1.2  Slope of the total density profile

Our lensing-only models provide (y!e™"g) = 2.08 + 0.04 with a
scatter of 0.13+0.02. From the joint lensing—dynamics analysis, we
find the total density profile is shallower by approximately 5 per
cent, which brings the sample mean of the logarithmic slope at
the Einstein radius closer to the isothermal case (Figure 11). This
near-isothermality of the total density profile agrees well with a
multitude of pervious observations — e.g., based on strong-lensing
only or jointly based on lensing and dynamics: Treu & Koopmans

(2004); Gavazzi et al. (2007); Auger et al. (2010b); Ritondale et al.
(2019), and based on stellar dynamics: Thomas et al. (2007); Tortora
et al. (2014); Bellstedt et al. (2018).

In Figure 12, we compare the distribution of the estimated
logarithmic slopes y constrained from the imaging data only in
this study with those estimated by the SLACS analysis from com-
bining stellar kinematics with the imaging data. We find no cor-
relation between the estimated y distributions from the two anal-
yses with biweight midcorrelation » = 0.03 + 0.17. However, the
SLACS distribution has a mean of (yLP) = 2.078 + 0.027 and
intrinsic scatter 0.16 + 0.02 (Auger et al. 2010b). These values
are consistent with our results within 1o~ confidence level. For the
21 systems that have measured y in Auger et al. (2009), we find
A% = va_m(yll'i?;.lsnsgtudy - yl!jguger-f—(lOb))Q/ o—iz,total =21.76. The p-
value assuming a y2-distribution for A% with 21 degrees of freedom
is 0.41. We can see in Figure 9 that the two-component mass profile
from lensing—dynamics can deviate from the lensing-only inference
of the power-law profile toward either direction. However, the sam-
ple mean of the such deviations is smaller than ~5 per cent near the
Einstein radius, which explains the good agreement for () between
this study and Auger et al. (2010b). Thus, a correlation between the
lensing-only local slope and the lensing—dynamics global slope is
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expected. However, such correlation cannot be detected within the
noise.

In the next subsection, we place these two results in the context
of elliptical galaxy formation and evolution.

5.2 Evolution of massive elliptical galaxies

The current paradigm for the formation of elliptical galaxies consists
of two phases (e.g., Naab et al. 2007b; Guo & White 2008; Bezanson
et al. 2009; Furlong et al. 2015). In the first phase up to z = 2, gas
condensates in a massive halo to form stars, and the dark matter
distribution contracts as a result. In the second phase after z ~ 2,
elliptical galaxies grow in size primarily through multiple major
or minor mergers. Most of this later evolution is “dry” involving
little gas and star formation, as evidenced by the almost uniformly
old stellar populations in elliptical galaxies. If elliptical galaxy halos
contract up to z ~ 2, our result then raises the question: how does the
contracted halo at z ~ 2 expands back to resemble the NFW profile
at z ~ 0.2? Simulations have shown two principle mechanisms
that can remove baryons from the central region and expand the
dark matter halo — AGN-driven gas outflow, and dynamical heating
through accretion of materials from the environment (e.g., Laporte
et al. 2012; Martizzi et al. 2012). Although mergers play a crucial
rule in the growth and evolution of elliptical galaxies, simulations
find that dissipation-less mergers do not change the shape of the
dark matter profile (Gnedin et al. 2004; Ma & Boylan-Kolchin
2004). Dissipational gas-rich mergers, in contrast, can make the
profile steeper by transferring baryons toward the center and thus
further contracting the dark matter halo (Sonnenfeld et al. 2014).
The close-to-isothermal nature of the total mass distribution can also
be explained as the end result of rearranging the mass distributions
through accretion of collision-less materials in gas-poor mergers
(Johansson et al. 2009; Remus et al. 2013).

To investigate the driving mechanism behind the halo expan-
sion observed in our sample, we compare the structural properties of
our galaxies with those from simulations that adopt varying bary-
onic physics (Figure 13). The simulation from Oser et al. (2010)
includes stellar and supernova feedback, and primordial abundance
cooling. In contrast, the Magneticum and IllustrisTNG simulations
includes AGN feedback in addition to stellar and supernova feed-

MNRAS 000, 1-23 (2020)

Elliptical galaxy structure 13

back, and the cooling mechanism includes metals (Remus et al.
2017; Weinberger et al. 2017; Pillepich et al. 2018). For fair com-
parison with the simulations, we adopt their definition and compute
the average logarithmic slope by fitting a power-law to the 3D den-
sity profile between 0.4 R and 4R . We also compute the central
dark matter fraction within a 3D aperture of radius R.g. Here, we
treat the half-light radius Reg as the half-mass radius Ry, as the
M /L gradient exponent in our sample is very small and consistent
with zero. The compared IlustrisTNG simulation corresponds to
z = 0.2, which is the mean redshift of the galaxies in our sample.
The fitting functions from Remus et al. (2017) corresponding to
Magneticum and Oser simulations — that are plotted in Figure 13 —
are shown to match with the simulated distributions over the redshift
range z = 0-2. In all of the panels of Figure 13, the general trend
found in the simulations matches that in our observations. How-
ever, the distributions themselves do no overlap. The mismatch be-
tween our observation and IllustrisTNG simulation predominantly
arises from the higher f(ﬁ? found in that simulation. However, the
vy distribution of the [llustrisTNG simulation is generally consistent
with our sample. Similarly, the ¥ distribution obtained from
fitting imaging-only data of simulated lenses in the SEAGLE simu-
lation also reproduces the distribution from our observation (Figure
14). However, the fg,, distribution of the SEAGLE simulation is
not reported yet. In contrast, the Magneticum simulation produces
higher radially averaged vy distribution than our observed one, but
reproduces a fqp,, distribution that is generally consistent with our
observation (cf. Fig 8 of Remus et al. 2017). The slope of the corre-
lation in our observed distribution falls between the ones from the
Magneticum and Oser simulations, which is consistent with the fact
that the AGN feedback is a necessary driver in the evolution of these
galaxies. To match the slope of the Magneticum simulation with our
observation, weaker AGN and stellar feedback would be necessary.
However, that would also push up the simulated y distribution and
increase the discrepancy with our observation. Note that the lower
values of fy, than simulations is not unique to our lensing-based
analysis, as previous lensing-based studies also find similarly lower
fam distributions (Figure 15; Sonnenfeld et al. 2015; Oldham &
Auger 2018). Moreover, the Magneticum and IlustrisTNG simula-
tions themselves have offsets between their predicted fy,,, distribu-
tions due to differences in their implementations of baryonic physics
despite the similarities of the adopted feedback mechanisms. The
offset between simulations highlights that the effect of AGN feed-
back depends criticailly on the specific implementation. Thus our
observations cannot test AGN feedback in general, but they are a
powerful empirical test of specific implementations.

Similarly, the trend in our observed distribution of f d3r]r?— off
matches with the ones from the simulations, however the distribu-
tions themselves do not match (Figure 13). The moderate correlation
(r = 0.46+0.07) between the size of the galaxies and the central dark
matter fraction supports that these galaxies have grown predomi-
nantly through minor mergers. As minor dissipataion-less mergers
mostly deposit material at the outer region of the halo, the galaxy’s
half-mass radius increases as a result. Thus, the dark matter fraction
within the half-mass radius also increases and becomes correlated
with the half-mass radius.

The velocity dispersion distribution of the IllustrisTNG sim-
ulation is smaller than the measured distribution for our sample.
Wang et al. (2020) note that this difference between observation
and simulation in velocity dispersion, along with the mismatch in
the fqm distribution, point to potentially insufficient implementation
of baryonic physics in the IllustrisTNG simulation.

