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ABSTRACT

In time-delay cosmography, three of the key ingredients are 1) determining the ve-
locity dispersion of the lensing galaxy, 2) identifying galaxies and groups along the
line of sight with sufficient proximity and mass to be included in the mass model,
and 3) estimating the external convergence kex from less massive structures that are
not included in the mass model. We present results on all three of these ingredients
for two time-delay lensed quasar systems, DES J0408—-5354 and WGD 2038-4008 . We
use the Gemini, Magellan and VLT telescopes to obtain spectra to both measure the
stellar velocity dispersions of the main lensing galaxies and to identify the line-of-
sight galaxies in these systems. Next, we identify 10 groups in DES J0408-5354 and
2 groups in WGD 2038-4008 using a group-finding algorithm. We then identify the
most significant galaxy and galaxy-group perturbers using the "flexion shift” criterion.
We determine the probability distribution function of the external convergence kex;
for both of these systems based on our spectroscopy and on the DES-only multiband
wide-field observations. Using weighted galaxy counts, calibrated based on the Millen-
nium Simulation, we find that DES J0408-5354 is located in a significantly underdense
environment, leading to a tight (width ~ 3%), negative-value key distribution. On the
other hand, WGD 2038-4008 is located in an environment of close to unit density, and
its low source redshift results in a much tighter ke of ~ 1%, as long as no external
shear constraints are imposed.

Key words: gravitational lensing: strong — quasars: individual: DES J0408-5354 ,
WGD 2038-4008 — galaxies: groups: general
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1 INTRODUCTION

When a source with a time-varying luminosity such as a
quasar or a supernova undergoes strong gravitational lens-
ing, the light reaching the observer from the multiple im-
ages takes different paths and hence different travel times.
It was noted by Refsdal (1964) that these time-delays be-
tween the images can be used to measure cosmological dis-
tances and the Hubble constant Hp. In recent years, the
Hy Lenses in COSMOGRAILaAZs Wellspring (HOLiCOW)
collaboration has been leading an active time-delay cos-
mography program to measure H using lensed quasars,
see Suyu et al. (2017); Wong et al. (2019) and references
therein. For a recent review of the field of time-delay cos-
mography see Treu & Marshall (2016). The significant im-
provements in the uncertainty in the measurements of H
in the last two decades have come from the understanding
of the key ingredients required to achieve an accurate mea-
surement. In particular, three of these ingredients are: 1)
determining the velocity dispersion of the lensing galaxy,
2) identifying galaxies and groups along the line of sight
that are close enough to the lens and massive enough to
be included in the mass model, and 3) estimating the ex-
ternal convergence kexy due to less massive structures that
are not included explicitly in the mass model. In this work,
we present results on these three ingredients for two time-
delay lensed quasar systems, DES J0408-5354 (source red-
shift zg =2.375, main deflector redshift zg =0.5967, Lin et al.
2017) and WGD 2038-4008 (zs =0.777, zg =0.2283, Agnello
et al. 2018), as part of the STRong Lensing Insights into
the Dark Energy Survey (STRIDES) campaign (Treu et al.
2018), an external collaboration of the Dark Energy Survey.
It has been known for sometime that including stellar
kinematics of the lensing galaxy allows one to break the
degeneracies inherent in the mass profile of the lens (Treu &
Koopmans 2002). To obtain the stellar velocity dispersion
of the lens we took spectroscopic observations of the main
lensing galaxy in DES J0408-5354 and WGD 2038-4008 .

If the perturbers along the line of sight are not ex-
plicitly accounted for in the lens modeling, these pertur-
bations can result in systematic errors of order a few per-
cent in the inferred value of Hy. To reduce such system-
atics, we identify galaxies and galaxy groups in the fields
of DES J0408-5354 and WGD 2038-4008 that may signifi-
cantly impact the lensing potential of the system. These
galaxies and galaxy groups will be included in the lens mod-
els for both DES J0408-5354 (Shajib et al. 2019a, Yidirim
et al. in prep) and WGD 2038-4008 (Wong et al. in prep).

To identify the most significant perturbing galaxies and
galaxy groups, we use the “flexion shift” diagnostic pro-
posed by McCully et al. (2014, 2017), which has also been
used in the line-of-sight analysis of the HOLICOW lenses
HE 0435-1223 (Sluse et al. 2017) and WFI12033-4723 (Sluse
et al. 2019). This diagnostic estimates the difference in
lensed image positions caused by the leading order non-tidal
(i.e. third-order) perturbation produced by a nearby galaxy
or galaxy group. McCully et al. (2017) showed that by ex-
plicitly modeling perturbers with flexion shifts larger than
the conservative limit of A3x > 107 ”, we can constrain the
bias on Hj due to this uncertainty to the percent level.

In addition, we determine for both systems the proba-
bility distribution function of the external convergence kext

due to less massive structures, which do not need to be ex-
plicitly incorporated in the mass modeling, but nonetheless
contribute a uniform mass-sheet. Indeed, if unaccounted for,
this quantity would bias Hy such that Hy = Hg‘(’del(l — Kext)

(e.g., Suyu et al. 2010a), for H(I)]“O“le1 obtained from lens mod-
eling. For the first time we determine kex; based on multi-
band (griz), wide-field images obtained from the Dark En-
ergy Survey! (DES) data. Following previous work (Fass-
nacht et al. 2011; Greene et al. 2013; Rusu et al. 2017;
Rusu et al. 2019; Birrer et al. 2019; Chen et al. 2019),
we measure the under/overdensity of the line of sight to-
wards both lens systems relative to the “average” line of
sight density throughout the Universe, obtained from the
cosmologically representative sample provided by the DES
in the form of a set of control fields. Aiming to constrain kext
as tightly as possible, as well as to study the effect of differ-
ent analysis choices, we determine under/overdensities using
various combinations of weighting schemes for the galaxy
counts, such as the radial distance to the lens/field cen-
ter and the redshift. Finally, we convert the measured un-
der/overdensities into a kext distribution, using ray-tracing
through the Millennium Simulation (MS; Springel et al.
2005). We explore several aperture sizes, and two differ-
ent photometric redshift algorithms, which we further test
through simulations.

We perform a spectroscopic survey to obtain red-
shifts of galaxies in the fields of DESJ0408-5354 and
WGD 2038-4008. This redshift data is used to identify
galaxy groups located in the environment or along the line
of sight to these strong lensing systems as well as in the cal-
culation of the under/overdensity of the line of sight towards
both lens systems.

The structure of this paper is as follows. In Section 2
we describe our photometric and spectroscopic data, and
in Section 3 we present our techniques to measure redshifts
and stellar masses. In Section 4 we derive the stellar ve-
locity dispersions for the main lensing galaxies in the two
systems, and in Section 5 we describe our technique to iden-
tify galaxy groups. In Section 6 we identify the structures
which can potentially affect the modeling of the lensing sys-
tems. In Section 7 we present our measurement of the rel-
ative weighted galaxy count ratios for DES J0408-5354 and
WGD 2038-4008 , including accounting for relevant errors.
In Section 8 we use ray-tracing through the MS in order to
obtain P(kext) for the measured ratios, and present our tests
for robustness. Finally, we conclude in Section 9.

The current work represents one of a series of pa-
pers from the STRIDES collaboration, which together aim
to obtain an accurate and precise estimate of Hy with
a blinded approach, from a comprehensive modelling of
DES J0408-5354 and WGD 2038-4008 . In particular, lens
modeling is performed by two independent modeling teams
(Shajib et al. 2019a, as well as Yildirim et al. in prep, Wong
et al. in prep), both of which make use of the stellar velocity
dispersion, environment and line-of-sight constraints derived
in the present work. Throughout this paper, we assume a flat
ACDM cosmology with Hy = 70 kms™' Mpc~!, Q,, = 0.3 for
convenience when estimating physical individual galaxy and
galaxy group properties (§5-§6). However, in the latter part

! https://www.darkenergysurvey.org
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of the analysis, where we determine the under/overdensities
of the fields of the lenses and then derive kext distributions
using ray-tracing through the MS, we adopt the MS cosmol-
ogy, Qm =0.25, Q) =0.75, h = 0.73, og = 0.9 for consistency.
This is not expected to have a significant effect on the in-
ference of Hy (see Section 8). We present all magnitudes in
the AB system. We define all standard deviations as the
semi-difference between the 84th and 16th percentiles.

2 DATA

The Dark Energy Survey (DES) is a deep sky survey that
was carried out using the Dark Energy Camera (DECam,
Flaugher et al. 2015) located on the Blanco 4m telescope at
the Cerro Tololo Inter-American Observatory in the Chilean
Andes. The survey ran from 2013-2019 (Diehl et al. 2019)
and covered ~ 5100 sq. degs of the southern sky in five opti-
cal filters (grizY). The DES data are processed by the DES
Data Management team (DESDM, Morganson et al. 2018)
to produce annual data releases that consist of coadded im-
ages and object catalogs. We have used two data sets for
the work described here, the first year of DES data which
is referred to as DES Year 1 (Y1) and the first three years
known as DES Year 3 (Y3). The median single epoch PSF
FWHM in the i-band is 0.88""and the coadd magnitude limit
in the i-band is 23.44. More details of the survey data can
be found in Abbott et al. (2018).

2.1 Spectroscopic Observations

Spectroscopic observations were carried out using three
instruments: (1) the Gemini Multi-Object Spectrograph
(GMOS-S) on the Gemini South telescope; (2) the Low
Dispersion Survey Spectrograph (LDSS-3) on the Magel-
lan Clay telescope; and (3) the Multi Unit Spectroscopic
Explorer (MUSE) on the European Southern Observatory
(ESO) Very Large Telescope (VLT) Unit Telescope 4 (UT4).
Table 1 summarizes details of the spectroscopic data taken
using these three telescope+instrument setups.

