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ABSTRACT

In recent years, breakthroughs in methods and data have enabled gravitational time delays to
emerge as a very powerful tool to measure the Hubble constant 𝐻0. However, published state-
of-the-art analyses require of order 1 year of expert investigator time and up to a million hours
of computing time per system. Furthermore, as precision improves, it is crucial to identify
and mitigate systematic uncertainties. With this time delay lens modelling challenge we aim
to assess the level of precision and accuracy of the modelling techniques that are currently
fast enough to handle of order 50 lenses, via the blind analysis of simulated datasets. The
results in Rung 1 and Rung 2 show that methods that use only the point source positions tend
to have lower precision (10 − 20%) while remaining accurate. In Rung 2, the methods that
exploit the full information of the imaging and kinematic datasets can recover 𝐻0 within the
target accuracy (|𝐴| < 2%) and precision (< 6% per system), even in the presence of a poorly
known point spread function and complex source morphology. A post-unblinding analysis
of Rung 3 showed the numerical precision of the ray-traced cosmological simulations to be
insufficient to test lens modelling methodology at the percent level, making the results difficult
to interpret. A new challenge with improved simulations is needed to make further progress in
the investigation of systematic uncertainties. For completeness, we present the Rung 3 results
in an appendix and use them to discuss various approaches to mitigating against similar subtle
data generation effects in future blind challenges.

Key words: cosmology: observations — gravitational lensing: strong — methods: data
analysis
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1 INTRODUCTION

The flat Λ cold dark matter (ΛCDM) cosmological model has been

remarkably successful in explaining the geometry and dynamics

of our Universe. It has been able to predict/match the results of

a wide range of experiments covering a wide range of physical

scales (Planck Collaboration et al. 2014, 2016; Riess et al. 2016;

Betoule et al. 2014; Eisenstein et al. 2005; Alam et al. 2017), and

the expansion of our Universe (Riess et al. 1998; Perlmutter et al.

1999).

One of the key parameters of the model is the Hubble constant

(𝐻0) that determines the age and physical scale of the Universe.

Measuring 𝐻0 at high precision and accuracy has been one of

the main goals of observational cosmology for almost a century

(Freedman et al. 2001). In recent years, as the precision of the

measurements has improved to a few percent level, a strong tension

has emerged between early and late universe probes. As far as

early-universe probes are concerned, analysis of Planck data yields

𝐻0 = 67.4 ± 0.5 km s−1 Mpc−1 (Planck Collaboration et al. 2020),

assuming a ΛCDM model. In the local universe, the Equation of

State of dark energy (SH0ES) team using the traditional “distance

ladder” method based on Cepheid calibration of type Ia supernovae

by finds 𝐻0 = 74.03 ± 1.42 km s−1 Mpc−1 (Riess et al. 2019),

and 𝐻0 = 72.4 ± 2.0 km s−1 Mpc−1 based on the tip of the

red giant brand (Yuan et al. 2019). The Carnegie-Chicago Hubble

Program calibrated the tip of the red giant branch and applied to

type Ia supernovae, finding a midway Hubble tension as 𝐻0= 69.8±
0.8 (±1.1% stat) ± 1.7 (±2.4% sys) (Freedman et al. 2019). The

tension between late and early universe probes ranges between 4-6𝜎

(see summary by Verde et al. 2019). If this ∼ 8% difference is real

and not due to unknown systematics in multiple measurements, it

demonstrates that ΛCDM is not a good description of the universe,

and additional ingredients such as new particles or early dark energy

might be needed (e.g., Knox & Millea 2020; Arendse et al. 2020).

Given the potential implications of this tension, it is crucial to have

several independent methods to measure 𝐻0 each with sufficient

precision to resolve the tension (e.g., 1.6% to resolve the 8% 𝐻0

tension at 5−𝜎).

Time-delay cosmography by strong gravitational lensing pro-

vides a one-step measurement of 𝐻0 together with other cosmologi-

cal parameters (Refsdal 1966; Treu & Marshall 2016). The strongly

lensed source produces multiple images, corresponding to multi-

ple paths followed by the photons through the universe. According

to Fermat’s principle, the lensed images arrive at the observer at

different times, corresponding to the extrema of the arrival time

surface. The time delays between the images depend on the abso-

lute value of cosmological distances, chiefly through the so-called

“time-delay distance", 𝐷Δ𝑡 , and can thus be used to infer 𝐻0 like any

other distance indicator (Schechter et al. 1997; Treu & Koopmans

2002a; Suyu et al. 2010a). Importantly, time delay cosmography is

independent of all other probes of 𝐻0.

At the time of writing, the 𝐻0 Lenses in COSMOGRAIL’s

Wellspring (H0LiCOW) and SHARP collaborations have finished

the analysis of six strong lensed quasars and obtain a joint infer-

ence for Hubble constant as 𝐻0 = 73.3+1.7
−1.8 km s−1 Mpc−1 (Wong

et al. 2020). In addition, as part of the STRIDES collabora-

tion, Shajib et al. (2020b) analyzed one particularly information-

rich strong lens system DES J0408-5354 alone and constrained

the 𝐻0 at 3.9% level, in excellent agreement with the Wong

et al. (2020) result. (In the rest of the paper, we refer to

H0LiCOW/SHARP/COSMOGRAIL/STRIDES collectively as TD-

COSMO (Millon et al. 2020)). Measurements of 𝐻0 using time

delay lenses also have been investigated by other collabora-

tions (Paraficz & Hjorth 2010; Ghosh et al. 2020).

Based on the current results, it is predicted that a 1% precision

in the 𝐻0 can be achieved via the time-delay cosmography alone

using a sample of 40 lensed systems (Shajib et al. 2018). However,

two issues need to be addressed before a 1% measurement of 𝐻0

can be achieved with time delay cosmography. First, the analysis

and computational costs need to be reduced in order to make the

larger samples tractable. Second, all sources of potential systematic

uncertainties must be investigated in order to identify and mitigate

any outstanding one.

The first issue is well illustrated by the current state-of-the-art.

At present, the analysis of each system requires approximately one

year of effort full time by an expert investigator. Furthermore, the

analysis by Shajib et al. (2020b) required approximately 1 million

hours of CPU time. Analyzing 40 lenses would thus be prohibitive

with current techniques, especially in terms of investigator time.

Efforts are underway to automate these modelling efforts so that they

can be scaled to a large number of lenses reducing the investigator

time per lens (Shajib et al. 2019), but much work remains to be done

to get to high precision, low cost modelling (Schmidt et al. 2020, in

prep).

Regarding the second issue, a number of efforts are under way

to identify systematic uncertainties (e.g. Millon et al. 2020). All

parts of the analysis need to be checked with high-quality data and

independent analysis, as well as with simulated datasets.

One effective strategy to test for unknown systematic errors

is to use blind analysis. In the implementation followed by the

TDCOSMO collaboration, the inferred values of 𝐷Δ𝑡 and 𝐻0 are

kept blind until all coauthors agree to freeze the analysis during a

collaboration telecon. The inference is then unblinded and published

without modification. One of the goals of the blind analysis is to

avoid conscious and unconscious confirmation bias.

Another powerful strategy is to study systematic errors using

realistic simulations, possibly analyzed blindly. Blind analysis of

simulated datasets was the strategy of the “Time Delay Challenge”

(TDC). In the TDC, a so-called “Evil” team first simulated a large

number of realistic ‘mock’ time delay light curves, including an-

ticipated physical and experimental effects. Then, the “Evil” team

published the mock data and invited the community to extract time

delay signals blindly using their own method. Liao et al. (2015)

showed that time delays can be measured from realistic datasets

with precision within 3% and accuracy within 1%.

The success of TDC encouraged the community to take on the

next step by verifying the precision and accuracy of lens models

with a time delay lens modelling challenge (TDLMC), initiated on

2018 January 8th by posting a paper on arXiv (TDLMC1, Ding

et al. 2018). The challenge “Evil” team simulated 48 systems of

mock strongly lensed quasars data and provided access to the data

through a weblink to the participating teams (“Good” teams) to

model, blindly1:

• https://tdlmc.github.io

The “Evil” team produced realistic simulated time-delay lens data

including i) HST-like lensed AGN images, ii) lens time delays,

iii) line-of-sight velocity dispersions, and iv) external convergence.

After the “Good” team submitted their inferred 𝐻0, the performance

1 For an early implementation of a blind challenge see paper by Williams

& Saha (2000).
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of the adopted method could be estimated by comparing them with

the true values in the simulation.

The number of simulated lensed quasars was chosen to have

sufficient statistics to assess the performance at the percent level

(7% expected per system, gives approximately a ∼ 1% precision

on the mean). We stress that this is already a huge sample for

current modelling methods, and thus the challenge is exclusively

testing “fast methods”. The computational cost of lens modelling

is a major hurdle that will need to be overcome in the future; thus

TDLMC uses large simulated samples aiming at testing the speed

and performance of these “fast methods”.

We also note that TDLMC is limited to the study of the lens

model accuracy. Other sources of uncertainty are not considered.

Therefore ancillary data, including time delay, line-of-sight velocity

dispersion, and information of external convergence are provided

unbiased and with true uncertainties.

This paper provides the details of the challenge design that

were hidden in the challenge opening paper (Ding et al. 2018, here-

after: TDLMC1) and presents an overview of the submission results.

We encourage the individual “Good” teams to submit more detailed

papers on their methods and results. The paper is structured as fol-

lows. In Section 2, we describe the details of the challenge, including

hitherto hidden adopted when simulating the sample. Sections 3 in-

cludes the response from the participating teams to this challenge

and a brief summary of the method(s) adopted. The analysis of the

submissions for Rung 1 and Rung 2 is presented in Section 4. For

Rung 3, we discovered post-unblinding that the numerical preci-

sion of the ray-traced simulations was insufficient to test lens model

methodology at the percent level, making the results from this rung

difficult to interpret. Therefore we dedicate a full Section 5 to the

subtleties of Rung 3 that will need to be addressed in a future chal-

lenge that wishes to adopt numerical simulations of galaxies as a

starting point. The results of Rung 3 are given in Appendix A for

completeness, even though the results should be interpreted with

caution. We draw some of the implications of the results and dis-

cuss our findings in Section 6. Section 7 presents a brief summary

of the paper.