In summary, our constraints on the elliptical galaxy structure
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Figure 11. Deviation of the surface density profile (left) and the local logarithmic slope (right) in the NFW+stars mass distribution from the power-law mass
distribution. The NFW-+stars mass distribution is constrained from joint lensing—dynamics analysis, whereas the power-law mass distribution is constrained
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in the context of previous observations and simulations are consis-
tent with the following formation and evolution scenario for massive
elliptical galaxies. The first stage of the formation of elliptical galax-
ies is through dissipational processes at z = 2, when most of their
present day stars are formed. The dissipation leads to contraction in
the dark matter halo and the resultant total density profile observed
in cosmological numerical simulations is steeper than the isother-
mal case (e.g., Gnedin et al. 2004; Naab et al. 2007b; Duffy et al.
2010). After z = 2, the growth of the elliptical galaxies is dominated
by gas-poor dissipation-less mergers, explaining their growth in size
without the addition of younger stellar populations (e.g., Newman
et al. 2012; Nipoti et al. 2012). This growth mechanisms is consis-
tent with the Rg—fym correlation observed in our sample. Multiple
dissipation-less mergers decrease the total density profile of the
galaxies to bring it close to isothermal, and increase the half-mass
radius and the central dark matter fraction with decreasing redshift
(Tortora et al. 2014). Furthermore, AGN feedback expands back
the contracted dark matter halos (Martizzi et al. 2013; Peirani et al.
2019), which is supported by the slope of our observed y&&’ SR~

fd3n? distribution. Dynamical heating from accretion may also play
a role in expanding the dark matter halos in addition to the AGN
feedback, however we do not find any indication either in favor or
against the presence of dynamical heating in our sample. Gas-rich
dissipational mergers can also happen at some point of the galax-
ies’ growth history. However, the small intrinsic scatter in the halo
response parameter (05, < 0.1) around the mean p,, ~ 0 in our sam-
ple, and the ages of the stellar populations (Thomas et al. 2005),
indicate that such gas-rich mergers are relatively rare, even though
their contribution cannot be ruled out or confirmed conclusively
given the present precision of numerical simulations and observa-
tions (see, e.g., Sonnenfeld et al. 2014; Remus et al. 2017; Xu et al.
2017, for discussion).

5.3 Stellar IMF and M /L gradient

Our inferred stellar mass MI;D distribution from the joint lensing—
dynamics analysis support a heavier stellar IMF such as the Salpeter
IMF. In Figure 16, we illustrate the distribution of the IMF mismatch
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Figure 12. Comparison between the estimated local logarithmic slopes y
in this study, and the radially averaged logarithmic slope estimated by the
SLACS analysis (Auger etal. 2010b). Whereas Auger et al. (2010b) constrain
only the enclosed mass within the Einstein radius from the imaging data and
then obtain the profile slope in combination with the stellar kinematics,
we constrain both the enclosed mass and the local slope from the imaging
data only. This plot contains 21 systems that have ys acs measured by
Auger et al. (2010b). The dashed grey line illustrates a hypothetical perfect
correlation to guide the visualization. We find no correlation between the
two measurements with biweight midcorrelation » = 0.01 + 0.16. Given
the measurement uncertainties and an additional 12 per cent uncertainty
on yspacs — Which is equivalent to 6 per cent unaccounted systematic
uncertainty in the measured kinematics (Birrer et al. 2020) — we cannot
conclude based on this comparison whether the expected correlation for a
global power law is present under the noise, or not.
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Figure 13. Comparison of structural parameters of our SLACS sample with cosmological hydrodynamical simulations: IllustrisTNG (grey shaded region
reprenting 1o~ confidence interval; Wang et al. 2020), Magneticum (grey dashed line; Remus et al. 2017), and from Oser et al. (2010, ; grey dashed-dotted line).
The 1o interval for the IllustrisTNG simulation is produced by smoothing the corresponding distributions with a Gaussian kernel of bandwidth 0.05 for jﬁ]‘f
and 20 km s~! for o, /2. Top left: distributions of the logarithmic slope P of 3D total mass profile within 0.4R.g and 4R.g and the 3d dark matter fraction
73D within Reg. The distributions from simulations do not match both the slope and the dark matter fraction. The orientation of the SLACS distribution is

“dm

between the orientations from Magneticum and Oser simulations, which indicates moderate amount AGN and stellar feedback in SLACS galaxies’ formation
history. Top right: distributions of the 3D dark matter fraction _)fﬁ]? and the effective radius R.g. These two quantites are moderately correlated, which is
consistent with the scenario where elliptical galaxies grow in size through minor mergers and thus the central dark matter fraction within the half-mass radius
increases. Bottom left: distributions of the velocity dispersion within Reg /2 and Jffn? . The apertures for the observed velocity dispersions are adjusted following
Jorgensen et al. (1995). The IllustrinsTNG galaxies match neither with the dark matter fraction distribution nor with the velocity dispersion distribution of their
observational counterparts at the same stellar mass range, which points to potential inadequacies in the implementation of baryonic physics in the simulation.

parameter as defined by (Treu et al. 2010) as

MLD
Salp — *
a = —= (14)
SPS, Salp’
M*
where M. SPS, Salp is the SPS-based measurement of the stellar mass

assuming*the Salpeter IMF. If the true underlying IMF follows the
Salpeter function, then aSaP = 1 s expected. For the Chabrier IMF,
in comparison, the IMF mismatch parameter should be o52IP ~ 0.56
or logpaS¥P ~ —0.25. The mean IMF mismatch parameter of
our sample is (log; @) edian = 0.00 + 0.03 with an intrinsic
scatter of 0.11:“8'8%. Our observed distribution of a5P—g, is in
good agreement with the fitting function provided by Posacki et al.

(2015)

log @>¥P = (0.38+0.04) x1og ( +(-0.06+£0.01),

Oe
200 km s~1 )
(15)
which is obtained from fitting SLACS (Auger et al. 2010b) and
ATLAS3P (Cappellari et al. 2013) galaxies. This relation has a rms
scatter of 0.12 dex.
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Several previous strong-lensing studies also found evidence for
heavier IMF such as the Salpeter (e.g., Treu et al. 2010; Spiniello
et al. 2011, 2012; Sonnenfeld et al. 2012; Oldham & Auger 2018).
Multiple non-lensing studies similarly found evidence for a heavy
IMF in elliptical galaxies — e.g., from dynamics of local elliptical
galaxies (Cappellari et al. 2012), and based on single stellar popu-
lation (SSP) models (e.g, Conroy & van Dokkum 2012; La Barbera
et al. 2013; Spiniello et al. 2014).

Whereas the observed IMF in the Milky Way stellar popula-
tions is closer to a Chabrier IMF (e.g., Bastian et al. 2010), our
observation of a Salpeter-like IMF in massive elliptical galaxies
indicates that stars formed in a different environment in these ellip-
tical galaxies. Star formation in a turbulent environment with high
gas density — that can result from gar-rich mergers and accretion
events at the early phase of elliptical galaxy formation — can lead
to a heavy IMF such as the Salpeter IMF (Hopkins 2013; Chabrier
et al. 2014).

We find that the M/L-gradient exponent is very small and
consistent with zero, as the 95 per cent upper limit for the sample
mean of the M /L-gradient exponent 7 is 0.02. This small value is
consistent with Oldham & Auger (2018), who found that most of
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fraction and the stellar velocity dispersion with previous observation and the
Illustris simulation (Xu et al. 2017). The grey shaded region shows the 90 per
cent confidence interval and the dashed grey line shows the median of the
Tlustris distribution. Our observed distribution is qualitatively consistent
with those from Sonnenfeld et al. (2015) and Oldham & Auger (2018).
However, all of these strong-lensing based observations have lower average
central dark matter fraction than predicted by the Illustris simulation.

their lens galaxies individually favor 7 < 0.1. Our result, however,
is in tension with Sonnenfeld et al. (2018), who inferred p,; =
0.24 +£0.04 and 03 = 0.09 £ 0.02 from a larger SLACS subsample
and HSC weak-lensing information. Some fraction of the difference
can be explained by the difference in the adopted light profile.
Whereas Sonnenfeld et al. (2018) adopt a de Vaucouleurs profile
for /-band, we adopt a double Sérsic profile in V-band. The double
Sérsic profile fits the light distribution better than the de Vaucouleurs
profile. We observe that our double Sérsic profile fits are generally

steeper than the de Vaucouleurs fit of the SLACS galaxies from
Auger et al. (2009), which explains the steeper mass profile than
the light profile reported by Sonnenfeld et al. (2018). Such steeper
mass profile than the light profile can not arise from a color gradient
between [ and V bands, as observationally /-band light profile is
steeper than the V-band as the color gets bluer radially outward (e.g.,
Tamura et al. 2000). Furthermore, Sonnenfeld et al. (2018) adopt
an isotropic profile for orbital anisotropy in their dynamical model,
whereas we adopt an Osipkov—Merritt anisotropy profile, which
can potentially account for some part of the observed discrepancy
by trading radial anisotropy for M /L gradient to reproduce the
observed velocity dispersion.