The GMOS-S observations were taken as part of two
programs: (1) a Gemini Large and Long Program (LLP;
PI: E. Buckley-Geer; program IDs GS-2015B-LP-5 and GS-
2017A-LP-5) of spectroscopic follow-up for DES strong lens-
ing systems and for DES photometric redshift (photo-z) cal-
ibrations; and (2) a dedicated program (PI: H. Lin; pro-
gram ID GS-2018B-Q-220) to observe line-of-sight galaxy
redshifts and lensing galaxy velocity dispersions for our two
lensed quasar systems. These programs observed a total of
four GMOS-S multi-object spectroscopy (MOS) masks for
DES J0408-5354 and two masks for WGD 2038-4008 , and
the data were taken in queue mode on Gemini South dur-
ing the semesters 2015B, 2017A, and 2018B. Nearly all the
masks were each observed using both the GMOS-S B600 and
R400 gratings, in order to provide spectral coverage over
both blue and red wavelength ranges, respectively, spanning
approximately 3800A—7500A and 5000A—10500A. Multiple
science exposures were taken to reject cosmic rays, and the
grating central wavelength was dithered slightly for different
exposures to fill in wavelength gaps due to spatial gaps be-
tween the three GMOS-S CCDs. Flat field and wavelength

MNRAS 000, 1-40 (2020)

Table 1. Spectroscopic observations for the DES J0408-5354 and
WGD 2038-4008 systems.

Telescope/Instrument
Grating/ Exposure
Mask/Cube Grism UT Date time (sec)

| DES J0408-5354

Gemini South/GMOS-S

(1) DESJ0408-5354_42 B600 2015 Dec 09 4 %900
(2) DESJ0408-5354_42 R400 2015 Dec 09 4 %900
(3) DESJ0408-5354_45 B600 2017 Apr 26-27 5 %900
(4) DESJ0408-5354_45 R400 2017 Mar 30-31 4 %900
(5) DESJ0408-5354_A B600 2018 Dec 04 4 %900
(6) DESJ0408-5354_A2 R400 2019 Feb 04 6 x 1000
(7) DESJ0408-5354_B B600 2018 Dec 09 4 %900
(8) DESJ0408-5354_B R400 2018 Dec 09 4 %900
Magellan Clay/LDSS-3
(9) des0408a VPH-AIl 2018 Jan 21 7 x 780
(10) des0408b VPH-AIl 2018 Jan 21 6 x 780
(11) des0408c VPH-AIl 2018 Jan 22 7 x 780
(12) des0408d VPH-AIl 2018 Jan 22 6 x 780
VLT UT4/MUSE
(13) MUSE 2019 Jan 11,13 14400

| WGD 2038-4008

Gemini South/GMOS-S

(14) DESJ2038-4008_A B600 2018 Nov 06 4 x 900
(15) DESJ2038-4008_A R400 2018 Nov 07 4 %900
(16) DESJ2038-4008_B B600 2018 Nov 07 4 x 900

calibration exposures were interspersed with the science ex-
posures.

The LDSS-3 observations were taken as part of
a semester 2018A Magellan program (PL: J. Frie-
man) to obtain line-of-sight galaxy spectroscopy for
DES J0408-5354 and two other lensed quad quasar sys-
tems. Four LDSS-3 MOS masks were observed for
DES J0408-5354 over the two nights 2018 January 21,22 UT.
Each mask was observed using the LDSS-3 VPH-AII grism,
with wavelength coverage of about 3800A—10500A. Multi-
ple science exposures were taken to reject cosmic rays. Flat
field and wavelength calibration exposures were taken imme-
diately before and after the sequence of science exposures.

The VLT MUSE observations were taken as part of an
ESO program (0102.A-0600(E), PI: A. Agnello) to do inte-
gral field spectroscopy of DES J0408—5354 and its surround-
ing field. The MUSE observations were done in wide-field
mode with adaptive optics corrections and were carried out
over the two nights 2019 Jan 11 and 13. The final MUSE
data cube covered an area of 92" X 95", and the wavelength
coverage spanned 4700A-5803A and 5966A—9350A. Addi-
tional spectroscopic analysis of the MUSE data and further
details of the observations and data processing are given in
Shajib et al. (2019a).

2.2 Spectroscopic target selection

Galaxy targets for the Gemini and Magellan masks were
selected using DES photometry. The exact selection criteria
changed somewhat with time, due to improvements in DES
photometric measurements, star-galaxy separation, and
object catalogs. Specifically, three sets of selection criteria
were used for the masks in Table 1, listed below in order
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from earliest to latest in time.

(A) Gemini South masks (1)-(4): Galaxies were se-
lected from the DES Year 1 (Y1) “Y1A1 COADD”
catalog (Drlica-Wagner et al. 2018), using the i-band
SExtractor AUTO magnitude (Bertin & Arnouts 1996)
cuts 20 < MAGLAUTO_I < 22.5. No Milky Way extinc-
tion corrections were applied to the magnitudes before
selection. Star-galaxy separation used the SExtractor
SPREAD_MODEL classifier (Desai et al. 2012), also in the
i-band: SPREAD_MODEL_I > 0.002.

(B) Magellan masks (9)-(12): Galaxy targets were now
selected from the deeper DES Year 3 (Y3) data set,
specifically from the “Y3 GOLD” (Sevilla et al. in prep)
version 1.0 catalog, using the i-band magnitude cuts
18 < MAG_AUTO_I < 23, in particular extending the faint
magnitude limit fainter to aim for a deeper sample. Again
no Milky Way extinction corrections were applied to the
magnitudes. Star-galaxy separation used the same i-band
cut: SPREAD_MODEL_T > 0.002.

(C) Gemini South masks (5)-(8) and (14)-(16): These
masks were the latest to be designed and therefore used
improved selection methods compared to the masks in
(A) and (B). Galaxies were again selected from the “Y3
GOLD” data set, but using the most current version
2.2 catalog. We also changed the selection magnitudes
from AUTO to MOF (Drlica-Wagner et al. 2018, Sevilla et
al. in prep) magnitudes, where the latter provide im-
proved photometry, based on simultaneous multiepoch,
multiband, and multiobject fits. The adopted i-band cuts
were 15 < MOF_CM_MAG_CORRECTED_I < 23, where these
MOF magnitudes also included Milky Way extinction
corrections and several other sub-percent photometric
zeropoint corrections (Sevilla et al. in prep). Finally, we
also updated the star-galaxy separation classifier to EX-
TENDED_CLASS_MASH_MOF (Sevilla et al. in prep), specifically
using the cuts EXTENDED_CLASS_MASH MOF = 3 (indicating
“high confidence galaxies”) or 2 (indicating “mostly galax-
ies”). For i < 22.5, this classification should yield a galaxy
efficiency > 98.5% and a stellar contamination < 1% (Sevilla
et al. in prep).

Each Magellan LDSS-3 and Gemini South GMOS-
S mask included galaxy targets distributed over about a
5.5’ x 5.5’ sky area centered on each lensed quasar system.
Generally one to three slits on each mask were manually
designed to target objects in or close to the lensed quasar
system, e.g., to measure the redshift or velocity dispersion of
the main lensing galaxy in each system, or to observe close
nearby neighbor galaxies of the systems. The remaining tar-
gets were selected automatically by GMMPSZ or maskgen37 the
respective GMOS-S or LDSS-3 mask design software, both
of which designed masks to maximize the number of targets
observed. The potential set of galaxies that could be tar-
geted was subject to the selection criteria described above.
In addition, at the time each mask was designed, we re-

2 https://gmmps-documentation.readthedocs.io/en/latest/
3 https://code.obs.carnegiescience.edu/maskgen

moved from the initial target list any galaxies which already
had high-confidence redshifts from previous observations, or
which were already targeted on companion masks designed
for the same semester’s (Gemini) observing queue or (Mag-
ellan) observing run. Moreover, for the Magellan LDSS-3
targets (only), we assigned targeting priorities as inputs to
maskgen, depending on the i-band magnitude and on the
radius from the DES J0408-5354 quad system. Specifically,
for galaxies with radius < 3’, we assigned priorities based on
MAG_AUTO_I (as in criteria (B) above), with highest priority
given to bright galaxies MAG_AUTO_I < 19.5, next priority to
galaxies otherwise brighter than MAG_AUTO_I = 22, and lowest
priority to galaxies otherwise brighter than MAG_AUTO_I = 23.
Finally, for galaxies with radius > 3, we assigned lower pri-
orities than for galaxies < 3’, and these priorities were tied
linearly to MAG_AUTO_I (with brighter galaxies at higher pri-
ority).

2.3 Data for the determination of the line-of-sight
under /overdensities

In order to determine the line-of-sight under/overdensities
for DES J0408-5354 and WGD 2038-4008 we need a catalog
of galaxy properties that includes magnitudes and photo-
metric redshifts. We have used the catalogs from the Year 3
Gold version 2.2 catalog.

We have used the photometric redshifts computed us-
ing the DNF machine-learning algorithm described in De Vi-
cente et al. (2016). We also repeat the analysis using the pho-
tometric redshifts derived with the Bayesian Photometric
Redshift (BPZ: Benitez 2000; Hoyle et al. 2018) method. If
an object has a spectroscopic redshift from Gemini or Mag-
ellan, as described below in §3.1, then we use that redshift
instead of the photometric redshift. In Figure 1 we show the
comparison of the photometric redshifts from the DNF algo-
rithm to the spectroscopic redshifts for objects with i < 22.5.
The comparison of the DNF and BPZ photo-z’s for the ob-
jects that only have photometric redshifts is shown also in
Figure 1 for both DES J0408-5354 and WGD 2038-4008.
We observe that there is no obvious mismatch between the
two algorithms so we have used results from both of them
in the subsequent analysis. We note that the photometric
redshifts are computed using the photometry in the griz fil-
ters only, as Hoyle et al. (2018) have found that the Y—band
adds little to no predictive power.