2 DETAILS OF THE TDLMC CHALLENGE DESIGN

There are three challenge ladders in TDLMC, called Rung 1, Rung 2

and Rung 3. In addition, an entry-level Rung 0 is also designed for

training propose. To ensure that the “Good” teams do not infer any

information for the previous rung, we reset the 𝐻0 at each rung.

We adopt two independent codes, namely Lenstronomy
2 (Birrer

& Amara 2018) and Pylens
3 (Auger et al. 2011), to simulate HST-

like lensed AGN images (equally split). This strategy helps us to

mitigate the “home advantage”, if any, in the sense that when “Good”

team happens to adopt the same code as the one used to generate the

simulated images. The use of two independent codes also allows us

to estimate numerical uncertainties related to the implementation

of the algorithms, if present.

2 https://github.com/sibirrer/lenstronomy
3 https://github.com/tcollett/pylens

2.1 Challenge structure

The TDLMC begins with Rung 0, consisting of two lens systems

– one double and one quad. This training rung aims to ensure

that “Good” team members understand the format of the data, and

avoids any trivial coding errors or mistakes which potentially affect

the results of the entire challenge.

Considering that the lens modelling process is usually time

consuming, we generated in total of 48 lensing systems, spread over

three blind rungs (i.e., Rung 1,2,3. There are 16 systems in each

rung). The sample size is small enough to ensure it is tractable by

the “Good” teams and large enough to explore different conditions

with sufficient statistics and uncover potential biases at the percent

level. We increase the level of complexity from Rung 1 to Rung 3.

We reveal the details of the simulations for each blind rung in

the rest of this section, including the ones which were only known

to the “Evil” team before unblinding.

2.2 Details of each Rung

For training purpose, Rung 0 was designed to be as simple as possi-

ble. Therefore, simple parametrized forms were adopted to describe

the surface brightness of the deflector and the source galaxy (i.e.,

Sérsic), and the mass profile (elliptical power-law) of the deflector.

The true point spread function (PSF) is given, and external con-

vergence was not considered. The Rung 0 data is released with all

the input parameters so that the “Good” teams can validate their

analysis.

In Rung 1, the increase in complexity with respect to Rung 0

is that the surface brightness of the AGN host galaxy is realistically

complex, rather than described by a simply parameterized model

like Sérsic. For the purpose of making realistic source galaxies, we

started from high-resolution images of nearby galaxies obtained by

HST. The digital images are downloaded from the Hubble Legacy

Archive4. In order to get a clean galaxy image, we first removed

isolated stars and background foreground objects in the field. All the

processed galaxy images are shown in Figure 1. Then, we obtained

the global properties of these galaxies, by using Galfit to fit them

as the Sérsic profiles so as to obtain their effective radius (𝑅eff)

in arcsec and total flux. This information is then used to rescale

the galaxy size and magnitude in the source plane, as described in

Section 2.3.3. A random external convergence value is also added

in Rung 1 (see Section 2.4).

Rung 2 increases the complexity of Rung 1 by providing the

“Good” teams with only a guess of the PSF, instead of the actual PSF

used to generate the simulations. This added complexity is meant to

represent a typical situation where the observer uses a nearby star or

model as an initial guess to the actual PSF and then improves on it

using the quasar images themselves. In order to implement this step

in a realistic manner, the “Evil” team took one actual star observed

by HST WFC3/F160W and constructed a high-resolution image by

interpolation. This PSF image is used to carry out the simulation

process described in Section 2.5. However, the PSF information

based on a different star was given to the “Good” teams.

Rung 3 was the most ambitious as we aimed to increase the

complexity of the deflector mass distribution, in addition to retain

the complexities of Rung 2. Assessing the effects of the complexity

of the deflector mass distribution is crucial to evaluate the perfor-

mance of modelling methods. For example, the mass sheet degen-

4 https://hla.stsci.edu/hlaview.html

MNRAS 000, 1–25 (2020)
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Table 1. Parameter distributions.

Simulation ingredient model and parameter values

A): redshift

deflector redshift 𝑧𝑑 ∼ N(0.5 ± 0.2)
source redshift 𝑧𝑠 ∼ N(2.0 ± 0.4)

B): deflector (image plane)

lensing galaxy mass elliptical power-law

SIS velocity dispersion 𝑣𝑑 ∼ N(250 ± 25) km/s

Einstein radiusa 𝑅Ein = 4𝜋𝑣2
𝑑

𝐷𝑑𝑠

𝐷𝑠

mass slope 𝑠 ∼ N(2.0 ± 0.1)
ellipticity 𝑞 ∼ U(0.7 − 1.0)
elliptical axis angleb 𝜙𝑚 ∼ U(0 − 𝜋)

lensing galaxy SB Sérsic profile

total magnitudec 𝑚𝑎𝑔 ∼ U(17.0 − 19.0) magnitude

effective radius 𝑅eff = 𝑅Ein ∗ U(0.5 − 1.0)
Sérsic index 𝑛 ∼ U(2.0 − 4.0)
ellipticity 𝑞 ∼ U(0.7 − 1.0)
elliptical axis angled 𝜙 = 𝜙𝑚U(0.9 − 1.1)

C): AGN (source plane)

host galaxy SB realistic galaxy

total magnitude 𝑚𝑎𝑔 ∼ U(22.5 − 20.0) magnitude

effective radiuse 𝑅eff ∼ U(0.′′37, 0.′′45) , 1.0 < 𝑧𝑠 < 1.5

𝑅eff ∼ U(0.′′34, 0.′′42) , 1.5 < 𝑧𝑠 < 2.0

𝑅eff ∼ U(0.′′31, 0.′′35) , 2.0 < 𝑧𝑠 < 2.5

𝑅eff ∼ U(0.′′23, 0.′′33) , 2.5 < 𝑧𝑠 < 3.0

active nuclear light scaled point source

source plane total flux 𝑓AGN = 𝑓host ∗ U(0.8 − 1.25)

external shear

amplitudes 𝛾 ∼ U(0 − 0.05)
shear axis angle 𝜙 ∼ U(0 − 𝜋)

external convergency

external kappaf 𝜅ext ∼ N(0 ± 0.025)

Note: − Table lists the assumptions that were used to distribute the param-

eters for the TDLMC simulation. In Rung 3, non-parameterized deflectors

(i.e., lensing galaxy mass and surface brightness) are adopted. Thus, the B

part in the table is not adoptable for this rung. The distribution of “N” means

normal distribution and the “U” means uniform distribution. Among all the

parameters shown in the table, only the redshifts (with zero observation

error) and unbiased estimated of external convergence 𝜅ext = 0±0.025 were

provided to the “Good” teams.

a: Using our definition, the Einstein Radius would be in the range [1.′′00,

1.′′20].

b: The position angles start from the x-axis anti-clockwise.

c: The flux in cps and the magnitude value are related by the equation:

mag = −2.5∗log 10(flux) +zp, where zp is the filter zeropoint in AB system.

For filter WFC3/F160W, zp = 25.9463.

d: The effective radius and elliptical axis angle of the lensing light are

assumed to be correlated with lensing mass at a certain level.

e: The effective radius of the realistic galaxy is obtained by fitting Sérsic

profiles using Galfit.

f: 𝜅ext is randomly generated to calculate the time delay data. The parent

distribution was provided to the “Good” teams, but not the actual value, to

mimic real analyses, see the descriptions at Eq. (4) for more details.

tive Fermat potential and time delay. As mentioned in TDLMC1, we

consider the effect of 𝜅ext by drawing from a Gaussian distribution

N(0 ± 0.025) for all the three Rungs.

2.5 Generating HST-like data

Having defined the ingredients of the simulations, we adopt two

independent codes to build the pipeline that produces the mock HST

imaging data. We aim to simulate the image quality of typical state-

of-the-art datasets, i.e., WFC3/F160W with individual exposures

of 1200 s, and typical background. We use astrodrizzle to co-add

eight single dithered exposures to obtain the final image with pixel

sampling improved from 0.′′13 to 0.′′08.

The simulations are similar to those described by Ding et al.

(2017a), which we refer to for more details. A brief description

is given here for convenience. The simulation starts from high-

resolution images with pixel scale 4 times smaller than the HST

resolution (i.e., 0.′′13/4). We start from actual HST images, as illus-

trated in Figure 2 of TDLMC1. To numerically define the surface

brightness of these actual images, Pylens uses interpolation, and

with Lenstronomy we chose to use shapelet decomposition (Re-

fregier 2003b; Birrer et al. 2015). We then rescale the image to the

desired size. Then, the distortion by lensing is based on the deflec-

tion angles. We convolve the image plane surface brightness with

the PSF and add scaled PSF in the position as the point sources

to mimic instrumental resolution. In Rung 1 the PSF is generated

with TinyTim (Krist et al. 2011), while in Rung 2 and Rung 3 PSFs

are extracted from the real HST images, and we use interpolation to

obtain the PSF image at higher resolution. The pipeline is illustrated

in Figure 3. Note that at this step, the images are still sampled at the

0.′′13/4 resolution.

In the next step, we rebin the pixels by 4×4 to degrade the image

at HST resolution, i.e., 0.′′13. We select eight different patterns to

rebin the image, so as to mimic the dither process. In the next step,

we add the noise to the data, see Figure 1 and Figure 2 in Ding et al.

(2017a) for details. Finally, we use the drizzling process to co-add

eight dithered images to obtain the final drizzled image at 0.′′08

sampling. We present the 48 simulated images of the three rungs in

Figure 4.

In the TDLMC, the eight dithered HST images and the final

drizzled images are all provided to the “Good” teams including the

science images, noise level maps, and a sampled PSF image.