Several recent studies based on SPS modelling have pointed to
aradially varying IMF in local elliptical galaxies, where the IMF in
the central < 2 kpc region is bottom-heavy — even super-Salpeter
— and it gets more bottom-light radially outward to match with the
Chabrier IMF in the outer region (e.g., Martin-Navarro et al. 2015;
van Dokkum et al. 2017; La Barbera et al. 2019). Such a radially
varying IMF is consistent with the scenario where the central stellar
population is dominated by in sifu stars that formed following the
Salpeter IMF in a highly turbulent environment at high redshift
(z Z 2), and the stellar population in the outer region mostly comes
from merged satellites that had a different star-forming environment
closer to the Milky Way and thus the Chabrier IMF. However, this
radially varying IMF is interpreted from a radially varying M /L
ratio based on the SPS models. Thus, at face value our result of very
small M /L gradient appears to be in tension with the SPS-based
studies mentioned above. However, the M /L gradient observed in
the SPS-based studies is dominated by a prominent gradient at
< 0.1Rqg, whereas our joint lensing—dynamics analysis is sensitive
near 0.5R.g—R. Where the SPS-based M /L flattens out. Thus, the
apparent difference between our result and SPS-based M /L gradient
results can be reconciled. Indeed, van Dokkum et al. (2017) point
out that the observed Salpeter IMF in joint lensing—dynamics studies
is consistent with the SPS-based result of a radially varying IMF, if
the measurement scales are taken into account [cf. Figure 17 of van
Dokkum et al. (2017)].

5.4 Implication for time-delay cosmography

In time-delay cosmography, the measurement of the Hubble con-
stant H( requires an accurate constraint on the surface density pro-
file near the Einstein radius. Similar to this study, analyses by the
Time-Delay COSMOgraphy (TDCOSMO) have adopted a power-
law mass distribution — among other choices — for lens modelling
(Suyu et al. 2010, 2013; Wong et al. 2017; Birrer et al. 2019; Rusu
et al. 2019; Chen et al. 2019; Shajib et al. 2020). A sample of
seven strong-lensing systems with measured time delays provide a
~ 2 per cent measurement of the Hubble constant (Millon et al.
2019). However, relaxing the assumption on the power-law profile
and thus allowing the full range of mass-sheet degeneracy in the
lens models inflates the uncertainty to ~8 per cent (Birrer et al.
2020). As a result, precise knowledge of the internal structure of
elliptical galaxies is currently the limiting factor for the time-delay
measurement of Hy. Therefore, one option to shrink back the uncer-
tainty on Hy is to apply an external prior on the internal structure of
time-delay lens galaxies, and thus narrow down the allowed range
of the MSD. Alternatively, Birrer et al. (2020) constrain the MSD
by incorporating the structural information from the power-law lens
models presented in this study and their measured kinematics under
the assumption that the TDCOSMO and SLACS lenses are drawn

from the the same parent population. The additional hypothesis and
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Figure 16. Distribution of the IMF mismatch parameter oS¥P =
MK MEPS’ S4P and the velocity dispersion o within the Effective radius
Re;. The vertical dashed grey lines mark the o/54P values expected from the
Salpeter or Chabrier IMFs. The distribution of IMF mismatch parameter is
consistent with Salpeter IMF with median {log;q @5¥P )nedian = 0.00+0.03
and intrinsic scatter 0.1 1’:8:8;. We also show the fitting function from Po-
sacki et al. (2015) obtained from fitting SLACS (Auger et al. 2010b) and
atlas3d galaxies. The deeper grey shaded region represent the mean of the
relation and the lighter grey shaded region represents the rms scatter around

the relation.

the addition of external information reduces the uncertainty on Hy
to 5 per cent. However, including the structural information from
the SLACS galaxies also increases the mean surface density of the
time-delay lens galaxies near the Einstein radius by ~9.5 per cent
from the power-law estimate, which also translates to a ~ 9.5 per
cent decrease in the inferred Hy. This increased estimate of the
surface density is consistent within the uncertainty with our joint
lensing—dynamics analysis, as we find on average ~5 per cent higher
surface density near the Einstein radius for ours stars+NFW model
than the power-law model (see Fig 11).

TDCOSMO analyses have also adopted an NFW-+stars model
in addition to the power-law model and found that the two models
are in very good agreement (Millon et al. 2019). In contrast, we
observe that the NFW+stars model deviate from the power-law on
average by ~5 per cent at the Einstein radius. We show that the de-
viation of the NFW+stars model from the power-law model in our
analysis is largely driven by the adopted prior on the halo mass. As
strong-lensing and kinematics data mostly constrain the mass dis-
tribution in the central region, the total halo mass or the dark matter
profile is poorly constrained from lensing—dynamics analysis with-
out a prior on the halo mass, or on the mass distribution at scales
larger than the NFW scale radius. Our empirical prior on the halo
mass My is obtained from the HSC weak-lensing measurements
of the SDSS galaxies, which is the parent sample of the SLACS
galaxies. Moreover, the selection function for the SLACS galaxies
is accounted for in this prior. If instead, we had adopted a prior on
M>op with a smaller mean by ~0.3 dex, the resultant NFW+stars
density profile would have matched the power-law model very well
on average (Figure 11). A higher My translates to a higher normal-
ization of the NFW profile, thus the total density profile becomes
dark-matter-dominated at a relatively smaller radius and the slope
of the total density profile gets shallower. We provide two possi-
ble explanations for why our NFW+stars model deviates from the
power-law whereas the ones in the TDCOSMO analyses do not.

The first possible explanation is that there may be a bias in
the NFW profile normalization in the TDCOSMO models due to
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weak prior constraints on the mass distribution at large scales. TD-
COSMO analyses have generally adopted a prior only on the NFW
scale radius, which only has a weak constraint on M as the M—c
relation is not imposed. As a result, the resultant halo mass may
be biased low as lens models tend to produce lower halo masses
without strong priors on the mass distribution at scales larger than
the NFW scale radius (e.g., Oldham & Auger 2018). A smaller halo
mass by ~0.3 dex may not be noticeable within the measurement
uncertainty when looking at individual lens galaxies, but it may
be identifiable by investigating the Mx—M>q relation for the TD-
COSMO lenses. However, due to the typically large intrinsic scatter
in Mj(, a sample size of seven may not be sufficient to identify
such a bias.

The second possible explanation is that the SLACS lens galax-
ies and the TDCOSMO lens galaxies do not belong to the same
galaxy population. Even if the predecessors of the SLACS galaxies
at z = 0.6 represent the time-delay lens galaxy population, they
may have evolved since z = 0.6 to have a different internal structure
at z = 0.2 (see, e.g., Sonnenfeld et al. 2015). A My prior with
larger mean leads to a larger dark matter fraction fyny,. As fym is
observed to increase from higher redshift to lower redshift (Tortora
et al. 2014), it is possible that a lower fq,, in the time-delay lenses
with mean deflector redshift (z4) = 0.6 makes the power-law model
and the NFW-+stars model to be in good agreement.