2.8.1 The Control Field: DES

To to apply the weighted number counts technique we
need a control field against which to determine an un-
der/overdensity, the constraint we will eventually use to de-
termine P(kext). As both lensing systems are within the DES
footprint we have chosen to use the full DES survey footprint
of 5100 sq. deg to provide our control field. This differs from
our approach in the past, where we have used control fields
observed with the Hubble Space Telescope (HST) (Suyu et al.
2010b; Fassnacht et al. 2011; Suyu et al. 2013; Greene et al.
2013), and from CFHTLenS (Heymans et al. 2012), (e.g.,
Rusu et al. 2017; Rusu et al. 2019; Birrer et al. 2019; Chen
et al. 2019). The choice of control fields from DES itself, as
opposed to other large-scale cosmological surveys, is opti-

MNRAS 000, 1-40 (2020)
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Figure 1. Upper figures: Comparison of the DNF and BPZ photometric redshifts for galaxies with no spectroscopic redshift which
have i < 22.5 within 120 arcsec of the lens center. The dashed line indicates BPZ = DNF. Left figure DES J0408-5354, right figure
WGD 2038-4008 . Lower figures: Comparison of spectroscopic and DNF photometric redshifts for galaxies with i < 22.5 within 120 arcsec
of the lens center. The dashed line indicates specz = DNF photo-z. Left figure DES J0408-5354 , right figure WGD 2038-4008 .

mal. This choice avoids potential biases to which our tech-
nique of obtaining ket from weighted number count ratios
may be sensitive, such as due to mismatches in image reso-
lution, depth and star-galaxy classification between the lens
(target) fields and the control fields (e.g., Rusu et al. 2017).
The full Year 6 DES survey footprint consists of 10169 tiles,
each 10,000 x 10,000 pixels or 0.53 sq deg in area. We take
a sample of tiles from the center of the footprint that are
far from the survey edges and also eliminate tiles that con-
tain very bright stars or very large galaxies. This results in
a total of 5402 tiles of which we select 843 from across the
survey footprint. For each tile we select six fields each of
1000 x 1000 pixels. This gives us a total of 5094 control fields
spread over the sky and covering ~ 27 sq deg. The location

MNRAS 000, 1-40 (2020)

of these six fields are shown in Figure 2 for one of the DES
tiles. This should allow us to account for sample variance.

2.8.2 The galaxy samples for the target and control fields

For the target fields we make an initial selection of all ob-
jects from the Y3 Gold catalog that fall within a 4’ x 4/
box centered on the lens. For the control fields we make
the same selection but using the center of the control field.
We select all objects that satisfy FLAGS_GOLD = 0 and
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Figure 2. A typical DES tile showing the location of the control
fields. Each magenta box is 1000 x 1000 pixels.

EXTENDED_CLASS_SOF > 2, which selects galaxies4. We are
using the Single-Object Fitting (SOF) magnitudes that are
computed using a simplified version of the Multi-Object Fit-
ting (MOF) algorithm described in section 6.3 of Drlica-
Wagner et al. (2018). We select all objects with i-band mag-
nitude 0 < SOF_CM_MAG_CORRECTED_I < 22.5. The faint-end
limiting magnitude, which is the same one used in Rusu
et al. (2019) based on the analysis in Sluse et al. (2019),
also for the purpose of constraining Hj, ensures that the
galaxy classification is reliable, and that the galaxy cat-
alog is complete. It is also deep enough (Collett et al.
2013) to keep biases on kext due to depth significantly be-
low the 1% level. We are using the photometric redshifts
that were calculated using the SOF magnitudes, namely
DNF_ZMEAN_SOF and BPZ_ZMEAN_SOF. We also require that the
redshift DNF_ZMEAN_SOF or BPZ_ZMEAN_SOF of the objects sat-
isfy z < zg, where zg is the source redshift, and that their
distance Ar from the center of the field is less than 120”.
Figure 3 shows the objects that pass these selection crite-
ria in a 1000 x 1000 pixel field around DES J0408-5354 and
WGD 2038-4008..

3 REDSHIFTS AND STELLAR MASSES

In this section we first describe our spectroscopic redshift
measurement procedure, summarize the results, and show
the line-of-sight galaxy redshift distributions for each lensing

4 When comparing with the available HST data, we found that
five objects in the WGD 2038-4008 field are erroneously classified
by this pipeline, mainly in the form of stars wrongly classified
as galaxies. As some of these are close enough to the lens to
bias the inference described below, we were careful to correct the
classification.

Figure 3. The 1000 x 1000 pixel field of view for
DES J0408-5354 (upper figure) and WGD 2038-4008 (lower
figure). North is up and East is left. The i < 22.5 galaxies inside
the 120” radius aperture are indicated by magenta squares for
the objects with a spectroscopic redshift and green circles for
the objects with no spectroscopic redshift. Stars are indicated by
the cyan diamonds. The two concentric cyan circles indicate the
apertures of 120” and 45” radius respectively.

system. We then describe and plot the spectroscopic redshift
completeness for the overall galaxy samples in the two sys-
tems. Finally, we detail the procedures for measuring stellar
masses using photometric model fitting for our galaxies.

MNRAS 000, 1-40 (2020)



Environment of DES J0408-535/ and WGD 2038—4008 7

3.1 Spectroscopic redshifts

The Gemini and Magellan data were processed to 2D and
1D spectra using the IRAF Gemini and COSMOS (Dressler
et al. 2011; Oemler et al. 2017) reduction packages, re-
spectively. Initial redshifts were determined automatically
(without visual inspection) using the IRAF external package
rvsao (Kurtz & Mink 1998) to cross correlate the 1D spec-
tra against a set of SDSS galaxy templates. All processed
2D and 1D spectra, along with the corresponding automated
redshift results, were visually inspected in order to assign fi-
nal quality flags to the redshifts. If necessary, an automated
redshift may be overridden and manually re-measured from
the 2D or 1D spectrum. Only high-confidence redshifts were
included in the subsequent analyses.

For DES J0408-5354 , we obtained 101 high-confidence
galaxy redshifts from Gemini South GMOS-S and 70 from
Magellan LDSS-3. From the VLT MUSE data we obtained
another 28 redshifts that were not already among the
Gemini and Magellan redshifts, thus resulting in a total
of 199 high-confidence redshifts for DES J0408-5354 . For
WGD 2038-4008 we obtained a total of 54 high-confidence
galaxy redshifts, all obtained from the Gemini South GMOS-
S data. The above counts include the two redshifts of the
main lensing galaxies in the systems. Figure 4 shows his-
tograms of the redshift distributions for each lensing system.

3.2 Redshift completeness

We define spectroscopic redshift completeness to be the frac-
tion of DES Y3 Gold (Sevilla et al. in prep) galaxies that
have redshifts (as described in §3.1). To define our photo-
metric galaxy sample, we use the latest and best available
version of the Y3 Gold catalog, version 2.2, and we also use
the same magnitude and star-galaxy separation cuts as listed
in target selection criteria (C) of §2.2 above.

For DESJ0408-5354, the resulting spectro-
scopic redshift completeness is 0.68 for 18 <=
MOF_CM_MAG_CORRECTED_I < 23 galaxies and 5" <= ra-
dius < 3’; see the top panels of Figure 5. For
WGD 2038—-4008, the redshift completeness is 0.16 for
the same i-band magnitude and radius ranges, as shown
in the bottom panels of Figure 5. Within the plotted
magnitude and radius ranges, the redshift completeness
stays fairly constant for both systems. The inner radius
cut of 5” is intended to exclude the quasar images from
consideration. The outer radius cut is set at 3’ as the
redshift completeness drops very rapidly beyond this radius
for either system.

3.3 Stellar masses

Stellar masses necessary for the computation of the flex-
ion shift, the criterion used to separate between the struc-
tures which need to be accounted for in the lensing model,
and those which can be incorporated inside kex; (see §6.1)
were computed using the galaxy template fitting code Le
PHARE (Arnouts et al. 1999; Ilbert et al. 2006). In the Le
PHARE fits, we either used our spectroscopic redshifts when
available, or DES Y3 Gold DNF photo-z’s (DNF_ZMEAN_SOF),
combined with MOF photometry (Drlica-Wagner et al.
2018) from the DES Y3 Gold (Sevilla et al. in prep) version
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2.2 catalog. Specifically, we used the MOF_CM_MAG_CORRECTED
magnitudes and their associated errors in the griz filters, as
these magnitudes included Milky Way extinction and other
small photometric corrections (see 2.2).

The galaxy template set used in the Le PHARE fits
were taken from the BCO3 (Bruzual & Charlot 2003) spec-
tral energy distribution (SED) library. Specifically, we used a
set of 27 BCO03 simple stellar population models, computed
using the Padova 1994 stellar evolution library (described
in Bruzual & Charlot 2003) and the Chabrier (2003) initial
mass function. The 27 models consisted of 9 exponentially
declining star formation rate (SFR) histories (with decay
times 7 = 0.1,0.3,1,2,3,5,10, 15,30 Gyr), each computed at 3
different metallicity values (0.4, 1, and 2.5 times solar). Each
of the 27 models was also computed at different ages (rang-
ing from 0.2 to 13.5 Gyr) and redshifts (up to a maximum
redshift of 1.1, in steps of 0.03 in redshift). No dust extinc-
tion was included in the models, but recall the DES magni-
tudes already included correction for foreground Milky Way
extinction. The stellar masses and uncertainties computed
from the Le PHARE fits are tabulated in Table Al.

For a few of the close neighbor galaxies of the two
lensed quasar systems, the original object deblending and
resulting photometry in the DES Y3 catalog were clearly in-
correct upon visual inspection of the images. In particular,
for DES J0408-5354 , the neighbor galaxy with ID number
488066768 (or name G5, in Table 4 or Table A1) had mag-
nitudes that were too bright, and for WGD 2038-4008 , the
three neighbor galaxies with ID numbers 13, 14, and 15 (Ta-
ble A1) were originally merged into a single object. To cor-
rect these photometry problems, we used the galaxy image
fitting code GALFIT (Peng et al. 2010) to redo the galaxy
model fitting and photometry for these objects, based on the
DES Y3 coadd images in the griz filters. These GALFIT re-
sults were used to compute stellar masses via Le PHARE.

4 VELOCITY DISPERSIONS OF LENSING
GALAXIES

The main lensing galaxies in both the DES J0408-5354 and
WGD 2038-4008 systems were specifically targeted for stel-
lar velocity dispersion measurements on a number of the
spectroscopic masks listed above in Table 1. For these ob-
servations we describe below the details of the targeting on
the spectroscopic slits, the procedures used to extract the
lensing galaxy spectra, and the method employed to mea-
sure velocity dispersions.

4.1 DES J0408-5354 G1

The main lensing galaxy G1 in DES J0408-5354 was mea-
sured from four independently observed spectra: two from
Magellan LDSS-3, one from Gemini South GMOS-S, and
one from VLT MUSE.