2.6 Simulated ancillary data

In addition to the HST imaging data, the “Evil” team provides

time delay and aperture stellar velocity dispersion, computed as

described in this section.

2.6.1 Time delay

The true time delay between the lensed AGN images are calcu-

lated using the following equations once the values of the simulated

parameters are given by:

Δ𝑡𝑖 𝑗 =
𝐷Δ𝑡

𝑐

[

𝜙(𝜃𝑖) − 𝜙(𝜃 𝑗 )
]

, (1)

where 𝜃 𝑗 and 𝜃 𝑗 are the coordinates of the images 𝑖 and 𝑗 in the

image plane. 𝜙(𝜃𝑖) is the Fermat potential at image 𝑖 and 𝐷Δ𝑡 is

MNRAS 000, 1–25 (2020)
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(a) Rung 1 imaging data

1"1"1"1"1"

1" 1" 1" 1" 1"1"1"

1" 1"1"

1"

(b) Rung 2 imaging data

1" 1" 1" 1" 1"

1" 1" 1" 1" 1" 1" 1" 1"

1" 1" 1"

(c) Rung 3 imaging data

1" 1" 1" 1" 1" 1"

1" 1" 1" 1" 1" 1" 1"

1" 1"

1"

Figure 4. Mock data provided for Rung 1, Rung 2 and Rung 3. The configurations from left to right are cross, cusp, fold and double. The images belonging to

the same rung are shown with the same stretch to facilitate visual comparisons.

In Rung 3, the velocity dispersion is provided by the hydrody-

namical simulations via high resolution maps (16 times higher than

HST), see Section 2.2. The aperture stellar velocity dispersion is thus

a combination of the two kinematic maps by:𝑉aper =

√︃

𝑉2
ave + 𝜎2

ave,

where the𝑉ave and 𝜎ave is the line of sight (LOS) mean velocity and

the velocity dispersion as shown in Figure 2. The “Evil” team cal-

culate the 2D surface-brightness-weighted line-of-sight dispersion

and convolve it using a FWMH 0.′′6 Gaussian kernel. Finally, the av-

eraged velocity dispersion in the aperture was computed. Note that

in principle the surface brightness weighting should be considered

before convolving and aperture selection. However, the velocity map

and the surface brightness map are both convolved using the same

Gaussian kernel, making the sequence of this processing irrelevant.

For illustration, the velocity dispersion as a function of aperture size

is shown in Figure 5.

A random Gaussian noise with 5% standard deviation is added

to the model velocity dispersion to represent high quality measure-

ment errors.

2.7 Metrics and expected performance

The “Good” teams submitted their modelled 𝐻0 of each lens sys-

tem in the three rungs, and the “Evil” team defined four standard

metrics to estimate the performance of the submissions, including

efficiency ( 𝑓 ), goodness (𝜒2), precision (𝑃) and accuracy (𝐴). They

are defined as follows:

𝑓 =
𝑁

𝑁total
, (9)

𝜒2
=

1

𝑁

∑︁

𝑖

(

𝐻̃0 𝑖 − 𝐻0

𝛿𝑖

)2

, (10)

𝑃 =
1

𝑁

∑︁

𝑖

𝛿𝑖

𝐻0
, (11)

𝐴 =
1

𝑁

∑︁

𝑖

𝐻̃0 𝑖 − 𝐻0

𝐻0
, (12)

MNRAS 000, 1–25 (2020)
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distribution of 𝐻ext
0

in Eq. (20) is sampled via a Monte Carlo inte-

gration; (i) draw a random sample of 𝜅ext from 𝑁 (0, 0.0252); (ii)

sample 𝐻0 from Eq. (16); (iii) and lastly set 𝐻ext
0

= (1 − 𝜅ext)𝐻0.

A Jacobian term is not needed for a deterministic transformation

within a Bayesian sampling framework (Tak et al. 2020). The pro-

posed framework does not account for the lens velocity dispersion

for each lens system.

The key to the proposed approach is to obtain 𝐷 to be used as a

condition of the posterior distribution in Eq. (20) because given 𝐷,

it is simple to draw a random sample of 𝐻0. The team notes again

that 𝐷 is composed of time delay estimates, Δest
𝑖 𝑗𝑘

’s, their standard

errors, 𝜎(Δest
𝑖 𝑗𝑘

)’s, Fermat potential difference estimates, 𝜙est
𝑖 𝑗𝑘

’s,

and their standard errors, 𝜎(𝜙est
𝑖 𝑗𝑘

)’s. The first two components are

fully known in the TDLMC, and thus the remaining ingredients for

sampling 𝐻ext
0

from Eq. (20) are 𝜙est
𝑖 𝑗𝑘

’s and 𝜎(𝜙est
𝑖 𝑗𝑘

)’s.
For this purpose, the team uses Lenstronomy (version 0.4.3,

Birrer & Amara 2018). In Rung 1, the team uses the elliptical

Sérsic profile for the source light model and adopts one, two, or

three elliptical Sérsic profiles for the lens light model. In Rungs 2–

3, the team utilizes a superposition of a smooth power-law elliptical

mass density profile (SPEMD) with external shear for the lens mass

model. An elliptical Sérsic profile with shapelets (Birrer et al. 2015)

is adopted for the source light model, and an elliptical Sérsic profile

is used for the lens light model. The team fixed 𝑛max = 10 as the

order of the shapelets basis for the baseline model. Also, the team

makes use of the PSF iteration to correct the PSF model (Shajib

et al. 2019). In addition, the team manually boosts the noise level

by adopting one of seven different PSF error inflation rates (1%,

5%, 10%, 15%, 20%, 25%, 30%) to deal with additional errors in

the given PSF. This means that for each unique pairs of lenses, the

team fits the model by Lenstronomy seven times each with one of

the seven PSF error inflation rates.

For each of the seven fits, Lenstronomy produces a posterior

sample of 𝜙𝑖 𝑗𝑘 that is possibly non-Gaussian. Thus, to obtain 𝜙est
𝑖 𝑗𝑘

and 𝜎(𝜙est
𝑖 𝑗𝑘

), the team summarizes the posterior distribution in

two ways; posterior mean and standard deviation (Summary 1);

posterior median and quantile-based standard error (Summary 2).

This is because the posterior mean and standard deviation can be

misleading if the posterior distribution of 𝜙𝑖 𝑗𝑘 is not Gaussian.

Consequently, for each pair of lensed images the team obtains

the seven pairs of (𝜙est(𝑙)
𝑖 𝑗𝑘

, 𝜎(𝜙est(𝑙)
𝑖 𝑗𝑘

)) for 𝑙 = 1, . . . , 7, according

to each type of summary. Since 𝐷 requires having only one rep-

resentative pair of (𝜙est
𝑖 𝑗𝑘

, 𝜎(𝜙est
𝑖 𝑗𝑘

)) for each pair of lensed images,

the team takes an average of these seven pairs in three ways. The

first one is a Fisher-type weighted average of 𝜙
est(𝑙)
𝑖 𝑗𝑘

’s weighted

by 1/𝜎2 (𝜙est(𝑙)
𝑖 𝑗𝑘

)’s (Average 1). This averaging method puts more

weights on the pairs with smaller standard errors. The second aver-

aging method simply takes an arithmetic mean over seven estimates

and over seven variances (Average 2). This way puts equal weights

on all seven pairs regardless of their different standard errors. Fi-

nally, the third one uses the same arithmetic mean as Average 2 but

sets 𝜎(𝜙est
𝑖 𝑗𝑘

) to a sample variance of the seven estimates, 𝜙
est(𝑙)
𝑖 𝑗𝑘

’s

(Average 3). This one does not use the information about standard

errors at all. The team briefly describes the details of each submis-

sion in Table 2.

Due to the space limitations, the detailed information of the

lens modelling settings will be presented in a separate paper (Tak

et al., in prep).

Table 2. The details of the submissions of Student-T team. Summaries 1, 2,

Averages 1, 2, 3 are defined in Section 3.1.

Rung Algorithm Details

1

1 Summary 1 and Average 1

2 Summary 1 and Average 2

3 Summary 1 and Average 3

4 The same as Algorithm 1 except that three pairs

are intentionally removed for consistency

5 The same as Algorithm 2 except the three pairs

6 The same as Algorithm 3 except the three pairs

2

1 Summary 1 and Average 1

2 Summary 1 and Average 2

3 Summary 2 and Average 1

4 Summary 2 and Average 2

5 An independent replication of Algorithm 1

3

1 Summary 1 and Average 1

2 Summary 1 and Average 2

3 Summary 2 and Average 1

4 Summary 2 and Average 2

5 The same as Algorithm 1 with three times more

repetitions (i.e., 21 pairs instead of 7 pairs)

6 The same as Algorithm 2 with 21 pairs

7 The same as Algorithm 3 with 21 pairs

8 The same as Algorithm 4 with 21 pairs

9 The same as Algorithm 5 but without considering

𝜅ext i.e., sampling from (16) instead of (20)

10 The same as Algorithm 6 but sampling from (16)

11 The same as Algorithm 7 but sampling from (16)

12 The same as Algorithm 8 but sampling from (16)

3.2 EPFL team

M. Millon, A. Galan, F. Courbin, V. Bonvin

3.2.1 modelling technique

The EPFL team followed a streamlined version of current modelling

practices applied to time delay cosmography. The main difference

with respect to the analysis described by (Birrer et al. 2019; Shajib

et al. 2020b) is that the challenge is known to be free of significant

perturbers besides the main deflector and the line of sight. Taking

advantage of this information and to reduce computation costs, a

smaller number of model choices was considered in the challenge

as compared to real systems. In addition, in order to reduce human

investigator time, the modelling was standardized as opposed to

tailored to the specific of each individual lens. For this purpose, a

partly automated modelling pipeline was developed by the team.

A more detailed description of the pipeline may be the subject

of a future paper. The standardization is a necessary step towards

modelling large numbers of systems, but it may result in failures if

the one-size-fits all approach is not (yet) sufficiently accurate.