‘We note that an increasing fy,, with decreasing redshift in the
TDCOSMO lenses would also be consistent at least qualitatively
with the weak trend observed in the individual Hy measurements
from these lenses (Wong et al. 2019). As increasing fyn, can cre-
ate larger positive deviation between the NFW+stars model and the
power-law model, the resultant Hy from the power-law model would
shift toward higher values with decreasing redshift. However, this
scenario requires a combination of both of the above explanations
where high-redshift galaxies are less vulnerable to an NFW normal-
ization bias due to their lower underlying fym,, and lower redshift
galaxies are more vulnerable to the normalization bias due to their
higher underlying fg,.

Blum et al. (2020) suggest that a hypothetical 10 per cent
positive bias in the Hubble constant from time-delay cosmography
would point to the presence of a large core in the dark matter
distribution. We show that such a shift in the Hubble constant can
also be explained by a relatively higher normalization in the vanilla
NFW profile, if the SLACS lens galaxies and the TDCOSMO lens
galaxies are structurally self-similar.

5.5 Limitations of this study

Although we do not account for external convergence from the line-
of-sight structures in our lens models, this simplification has no
impact on our results, as we discuss in this paragraph. Birrer et al.
(2020) find the mean external convergence for a subsample of 33
SLACS lenses to be (kext) = 0.005f8:88§‘ However, this subsample
is curated to only select systems with small local overdensities [see
Birrer et al. (2020) for details]. Our sample of 23 lenses has a large
overlap with this sample of 33 lenses from Birrer et al. (2020), thus
the overlapping fraction of our sample has negligible mean external
convergence. The external convergences for the remaining systems
are likely to be not negligible and our joint lensing—dynamics anal-
ysis can be suspect of bias due to not correcting for the external
convergence in our joint lensing—dynamics analysis. However, we
only adopt MSD-invariant quantities that are not sensitive to the
external convergence — such as the Einstein radius Rg and the local
differential term Rgay/ /(1 — kg) — as the lensing constraints in our
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joint lensing—dynamics analysis. Thus, our joint lensing—dynamics
analysis is insensitive to the external convergence.

In our adiabatic contraction model, we assume that the stel-
lar mass distribution initially resembled the NFW profile following
the adiabatic contraction model of Blumenthal et al. (1986). This is
certainly not true as the stellar mass delivered to the elliptical galax-
ies through mergers did not resemble the NFW profile at the time
of the merger. However, cosmological hydrodynamical simulations
have shown that such a simple model can reproduce the contracted
profile of the dark matter even after gas-rich mergers, albeit with a
modification in the adiabatic invariant quantity r M (r) (e.g., Gnedin
et al. 2004; Duffy et al. 2010). We adopted the modification of Dut-
ton et al. (2007), which can approximate the contracted profiles of
both Gnedin et al. (2004) and Abadi et al. (2010). However, since
cosmological hydrodynamical simulations have so far been unable
to match all the properties of their observational counterparts, our
simple model for adiabatic contraction may not be fully justified to
truthfully represent the interplay between the baryonic and the dark
matter distributions. Such inconsistencies may be identified by an
alternative analysis of the same sample that adopts the generalized
NFW profile for the dark matter distribution, and compare the re-
sults with the ones from our the adiabatic contraction model. We
leave such explorations for future studies.

6 SUMMARY

We uniformly modelled a sample of 23 SLACS lenses and con-
strained their structural properties from a joint lensing—dynamics
analysis. The lens modelling in this study is different from the orig-
inal SLACS analysis, in which the lens images were modelled by
fixing the logarithmic slope to y = 2 and then the logarithmic
slopes were inferred from the stellar kinematics. In contrast, in this
study we first estimate the logarithmic slopes only from the lens-
ing observables, i.e., the lens image. We then combine the stellar
kinematics to constrain the amount of contraction in the dark mat-
ter distribution for two models of stellar mass distribution: (i) with
constant M /L and (ii) with M /L gradient. We summarize the main
results of this paper below.

e From the combination of lensing and kinematic observables,
we constrain the average halo response parameter y,, = —0.06+0.04
with intrinsic scatter 0y, < 0.092 (95 per cent upper limit) for a con-
stant stellar M /L model. For a stellar M /L gradient model, we find
Wy = —O.OI’SiO'04 and 0, < 0.074. Our results are consistent with a
dark matter halo described by an NFW profile with no contraction
nor expansion. For comparison, the Blumenthal et al. (1986) model
corresponds to v = 1, the contraction in Gnedin et al. (2004) sim-
ulations correspond to v = 0.8, and the contraction in Abadi et al.
(2010) simulations correspond to v ~ 0.4 — which are all ruled out
by our result. Our results are consistent with a scenario in which
elliptical galaxies grow by dissipational processes at z = 2, steep-
ening their dark matter halos. At later times, AGN feedback — with
potential additional contributions from dynamical heating through
accretion events — expand the dark matter halos back to an NFW
profile, on average.

e The distribution of logarithmic slopes y for the power-law

model constrained from the imaging-only data has a median
(y:f]fsmg) = 2.08 £ 0.03 and an intrinsic scatter 0.13 + 0.02. This
is consistent with the slope distribution from the SLACS analysis

(yll;ll? Y = 2.078 + 0.027 with an intrinsic scatter of 0.16 + 0.02. We

find that the NFW+stars profile constrained from our joint lensing—

dynamics analysis only deviates by < 5 per cent on average near
the Einstein radius (Rg ~ Reg/2 for our sample), with even smaller
deviation at smaller scales. The small deviation in the mean com-
pared to the intrinsic scatter explains the good agreement between
the average local logarithmic slope from lensing-only data and the
radially averaged logarithmic slopes from Auger et al. (2009).

e For the stellar M /L gradient model, we find that most galaxies
do not require a significant M /L gradient. The 95 per cent upper
limit for the sample mean of the exponent 1 in our M /L-gradient
model Y o (R/Reg)™" is 0.02, which corresponds to <5 per cent
decrease in M /L between 0.1R.g and R.g. Moreover, the inferred
stellar masses from joint lensing—dynamics analysis for the galaxies
in our sample is consistent with the Salpeter IMF, with the IMF
mismatch parameter (log;y @ ¥P) cdian = 0.00 + 0.03 with an in-
trinsic scatter 0.1 11’8'83. Such a heavy IMF in the central regions of
the elliptical galaxies can be explained by a different star-forming
environment than in the Milky Way, e.g., the presence of turbulence
in high gas density.

In the future, larger samples of galaxy—galaxy lenses at dif-
ferent redshifts will be able to further constrain the evolutionary
tracks of elliptical galaxies. Such larger samples can be assembled
from past surveys with available high-resolution imaging and an-
cillary data, e.g., the full SLACS sample (Auger et al. 2009), the
Strong Lensing Legacy Survey (SL2S) sample (Sonnenfeld et al.
2013), and the SLACS for the MASSES (S4TM) sample (Shu et al.
2017). Current surveys such as the Dark Energy Survey (DES) and
the Dark Energy Spectroscopic Instrument (DESI) Legacy Imag-
ing Surveys are producing new galaxy—galaxy lens candidates for
confirmation and follow-up on the order of hundreds (Jacobs et al.
2019a,b; Huang et al. 2020). Future surveys, e.g., the Vera Rubin
Legacy Survey for Space and Time and the Nancy Grace Roman
Space Telescope, will increase the number of newly discovered
galaxy—galaxy lenses to thousands (Collett 2015). An automated
and uniform modelling pipeline will be essential to study such large
samples of lenses and this paper has taken the initial steps towards
such an automated pipeline.