G1 was targeted on two of the four Magellan LDSS-3
masks listed in Tablel, “des0408a” and “des0408b”; hereafter
these two masks will be denoted “Magellan a” and “Magel-
lan b”. The slit setup for G1 was the same on both masks,
while the remaining targets were different on the two masks.
Specifically, the slit was oriented so that it included both G1
and quasar image B (the naming convention for the lensing
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galaxy G1 and the lensed quasar images A, B, and D are
shown in Lin et al. 2017). In addition, some contaminating
flux from quasar image A was also visible in the 2D spec-
trum from the slit. To extract the 1D spectrum of G1, we
first fit the spatial profiles along the slit (at each wavelength)
of G1, B, and A by two Moffat profiles and a Gaussian pro-
file, respectively. Moffat profiles were adopted for G1 and
B because Gaussian profiles gave worse fits as determined
by visual inspection. We subtracted off the best-fit spatial
profiles for B and A and summed the remaining flux over an
extraction window along the slit of 17 (approximately the
FWHM of G1’s Moffat profile) or 2" (about the extent of
G1’s profile) in order to extract G1’s 1D spectrum.

G1 was targeted on one of the Gemini South GMOS-
S masks in Table 1, “DESJ0408-5354_A2” (R400 grating),
hereafter denoted “Gemini A2,” on a slit which also included
quasar image D. The procedure to extract G1’s 1D spectrum
was entirely analogous to that described above for the Mag-
ellan data. To fit the spatial profiles of G1 and D, Moffat
profiles were again found to be better than Gaussians.

In the VLT MUSE data cube, the quasar and source
light components were first modeled and removed, and the
region near C and G2 was masked out. The remaining light
from G1 was then extracted to a 1D spectrum by summing
the light over a 1’ x 1”” box or a 2.2"" x2.2”” box.

The velocity dispersion of G1 was then measured from
the above data using the ULySS (Koleva et al. 2009) galaxy
spectral modeling package. In the rest wavelength range
4800A to 55001&, including the HB, Mg, and CaFe features,
the G1 spectra were fit to Vazdekis et al. (2010) stellar
population models, which used the MILES stellar library
(Sénchez-Bldzquez et al. 2006) and the Salpeter (1955) ini-
tial mass function. The wavelength dependent line spread
function (LSF) in the Magellan and Gemini-South data were
determined from the widths of the arc lamp lines in the re-
spective wavelength calibration spectra, while the LSF of the
MUSE data were taken from the fits given in §3.1 of Guérou
et al. (2017). Because the Gemini-South and in particular
Magellan LSFs were noticeably non-Gaussian, we modified
the ULySS package so that it could make use of an empirical
LSF, instead of an analytic Gaussian (or low-order Gauss-
Hermite) LSF. The resulting velocity dispersion measure-
ments and associated statistical errors are given in Table 2,
showing good agreement among the results from the four
independent data sets. Plots of the 1D spectra and best-
fit models for the 1’ extraction window cases are shown in
Figure 6.

4.2 WGD 2038-4008 G

The main lensing galaxy G in WGD 2038-4008 was mea-
sured from one spectrum observed using Gemini South
GMOS-S, specifically on mask (14) listed in Table 1:
“DESJ2038-4008_A” (B600 grating), hereafter denoted
“Gemini A” for simplicity. One slit on this mask targeted
galaxy G together with the quasar images C and D (the nam-
ing convention for the lensing galaxy and the lensed quasar
images are shown in Figure 1 of Agnello et al. 2018). To ex-
tract the 1D spectrum of G, we used the same method de-
scribed above in §4.1. Specifically, we fit the spatial profiles
of G, C, and D with three Moffat profiles, subtracted off the
best-fit profiles of C and D, and then summed the remaining
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Table 2. Velocity dispersion results for the main lensing galaxies
in the DES J0408-5354 and WGD 2038-4008 systems. Details of
the measurements are given in §4.

Velocity Slit Extraction Seeing Moffat
Data dispersion width window FWHM index
set (km/s) (arcsec) (arcsec) (arcsec) B
| DES J0408-5354
Magellan a 230 =37 1.0 1.0 0.68 2.97
Magellan b 236 +42 1.0 1.0 0.76 3.20
Gemini A2 220 x21 0.75 1.0 0.52 3.06
MUSE 227+9 1.0 1.0 0.61 1.55
Magellan a 209 + 37 1.0 2.0 0.68 2.97
Magellan b 230 + 47 1.0 2.0 0.76 3.20
Gemini A2 261 +£21 0.75 2.0 0.52 3.06
MUSE 227+9 2.2 2.2 0.61 1.55
| WGD 2038-4008
Gemini A 296 + 19 0.75 1.0 0.90 1.74
Gemini A 303 +24 0.75 2.0 0.90 1.74

flux over extraction windows of 1”7 or 2’ along the length
of the slit. The velocity dispersion of G was then measured
with ULySS, using the same rest wavelength range and the
same stellar population models as above in §4.1. The result-
ing velocity dispersion measurements and statistical errors
are given in Table 2. The 1D spectrum and best-fit model
for the 1”7 extraction window case are shown in Figure 6.

5 GALAXY GROUP IDENTIFICATION
5.1 Galaxy Group Identification Algorithm

For galaxy-group identification, we employed the same al-
gorithm used in the spectroscopic analysis of the fields
of HOLICOW lenses HE 0435—1223 (Sluse et al. 2017) and
WFI2033-4723 (Sluse et al. 2019), which is based on the
group-finding algorithms of Wilman et al. (2005) and Am-
mons et al. (2014). Wilson et al. (2016) uses a similar
method, the results of which were used in the analysis of the
HOLiCOW lens PG 11154080 (Chen et al. 2019). We summa-
rize the method here, and refer interested readers to Sluse
et al. (2017) for a more complete description and explana-
tion of parameter choices in this algorithm.

The first step towards identifying galaxy groups involves
searching for candidate groups in the spectroscopic redshift
distribution of the surveyed galaxy catalog. We begin by
constructing a redshift histogram with bins of width 2000
kms~!. We identify redshift bins with 5 or more members
as candidate groups. To ensure that candidate group mem-
bers are not split across two bins due to an arbitrary choice
of bin boundaries, we construct a second redshift histogram
with the bins shifted by half a width of a bin (1000 kms™!),
and count all non-duplicate redshift peaks from both his-
tograms as candidate groups. We include all other galaxies
that are within 1500 kms~'of a candidate group member in
that candidate group.

Once we have identified the candidate groups, we use
a biweight location estimator (Beers et al. 1990) to calcu-
late the mean (group) redshift of each candidate group. The
group centroid is also calculated from the positions of the
candidate group members. Since Sluse et al. (2019) found
that using a luminosity-weighted scheme to calculate the
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Figure 6. The 1D spectra and fits involved in the velocity dispersion measurements of the main lensing galaxies G1 in the
DES J0408-5354 system (top and middle panels) and G in the WGD 2038-4008 system (bottom panel), as described in §4 and listed in
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red curves show the best-fit models (details in §4). All the data and fits shown are for the case of a 1” extraction window (see §4 and

Table 2).

centroid does not improve the match between the group cen-
troid and brightest galaxy in this method, we do not use
luminosity-weighted centroids here.

Once candidate groups have been identified, they are
subjected to an algorithm that iteratively removes outliers
in both redshift and angular space until the algorithm con-
verges to a stable solution or a group membership of zero.
The latter indicates that the candidate group is not gravita-
tionally linked and is spurious. The algorithm is as follows:

(i) We set the initial observer-frame velocity dispersion,
Tobs t0 500 kms~!. This value will be revised in subsequent
iterations.

(if) Candidate group members that are further than twice
the velocity dispersion away from the group redshift are ex-
cluded from the group. This corresponds to the following
limit

(1)

0Zmax = I X Ogps/C

where n = 2. This redshift limit is converted into an angular
separation limit

¢ X 0Zmax
b(1 + z) H(z) Dg(2) (2)

where H(z) is the Hubble parameter at redshift z and Dg(z) is
the angular diameter distance from the observer to redshift
z. Following Sluse et al. (2017), we set the aspect ratio
b = 3.5. Candidate group members that have an angular
separation that is larger than §0max from the group centroid
are excluded from the group.

(iii) Once cuts have been made in both redshift and an-
gular separation, we recalculate the group centroid, group
redshift and observed-frame velocity dispersion ooy from
the remaining candidate group members. We obtain the lat-
ter two quantities following this framework:

00max =

o If there are more than 10 galaxies remaining, we use
the biweight location and scale estimators to calculate
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the group redshift and velocity dispersion, respectively
(Mosteller & Tukey 1977).

e If there are between 4 and 10 galaxies remaining (in-
clusive), we use the biweight location to calculate the
group redshift and the gapper estimator to calculate the
velocity dispersion (Wainer & Thissen 1976; Beers et al.
1990).

e If there are fewer than 4 galaxies, we use the mean
redshift as the group redshift and the standard deviation
as the velocity dispersion.

Steps (ii) and (iii) are repeated until we reach a sta-
ble solution. Galaxies that are members of these identified
groups are then used to infer group properties, such as the
group redshift, centroid, velocity dispersion, and flexion shift
(following the method described in §6.1. The rest-frame ve-
locity dispersions are calculated from the observer-frame ve-
locity dispersions using

Tobs (3)

Orest = — .
res| 1+ Zaroup

We then estimate uncertainties in the group properties
by bootstrapping (i.e. random sampling with replacement)
the group members of each group 1000 times. We recalcu-
late the group properties of the resampled groups, and use
the bootstrapped distribution in those quantities to estimate
their uncertainties.