For the modelling part, the team used the publicly available

software Lenstronomy (Birrer & Amara 2018). This software is

well validated and has been previously used for the modelling and

cosmography analysis of real time delay strong lens systems (Birrer

et al. 2016, 2019; Shajib et al. 2020b). The entire challenge data

set was used as constraints for our models, including the provided

drizzled image, noise maps, and PSF ; the measured time delays

at lensed AGN positions Δ𝑡measu ; the measured LOS velocity dis-

persion of stars in the lens galaxy 𝜎los, measu ; the estimate of the

external convergence 𝜅ext.
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The models are described by linear (surface brightness ampli-

tudes) and non-linear parameters, depending on the type of profiles

(see Birrer et al. 2015, for details). The team chose to add the time

delay distance 𝐷Δ𝑡 as a free non-linear parameter.

For a single system, the generic workflow starting from lens

modelling up to 𝐻0 inference can be divided in the three following

steps.

1) Parameters optimization and sampling First linear and

non-linear parameters are optimized by alternating Particle Swarm

Optimizer (PSO) runs and increments of the complexity of lens

models. Parameters are sampled from uniform priors, ensuring that

all lenses can be modelled from the same initial set of priors. The

time delay distance 𝐷Δ𝑡 , considered as a free non-linear parameter

of the model, is constrained by the measured time delays Δ𝑡𝑖 𝑗 ,measu

by enforcing the modelled time delays to be compatible with the

measured ones. Modelled time delays Δ𝑡𝑖 𝑗 ,model are computed as

follows:

Δ𝑡𝑖 𝑗 ,model = (1 + 𝑧d)
𝐷Δ𝑡

𝑐
ΔΦ𝑖 𝑗 ,model , (21)

where 𝑧d is the lens redshift, Φmodel is the model Fermat poten-

tial, 𝑐 is the speed of light, and “𝑖 𝑗” defines the difference of the

indicated quantity evaluated at the positions of two lensed AGN

𝑖 and 𝑗 . This procedure gives best fit estimates of the linear and

non-linear parameters, that are then used as a starting point of a

MCMC sampling. Both PSO and MCMC routines are implemented

in Lenstronomy, based on the CosmoHammer package (Akeret

et al. 2013) and emcee (Foreman-Mackey et al. 2012).

2) Kinematics and angular diameter distances For each

MCMC sample, the team derived in a post-processing step the LOS

velocity dispersion 𝜎los, model from model parameters. The team

used the Osipkov-Merritt model to solve the spherical Jeans equa-

tion, again following current practices e.g., Suyu et al. (2010a);

Shajib et al. (2018), with routines implemented in Lenstronomy.

The team computed angular diameter distances from both kinemat-

ics and time delays. The sampled time delay distance gives directly

the distance ratio 𝐷d𝐷s/𝐷ds. The modelled LOS velocity disper-

sion, along with the model parameters 𝝃model, are used to compute

the distance ratio 𝐷s/𝐷ds from the following relation (Birrer et al.

2016):

𝜎2
los, model

=
𝐷s

𝐷ds
𝑐2 𝐽 (𝝃model, 𝑟ani) , (22)

where 𝐽 captures all dependencies on model parameters and kine-

matics anisotropy, moving any dependencies on cosmological pa-

rameters in the distance ratio. The external convergence was also

sampled as 𝜅ext v N(0, 0.025), to simulate a correction to the

time delay distance by any mass external to the main deflector,

through: 𝐷Δ𝑡 , eff = 𝐷Δ𝑡/(1 − 𝜅ext). From the two distance ratios

described above, is is straightforward to extract the angular distance

to the deflector, namely 𝐷d.

3) Cosmography inference for an individual system Fol-

lowing Birrer et al. (2019), the inference of the Hubble constant

is performed in the 2D plane defined by angular distances 𝐷Δ𝑡 , eff

and 𝐷d. This plane encodes the joint constraints from imaging data,

time delays, external convergence and lens kinematics. In order to

approximate the full covariance between the two 𝐷Δ𝑡 , eff and 𝐷d

posteriors, both distributions are used to evaluate the likelihood

when inferring 𝐻0. Since Ωm is fixed in this challenge, the only

cosmological parameter being sampled is the Hubble constant.

4) Joint cosmology inference for an entire rung The team

computed the final inferred 𝐻0 value and associated uncertainty

estimates for an entire rung in two steps. First, an outlier rejection

scheme was performed, according to the following criteria, that

were found to be good markers of poor models:

• Each individual 𝐻0 median value must be inside the prior bounds

defined by the TDLMC, i.e., inside [50, 90] km s−1Mpc−1;

• The sampled time delay distance 𝐷Δ𝑡 (free parameter constrained

by the lens model and time delays) and the modelled time delay

distance 𝐷Δ𝑡 , model (obtained through Eq. (21) inversion) must be

consistent with each other at the . 1𝜎 level;

• The modelled lens velocity dispersion 𝜎2
LOS, model

must be con-

sistent at . 2𝜎 level with the measured value;

• Each individual 𝐻0 posterior must be consistent with each other

at the . 2𝜎 level.

When all the above criteria were fulfilled, the team kept the model

for the joint inference over the rung, for a given model family. This

leads to a set of 𝐷Δ𝑡 and 𝐷d pairs of posteriors. The team then

performed two joint inferences using:

• Only time-delay information. 𝐻0 is sampled according to the en-

semble of 𝐷Δ𝑡 posteriors only.

• Both time-delay and kinematics information. This follows the ap-

proach described in Birrer et al. (2019), 𝐻0 is sampled in the 2D

plane over the set of 𝐷Δ𝑡 and 𝐷d posteriors. This last option is

the standard procedure used for joint inference of real lenses (e.g,

Wong et al. 2020)

Note that even in the first case of inference 𝐻0 from 𝐷Δ𝑡 only,

knowledge about kinematics still plays a (smaller) role, because of

model selection steps are performed before the inference.

The joint 𝐻0 posteriors described above are computed under

the assumption that the systems do not share systematic errors. If

this assumption breaks, then one should marginalize from individual

distributions, instead of the joint inference. For this reason, the team

also submitted 𝐻0 posteriors that are marginalized over the selected

models. Additional details specific to each rung are given in the

following subsections.

3.2.2 Rung 1

In Rung 1, lens mass and light profiles are simply-parametrized.

Hence the team used power-law elliptical mass distribution

(SPEMD) (Barkana 1998) with external shear profiles to describe

the projected mass distribution, and a single Sérsic profile for the

lens surface brightness. For the source, the team used a Sérsic pro-

file superimposed to a set of shapelets (Refregier 2003a; Birrer

et al. 2015). The team chose 𝑛max = 8 as the maximum order of

the shapelets basis for their the baseline model. When significant

residuals were observed at Einstein ring location, 𝑛max were slightly

increased, typically up to 𝑛max = 14. The source galaxy centroid

(Sérsic+shapelets) was fixed to the position of the quasar, itself

modelled as a single point source constrained by enforcing lensed

images to trace back to the same position in source plane.

The “Evil” team kept secret any details related to kinemat-

ics modelling assumptions, including the anisotropy model they

used for computing velocity dispersion. As stated above, the EPFL

team used Osipkov-Merritt modelling for computing velocity dis-

persions (Osipkov 1979; Merritt 1985b). This model assumes a

parametrized anisotropy parameter 𝛽ani = 𝑟2/(𝑟2+𝑟2
ani

), where 𝑟ani

is the anisotropy radius, which defines the radius at which stellar

orbits go from being radial (near the center) to isotropic (equally ra-

dial and tangential). Standard practices are to sample the anisotropy

space through a uniform prior on the anisotropy radius, see e.g.,
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Suyu et al. (2012); Shajib et al. (2018). In Rung 1, the team used

a uniform prior 𝑟ani v U(0.5, 5) 𝑟eff , where 𝑟eff is the half-light

radius of the lens.

The unblinding of Rung 1 revealed that the team’s submitted

inference was strongly affected by one (or several) systematic er-

ror(s), as quantified by an accuracy of 𝐴 = 7.512%. The main origin

of this bias was found to be a consequence of the high precision

of measured time delays, which surpasses those of real time de-

lay lenses so far, combined with small angular separation between

lensed images. Indeed image separations are on average ∼ 1′′, and

time delays are of the order of dozens of days with precision 0.25

days. Typical lensed systems modelled by the TDCOSMO collabo-

ration have on average image separations of∼ 2.5′′ with time delays

precision up to a couple of days. A particularly high precision is

therefore required when modelling the position of each lensed im-

ages in the setting of the challenge, which is not the case for all

real systems analyzed so far. A lack of precision can propagate to

a significant bias on the Hubble constant. The bias they observed

in their initial Rung 1 submission allowed them to highlight such

a requirement, which have been the topic of a dedicated paper by

Birrer & Treu (2019). The authors introduced simple formulae that,

given an expected precision on the Hubble constant, can be at first

order used to estimate the astrometric requirements that must be

fulfilled, from image separations and time delays precision. They

refer the reader to that paper for consequences of such requirements

and quantitative examples. As discussed in Section 4.2, the prob-

lem was solved by the EFPL team by introducing in Lenstronomy

a nuisance parameter to describe the unknown difference between

true and measured image positions and marginalizing over it.

For Rung 1, the team submitted a single sample of models, and

related joint Hubble value, following the description above.

3.2.3 Rung 2

In Rung 2, only a guess of the PSF was provided, in order to

test PSF reconstruction algorithms. The team used the iterative

PSF reconstruction originally implemented in Lenstronomy. For

a set of baseline models, the team incorporated this routine during

parameter optimization, effectively alternating between PSO and

PSF reconstructions. Having noticed that the PSF was degraded the

same way for each of the 16 lenses of Rung 2, the team computed

a median stacked PSF kernel from their best reconstructed kernels.

This reconstructed PSF was then used for all of their subsequent

Rung 2 modelling attempts.

Based on Rung 1 knowledge, the team took into consideration

the astrometric requirements described in previous subsection, in

order to mitigate a potential bias on the inferred Hubble constant.