ACKNOWLEDGEMENTS

We thank Matthew Auger for sharing the SLACS weak lensing
measurements from Auger et al. (2010a) in digital form. We express
gratitude to Adriano Agnello, Elizabeth Buckley-Geer, Thomas Col-
lett, Frederic Courbin, Xuheng Ding, Aymeric Galan, Martin Mil-
lon, Veronica Motta, Sampath Mukherjee, Dominique Sluse, and
Chiara Spiniello for providing suggestions that improved this anal-
ysis and manuscript. We additionally thank Matthew Auger, Chris
Fassnacht, and Leon Koopmans for helpful discussions. We also
thank the SLACS team for collecting the wonderful data used in this
paper. AJS and TT were supported by the National Aeronautics and
Space Administration (NASA) through the Space Telescope Sci-
ence Institute (STScI) grant HST-GO-15320. AJS was additionally
supported by a Dissertation Year Fellowship from UCLA Gradu-
ate Division. TT acknowledges support by the Packard Foundation
through a Packard Research fellowship and by the National Science
Foundation through NSF grants AST-1714953 and AST-1906976.
The development of poLPHIN is supported by NASA through the
STScI grant HST-AR-16149.

This work used computational and storage services associated
with the Hoffman2 Shared Cluster provided by UCLA Institute for
Digital Research and EducationAAZs Research Technology Group.

MNRAS 000, 1-23 (2020)



AJS thanks Smadar Naoz for providing access to additional com-
puting nodes on the Hoffman2 Shared Cluster.

This research made use of LENSTRONOMY (Birrer et al.
2015; Birrer & Amara 2018), poLpHIN (https://github.com/
ajshajib/dolphin), FASTELL (Barkana 1999), Nnumpy (Oliphant
2015), scrpy (Jones et al. 2001), asTropy (Astropy Collaboration
2013, 2018), supyTer (Kluyver et al. 2016), maTpLOTLIB (Hunter
2007), seaBorRN (Waskom et al. 2014), sexTracTOR (Bertin &
Arnouts 1996), emcee (Foreman-Mackey et al. 2013), coLossus
(Diemer 2018), PoMEGRANATE (Schreiber 2018), and cHaiNCoN-
SUMER (https://github.com/Samreay/ChainConsumer).

REFERENCES

Abadi M. G., Navarro J. F., Fardal M., Babul A., Steinmetz M., 2010,
MNRAS, 407, 435

Adams F. C., Bloch A. M., Butler S. C., Druce J. M., Ketchum J. A., 2007,
AplJ, 670, 1027

Anderson J., King I. R., 2000, PASP, 112, 1360

Astropy Collaboration 2013, A&A, 558, A33

Astropy Collaboration 2018, AJ, 156, 123

Auger M. W, Treu T., Bolton A. S., Gavazzi R., Koopmans L. V. E., Marshall
P. J., Bundy K., Moustakas L. A., 2009, ApJ, 705, 1099

Auger M. W., Treu T., Gavazzi R., Bolton A. S., Koopmans L. V. E., Marshall
P.J.,2010a, ApJ, 721, L163

Auger M. W., Treu T., Bolton A. S., Gavazzi R., Koopmans L. V. E., Marshall
P.J., Moustakas L. A., Burles S., 2010b, ApJ, 724, 511

Avila R. J., Hack W., Cara M., Borncamp D., Mack J., Smith L., Ubeda L.,
2015, in Taylor A. R., Rosolowsky E., eds, Astronomical Society of the
Pacific Conference Series Vol. 495, Astronomical Data Analysis Soft-
ware an Systems XXIV (ADASS XXIV). p. 281 (arXiv:1411.5605)

Barkana R., 1998, ApJ, 502, 531

Barkana R., 1999, FASTELL: Fast calculation of a family of elliptical
mass gravitational lens models, Astrophysics Source Code Library
(ascl:9910.003)

Barnabé M., Czoske O., Koopmans L. V. E., Treu T., Bolton A. S., 2011,
MNRAS, 415, 2215

Barnabé M., Spiniello C., Koopmans L. V. E., Trager S. C., Czoske O., Treu
T., 2013, MNRAS, 436, 253

Bastian N., Covey K. R., Meyer M. R., 2010, ARA&A, 48, 339

Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32

Bellstedt S., et al., 2018, MNRAS, 476, 4543

Bertin E., Arnouts S., 1996, A&AS, 117, 393

Bezanson R., van Dokkum P. G., Tal T., Marchesini D., Kriek M., Franx M.,
Coppi P., 2009, ApJ, 697, 1290

Birrer S., Amara A., 2018, Physics of the Dark Universe, 22, 189

Birrer S., Amara A., Refregier A., 2015, ApJ, 813, 102

Birrer S., et al., 2019, MNRAS, 484, 4726

Birrer S, et al., 2020, arXiv e-prints, p. arXiv:2007.02941

Blum K., Castorina E., Simonovi¢ M., 2020, arXiv e-prints, p.
arXiv:2001.07182

Blumenthal G. R., Faber S. M., Flores R., Primack J. R., 1986, Ap]J, 301, 27

Bolton A. S., Burles S., Koopmans L. V. E., Treu T., Moustakas L. A., 2006,
AplJ, 638,703

Bolton A. S., Burles S., Koopmans L. V. E., Treu T., Gavazzi R., Moustakas
L. A., Wayth R., Schlegel D. J., 2008, ApJ, 682, 964

Bruderer C., Read J. 1., Coles J. P, Leier D., Falco E. E., Ferreras 1., Saha
P, 2016, MNRAS, 456, 870

Caminha G. B., et al., 2017, A&A, 607, A93

Cappellari M., 2016, ARA&A, 54, 597

Cappellari M., et al., 2012, Nature, 484, 485

Cappellari M., et al., 2013, MNRAS, 432, 1709

Chabrier G., Hennebelle P., Charlot S., 2014, ApJ, 796, 75

Chen G. C.-F,, et al., 2019, MNRAS,

Claeskens J.-F., Sluse D., Riaud P., Surdej J., 2006, A&A, 451, 865

Colin P,, Avila-Reese V., Valenzuela O., 2000, ApJ, 542, 622

MNRAS 000, 1-23 (2020)

Elliptical galaxy structure 21

Collett T. E., 2015, ApJ, 811, 20

Collett T. E., Cunnington S. D., 2016, MNRAS, 462, 3255

Conroy C., van Dokkum P. G., 2012, ApJ, 760, 71

Czoske O., Barnab¢ M., Koopmans L. V. E., Treu T., Bolton A. S., 2008,
MNRAS, 384, 987

Debattista V. P., Moore B., Quinn T., Kazantzidis S., Maas R., Mayer L.,
Read J., Stadel J., 2008, ApJ, 681, 1076

Debattista V. P., van den Bosch F. C., Roskar R., Quinn T., Moore B., Cole
D.R,, 2015, MNRAS, 452, 4094

Diemer B., 2018, ApJS, 239, 35

Diemer B., Joyce M., 2019, ApJ, 871, 168

Dobler G., Keeton C. R., Bolton A. S., Burles S., 2008, ApJ, 685, 57

Dodelson S., Widrow L. M., 1994, Phys. Rev. Lett., 72, 17

Dubinski J., 1994, ApJ, 431, 617

Dubois Y., Gavazzi R., Peirani S., Silk J., 2013, MNRAS, 433, 3297

Dufty A. R., Schaye J., Kay S. T., Dalla Vecchia C., Battye R. A., Booth
C. M., 2010, MNRAS, 405, 2161

Dutton A. A., Treu T., 2014, MNRAS, 438, 3594

Dutton A. A., van den Bosch F. C., Dekel A., Courteau S., 2007, ApJ, 654,
27

El-Zant A., Shlosman 1., Hoffman Y., 2001, ApJ, 560, 636

Falco E. E., Gorenstein M. V., Shapiro L. I., 1985, ApJ, 289, L1

Ferreras 1., Saha P., Burles S., 2008, MNRAS, 383, 857

Foreman-Mackey D., Hogg D. W., Lang D., Goodman J., 2013, PASP, 125,
306

Furlong M., et al., 2015, MNRAS, 450, 4486

Gavazzi R., Treu T., Rhodes J. D., Koopmans L. V. E., Bolton A. S., Burles
S., Massey R. J., Moustakas L. A., 2007, AplJ, 667, 176