Because the associated measurement uncertainties of
the galaxies in the spectroscopic redshift catalog (Averr ~ 100
kms~!, see §3) are of order the measured velocity disper-
sion of many of the identified groups, care must be given
to account for these uncertainties. To this end, we forward-
model the kinematic datasets to infer the velocity dispersion
given measurement uncertainties, following techniques used
in dwarf-galaxy studies (e.g. Koposov et al. (2011); Walker &
Penarrubia (2011); Amorisco & Evans (2012)), where it has
been found to be especially relevant for systems with small
numbers of discrete kinematic tracers (Martin et al. 2018;
Laporte et al. 2019). We construct a generative likelihood
model for the data and evaluate the posterior probability
distribution for the intrinsic velocity dispersion, ojy. The
likelihood function is

1 vi — <v>)2
= _— -0.5|——= 4
‘ U v2ﬂ'0’0bs eXp( ( Oobs ) ( )

where (v) is the mean velocity, the product is over all mem-
ber galaxies i of the galaxy group, and o-(%bs = 0'i2n ¢t Avgrr.
We assume Averr = 100 kms™!, and a non-informative Jef-
freys prior for the intrinsic velocity dispersion ojp (i.e.
p(oint) o 1/0int) over the range 1 to 1000 km s~!. We also
assume a uniform prior for the mean group velocity (v)
over the range -500 to 500 kms~!and treat it as a nuisance
parameter. We then sample the posterior PDF using the
emcee affine invariant Markov Chain Monte Carlo sampler
(Foreman-Mackey et al. 2013; Goodman & Weare 2010). We
then report the median and 68th percentile confidence in-
tervals of the posterior PDF for oy in Table 3. For groups
where the posterior PDF for oy peaks near zero and the
lower bounds are not well-constrained, we report only the
68th percentile upper limits.
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5.2 Identified Groups in the Environment of
DES J0408-5354

We applied the galaxy-group identification algorithm to the
combined catalog of 199 galaxies with high-confidence red-
shifts in the field of DES J0408-5354 described in §3. We
identified 10 galaxy groups comprising of 76 galaxies from
this spectroscopic sample, which we label Group 1-10 in or-
der of increasing group redshift. Their properties are sum-
marized in Table 3, and Figure 7 shows, for each identified
galaxy group, the positions of both accepted and rejected
trial member galaxies of that group in right ascension and
declination, as well as the distances and velocities relative
to the converged group centroid.

The largest galaxy group identified in this spectroscopic
sample is Group 5, which contains 17 member galaxies, in-
cluding the lens galaxy of DES J0408-5354 . The centroid of
this group is close to DES J0408—-5354 (2638 arcsec), which
is also the most luminous member galaxy in the group.

Aside from group 5, the the identified groups are gen-
erally small, with no identified group containing more than
11 member galaxies. For Groups 1, 3, 4, 6 and 7, the pos-
terior PDFs for the intrinsic velocity dispersions peak at or
near zero, and the lower limits are not well-constrained. For
these distributions, we report the upper 68th percentile con-
fidence intervals for these distributions and treat it as the
upper limit of the intrinsic velocity dispersion for that group.

For groups 8 and 9, the distribution of member galaxies
in velocity space appears to be bimodal, with two separate
subgroups separated by ~ 1000km s~!. However, there are
not enough member galaxies in that redshift range to suc-
cessfully separate these two subgroups into separate groups
as none of the individual subgroups have more than 5 po-
tential members.

The choice of parameters used in the group-finding algo-
rithm described in §5.1 can impact the final membership of
each galaxy group. As mentioned in §5.1, the choice of fidu-
cial values for the initial observer-frame velocity dispersion
Oops = 500 kms™!, velocity threshold n = 2 (Eq. 1), aspect
ratio b = 3.5 (Eq. 2) follow that of previous group-finding
analyses (Sluse et al. 2017; Sluse et al. 2019; Wilman et al.
2005). We relaxed the parameter n to n = 3 to investigate
the effect of a more conservative (i.e. more inclusive) choice
in the group finding algorithm and found that relaxing the
parameters results in groups that contain outlier members,
or have bi- or multimodal configurations, all of which are
likely to be spurious.

As an additional sanity check, we inspected the Chan-
dra X-ray images of the field (PI: Pooley; Program 20419;
ACIS-S; 25ks). No diffuse emission is detected (Pooley, D &
Gallo, E. 2019, private communication), with an upper limit
(90% CL) of ~ 10* erg/s within a 1Mpc radius (with consid-
erable error bars depending on the assumed temperature).
The non-detection makes it unlikely that the lens galaxy is
a member of a galaxy cluster.

5.3 Identified Groups in the Environment of
WGD 2038-4008

We applied the group-finder to the 54 galaxies with high
confidence redshifts in the field of WGD 2038-4008 . From
this sample, we identified 2 galaxy groups. The results and
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Figure 7. Galaxy groups identified in the spectroscopic sample of galaxies in the field of view of DES J0408-5354. For each group,
the first plot (above) shows the positions of the candidate member galaxies associated with that group relative to the lens galaxy,
with rejected group members represented as red squares and accepted group members represented as green circles. The lens galaxy
DES J0408-5354 (star) and group centroid (cross) are also displayed. The Rygp radius of the group is represented by a solid line, while the
dashed circle represents the angular separation cut of the group-finding algorithm in its final iteration. The second plot (below) shows
the observer-frame velocity of individual member galaxies relative to the group centroid as a function of that galaxy’s angular distance
from the centroid. Galaxies that passed the iterative algorithm described in §5.1 are shown in green, while trial galaxy members that
were cut through the algorithm are shown in red. Horizontal error bars represent the measurement error for each galaxy (see §3). The
final observer-frame velocity dispersion and angular separation cuts from the group-finding algorithm are presented as dashed and dotted
lines respectively. We also show 1-D histograms and rug plots of the velocity and distance distributions of the member galaxies. The 1-D
histograms are produced using a Kernel Density Estimate (KDE) with a bandwidth determined using Scott’s Rule. In the 1D velocity
histogram, the dashed blue line shows a gaussian with width equal to the observer-frame velocity dispersion of the group.
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Table 3. Group properties in the field of view of DES J0408-5354 and WGD 2038-4008 . The columns show the group ID, group redshift,
number of spectroscopically identified galaxies in that group, the group rest-frame velocity dispersion (rounded to the nearest 10 km s_l),
the group centroid (in RA and Dec), projected distance of the centroid to the lens (A6), and median flexion shift log(Aszx(arcsec)) (see
§6.1 for methodology). All reported values are median quantities of 1000 bootstrapped samples, with uncertainties given by the 16th
and 84th confidence intervals of the distribution of the bootstrapped quantity. Velocity dispersion estimates are rounded to nearest 10
kms~!. See §6.1.2 for further discussion.

1D Zgroup N Orest Tint Ry RA, DECy error(RA¢y, DECe) A6 log;o(A3x)
(kms™!)  (kms™!) (Mpc) (deg) (arcmin) (arcsec)  (logjg(arcsec))
DES J0408-5354
1 0272 11  110+20 <170 0.30+3:93  62.096099, -53.903136 0.67, 0.46 3222 < -5.88
2 0.307 290480 300710 0.8170-13  62.065082, -53.919339 0.71, 0.31 94+19 -4.79*0-74
3 0.428 110+ 30 <170 0313397 62.130389, -53.936509 0.29, 0.29 156+4 < -8.04
4 0570 5 140739 <160  0.41%392  62.042510, -53.918109 1.00, 0.52 122728 <-6.53
5% 0599 17 240739 220*%0  0.68+0-%  62.079749, -53.901149 0.54, 0.18 26+18 -3.86%0-97
6 0.751 3 8040 <100  021*J1  62.147320, -53.872270 0.05, 0.09 15643 < -8.06
7 0.768 5 120739 <120 0343310 62.084144, -53.898689 0.28, 0.24 17+12 <-4.83
8 0.799 6  340%%0  370*170  0.96+0-18  62.143634, -53.894864 0.64, 0.71 120733 -5.4619-13
9 0.918 9 300+  310%120  0.86701  62.051793, -53.892228 0.49, 0.45 90+19 -5.70%0-38
10 1252 7 240*% 240+L9  0.67+092  62.124690, -53.913336 0.69, 0.12 87432 —6.92+0-30
WGD 2038-4008
1% 0229 7  200+% 200%%9  0.53*9-18  309.528309, -40.126006 0.41, 0.28 62123 -5.30%0-39
2 0.342 8  380+8 400710 1.050-12  309.543495, -40.142963 0.54, 0.28 9138 -5.3910-3

Note: * Group contains the lens galaxy.

properties of these galaxy groups are summarized in Table
3, and Figure 8 show, for each identified galaxy group, the
positions of both accepted and rejected member galaxies of
that group, as well as the distances and velocities of indi-
vidual galaxies relative to the group centroid. Group 1 in
WGD 2038-4008’s field contain the eponymous lens galaxy
of that field.

6 CONTRIBUTION OF ENVIRONMENT
GALAXIES AND GALAXY-GROUPS TO
THE LENS STRUCTURE

6.1 Flexion Shift Formalism

A major objective of this analysis is to identify galaxies or
galaxy groups along the line of sight or in the environment
of lensing systems that significantly perturb the lensing po-
tential of that system and therefore require explicit mod-
eling in the cosmological analysis. Specifically, we want to
identify structure that cannot be well-approximated by a
uniform perturbation of the lens potential at the position
of the lensed images (i.e. external convergence/shear). To
do that, we use the “flexion shift” diagnostic proposed by
McCully et al. (2017), given by

(0 O,p)°

By = f(B) x = (5)

where 6 and 6gp are the Einstein radii of the main lens

and perturber respectively, and 6 is the angular separation

on the sky between them. The function f(B) is

FB) (1-B)? if perturber is behind the lens
1 if perturber is in the foreground

|©
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where
_ deDos
Dodes ’

(7)

is a combination of angular diameter distances involving the
observer (o), deflector (d), perturber (p), and source (s),
where the subscripts D;; = D(z;, z;) indicate the angular di-
ameter distance between redshifts z; and z;.

This diagnostic provides a simple quantity to estimate
the difference in lensed image positions caused by the lead-
ing order non-tidal (i.e. third-order) perturbation produced
from a perturber. McCully et al. (2017) showed that by ex-
plicitly modeling perturbers with flexion shifts larger than
the conservative limit of A3x > 107#””, we can constrain the
bias on Hy due to this uncertainty to the percent level. We
explain how the Einstein radii, g p, as well as the flexion
shift uncertainties for each perturber, are determined for
galaxies in §6.1.1, and for galaxy groups in §6.1.2.

We calculated the flexion shift for all galaxies in the
spectroscopic survey, as well as the flexion shift of all
galaxy groups identified from the survey (§6.1.2). For in-
dividual galaxies, we exclude 4 objects that are in DES
Y1 Gold catalog but not in the DES Y3 Gold catalog.
We also exclude 12 galaxies with spectroscopic redshifts
from MUSE because they do not have DES Y3 photom-
etry. In addition, one galaxy in the spectroscopic sam-
ple (488065214) was found to have bad MOF magni-
tudes (MOF_CM_MAG_CORRECTED magnitudes of -9999 for all
bands), and two other galaxies (488069251, 488066060)
were found to have bad MOF fits, with unrealistically large
sizes (MOF_CM_T values on the order of ~5000 square arc-
seconds) and MOF_CM_MAG_CORRECTED_I magnitudes that are
brighter than their MAG_AUTO_CORRECTED_I magnitudes by
more than 4 magnitudes (18.638176 and 17.868253 com-
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Figure 7. (continued)

pared to 23.349312 and 22.776083 respectively). For these
three galaxies with spurious MOF photometry, we used
the MAG_AUTO_CORRECTED photometry to calculate the stellar

masses of these galaxies instead.