The team allowed extra degrees of freedom to model any unknown

uncertainty on the position of AGN images (a.k.a. point sources),

by introducing in the parameter space, two new “offset” parame-

ters, 𝛿𝑥 and 𝛿𝑦 , for each of the 2 or 4 images independently. These

offsets actually represent the error between the (modelled) posi-

tion of point sources on the image, and the (predicted) positions at

which the Fermat potential is evaluated for time delays computation.

These additional parameters are sampled as non-linear parameters,

and constrained by time delays and imaging data. The team reg-

ularly checked that those offsets were correctly constrained, with

amplitudes expected to be below the image pixel scale.

After careful analysis of post-unblinding or Rung 1, the team

realized that most consistent results were obtained when 𝑟ani ≈
𝑟eff . Consequently, in Rung 2, the team fixed the anisotropy radius

𝑟ani to be equal to the lens half-light radius for all the remaining

submissions.

The remaining volume of the parameter space (mass and light

profiles of the lens galaxy, light profiles of source galaxy, and quasar

model) was identical to those of the previous rung.

The team submitted 4 model samples and corresponding joint

value for Rung 2:

• DdDdt: the inferred 𝐻0 was obtained through joint inference in the

2D plane
{

𝐷Δ𝑡 , eff , 𝐷d

}

;

• margDdDdt: same as DdDdt, except that the inferred final value

was obtained by marginalization over individual 𝐻0 posteriors, as

opposed to a joint inference ;

• Ddtonly: same as DdDdt, except that 𝐻0 values were inferred only

from the time delay distance 𝐷Δ𝑡 , eff ;

• margDdtonly: same as Ddtonly, except that the inferred final

value was obtained by marginalization over individual 𝐻0 posteri-

ors.

3.2.4 Rung 3

For Rung 3, the team used the exact same PSF reconstruction method

as for Rung 2. For lens models, they followed the practices of the

TDCOSMO collaboration, in the sense that they chose two families

of models: power-law and composite. The former consists of ellip-

tical power-law mass distribution with external shear, whereas the

latter distinguishes the baryonic mass and dark matter, in addition

to the external shear. For the baryonic matter they used a double

Chameleon profile (see Suyu et al. 2014, for definition) to fit the lens

surface brightness, and convert it to surface mass density through

a constant mass-to-light ratio, introduced as a free parameter. They

modelled the dark matter component as a single elliptical NFW

profile.

In order to improve their efficiency in modelling Rung 3 with

two model of families, which require significant amount of work,

they also used double Chamelon profiles to describe the lens light

in their power-law models. This allowed them to extract best fit lens

light parameters from their power-law models, and properly ini-

tialise the corresponding composite models, for a given lens. Note

that it is different than the usual TDCOSMO procedure, where the

surface brightness of the lens galaxy is fitted with double Sérsic

for power-law mass models. They checked that no systematic er-

rors were introduced when using double Sérsic instead of double

Chameleon profiles, which is expected as the latter is designed to

be a good approximation of the former.

The rest of the procedure was similar to their submissions for

Rung 2 and 3, in terms of selection criterions and joint inference. The

selection was performed independently for the two model families

described above, meaning that their composite and power-law sub-

missions did not necessarily consist in the same modelled lenses, nor

the same number of lenses. For each model family, they submitted

two submission pairs, with 𝐻0 inferred from: 1) joint
{

𝐷Δ𝑡 , eff , 𝐷d

}

inference, 2) 𝐷Δ𝑡 , eff only. Additionally, they submitted a third pair

of submissions with a subset of lenses whose models were coin-

cidentally accepted with both model families, which enabled them

to combine their inferences from power-law and composite models.

More precisely, for a given lens, they marginalised over the two

model families, prior to the final joint inference 𝐻0 among the dif-

ferent lenses. To summarize, one ended up with 6 submissions for

this rung.
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3.3 Freeform team

P. Denzel, J. Coles, P. Saha, L. L.R. Williams

The lenses were reconstructed with the codes GLASS by Coles

et al. (2014) and its precursor PixeLens by Saha & Williams (2004)

which are based on the free-form modelling technique. In contrast

to other methods, free-form lens reconstructions are not restricted

to a parametrized family of models, but rather build a lens as su-

perpositions of a large number of mass components, e.g., mass tiles

or pixels, with minimal assumptions about the form of the full lens.

The price to pay for the flexibility is that the free parameters out-

number the constraints and thus regularization needs to be imposed

to avoid overfitting the data.

While GLASS and Pixelens are completely separate codes,

implemented in different languages, and using different Monte Carlo

sampling engines, they both share the same approach to free-form

lenses. Represented as a discrete grid of pixels, the lens potential

takes the following form:

𝜓(𝜃) =
∑︁

𝜅𝑛∇−2𝑄𝑛 (𝜃), (23)

where 𝜅𝑛 is the density of the 𝑛-th mass tile and 𝑄𝑛 (𝜃) is the shape

integral over the 𝑛-th pixel. Each tile is a square and its contribu-

tion 𝜅𝑛𝑄𝑛 (𝜃) to the potential at 𝜃 can be worked out analytically

(AbdelSalam et al. 1998). In both GLASS and PixeLens the tiles

cover a circular area centered on the lensing galaxy. The radius of

this area 𝑟𝑝 , in pixels, determines the resolution of a model. For

instance, 𝑟𝑝 = 8 places one tile at the center and eight tiles extend-

ing left and right (17 pixels side to side) with a total of 225 pixels

covering the entire circular area. The tile size in arcseconds can be

set explicitly or estimated such that there are several rings of pixels

outside the outermost image. Mass distributions that are assumed

to be radially symmetric (doubles and some quads) are constrained

to have diametrically opposite pixels of equal value, which reduces

the number of pixels by half. GLASS also allows for the central

pixel to be further subdivided into 3 × 3 or 5 × 5 sub-pixels, to

capture a steeply rising cusp. In this paper we denote the use of

the subdivision with the parameter 𝑠𝑝 = 3 or 𝑠𝑝 = 5, respectively.

A central pixel with no subdivision is equivalent to 𝑠𝑝 = 1. Both

codes ensure a small region of “pixel rings” outside the outermost

image.

Quasar image positions, time delays, and redshifts are the only

data input for the models. Image parities are also given but are

determined solely from experience and by generating test models

to verify image parity assignment. As is well-known, images are

located at extrema of ∇𝜓 and the sign of ∇∇𝜓 determines the

parity.

This input is used to create a system of equations which are

linear in the source position 𝛽 and mass tiles 𝜅𝑛. The intrinsic

and well-known problem of lensing arises from the fact that there

are infinitely many solutions to these linear equations. Free-form

techniques usually sample from that solution space according to

a few reasonable priors. Most notably they require non-negative

mass tiles, limited to twice the average of all neighboring tiles,

and the local density gradient to point typically 45◦ from the cen-

ter; additionally, the azimuthally-averaged mass profiles must not

increase, which still allows for twisting isodensity contours and sig-

nificantly varying ellipticities with radius. These priors ensure some

minimum level of physical correctness where the density of the rea-

sonably smooth lensing mass is increasing towards the center. From

the information provided by the “Evil” team for each rung, further

physical parameters and priors could be included:

• Redshifts set the distance scales (assuming a standard cosmology

of Ω𝑚 = 0.27 and ΩΛ = 0.73).

• The models allowed for external shear.

• Time delays were constrained, for GLASS with uncertainties of

±0.25 days, for PixeLens without.

• The range of 𝐻0 was limited to 50 − 90 km s−1 Mpc−1.

The velocity dispersion information was not used to constrain the

models, but can be derived from the models following Leier (2009).

A free-form lens model consists of an ensemble of models;

∼1000 typically provide a good cover of the solution space. A

single model may contain more than one lensing system, in which

case they are coupled by the requirement that 𝐻0 must be the same

for all systems.

An ensemble usually includes many different convergence

maps some of which are unphysical at times. Generally this is not a

problem, as the ensemble average6 washes out these outliers. Never-

theless, the ensemble can be filtered according to different criteria in

order to optimize the ensemble average. In Rung 2 for instance, we

applied such a post-processing filter based on a simplified version

of the source mapping algorithm described in Denzel et al. (2020b).

Instead of only using quasar image positions, the entire photomet-

ric information was used to select the most probable models in the

following manner. A 𝜒2 value was computed for each lens model of

the ensembles by fitting a synthetic image using the drizzled image

data (including science images, noise level maps and a sampled PSF

image, while masking out the lensing galaxies in the center). For

each ensemble, 300 models with the best values were retained to

estimate 𝐻0. This ensured that only the models which best fit the

entire image data were used to infer 𝐻0. Despite slight improve-

ments on 𝐻0 the filter was abandoned again for Rung 3, because, at

the time, the methods were computationally too intensive.

Each ensemble 𝐻0 distribution was Gaussian fitted as was

demanded by the submission format of the challenge. However, it

is important to note that the distributions are far from Gaussian as

discussed in Denzel et al. (2020a).

For each rung, model ensembles were generated for all 16

single lenses and for groups of multiple lenses (four sets of four

lenses) using GLASS and Pixelens. These submissions have the

suffixes Single and Multi respectively.

In Rung 1, all GLASS models use 𝑝𝑟 = 8 but single lenses have

𝑠𝑝 = 5, and multi-lenses use 𝑠𝑝 = 1. In Rung 2, GLASS single lens

models have a higher resolution using 𝑟𝑝 = 10 and 𝑠𝑝 = 5, while

multi-lenses use 𝑟𝑝 = 8 and 𝑠𝑝 = 1. For Rung 3, the resolution

of GLASS models was increased as high as was computationally

feasible to 𝑟𝑝 = 12 for the submission glassSingleHiRes. The

submission glassSingleLowRes used the standard 𝑟𝑝 = 8. Both

submissions further resolved the central pixel with 𝑠𝑝 = 3.