Gavazzi R., Treu T., Marshall P. J., Brault F., Ruff A., 2012, ApJ, 761, 170

Gnedin O. Y., Kravtsov A. V., Klypin A. A., Nagai D., 2004, ApJ, 616, 16

Goodman J., Weare J., 2010, Communications in Applied Mathematics and
Computational Science, 5, 65

Guo Q., White S. D. M., 2008, MNRAS, 384, 2

Hopkins P. F., 2013, MNRAS, 433, 170

Hopkins P. F., Kere$ D., Ofiorbe J., Faucher-Giguere C.-A., Quataert E.,
Murray N., Bullock J. S., 2014, MNRAS, 445, 581

Huang X., et al., 2020, ApJ, 894, 78

Humphrey P. J., Buote D. A., 2010, MNRAS, 403, 2143

Hunter J. D., 2007, Computing in Science and Engineering, 9, 90

Jacobs C., et al., 2019a, ApJS, 243, 17

Jacobs C., et al., 2019b, MNRAS, 484, 5330

Johansson P. H., Naab T., Burkert A., 2009, ApJ, 690, 802

Johansson P. H., Naab T., Ostriker J. P., 2012, ApJ, 754, 115

Jones E., Oliphant T., Peterson P., Others 2001, SciPy: Open source scientific
tools for Python, http://www.scipy.org/

Jorgensen 1., Franx M., Kjaergaard P., 1995, MNRAS, 276, 1341

Kazantzidis S., Kravtsov A. V., Zentner A. R., Allgood B., Nagai D., Moore
B., 2004, ApJ, 611, L73

Keeton C. R., Kochanek C. S., Falco E. E., 1998, ApJ, 509, 561

Kennedy J., Eberhart R., 1995, in Proceedings of ICNN'95 - International
Conference on Neural Networks. IEEE, doi:10.1109/icnn.1995.488968,
https://doi.org/10.1109/icnn.1995.488968

Kluyver T., et al., 2016, in Loizides F., Schmidt B., eds, Positioning and
Power in Academic Publishing: Players, Agents and Agendas. IOS Press
BV, Amsterdam, Netherlands, pp 87 — 90, doi:10.3233/978-1-61499-
649-1-87

Kochanek C. S., 2002, in Natarajan P., ed., The Shapes of Galaxies and
their Dark Halos. WORLD SCIENTIFIC, pp 62-71 (arXiv:astro-
ph/0106495), doi:10.1142/9789812778017_0010

Kochanek C. S., 2020, MNRAS, 493, 1725

Koopmans L. V. E., 2004, arXiv e-prints, pp astro—ph/0412596

Koopmans L. V. E., 2006, in Mamon G. A., Combes F., Deffayet C., Fort
B., eds, EAS Publications Series Vol. 20, EAS Publications Series. pp
161-166 (arXiv:astro-ph/0511121), doi:10.1051/eas:2006064

Kostrzewa-Rutkowska Z., Wyrzykowski L., Auger M. W., Collett T. E.,
Belokurov V., 2014, MNRAS, 441, 3238

KristJ. E., Hook R. N., Stoehr F., 2011, 20 years of Hubble Space Telescope
optical modeling using Tiny Tim. p. 81270J, doi:10.1117/12.892762



22 Shajib et al.

La Barbera F., Ferreras 1., Vazdekis A., de la Rosa I. G., de Carvalho R. R.,
Trevisan M., Falcén-Barroso J., Ricciardelli E., 2013, MNRAS, 433,
3017

La Barbera F,, et al., 2019, MNRAS, 489, 4090

Laporte C. F. P., White S. D. M., Naab T., Ruszkowski M., Springel V.,
2012, MNRAS, 424, 747

Limousin M., et al., 2007, ApJ, 668, 643

Ma C.-P., Boylan-Kolchin M., 2004, Phys. Rev. Lett., 93, 021301

Mamon G. A., Lokas E. L., 2005, MNRAS, 363, 705

Martin-Navarro 1., La Barbera F., Vazdekis A., Falcon-Barroso J., Ferreras
1., 2015, MNRAS, 447, 1033

Martizzi D., Teyssier R., Moore B., Wentz T., 2012, MNRAS, 422, 3081

Martizzi D., Teyssier R., Moore B., 2013, MNRAS, 432, 1947

Merritt D., 1985a, AJ, 90, 1027

Merritt D., 1985b, MNRAS, 214, 25P

Millon M., et al., 2019, arXiv e-prints, p. arXiv:1912.08027

Mukherjee S., Koopmans L. V. E., Metcalf R. B., Tortora C., Schaller
M., Schaye J., Vernardos G., Bellagamba F., 2019, arXiv e-prints, p.
arXiv:1901.01095

Naab T., Johansson P. H., Ostriker J. P., Efstathiou G., 2007a, ApJ, 658, 710

Naab T., Johansson P. H., Ostriker J. P., Efstathiou G., 2007b, ApJ, 658, 710

Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563

Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493

Newman A. B., Ellis R. S., Bundy K., Treu T., 2012, ApJ, 746, 162

Newman A. B, Treu T., Ellis R. S, Sand D. J., 2013, AplJ, 765, 25

Newman A. B., Ellis R. S., Treu T., 2015, ApJ, 814, 26

Nipoti C., Stiavelli M., Ciotti L., Treu T., Rosati P., 2003, MNRAS, 344,
748

Nipoti C., Treu T., Leauthaud A., Bundy K., Newman A. B., Auger M. W.,
2012, MNRAS, 422, 1714

Oh S.-H., de Blok W. J. G., Brinks E., Walter F., Kennicutt Robert C. J.,
2011, AJ, 141, 193

Oldham L. J., Auger M. W., 2018, MNRAS, 476, 133

Oliphant T. E., 2015, Guide to NumPy, 2nd edn. CreateSpace Independent
Publishing Platform, USA

Oser L., Ostriker J. P., Naab T., Johansson P. H., Burkert A., 2010, ApJ, 725,
2312

Osipkov L. P., 1979, Pisma v Astronomicheskii Zhurnal, 5, 77

Peirani S., Kay S., Silk J., 2008, A&A, 479, 123

Peirani S., et al., 2017, MNRAS, 472, 2153

Peirani S., et al., 2019, MNRAS, 483, 4615

Pillepich A., et al., 2018, MNRAS, 473, 4077

Planck Collaboration 2018, arXiv e-prints, p. arXiv:1807.06209

Pontzen A., Governato F., 2012, MNRAS, 421, 3464

Posacki S., Cappellari M., Treu T., Pellegrini S., Ciotti L., 2015, MNRAS,
446, 493

Read J. 1., 2014, Journal of Physics G Nuclear Physics, 41, 063101

Refregier A., 2003, MNRAS, 338, 35

Remus R.-S., Burkert A., Dolag K., Johansson P. H., Naab T., Oser L.,
Thomas J., 2013, AplJ, 766, 71

Remus R.-S., Dolag K., Naab T., Burkert A., Hirschmann M., Hoffmann
T. L., Johansson P. H., 2017, MNRAS, 464, 3742

Ritondale E., Auger M. W., Vegetti S., McKean J. P., 2019, MNRAS, 482,
4744

Rusu C. E., et al., 2016, MNRAS, 458, 2

Rusu C. E., et al., 2019, arXiv e-prints, p. arXiv:1905.09338

Sand D.J., Treu T., Ellis R. S., Smith G. P., Kneib J.-P., 2008, ApJ, 674, 711

Schaller M., et al., 2015, MNRAS, 452, 343

Schreiber J., 2018, Journal of Machine Learning Research, 18, 1

SérsicJ. L., 1968, Atlas de Galaxias Australes. http://adsabs.harvard.
edu/abs/1968adga.book. . ... S

Shajib A. J., 2019, MNRAS, 488, 1387

Shajib A. J., Treu T., Agnello A., 2018, MNRAS, 473, 210

Shajib A. J., et al., 2019, MNRAS, 483, 5649

Shajib A.J., et al., 2020, MNRAS, 494, 6072

Shu Y., et al., 2015, ApJ, 803, 71

Shu Y., etal., 2017, ApJ, 851, 48

Silverman B. W., 1986, Density estimation for statistics and data analysis.
Chapman and Hall, London New York