For completeness, we also calculated the flexion shifts of

all likely galaxies with photometric redshift estimates in the

DES ”Y3 Gold” photometric catalog within 10" of the lens
galaxies, excluding galaxies that are in the spectroscopic
sample. To do this, we made the following selections to
the DES Y3 Gold catalog: First, we selected all objects
within 10" of the lens galaxies in the Y3 Gold catalog that
satisfied FLAGS_GOLD = 0 and EXTENDED_CLASS_MASH_MOF

MNRAS 000, 1-40 (2020)
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Figure 8. Galaxy groups identified using the spectroscopic sample of galaxies in the environment of WGD 2038-4008 . See Figure 7 for

an explanation of the figures.

> 2, which selected likely galaxies. From this catalog, we
excluded all galaxies that have COADD_OBJECT_IDs that
matched galaxies already in the spectroscopic sample. We
then selected objects with DNF photometric redshifts that
satisfied DNF_ZMEAN_SOF > 0 and DNF_ZSIGMA_SOF < 10,
which removed several objects with spurious redshifts. Fi-
nally, we made the following cuts specific to the field of each
lens galaxy: For DES J0408-5354 , we removed objects with
COADD_OBJECT_ID = 488068193, 488069583, 488067795,
as they are features of the lens system and not galaxies in the
environment of the lens. For WGD 2038-4008 , we removed
objects with COADD_OBJECT_ID = 169192447, 169193208,
169192589, 169193438 as they are misclassified stars, and
reincluded 169190696, which is a galaxy misclassified as a
star (see footnote in §2.3.2). After applying these selection
criteria, we obtained a photometric catalog of 5082 objects
within 10" of DES J0408-5354and 4438 objects within
107 of WGD 2038-4008. We then performed the same
analysis on these objects as on the spectroscopic sample,
using DNF_ZMEAN_SOF in lieu of spectroscopic redshift when
necessary.

For the lens galaxies, we use the following quanti-
ties in our analysis: For DES J0408-5354, we use co-
ordinates {RA,DEC} = {62.090417, -53.899889}, lens red-
shift zg = 0.59671, source redshift zg = 2.375, and
Einstein radius g = 1.80 (Lin et al. 2017; Shajib
et al. 2019b). For WGD 2038-4008, we use {RA,DEC} =
{309.511379, -40.137024}, z4 = 0.22829, z5 = 0.777, g = 1.38
(Agnello et al. 2018; Shajib et al. 2019b).

MNRAS 000, 1-40 (2020)

6.1.1 Individual Galazies

We follow the general methodology described in Sluse et al.
(2019) to estimate the Einstein radii of galaxies.

First, we inferred the stellar masses of galaxies from
DES photometry using the galaxy template fitting code Le
PHARE (see §3.3). We then use an empirical scaling relation
to estimate the line-of-sight central velocity dispersion of the
galaxy, o. In this work, we use and compare results derived
from two different scaling relations, one from Zahid et al.
(2016) and another from Auger et al. (2010). The Zahid
et al. (2016) relation was derived from a sample of ~ 3.7x10°
SDSS elliptical galaxies at z < 0.7 with stellar masses in the
range log;o(Mx/Mg) € [9.5,11.5]. The relation is fit with a
broken power law given by Eqn 5 of Zahid et al. (2016),
which we rewrite here in logarithmic form:

logig(0) =logyg(op) + a1 (loglO(M*) - loglo(Mb)) for My < My,

logo(0) = logio(op) + @3 (log1g(My) — log o(Mp)) for My > M,
(8)

where logjo(op) = 2.073, log o(Mp/Me) = 10.26, a1 = 0.403,
and @y = 0.293. Since Zahid et al. (2016) found no significant
change of the scaling relation at different redshift bins, we
assume that the stellar-mass-to-velocity-dispersion scaling
relation does not evolve with redshift.

Alternatively, we also used the scaling relation from
Auger et al. (2010), which was obtained from fitting a sam-
ple of 73 elliptical galaxy lenses from the SLACS survey. The
best-fit relation is

logjo(c) = 0.18 log (M*/(IOHM@)) +2.34 (9)
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where we have opted to use the best fit parameters for the
model that includes the intrinsic scatter, which is 0.04 £0.01
in the fit. The elliptical galaxies used for this fit are generally
more massive compared to the sample used in the Zahid
et al. (2016) analysis, and have stellar masses in the range
log1o(Mx/Mo) € [10.5,12]. We also assume that the stellar-
mass-to-velocity-dispersion scaling relation does not evolve
with redshift.

Once we obtain line-of-sight velocity dispersion esti-
mates for each galaxy, we convert the velocity dispersion
to the Einstein radius, fg p, assuming a Singular Isothermal
Sphere (SIS) model

‘T)2 Drs (10)

HEP =4r (? DOS
, from which the flexion shift can be calculated with Eq.(5).

The uncertainties for the flexion shifts are calculated by
adding two different sources of uncertainty in quadrature.
The first source comes from the uncertainty in the stellar
mass estimates from Le PHARE. The second source of un-
certainty comes from the intrinsic scatter in the scaling re-
lation between stellar mass and velocity dispersion. For the
Zahid et al. (2016) relation, we quantify this uncertainty by
taking half the difference in the central 68th percentile lim-
its of the velocity dispersion distribution at a given stellar
mass and use that as the uncertainty from the intrinsic scat-
ter of the scaling relation (see Figure 9(A) of Zahid et al.
2016). For the Auger et al. (2010) relation, we use their fit
for the intrinsic scatter, which is Alogjo(o) = 0.05 (taking
the more conservative limit). The two sources of uncertain-
ties are added in quadrature, and then propagated forward
into an uncertainty in the flexion shift.

Flexion shift estimates for galaxies in the spectroscopic
sample with stellar mass estimates that are significantly out-
side the mass ranges used to derive the Zahid et al. (2016)
and Auger et al. (2010) scaling relations should be treated
with caution, as the scaling relations (and errors) are ex-
trapolated. Therefore, flexion shift estimates for galaxies in
our sample with stellar masses log)o(Mx/Mo) < 9.5 should
be treated with caution, as both the scaling relations from
Zahid et al. (2016) and Auger et al. (2010) may not be valid
at the lower end of the stellar mass range. However, the
validity of this extrapolation does not affect the main re-
sults of this study, since the most significant perturbers (i.e.
galaxies that contribute the largest flexion shift contribu-
tions) tend to be more massive. The 10 galaxies with the
largest flexion shift contributions at the lens positions of
DES J0408-5354 and WGD 2038-4008 (Table 4) are within
the stellar mass ranges used to derive at least one of the two
scaling relations.

6.1.2 Galary Groups

For galaxy-groups, we obtain a probability density function
for the Einstein radius by adopting the same SIS approxi-
mation described in Eq. (10), and sampling 1000 values from
the posterior PDF of the intrinsic velocity dispersion of the
groups identified in §5.1 as well as from the bootstrapped
PDF of the redshift of each group.

To obtain the flexion shifts of the galaxy groups and
corresponding uncertainties, we use Eq. (5), sampling from
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Galaxies (photo-z, Auger)
Galaxies (spec-z, Zahid)
Galaxies (spec-z, Auger)
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Figure 9. Flexion shift histograms for galaxies and galaxy
groups in the environment of DES J0408-5354 .
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Figure 10. Flexion shift histogram for galaxies and galaxy
groups in the environment of WGD 2038-4008 .

the PDF of the Einstein radius as well as the bootstrapped
group centroid position.

6.2 Flexion shifts for galaxies and galaxy groups
in the field of DES J0408-5354 and
WGD 2038-4008

We present a table of the properties of the 10 galaxies with
the largest flexion shifts at the lens position in the fields of
DES J0408-5354 and WGD 2038-4008. Comparing the re-
sults from the two scaling relations, The scaling relation
from Auger et al. (2010) is shallower than the fit by Za-
hid et al. (2016), but produces larger estimates of the line-

MNRAS 000, 1-40 (2020)
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Table 4. Properties of the 10 galaxies with the largest flexion shifts, sorted in order of decreasing 68th percentile upper limits, in the
field of DES J0408-5354 and WGD 2038-4008 . The columns display, in order, the DES Y3 Object ID (and ID used in future papers),
coordinates (RA, DEC in degrees; ICRS), redshift z, distances to the lensing galaxy and flexion shifts, calculated using the scaling
relations by Zahid et al. (2016) and Auger et al. (2010) respectively. Galaxies marked with * are not in the spectroscopic survey and
only have photometric redshifts; we report the DNF_ZMEAN_SOF redshift value and DNF_ZSIGMA_SOF uncertainties. Spectroscopic redshift
uncertainties are about 100 kms™ or 0.00033 in redshift. Stellar masses and corresponding uncertainties were calculated using the Le
PHARE galaxy template fitting code and DES Y3 photometry (see §3.3). Galaxies marked with f have spurious MOF magnitudes. For
these galaxies, we use MAG_AUTO_CORRECTED photometry to calculate stellar masses instead. Flexion shifts and uncertainties are calculated
following the method described in §6.1-6.1.1. For a complete list of galaxies, see Table Al