Additionally, in Rung 1 glassCherrypick is a multi-lens

analysis using a subset of four lenses for which the individually mod-

elled arrival-time surfaces and mass maps subjectively appeared to

be unproblematic (e.g., no additional images and a clean arrival

time surface). In Rung 2, glassSynthFiltered used the afore-

mentioned source mapping algorithm to select models from the

glassMulti ensemble which best reproduced the lensed images.

3.4 Rathnakumar team

S. R. Kumar, H. Chand

6 Due to the linear nature of the lens equation, a superposition of solutions

also is a solution.
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The main motivation of the team was to understand to what accu-

racy and precision 𝐻0 can be constrained through simple analytical

modelling, constrained by point image positions and flux ratios. To

this end, the team modelled the TDLMC Rung 0, Rung 1 and Rung

2 systems using Glafic software (Oguri 2010). In general, the mass

distribution of the lensing galaxy was modelled as singular isother-

mal ellipsoid along with a shear component (SIE + 𝛾). In Rung 1,

some double lens systems were found to overfit (𝜒2 << 1). Thus,

the team replaced SIE by singular isothermal sphere (SIS) along

with a shear component (SIS + 𝛾). All the Rung 2 systems were

modelled as SIE + 𝛾, except for one system for which this model

was found to result in catastrophic failure. The exceptional case

was modelled as singular isothermal ellipsoid without any shear

component (SIE only).

The astrometry of the lensed quasar images and the center of

the lensing galaxy were measured from the provided HST drizzled

image for each system using ‘imexam’ task in IRAF. The astromet-

ric coordinates were assigned an uncertainty of 0.′′02. The fluxes

of the lensed quasar images were also measured through aperture

photometry using the same IRAF task from HST drizzled image.

From these fluxes, the absolute flux ratio was computed for each

lensed quasar image with respect to the brightest image. These flux

ratios were each assigned a sufficiently large uncertainty of 0.2

(e.g., for quads, three flux ratio values were considered), in order

to accommodate for factors such as intrinsic quasar variability, mi-

crolensing induced variability, etc. Parity constraints were inferred

for the lensed quasar images based on the arrival time order and

the configuration, in case of quadruple lenses. The team used the

velocity dispersion and relative time delay values provided along

with their uncertainties as constraints during the modelling. The

fitting process was done using standard procedure by implemented

in Glafic. The background cosmology was fixed to Ω𝑚 = 0.27,

ΩΛ = 0.73, and 𝑤 = -1. Source and lens redshifts were fixed for

each system according to the provided values. The measured 𝐻0 for

each system was taken to be that which corresponded to the best

fitting model. The 1-𝜎 uncertainty of 𝐻0 was inferred by fixing it

at different values around the measured value and marginalizing all

the model parameters to minimize 𝜒2 and noting the range where

Δ𝜒2 < 1, with respect to the value for the best fitting model. The

error bars in positive and negative directions were averaged. To in-

clude the line of sight effects for Rung 1 and Rung 2 systems, 2.5%

was added in quadrature to the 𝐻0 uncertainty. The team submitted

only the results for those systems where 𝐻0 was constrained to bet-

ter than 20 km s−1 Mpc−1. The remaining systems were flagged as

failure. The team also submitted results filtered according to cutoff

values of 15 km s−1 Mpc−1and 10 km s−1 Mpc−1to see what effect

these selections have on the TDLMC performance metrics. In order

to combine all the 𝐻0 estimates from the individual systems into

one global value for a rung, the team did a simple weighted average.

3.5 H0rton team

J. W. Park, Y.-Y. Lin

The H0rton team automated the lens modelling using a Bayesian

neural network (BNN), a method pioneered by Hezaveh et al.

(2017). The BNN-inferred lens model posterior was then propa-

gated into 𝐻0 inference. Readers are referred to the accompanying

method paper (Park et al. 2020) for more details. The implementa-

tion of the H0rton pipeline is available in the form of the open-source

Python package H0rton.7

Given the drizzled image of each lens system, the BNN pre-

dicted the posterior PDF over a power-law elliptical mass model

(PEMD) parameters, the source position, and the half-light radius

of the Sérsic lens light (for computing the velocity dispersion like-

lihood). The posterior PDF was parameterized as a mixture of two

Gaussians with full covariance matrices, informed by the results of

Wagner-Carena et al. (2020) that the parameter recovery improved

with this form of the posterior in comparison to the single uncorre-

lated Gaussian originally adopted by Hezaveh et al. (2017).

The training set for the BNN consisted of 200,000 images. The

assumed lens mass and lens light profiles were identical to those

used to generate the TDLMC data of Rung 1 & 2, i.e., PEMD and

elliptical Sérsic, respectively. The AGN host light, however, was

assumed to follow an elliptical Sérsic profile in order to keep the

parameterization simple. The predictive model parameters in the

training set were assumed to be independently distributed, aside

from selecting the magnification to be greater than 2 in order to

ensure significant lensing signal. The approximate range of each

parameter was inferred from the Rung 1 dataset and confirmed by

visual inspection on the Rung 3 images. For the PSF convolution,

the simulation rotated among the 16 drizzled PSF maps provided

in Rung 1. The PSF information was fed to the BNN only via the

convolved image and the network was expected to process the de-

convolution internally. Non-drizzled images or PSF maps were not

used. The training set was generated using the team’s open-source

Python package Baobab,8 which wraps around the Lenstronomy

package (Birrer & Amara 2018).

The combined cosmographic likelihood was the product of the

likelihoods of the time delays and the line-of-sight velocity disper-

sion with the nuisance parameters, i.e, the external convergence,

kinematic anisotropy, and the BNN-inferred model parameters,

marginalized out. The velocity dispersion was modelled assuming a

spherical power-law mass profile and a Hernquist lens light to solve

the spherical Jeans equation, as done by Suyu et al. (2010b). The

kinematic computations were performed with Lenstronomy. Sam-

ples from the cosmographic likelihood were obtained via MCMC

sampling with Emcee (Foreman-Mackey et al. 2012). Note that,

in contrast to the traditional forward modelling approach, the pix-

elwise image likelihood was never directly modelled. Instead, the

BNN-inferred posterior entered the MCMC integration as a prior

over the lens model parameters at the 𝐻0 inference stage.

It was discovered during the analysis procedure that, when the

BNN-predicted source position and lens model were directly used to

solve the lens equation, the predicted number of images often did not

agree with the data. These cases were traced to sources very close

to the caustic, for which the precision requirements on the source

position tended to be very high (see e.g. Birrer & Treu 2019). The

BNN-inferred posterior was placing significant weight on models

7 https://github.com/jiwoncpark/h0rton
8 https://github.com/jiwoncpark/baobab
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Table 3. Summary table of input data.

Team point sources extended source kinematics

Student-T Yes Yes No

EPFL Yes Yes Yes

Freeform Yes No No

Rathnakumar Yes No Yes

H0rton Yes Yes Yes

Note: − Table summarizes the input data as used by the “Good” team. In

addition, all teams use time delays and redshifts, and simulated HST images

to constrain the deflector.

Table 4. Summary of computation and investigator time.

Team CPU time (hours) investigators time (hours)

Student-T 15, 400 48

EPFL 500, 000 1, 700

Freeform 5, 000 −
Rathnakumar − −

H0rton − −

Note: − Estimated CPU and investigator time spent for TDLMC by the

teams who provided them.

that did not produce the correct number of images. To alleviate

this discrepancy, the image positions were manually estimated from

the images and fed in as additional data into the MCMC sampling

pipeline. A Gaussian likelihood of the image positions, when ap-

pended to the MCMC sampling objective, iteratively brought the

BNN-inferred lens model closer to one that yielded the observed

image positions.

The H0rton team joined the challenge late and only made a

blind submission to Rung 3. The open-box datasets of Rungs 1

and 2 that were available at the time, however, informed the team’s

approach.

4 ANALYSIS OF RUNG 1 AND RUNG 2 SUBMISSIONS

To summarize the input data used by each “Good” team, we present

the information in Table 3. A summary of the computation and

investigator time invested in the challenge is given in Table 4. A

brief analysis of the results of the submissions is presented in this

section.

4.1 Basic statistics

In this section, we give an overview of the performance of the blind

submissions to Rung 1 and Rung 2. As described in Section 2.7, four

metrics are used to perform a synthetic evaluation of the submis-

sions, even though we encourage teams to carry out more detailed

studies. The metrics of each submission for Rung 1 and 2 are shown

in Table 5. Note that the “Good” teams were allowed to adopt mul-

tiple methods based on different algorithms and submit multiple

results for each rung. The metrics plots by each submission are

shown in Figures 6 and 7.

“Good” teams including Student-T, EPFL and Rathnakumar

also estimated and submitted the overall 𝐻0, which is their best

estimation using the combination of the lens systems analyzed in

each rung. The Freeform team also submitted the overall 𝐻0 values

after unblinding, although it is based on a straightforward average

of blind inferences. Following Eq. (11) and (12), we calculate the

metrics of precision and accuracy using the values of these overall

𝐻0 and show them in Figure 8. Note that overall 𝐻0 is a joint

inference from the combination of the multiple lens systems; thus,

the precision metric value should be, in principle, decreased by the

square root of the volume of the analyzed lensed systems (i.e.,
√
𝑁),

compared to Figures 6 and 7. The combination of multiple systems

could also in principle allow teams to flag and reject outliers, thus

reducing the impact of overly complicated systems, i.e., those for

which the modelling tool or data quality is insufficient.

Furthermore, we investigated whether there is “wisdom in the

crowd” by considering metrics combined across 𝐻0 submissions

for Rung 1 and Rung 2. We considered the following strategies:

• Direct average: of all the submission of 𝐻0 without weighting;

• Bagging: For each lens in one rung, we compute the mean 𝐻0

across all the submissions and estimate the uncertainty via bootstrap

resampling. The result is taken as the 𝐻0 inference for each lens

system. Then, we combine 𝐻0 inference across all the lens systems

in the rung to compute the metrics;

• Rejection 𝜎-median: We combine the entire 𝐻0 submissions in

one rung to do the bootstrap resampling. We remove the outliers

before inferring the averaged metrics using the following criteria.