Sluse D., Chantry V., Magain P., Courbin F., Meylan G., 2012, A&A, 538,
A99

Sonnenfeld A., Treu T., Gavazzi R., Marshall P. J., Auger M. W., Suyu S. H.,
Koopmans L. V. E., Bolton A. S., 2012, ApJ, 752, 163

Sonnenfeld A., Gavazzi R., Suyu S. H., Treu T., Marshall P. J., 2013, Ap]J,
777,97

Sonnenfeld A., Nipoti C., Treu T., 2014, ApJ, 786, 89

Sonnenfeld A., Treu T., Marshall P. J., Suyu S. H., Gavazzi R., Auger M. W.,
Nipoti C., 2015, ApJ, 800, 94

Sonnenfeld A., Leauthaud A., Auger M. W., Gavazzi R., Treu T., More S.,
Komiyama Y., 2018, MNRAS, 481, 164

Sonnenfeld A., Wang W., Bahcall N., 2019a, A&A, 622, A30

Sonnenfeld A., Jaelani A. T., Chan J., More A., Suyu S. H., Wong K. C.,
Oguri M., Lee C.-H., 2019b, A&A, 630, A71

Spergel D. N., Steinhardt P. J., 2000, Phys. Rev. Lett., 84, 3760

Spiniello C., Koopmans L. V. E., Trager S. C., Czoske O., Treu T., 2011,
MNRAS, 417, 3000

Spiniello C., Trager S. C., Koopmans L. V. E., Chen Y. P., 2012, ApJ, 753,
L32

Spiniello C., Trager S., Koopmans L. V. E., Conroy C., 2014, MNRAS, 438,
1483

Spiniello C., Trager S. C., Koopmans L. V. E., 2015, ApJ, 803, 87

Suyu S. H., Halkola A., 2010, A&A, 524, A%

Suyu S. H., Marshall P. J., Auger M. W., Hilbert S., Blandford R. D.,
Koopmans L. V. E., Fassnacht C. D., Treu T., 2010, ApJ, 711, 201

Suyu S. H., et al., 2013, ApJ, 766, 70

Tamura N., Kobayashi C., Arimoto N., Kodama T., Ohta K., 2000, AJ, 119,
2134

Thomas D., Maraston C., Bender R., Mendes de Oliveira C., 2005, ApJ,
621, 673

Thomas J., Saglia R. P., Bender R., Thomas D., Gebhardt K., Magorrian J.,
Corsini E. M., Wegner G., 2007, MNRAS, 382, 657

Tortora C., Napolitano N. R., Saglia R. P., Romanowsky A. J., Covone G.,
Capaccioli M., 2014, MNRAS, 445, 162

Treu T., Koopmans L. V. E., 2002, MNRAS, 337, L6

Treu T., Koopmans L. V. E., 2004, ApJ, 611, 739

Treu T., Koopmans L. V., Bolton A. S., Burles S., Moustakas L. A., 2006,
Apl, 640, 662

Treu T., Gavazzi R., Gorecki A., Marshall P. J., Koopmans L. V. E., Bolton
A.S., Moustakas L. A., Burles S., 2009, ApJ, 690, 670

Treu T., Auger M. W., Koopmans L. V. E., Gavazzi R., Marshall P. J., Bolton
A.S., 2010, ApJ, 709, 1195

Vogelsberger M., et al., 2014, MNRAS, 444, 1518

Wang Y., et al., 2020, MNRAS, 491, 5188

Waskom M., et al, 2014, seaborn: v0.5.0 (November 2014),
doi:10.5281/zenodo.12710, https://doi.org/10.5281/zenodo.
12710

Weinberger R., et al., 2017, MNRAS, 465, 3291

Wong K. C., et al., 2017, MNRAS, 465, 4895

Wong K. C., et al., 2019, arXiv e-prints, p. arXiv:1907.04869

Xu D., Springel V., Sluse D., Schneider P., Sonnenfeld A., Nelson D., Vo-
gelsberger M., Hernquist L., 2017, MNRAS, 469, 1824

de Blok W.J. G., McGaugh S. S., Rubin V. C., 2001, AJ, 122, 2396

de Vaucouleurs G., 1948, Annales d’Astrophysique, 11, 247

van Dokkum P., Conroy C., Villaume A., Brodie J., Romanowsky A. J.,
2017, ApJ, 841, 68

APPENDIX A: MASS AND LIGHT ALIGNMENTS

Alignment between the dark and baryonic components of mass dis-
tribution can be used to validate the predictions from simulations.
In elliptical lens galaxies, the misalignment between the mass and
light is observed to be within £10° in the absence of large exter-
nal shear effects (20.1), whereas larger misalignments are usually
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accompanied with large external shear (e.g., Keeton et al. 1998;
Koopmans 2006; Treu et al. 2009; Sluse et al. 2012; Shajib et al.
2019). This observation agrees well with the 1LLUSTRIS simulation
(Xu et al. 2017). However, there have been mismatching reports in
the literature on the correlation between the light and mass elliptic-
ities or axes ratios, which can most likely be attributed to different
selection functions. The differences in the selection functions can
arise from different lens-finding methods and from different pop-
ulation of lenses — e.g., quads or doubles, galaxy—galaxy lenses or
lensed quasars. For example, Koopmans (2006); Sluse et al. (2012);
Gavazzi et al. (2012) report strong correlation between mass and
light ellipticities. In comparison, Keeton et al. (1998); Ferreras et al.
(2008); Rusu et al. (2016); Shajib et al. (2019) find weak to no cor-
relation between the mass and light ellipticities.

In this appendix, we investigate the alignment between mass
and ellipticities and their correlation with some other model pa-
rameters. We present the results in Section Al and discuss them in
Section A2.

Al Results

We illustrate the distributions of these quantities in Figure Al.
In the following subsections, we present the offset between the
centroids and the misalignments between ellipticity magnitudes and
orientations.

Al.l1 Centroid

We find a root-mean-square (rms) scatter of 67 = 5 mas in the
centroid offset. For our fiducial cosmology, the 68 per cent and 95
per cent upper limits of the absolute offsets are 218 + 19 pc and
426 + 68 pc, respectively (Figure Al first panel).

Al.2  Ellipticity

We find a weak correlation between the axis ratios of the mass and
light distributions with a biweight midcorrelation of » = 0.54+£0.08
(Figure A1 middle panel). Biweight midcorrelation is similar to the
Pearson’s r coefficient. However, it depends on the median instead
of the mean, thus it is more robust against outliers (e.g., Beers et al.
1990). We get the uncertainty in the midcorrelation by sampling
the axis ratios of all the lenses 1000 times from their posterior
distributions.

We check if the lens systems are double-image or quadruple-
image systems by checking the number of images produced by the
lens models for a hypothetical point source located at the source
centers. We find 19 out of 23 lenses to be double-image systems
and the remaining 4 to be quadruple-image systems. The majority of
doubles explain the lower ellipticity and shear distributions observed
in the SLACS sample compared to that of the quadruply lensed
quasars (Figure Al).