1D RA DEC z i-band Magnitude log;o(M,) A6 log|o(A3XZania)  10g10(A3XAuger)
(deg) (deg) (logio(Mo))  (arcsec)  (logjg(arcsec))  (logjg(arcsec))
DES J0408-5354
488068102 (G3) 62.090965  -53.901634 0.76866 20.096 11.4249-19 6.4 —2.21%0% -2.20+9-2}
488065185 (G6) 62.095575  -53.898291 0.59441 21.867 10.29%3-19 12.4 -3.9510-8 -3.42+0-2)
488066144 (G4) 62.090243  -53.903609 0.77069 22.015 10.66*9-13 13.4 -4.07+9-38 -3.72%)-32
488066768 (G5) 62.092923  -53.900091 1.03197 23.682 9.68+9-24 5.4 -4.93+0-83 -3.87+9-28
488066462 62.083912  -53.903969 0.60048 22.304 9.88+9-12 20.2 —5.24+0-33 -4.37+9-22
MUSE6 / 488065214 ¥  62.077898  -53.903878 0.59797 22.303 10.3743-1} 30.2 -5.02+04 -4.53+8-21
488070148 62.084648  -53.885204 0.27247 18.309 10.99+0-04 54.3 -4.81%9-3} -4.61*9-30
488066886 62.090541  -53.904725 0.77568 22.925 9.91+8-16 17.4 -5.4640-33 -4.61+9-23
488070807 62.072770  -53.910296 0.59811 19.975 11.27+9-%3 53.0 -4.69+0% -4.61+9-20
MUSES / 488067782 62.103108  -53.897861 0.59832 22.100 10.11#9-13 27.9 —5.29+0-48 -4.62+9-22
WGD 2038-4008
169192350 * 309.514393  -40.137815  0.349 +0.033 21.999 9.53+8-13 8.8 -5.7129-33 -4.52:0-22
169193255 = 309.529391  -40.151522  0.240 +0.138 18.806 10.76+9-9 72.0 —5.94+0-33 -5.63%0-39
169190952 309.503723  -40.120144  0.277 +0.021 19.052 10.7823-33 64.3 —6.0210-34 -5.72:0-39
169192931 * 309.508988  -40.144869  0.421 + 0.044 20.446 10.6219-0 29.0 —6.17+0-37 -5.809-20
169191098 * 309.487406  -40.124006  0.238 +0.016 18.360 10.69+9-04 80.9 —6.1620-3¢ -5.82%0-30
169191973 * 309.536238  -40.134562  0.331+0.011 18.444 11.15+3-93 69.0 —6.05+9-27 -5.92+0-20
169193929 = 309.520149  -40.160086  0.250 + 0.005 19.137 10.633-33 86.5 —6.41+0-3¢ —6.04+9-39
169190452 309.539131  -40.115839 0.22917 18.213 10.76+9-04 107.9 -6.39+0-% —6.08+9-20
169192596 309.492815  -40.140131 0.23003 21.389 9.28+0-11 52.3 -7.61+3-89 —6.21+9-2}
169191228 309.535586  -40.122881 0.22900 20.025 10.13+9-97 83.9 —6.8670-83 -6.21%0-3}

Note: * Galaxy is not in the spectroscopy survey; stellar masses and flexion shift estimates are from photometric redshifts.
T Galaxy has spurious MOF photometry. For these galaxies, we use MAG_AUTO_CORRECTED photometry to calculate stellar masses instead.

of-sight velocity dispersion for galaxies with stellar masses
logo(Mx/Mo) < 11.45. Since the majority of galaxies in the
sample have smaller stellar mass estimates than that, the
Auger et al. (2010) scaling relation produces larger flexion
shifts than that from the Zahid et al. (2016) for this sample,
and can be treated as the more conservative estimate of the
two. In figures 9 and 10, we show the distribution of flex-
ion shifts of the spectroscopic and photometric catalogs for
the environment of DES J0408-5354 and WGD 2038-4008 ,
using both the Zahid et al. (2016) and Auger et al. (2010)
scaling relations. The logy(A3x) > —4 criteria is indicated
by the dashed vertical line.

When calculating flexion shifts for the photomet-
ric catalog, we found some objects with spurious
MOF_CM_MAG_CORRECTED photometry. For these objects we
instead used stellar masses computed from MAG_AUTO pho-
tometry, including the same Milky Way extinction and other
photometric corrections as for the MOF magnitudes.

Using this criterion, for DES J0408-5354 , there are four
galaxies (G3, G4, G5, G6) with flexion shift contributions
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above log|y(A3zx) > —4 when using the stellar masses from
the Auger et al. (2010) scaling relation. These four galax-
ies are explicitly modeled in the‘ lens model analysis (Sha-
jib et al. 2019a). In addition, the group including the lens-
ing galaxy, group 5, has a flexion shift of —3.861’8:% . The
large uncertainties in the flexion shift of group 5 is due to
a combination of the close proximity of the group centroid
to DES J0408-5354 and the uncertainty in the centroid loca-
tion, with the upper limits of the flexion shift being produced
when the group centroid is near the lens galaxy.

For WGD 2038-4008 , we did not identify any galaxies
or galaxy groups with a flexion shift log;y(Azx) > —4.

6.3 Photometrically Identified Galaxy-Groups
6.3.1 RedMaPPer Clusters in the Field of the Lenses

Due to the low spectroscopic completeness of the sur-
vey of WGD 2038-4008, we complemented our spec-
troscopic group-identification efforts with a search of
all photometrically-identified clusters with richness A4 >
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5 in the field of view of WGD 2038-4008 using the
redMaPPer algorithm Rykoff et al. (2014). We used the
sixth release of the redMaPPer cluster catalog on DES
Y3A2 data (v6.4.2242) and found two redMaPPer clus-
ters within 3’ of WGD 2038-4008 (with unique IDs
MEM_MATCH_ID = 62659, 138669).

One of the clusters (62659) has a photometric clus-
ter redshift of zpoe = 0.221 + 0.008 and a richness of 1 =
5.1 + 1.7. The photometric cluster redshift of cluster 62659
is consistent with the spectroscopically-identified Group 1
(zgroup = 0.229), and its algorithmically-identified central
galaxy, COADD_OBJECT_ID = 169190452, is also a member
of Group 1 (see Table A2), suggesting that redMaPPer
cluster 62659 and Group 1 are the same group. Only two
of the seven spectroscopically-identified group members in
Group 1 (COADD_OBJECT_ID = 169190452, 169189459) are
also members of the redMaPPer cluster 62659. However, this
could be simply due to bad photometric redshift estimates,
as 4 of the 5 group members have DNF_ZMEAN_SOF photomet-
ric redshift estimates that range from 0.38 — 0.44, and the
lens galaxy (169191076) has a spurious redshift estimate of
0.00977.

The second redMaPPER cluster (138669) has a clus-
ter redshift of zppoe = 0.405 £ 0.017 and a richness of
A =10.8+2.0. None of the galaxies in this cluster share group
membership with the spectroscopically-identified Group 2,
suggesting that this group is distinct from Group 2.

For completeness, we also searched for redMaPPer clus-
ters in the field of DES J0408-5354, though the spectro-
scopic completeness of the field of DES J0408-5354 is much
higher than that of WGD 2038-4008 . However, we did not
find any clusters within 3’of DES J0408-5354. One reason
for this paucity is that a nearby region of the lens has been
flagged and precluded from redMaPPer analysis due to a
bright star in the foreground.

6.3.2 Flexion Shifts for redMaPPer Clusters near the
lenses

We performed the same flexion shift calculations on the
redMaPPer clusters as the spectroscopic groups, following
the procedure outlined in §6.1, using the same lens parame-
ter quantities, and using the same conservative SIS approx-
imation described by Eq. 10 for the perturber. We use the
scaling relation given by Eq. (17) of Andreon & Hurn (2010)
to convert the cluster richness into a velocity dispersion esti-
mates for the SIS model. From this, we obtain flexion shifts
for the redMaPPer clusters. For cluster 62659, we obtain a
flexion shift of log;¢(A3x) = —5.1f8:2. For cluster 138669, we
obtain a flexion shift of log;y(Azx) = —6.0 £ 0.2. The esti-
mated uncertainties come from propagating both the uncer-
tainties in cluster richness, as well as the uncertainties in the
scaling relation. The properties of both groups are summa-
rized in Table A3. Neither redMaPPer groups in the field of
WGD 2038-4008 exceeds the threshold of log;y(Azx) > —4.

7 DETERMINING LINE-OF-SIGHT
UNDER/OVERDENSITIES USING
WEIGHTED NUMBER COUNTS

7.1 Description of the technique

To determine the line-of-sight under/overdensities we follow
the technique described in section 5 of Rusu et al. (2017).
Like the CFHTLens control fields used in Rusu et al. (2017),
the DES fields also have saturated stars and other artifacts
that are masked. Each DES coadd tile contains a mask plane
that contains the bleed trails for the saturated stars but
not the mask for the stars themselves. The masks for the
stars and other artifacts such as dead CCD regions are con-
tained in the mangle masks (Swanson et al. 2008; Hamil-
ton & Tegmark 2004) that are computed by DESDM for
each tile. As can be seen from the upper image in Figure 3
there is a large saturated star in the DES J0408-5354 field
close to the lens. The i—band and z—band mangle masks de-
fined a very large mask around this star such that the entire
1000x 1000 pixel area around the lens was masked. We there-
fore chose to use the mangle masks for the r—band images
for both the target field and the control fields which did not
have this problem. We also chose to use the r-band mask for
WGD 2038-4008 for consistency. For each field (target and
control) we combine the mask plane and the mangle mask
to obtain the complete mask. We also use a 5.26"’radius
mask at the center of the DES J0408—5354 target field and
a 2.63"radius mask for WGD 2038-4008 to remove the lens-
ing galaxy and quasar images from the calculation. We then
apply each control field mask to the target field and apply
the target field mask to each control field, as described in
section 5.1 of Rusu et al. (2017). Following the example of
(Rusu et al. 2019), for DES J0408-5354 we are manually re-
moving from the target field catalogue four galaxies that are
incorporated in the mass models of Shajib et al. (2019a), in
order to avoid double-counting their contribution to kext.

We compute the median of the weighted counts for the
target field W;"eds’t = Né;al xmedian(q!), where g; is the cho-
sen weighting scheme, with i = 1, ..., N;al and Néal is the
number of galaxies in the aperture. We compute the same
quantity for the control field W(;"Eds’c = Ngcal x median(qy ).
For each target field and control field combination we cal-
culate the ratio ¢y = W;”eds’t/W;"ed‘v’c for each target
and control field combination. Our final weighted count for
weighting scheme ¢ is the median of this ratio over all tar-

get/control field combinations ;"¢ ds.