In each bootstrap seed, we calculate the median 𝐻0 (𝐻0 ,median) and

reject the outliers by |𝐻0,median − 𝐻̃0 𝑖 |/𝛿𝑖 > 3;

• Rejection 𝜎-mean: Similar to rejection 𝜎-median, we remove the

outliers in each bootstrap seeding using the 𝐻0 weighted mean value

(𝐻0 ,mean) by |𝐻0,mean − 𝐻̃0 𝑖 |/𝛿𝑖 > 3;

• Rejection widths-median: Similar to previous rejection methods,

we use the widths of the 𝐻0 distribution in each bootstrap drawing

(i.e.,𝑊𝐻0
, which is the half width of 16%−84% confidence interval

in 𝐻0 distribution) and remove the outliers in the bootstrapped

sample by |𝐻0,mean − 𝐻̃0 𝑖 |/𝑊𝐻0
> 3.

The combined metrics are shown in Table 5 and Figures 6 and 7.

These values can be considered as the combined performance of

the entire “Good” teams in each rung. As expected, we find that

the points of these averaged metrics are in the center of the cloud

of the submission by the “Good” teams. It is also encouraging that

the ensemble averages show no evidence of bias, even though they

are a little off the precision target. We note that these combined

metrics are inferred after the unblinding in our TDLMC, but they

are based on blind submissions. In future blind challenges, this

kind of combined metrics could be built in from the start. We note

that the averaged metrics are only introduced to help to “guide the

eye” to evaluate if there is “wisdom in the crowd”. This is not a

common practice in current research on this topic. Furthermore, the

combined metrics are not representative and overweighting certain

methods since different teams had different number of submissions.

A few trends emerge from these plots, discarding Student-T

submission to Rung 2, and EPFL submission to Rung 1 for reasons

discussed in the next subsections. First, most methods seem to have

a realistic assessment of their uncertainties, landing on or close to

the 𝜒2 target. Second, the methods constrained only by point source

position and fluxes tend to produce significantly larger uncertainties

than the target precision. Only the method using the full extent of the

surface brightness of the host galaxy and the ancillary data hits the

precision target. This trend can be confirmed by Table 6, in which

the combined metrics of precision and accuracy are calculated in
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Rung 2 based on the algorithms using different levels of information.

This finding is encouraging even though not surprising: using more

data yields more precise results. Also encouraging is that even in the

more challenging Rung 2 all the methods - including Student-T post

blind - hit the accuracy target. Unexpectedly, the accuracy in Rung 1

seemed to have been less than in Rung 2. The improved accuracy in

Rung 2 is likely due to the fact that the “Good” teams learned from

Rung 1’s results to improve their algorithms and identify bugs in

the codes.

To understand if the performance of the lens modelling is dif-

ferent between different lens configurations (i.e., cross, cusp, fold

and double) and simulating codes (i.e., Lenstronomy and Pylens),

we categorize the entire submissions and compare their metrics di-

rectly by plotting them together in Figure 9. Interestingly, there is

no significant evidence of difference between the different config-

urations (e.g., doubles and quads), which is an echo of the recent

study by Birrer et al. (2019) that the precision of the cosmographic

measurement with the doubly imaged AGNs could be comparable

to those of quadruply imaged ones. Of course, this result should

not be overinterpreted as the additional information content of the

quads may just be not apparent in the configuration and regimes

studied here, but relevant in other situations where for example the

mass distribution is more complicated or the data quality is not as

good, or the uncertainties are smaller. One potential explanation for

the similarity is that the quads considered here are fairly more sym-

metric than the quads of the TDCOSMO collaborations, likely as a

result of the selection function that favors systems with large ellip-

ticity and shear since they have the highest cross-section for quads

v.s. doubles. Symmetric quads have typically shorter time delays

and less radial leverage when compared to more asymmetric ones,

and thus provide weaker constraints on the Hubble constant. For all

these reasons, the similarity between quads and doubles found in

this challenge does not imply that they are equally efficient in reality.

Also, the metrics are indistinguishable if we consider the Lenstron-

omy and Pylens samples separately. This is true even if we restrict

the comparison to the submissions by Student-T and EPFL teams,

who used Lenstronomy. The lack of significant “home advantage”

is consistent with the fact that the difference of the simulated images

between Lenstronomy and Pylens is below the noise level (see

Figure ??).

Due to the limitations of Rung 3, as discussed in Section 5, we

present the Rung 3 results in Appendix A.

4.2 Lessons form Rung 1 and Rung 2

The first important lesson is that the independent teams have come

up with several independent techniques, including novel ones. As

described above, the underlying assumptions of the techniques vary

greatly, and so does the amount of information used by each tech-

nique and the flexibility of the models. As often the case in astro-

physics, finding the right balance between too little and too much

flexibility in the models is difficult yet vital to obtain accuracy and

precision. Too little flexibility may lead to bias or underestimated

error bars. Too much flexibility may lead to unphysical solutions

or unnecessary inflation of the error bars. The level of flexibility

directly ties to another major obstacle to precision, lensing degen-

eracies. One way in which degeneracies can be quantified is by

pulling multiple solutions from different families of models, and

analyzing the variance within that ensemble (see e.g., Gomer &

Williams 2020; Saha 2000).

The second important lesson is that most methods seem to pro-

duce reasonable estimates of their uncertainties. In Rung 1 virtually

Table 5. Metrics of blind submission for Rung 1 and Rung 2.

Team algorithm 𝑓 log(𝜒2) 𝑃 (%) 𝐴(%)

metrics of Rung 1

Student-T algorithm1 0.688 0.771 4.834 1.049

Student-T algorithm2 0.688 0.615 5.374 1.752

Student-T algorithm3 0.688 0.493 8.237 2.492

Student-T algorithm4 0.688 0.541 6.533 0.293

Student-T algorithm5 0.688 0.324 7.019 1.005

Student-T algorithm6 0.688 0.094 10.036 1.825

EPFL submission 0.688 0.411 6.169 7.512

Freeform glassCherrypick 0.250 1.193 5.785 -22.847

Freeform glassMulti 1.000 0.406 9.002 -4.570

Freeform glassSingle 1.000 0.264 13.812 -8.516

Freeform pixelensMulti 1.000 0.349 9.299 -7.220

Freeform pixelensSingle 1.000 0.790 13.123 -5.632

Rathnakumar cutoff10 0.125 0.024 8.429 4.112

Rathnakumar cutoff15 0.250 -0.164 12.137 6.337

Rathnakumar cutoff20 0.375 -0.339 15.419 3.932

Rung 1 combined metrics

Direct average 0.654 0.522 9.140 -1.745

Bagging -0.199 9.646 -1.644

Rejection 𝜎-median 0.219 9.639 -1.081

Rejection 𝜎-mean 0.205 9.649 -0.920

Rejection widths-median 0.522 9.147 -1.779

metrics of Rung 2

Student-T algorithm1 0.812 -0.161 18.215 -4.811

Student-T algorithm2 0.875 -0.672 27.764 5.161

Student-T algorithm3 0.812 0.845 8.531 -6.096

Student-T algorithm4 0.750 0.414 12.267 -3.663

Student-T algorithm5 0.750 -0.247 18.225 -8.014

EPFL DdDdt 0.688 -0.127 3.260 -1.740

EPFL Ddtonly 0.688 0.180 2.635 -1.957

EPFL margDdDdt 0.688 -0.127 3.260 -1.740

EPFL margDdtonly 0.688 0.180 2.635 -1.957

Freeform glassMulti 1.000 2.762 10.603 -3.496

Freeform glassSingle 1.000 1.834 13.010 -3.580

Freeform glassSynthFiltered 1.000 1.847 13.017 -0.683

Freeform pixelensMulti 1.000 0.053 16.335 17.095

Freeform pixelensSingle 1.000 -0.293 21.480 3.187

Rathnakumar cutoff10 0.125 -0.249 12.304 -2.090

Rathnakumar cutoff15 0.312 -0.293 17.166 4.797

Rathnakumar cutoff20 0.375 -0.311 18.382 1.461

Rung 2 combined metrics

Direct average 0.785 1.765 13.154 -0.309

Bagging -0.343 10.768 0.372

Rejection 𝜎-median -0.040 14.041 1.481

Rejection 𝜎-mean 0.660 17.170 0.870

Rejection widths-median 1.769 13.187 -0.279

Rung 2 post-blind submissions, see Sec 4.3

Student-T algorithm1 0.938 -0.421 15.492 -5.969

Student-T algorithm2 1.000 -0.873 26.844 6.396

Student-T algorithm3 1.000 0.317 6.591 0.056

Student-T algorithm4 1.000 -0.162 11.805 4.330

Note: − Table summaries the metrics of the blind submission for Rung 1

and Rung 2, together with the post-blind submissions by Student-T team

(see Section 4.3).

all methods produced acceptable 𝜒2 metric distributions, while in

Rung 2 the submissions that returned an answer for every system

(i.e., high efficiency) sometimes paid the price in the sense that they

underestimated their uncertainties.

The third important lesson is that more information translates

to higher precision. Therefore, if one wishes to extract high precision

from time delay measurements, it is crucial to use all the information

available, not just the positions of the point sources (or their flux).

However, an important caveat is that information content by itself

does not necessarily guarantee accuracy if the modelling technique

is not sufficiently flexible, as discussed above. Rung 1 and Rung 2

provide a useful test, but much remains to be done to explore the

right degree of flexibility.
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inform future challenges. Finally, we presented an overview of the

performance of the methods against 4 metrics (precision, accuracy,

efficiency, goodness of fit).

The main conclusions, based on Rungs 1 and 2, can be sum-

marized as follows:

• Each team came with fundamentally different methods to study

a large sample of systems. In particular, methods constrained only

by point-like images and using either analytic or free-form models,

a novel Bayesian technique assuming a locally Gaussian Fermat

potential, and modelling similar to current cosmographic analyses.