Al.3  Position angle

While comparing the position angles of the mass and light, we
ignore 4 lenses with g, > 0.9 and g, > 0.9, as the estimate of
the position angle in low-ellipticity cases can be unreliable. Out of
the remaining 19 lenses, we find 16 to have misalignment angle
APA< 12 deg. The three systems with APA> 12 deg have relatively
higher external shear yex; = 0.05 (Figure Al right panel).
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A2 Discussion

We find moderate correlation between axis ratios of the mass and
light (biweight midcorrelation r = 0.55 + 0.09). Although Gavazzi
et al. (2012) and Sluse et al. (2012) both report strong correla-
tion between mass and light ellipticities, we compute the biweight
midcorrelation from the values reported by these authors to find
r = 0.26 £ 0.07 (weak correlation) from the galaxy—galaxy lenses
of Gavazzi et al. (2012) and r = 0.91 + 0.02 (very strong cor-
relation) from the lensed quasars of Sluse et al. (2012). Addi-
tionally, Kostrzewa-Rutkowska et al. (2014) find strong correlation
(r = 0.77 £ 0.16) from a sample of 9 galaxy—galaxy lenses from
the Cambridge And Sloan Survey Of Wide ARcs in the skY (CAS-
SOWARY). In contrast, Shajib et al. (2018) find very weak to no
correlation between mass and light for a sample of 13 quadruply
lensed quasars (r = 0.13 £+ 0.10). Similarly, Keeton et al. (1998),
Ferreras et al. (2008), and Rusu et al. (2016) also find no correlation
between the mass and light ellipticities. Some of the differences be-
tween these studies, including ours, can be due to the differences in
the data quality, analysis techniques, and adopted models. Some of
these differences can also be due to the selection function, for exam-
ple between the galaxy—galaxy lenses and lensed quasars. SLACS
is deflector-selected and mostly comprises doubly lensed objects,
whereas quadruply lensed quasars are expected to be strongly se-
lected to favor big inner caustics (Dobler et al. 2008; Collett &
Cunnington 2016). Therefore, they favor high ellipticity and shear.
Moreover, the SLACS sample has a smaller average redshift than
the sample of quasar lenses, e.g., from Shajib et al. (2019). Thus,
the line-of-sight effect is much less important for SLACS than for
the lensed quasars. As Shajib et al. (2019) model their quasar lens
sample using HST imaging of comparable quality, similar models,
and the same modeling software as in this paper, the observed dif-
ferences between the SLACS sample and the quasar lens sample
in Figure A1l have to arise from the differences in the selection
functions.

We find that in most galaxies with moderate ellipticity (¢ <
0.9), the major axes of the mass and light distributions are well
aligned within +12 deg. The lenses with large misalignment (APA>
12 deg) also have relatively larger (yex¢ =, 0.05) external shear
within the sample. This result is consistent with previous studies
(Kochanek 2002; Ferreras et al. 2008; Treu et al. 2009; Gavazzi et al.
2012; Sluse et al. 2012; Bruderer et al. 2016; Shajib et al. 2018). The
absence of systems with large misalignment angle and low external
shear is consistent with the prediction of galaxy formation models
that highly misaligned orbits in isolated galaxies are unstable and
thus rare (e.g., Adams et al. 2007; Debattista et al. 2015). Only
in blue starburst galaxies — unlike the galaxies in our sample —
constant gas-flow can sustain highly misaligned orbits (Debattista
et al. 2015).

APPENDIX B: ALGORITHM TO MASK THE LENSED
ARCS

We illustrate the algorithm for creating the mask for the lensed arcs
in Figure B1.

APPENDIX C: SELECTED SLACS GALAXIES FOR
MODELLING

We provide the list of selected galaxies in Table C1.
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Figure A1l. The alignment between mass and light distribution for SLACS lenses in our sample (orange) and quasar lenses from Shajib et al. (2019, green).
First panel: The angular offset between the centroids of mass and light. For our fiducial cosmology, the offset distribution for the SLACS lenses has a 95 per
cent upper limit of 426+68 pc. Second panel: Distribution of the absolute centroid offsets and external shear. These two quantities are moderately correlated
for the quasar lenses from Shajib et al. (2019) with biweight midcorrelation » = 0.45 + 0.10, which indicates that the presence of nearby perturbers may cause
an offset between mass and light centroids in the quasar lenses. However, there is no such correlation for the SLACS lenses. Although the shear distribution for
the SLACS lenses is at a lower range than that of the quasar lenses, thus any such potential correlation is hard to identify given the measurement uncertainties.
Third panel: The distribution of mass and light axis ratios. The axis ratios are weakly correlated with biweight midcorrelation » = 0.54 + 0.08. Fourth
panel: The distribution of major axis misalignment between mass and light and external shear. The 19 lenses from our sample of 23 that have g;, < 0.9 and
gm < 0.9 — and thus reliable position angle estimates — are plotted in this panel. For these SLACS lenses, misalignment angle APA> 12 deg are the systems

with yex = 0.05.
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(1) Take pixel-wise radial gradient outward
o | from the center of the deflector. The pixels
with positive gradient (red) mark the inner
o edge of the arcs.

(2) Make a binary image of the gradient with
positive values set to 1 (white) and neg-
ative values set to 0 (black). Set all the
pixels within the inner 0.4 arcsecond to 0.

(3) Set connected white regions with area be-
low 5 pixels to zero. This procedure re-
moves small white regions near the arc
that were created due to noise.

(4) Dilate the binary image separately in the
four quadrants with these structural ele-
ments. The size of the structural element
matrices is 7x7.

(5) The dilation grows the white regions radi-
ally outward. Thus, the white regions can
span over the whole width of the lensed
arcs.

| (6) Invert the binary image to create the mask
' for the lensed arcs. The figure on the left
shows the lens image with the lensed arcs
masked.

Figure B1. The algorithm to mask the lensed arcs. We use this mask to
robustly fit the lens light profile only at one particular step within our
model fitting procedure. The top figure shows an example lens to illustrate
the procedure. All the subsequent figures illustrate different steps of the
algorithm. The bottom figure shows the same lens image from the top figure
with the lensed arcs masked. We used this mask to only fit the deflector’s
light distribution during an initial step of the optimization procedure.
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Table C1. List of SLACS lenses selected for modelling following the criteria
described in Section 2. The ‘Modelling success’ column states whether we
achieved a good quality model or not from our automated and uniform
modelling approach.

Name HST camera and filter =~ Modelling success
J0008-0004  WFPC2 F606W No
J0029-0055  WFPC2 F606W Yes
J0037-0942  WFPC2 F606W Yes
J0044+0113  WFPC2 F606W No
J0252+0039  WFPC2 F606W Yes
J0330-0020  WFPC2 F606W Yes
J0728+3835  WFPC2 F606W Yes
J0737+3216  ACS F555W Yes
J0819+4534  WFPC2 F606W No
J0903+4116 ~ WFPC2 F606W Yes
J0912+0029  ACS F555W No
J0935-0003  WFPC2 F606W No
J0936+0913  WFPC2 F606W No
J0959+0410  ACS F555W Yes
J0959+4416  WFPC2 F606W No
J1016+3859  WFPC2 F606W No
J1020+1122  WFPC2 F606W No
J1023+4230  WFPC2 F606W No
J1100+5329  WFPC2 F606W No
J1112+0826 ~ WFPC2 F606W Yes
J1134+6027  WFPC2 F606W No
J1142+1001  WFPC2 F606W No
J1143-0144  ACS F555W No
J1153+4612  WFPC2 F606W No
J1204+0358  WFPC2 F606W Yes
J1213+6708  WFPC2 F606W No
J1218+0830  WFPC2 F606W No
J1250+0523  ACS F555W Yes
J1306+0600  WFPC2 F606W Yes
J1313+4615  WFPC2 F606W Yes
J1319+1504  WFPC2 F606W No
J1402+6321  ACS F555W Yes
J1403+0006 ~ WFPC2 F606W No
J1432+6317  WFPC2 F606W No
J1531-0105  WFPC2 F606W Yes
J1538+5817  WFPC2 F606W No
J1614+4522  WFPC2 F606W No
J1621+3931  WFPC2 F606W Yes
J1627-0053  ACS F555W Yes
J1630+4520  ACS F555W Yes
J1636+4707  WFPC2 F606W Yes
7164442625  WFPC2 F606W No
J2238-0754  ACS F555W Yes
J2300+0022  ACS F555W Yes
J2302-0840  WFPC2 F606W No
J2303+1422  ACS F555W Yes
J2321-0939  WFPC2 F606W No
J2341+0000  WFPC2 F606W No
J2343-0030  WFPC2 F606W Yes
J2347-0005  WFPC2 F606W No
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