A Bayesian Neural Network approach has also been applied on

unblinded data. Several teams developed fast methods that allowed

them to analyze 48 lenses within the duration of this challenge

(∼ 1 − 2 years). This is a much larger number of systems per

investigator time than the current state-of-the-art models, that so-far

requires of order ∼ 1 year per system (not considering the process

of collecting ancillary data and analyzing the lens environment).

• The fast methods applied to this challenge estimate their uncer-

tainty appropriately, yielding error bars that are statistically compa-

rable with the departure from the truth.

• The fast methods that exploit the full information content of the

data achieve higher precision than the ones that only utilize lensed

quasars positions and fluxes to constrain the models.

• The fast methods based on full image reconstruction can meet the

target precision (6% per system) and accuracy (2%) when analyzing

mock images based on complex sources and starting with a guess

of the point spread function.

• Astrometric requirements on the position of the point sources can

be stringent and difficult to meet for high precision time delay mea-

surements, given the Hubble Space Telescope point spread function

and pixel size. Biases arising from the poor sampling of the PSF

can be avoided by modelling the astrometric noise explicitly.

As far as Rung 3 is concerned, one generic problem was known

before the challenge, i.e., if simulations do not reproduce real galax-

ies at the percent level precision in gravitational potential, it is diffi-

cult to generalize the outcome of the challenge. A good example of

this issue is the finite resolution of cosmological hydrodynamical

resolution, which introduces features like cores that are unlikely

to be present in real systems. A spherical redistribution of cusp to

core would not itself affect lensing observables, but it would change

kinematic and other properties. If modelers assume that galaxies

are cuspy, and do not detect the core in the simulations, what does

it mean for real galaxies? The following additional and more subtle

effects were identified post-unblinding.

• The kinematics of the particles in the simulations must be consis-

tent to sub-percent level with the gravitational potential generated

by the lensing data products given to the “Good” teams. Remov-

ing substructures or other parts of the simulation when generating

the lensing data may cause internal tension in the data so that the

lensing and dynamical probes cannot be combined without bias.

• The standard practice of truncating simulated halos at the virial

radius may lead to inconsistencies between the actual Fermat poten-

tial and the one computed from truncated maps. Lensing quantities

such as the Fermat potential are non local, and the kernel mapping

convergence into potential is logarithmic. Therefore, in order to

avoid biases in Fermat potential at the few percent level, one has

to include all particles well beyond the virial radius and carefully

consider the shape of the truncation.

In recent years, a number of works have investigated the sys-

tematic uncertainties in time-delay cosmography (e.g., Schneider &

Sluse 2013; Birrer et al. 2016; Sonnenfeld 2018; Kochanek 2020;

Millon et al. 2020). However, it is difficult to make a quantitative

comparison between our results and those in the literature because

the uncertainties depend strongly on the assumptions and methods

used.

To conclude, this work shows that blind challenges on simu-

lated data are a powerful tool to study and characterize a method,

alongside blind and independent analysis of real datasets (Millon

et al. 2020). The results obtained from this first time delay lens

modelling challenge are encouraging, in the sense that accurate and

precise 𝐻0 can be derived blindly even in the presence of complex

sources and unknown PSF. However, our results also demonstrate

that much work remains to be done before we can have conclusive

end-to-end tests based on simulations. First, state-of-the-art mod-

elling methods exploiting the full information content of the data

need to speed up so that even larger simulated datasets can be an-

alyzed within a practical time frame to explore a variety of more

complicated configurations. For example, the EPFL team that used

all the information employed 500,000 CPU hours and 1,700 hours

of investigator time, almost a full year equivalent. This is signifi-

cantly less time than currently employed per lens by H0LiCOW or

STRIDES. However, the challenge was single plane and by design

simpler in terms of satellites and perturbers along the line of sight

than real lenses. So, in order to analyze samples of order 100-1000

lenses with increased complexity, further speed-ups are necessary.

Second, improvements in numerical simulations of massive

elliptical galaxies and the calculation of their lensing properties are

needed before they can be used to perform lens modelling challenges

to percent level precision.
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APPENDIX A: DETAILS OF RUNG 3

A1 Illustris simulations

The first group of simulated galaxies is selected from the Illustris

simulation (Vogelsberger et al. 2013, 2014) with six galaxies at

𝑧 = 0.4 and six galaxies at 𝑧 = 0.6. All have total dark matter halo

masses between 1 − 2 (1013𝑀�), and velocity dispersion ranging

from 250 km/s to 320 km/s. In this challenge, we do not intend to test

biases in the most severe cases where the true profiles significantly

deviate away from the power-law models. For this reason, our selec-

tion was based on the fact that the selected galaxies shall distribute

fairly closely around the best-fit general mass-velocity dispersion

relation. As a result, the majority of the selected galaxies are not

classified as the extreme cases of deviations from power-law mass

distributions; the most severe case would result in an underestimate

of Hubble constant by 15% (see Xu et al. 2016).

The convergence and potential maps (as well as potential’s first

and second derivatives) were calculated using netted-mesh based

methods through FFT with an isolated boundary condition. All

matter distribution of the selected galaxy halo is truncated at R200

with a spherical aperture (Xu et al. 2009). The results have been

cross-checked with the public software GLAMER, which is a ray-

tracing code for the simulation of gravitational lenses Metcalf &

Petkova (2014); Petkova et al. (2014). In addition, we also calcu-

lated the same maps using a mesh-based FFT algorithm, adopting

Smoothed-particle hydrodynamics (SPH) kernel to smooth the sim-

ulated particles to the mesh. The two sets of results showed expected

consistency within the numerical uncertainties.

The velocity maps were calculated on desired meshes; here no

smoothing was used. The pixel values of mean velocity and velocity

dispersions were weighted by rest-frame SDSS-r band luminosities

of stellar particles projected to the pixel.

A2 Zoom simulations

The second set of simulations is a sample of ‘zoom’ cosmological

simulations, which have been previously used in Frigo et al. (2019).

A ‘zoom’ simulation is a higher resolution re-run of a small part

of the cosmological box of a large-scale simulation (like Illustris),

called the ‘parent’ simulation. In the set we employed, the parent

simulation is a 100 Mpc wide cosmological box simulated with dark

matter only (Oser et al. 2010), and each zoom simulation covers the

volume of a dark matter halo (at 𝑧 = 0). The simulations were run

with a modified version of GADGET2 (Springel 2005), called SPH-

GAL (Hu et al. 2014), which avoids some of the shortcomings of

SPH codes. Unlike the parent, the zoom simulations also include

gas, stars and black hole particles. They include models for star for-

mation (based on gas density and temperature), metal enrichment,

gas cooling, stellar winds, supernova feedback (Type Ia and Type II),

and AGN feedback (using the Choi et al. (2012) model). The spatial

resolution (softening length) of the simulation is 200 pc, while the

mass resolution (initial mass of gas particles) is 7×105 𝑀� . This is

a higher resolution than Illustris, but not high enough to avoid the

issues presented in Section 5. The simulations run from 𝑧 = 43 to

𝑧 = 0. The sample of simulated galaxies varies in mass, size, dy-

namical and stellar-population properties. For the TDLMC project,

we used snapshots at different redshifts (0.3 < 𝑧 < 0.5) of the four

most massive AGN galaxies, which have arcsec-size Einstein radii.

More details on the simulation code and on this sample can be found

in Frigo et al. (2019).

The maps of convergence, lensing potential and its deriva-

tives were calculated with the post-processing ray tracing code
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Table A1. Metrics of blind submission for Rung 3.

Team algorithm 𝑓 log(𝜒2) 𝑃 (%) 𝐴(%)

metrics of Rung 3

Student-T algorithm1 0.750 0.117 15.616 -3.803

Student-T algorithm2 0.812 -0.583 26.226 6.221

Student-T algorithm3 0.938 0.459 8.472 1.677

Student-T algorithm4 1.000 0.213 12.869 2.512

Student-T algorithm5 0.875 0.402 11.998 -11.998

Student-T algorithm6 0.938 -0.932 26.515 3.986

Student-T algorithm7 1.000 0.718 4.885 -5.415

Student-T algorithm8 1.000 0.027 12.587 -2.786

Student-T algorithm9 0.875 0.532 8.247 -7.373

Student-T algorithm10 0.938 -0.848 15.369 4.401

Student-T algorithm11 1.000 1.132 3.923 -5.065

Student-T algorithm12 1.000 0.115 9.728 -1.195

EPFL Combined 0.438 0.893 4.276 -9.963

EPFL CombinedDdtOnly 0.438 0.879 4.584 -9.944

EPFL Composite 0.500 1.515 2.612 -11.302

EPFL CompositeDdtOnly 0.500 1.500 2.559 -11.403

EPFL Powerlaw 0.812 0.938 2.941 -7.016

EPFL PowerlawDdtonly 0.812 0.955 3.001 -6.973

Freeform glassMulti 1.000 2.464 5.106 -16.041

Freeform glassSingleHiRes 1.000 1.954 5.809 -17.267

Freeform glassSingleLowRes 1.000 1.401 9.632 -11.441

Freeform pixelensMulti 1.000 -0.695 18.866 7.626

Freeform pixelensSingle 1.000 -0.226 21.637 0.542

H0rton Bayesian neural network 0.312 0.637 9.056 3.356

Note: − Table summaries the metrics of the blind submission for Rung 3.

Hilbert (Hilbert et al. 2007, 2009). The whole high resolution

region of each simulation, roughly reaching out to twice the virial

radius of the galaxy, was fed into the code and used to calculate

the lensing maps. The 3D orientation of the galaxy was chosen

randomly before the analysis. The kinematic maps were calculated

on the same grid as the lensing maps, weighting the line-of-sight

velocity of each particle with its R band luminosity.

A3 Rung 3 results

For completeness, we report here the full results of Rung 3. We

caution the reader that the interpretation of these results is diffi-

cult, because of the limitations and numerical issues described in

Section 5.

The metric of each submission for Rung 3 are listed in Table A1

and plotted in Figures A1 and A2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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