We focus on four weighting schemes we used in Birrer

-~ LT " .
et al. (2019), ¢ = 1 which is just the raw counts Ngaz/N§az7
2

weighting by redshift g, = zs X z; — z7, weighting by dis-
tance to the lens/center of the field ¢, = 1/r and weight-
ing by distance to the lens/center of the field and redshift
Gz = (zs X zi = zl.Z)/r. We have used two apertures, one of
radius 120" and the other of radius 45”. In Figure 11 and
Figure 12 we show the relative weights of each galaxy in the
DES J0408-5354 and WGD 2038-4008 fields for i < 22.5
and the two apertures 120" and 45”.
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7.2 Resulting distribution for {,

We present our results for {5”6‘15 in Table 5. The uncer-
tainties are derived from taking 20 samplings of the red-
shift and magnitude errors from a Gaussian PDF distri-
bution corresponding to each galaxy. We show the results
for both apertures and for both the DNF and BPZ red-
shift selections. In Figure 13 we show the ratio {5"3‘1“' for
the four weighting schemes for both DES J0408-5354 and
WGD 2038-4008 . Figure 14 shows a radial plot of the
measured over/underdensity for each weight for four dif-
ferent aperture radii: 45”7, 60”’, 90"’ and 120" for both
DES J0408-5354 and WGD 2038—-4008 . Our analysis shows
that the field of DES J0408-5354 is significantly under-dense
(more so than any of the existing HOLICOW lenses), and
this is expected to lead to a tight, negative-value distribu-
tion of kext (e.g., Greene et al. 2013). On the other hand the
field of WGD 2038-4008 is of about unit density in the 45”'-
aperture, and over-dense in the 120”-aperture compared to
the random fields.
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7.3 Computing simulated {; in the MS

We follow the approached described in Rusu et al. (2017),
in order to implement the same observational constraints
to the galaxies in the MS as are relevant to the compu-
tation of {; in the DES data. MS is a dark matter-only
simulation of the ACDM cosmology, having a periodic box
of 500 h~'Mpc on a side with 2160° ~ 1.0078 x 10'° par-
ticles. The simulation run was performed with a modified
version of the GADGET-2 code Springel et al. (2005); Lem-
son & Virgo Consortium (2006) and has the spatial resolu-
tion limit of 54~ 'kpc (Plummer-equivalent). The mass reso-
lution 8.6x 108 h~! Mg and the volume are enough to include
a large variety of well-resolved objects from faint quasars
to galaxy-clusters. Galaxies can be painted onto these dark
matter-only halos using semi-analytical models. Previous
HOLiCOW work has employed the models by De Lucia &
Blaizot (2007), but here we are also exploring, for compar-
ison, the newer models of Henriques et al. (2015). The as-
signment of these galaxies to halos follows different physical
prescriptions, which are adjusted to fit typically low redshift
observables. The available catalogues contain synthetic pho-
tometry in various bands; we select the griz magnitudes for
each galaxy, and sample from them by assigning uncertain-



20  E.J. Buckley-Geer et al.

150 e e e

1
100

50

-50

-100

arcsec
(=]
L B B B B B B

150

YN R R BT N B
15950 100 50 0 50 100

arcsec

150

q= 1r

100

50

arcsec
o

-50

-100

DTSN S T B B N
905900 50 0 50 100 150

arcsec

1

1

arcsec

-50
-100

PP N T I T I B
1545 0o 0 100

150

100

arcsec

-50

-100

-15

50

50— e e

q=Z
00

50

(=)
L L B B B

0 -100 -50 150
arcsec

q= z/r

-100 -50 0 50 100 150
arcsec

%50

Figure 12. The relative weights of the galaxies around WGD 2038-4008 for the four weighting schemes g =1, g; = zs Xz; — Z?, qr =1/r
and g, = (zs X2i —z?)/ r. The galaxies satisfy i < 22.5 and are represented by circles with areas proportional to their weights. The black

circles indicate the 120”and 45”apertures.

ties taken from observed DES galaxies, over the same range
of magnitude bins. We account for the fraction of galax-
ies in the target fields that have available spectroscopy, and
also for the known DES galaxy-star contamination and in-
completeness fractions. The latter fractions are corrected to
account for the fraction of the target field apertures covered
by HST, as HST imaging is assumed to result in the most
reliable classification.

In Figure 15 we plot the resulting comparison of
photometric redshifts and catalogue redshifts for a rep-
resentative sample of the De Lucia & Blaizot (2007)
and Henriques et al. (2015) galaxies, up to the red-
shift of DES J0408-5354 (including for the redshift limit
of WGD 2038-4008 ). Our photometric redshifts measured
with BPZ have negligible bias up to a redshift of z ~ 1,
above which there is significant scatter, due to the absence
of infrared photometry beyond z—band. For the De Lucia &
Blaizot (2007) models this is a small effect, as there are very
few galaxies above this redshift (Figure 16), but the effect
may be more pronounced for the Henriques et al. (2015)
models, which predict a significant number of galaxies at
large redshift.

8 DETERMINING P(kgxT)

Our method of obtaining P(kext) relies on selecting lines of
sight from the MS which match the observed {; constraints,
and constructing the PDF of their associated kex¢ distri-
butions, using the kext maps produced by the ray tracing
technique of Hilbert et al. (2009). This method has been
described in detail in Rusu et al. (2017), and updated in
Birrer et al. (2019) and Rusu et al. (2019). One point we
wish to emphasize is that when we computed the relative
over/underdensity of the DES J0408-5354 lens fields in Sec-
tion 7.1 we removed individual galaxy perturbers that were
explicitly incorporated into the lens modeling. By doing so,
we ensure that these galaxies do not contribute to the P(kext)
we estimate, and we therefore avoid biasing our estimate
high. This is accomplished without the need to alter the
input kext maps.

Furthermore, we have shown in Section 6.2 that
the group of galaxies at the redshift of the lens in
DES J0408-5354 contributes a flexion shift close to our
threshold for incorporating this structure into the mass mod-
els. We therefore compute P(kex) for two cases. In the first
case, “w/ group”, we ignore the existence of this structure,
and we include the LOS contribution of the constituent
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BPZ redshifts. Red dashed line - 45” aperture and DNF redshifts. Blue dashed-dotted line - 45” aperture and BPZ redshifts.

galaxies to P(kext). In the second case, “w/o group”, we ex-
pect that the structure will be included in the lensing models
of Shajib et al. (2019a), Yildirim et al. in prep. and Wong et
al. in prep, and we therefore exclude it from the LOS analy-
sis. This is accomplished by removing the galaxy group mem-
bers from the catalogue of galaxies around the lens, when
computing the weighted count ratio constraints reported in
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Table 5. We adopt the technique from Rusu et al. (2019)
and Chen et al. (2019) to account for spectroscopic incom-
pleteness. That technique consists of two different methods,
one which uses the Andreon & Hurn (2010) relation be-
tween group velocity dispersion and richness, and one which
assumes Poisson statistics to compute the number of addi-
tional galaxy members potentially missed due to sparse spec-
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troscopy. We choose to use only the second method, as the
first relies on numerous physical assumptions, and cannot
reconcile the small velocity dispersion of the group (~ 230
km/s) with the large number of observed members (17). We
found a similar mismatch between the two methods in Chen
et al. (2019) for the lens PG 11154-080.

In Figures 17 and 18 we plot the resulting distributions
of P(kext) for DES J0408-5354 and WGD 2038-4008 , respec-
tively, for a selection of weights, using the De Lucia & Blaizot
(2007) galaxy models. The {; constraints are taken from Ta-
ble 5, where we marginalize over the DNF and BPZ values.
As in Birrer et al. (2019); Rusu et al. (2019), we combine
the {4 constraints from the 45””and 120" apertures. We con-
sider as fiducial distributions, to be used in the cosmological
analysis, the ones which use as constraints the most robust
{4 constraints, i.e. those with ¢ = 1 and ¢ = 1/r in both
apertures. In previous work we also used the external shear
values corresponding to the best-fit mass models as an ad-
ditional constraint. At the time our analysis was completed,
the final shear values from Yildirim et al. in prep. and Wong

et al. in prep, which will complement the cosmographic infer-
ence of Shajib et al. (2019a), as well as for WGD 2038-4008 ,
were unknown. Therefore, we choose to report the statistics

of P(Kextlé'fsﬁ, 414/5;” {1120”’ {11/2r0”,y) for a variety of y values,
in Table 6.

For the choices in Figure 17, we found that the use of
the Henriques et al. (2015) models results in P(kext) lower
by kext < 0.01, therefore at the < 1% level. Based on the
fact that the photometric redshift distribution of the DES
galaxies in Figure 16 is more consistent with that of the
De Lucia & Blaizot (2007) models (e.g., the large peak at
z ~ 0.5 and the absence of galaxies above z ~ 1.5), as well as
for consistency with our previous work on HOLICOW lenses,
we adopt the De Lucia & Blaizot (2007) models. We will
test in more detail the impact of a particular choice of semi-
analytical galaxy models, which appears to be comparatively
larger for large source redshifts and over/under-densities, in
another work, Mukherjee et al., in prep.

As expected from the significantly underdense field of
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Table 5. Weighted galaxy count ratios ¢, for DES J0408-5354 and WGD 2038-4008 .

Weight ¢ 45" 120” 45" 1207
i<225 i<225 i<225 i<225
DNF DNF BPZ BPZ
DES J0408-5354 w/ group
1 0.643*0-071  0.495+0-029  0.64370-071  0.495%0-0%9
z 0.7+0-207  0.497*0-0%9  0.689%0-233  0.53210-01
1/r 06580 0SITRNE 0.6ur bl 0517:48%
z/r 0.74970-204  0.449%0-033  0.757+0-193  0.461+0-038
DES J0408-5354 w /o group
1 0.286°93% 03880088 0286834 0388738
z 0.38970-376  0.373%0-100  0.394*0-278  0.388+0-00°
1/r 0.282+0-306  0.37070-085  0.28270-230  0.368%0-08!
z/r 0.37970:33%  0.342%0-055  0.391*0-376  0.345%0-08
WGD 2038-4008
1 0.90*9-30  1.169%0-03  0.833*0-236  1.184+)-06¢
z 1.06670-193  1.28670-051  0.919*0-9%%  1.237+0-078
1/r 0.04304% 1288000 0881000 1.206:000
z/r 118740130 1.362+0-083  0.99970-130  1.278%0-123

DES J0408-5354 , the resulting fiducial P(kext) distributions
are tight (approximately 0.03 width in kext), with medians
around kex; ~ —0.04 - —0.05, or 4 - 5%.5 As the group contri-
bution is removed from the LOS, P(ex¢) decreases by < 0.01.

The distributions for WGD 2038—-4008 are much tighter,
with width ~ 1%. This is expected due to the significantly
lower source redshift, as there are fewer structures in the MS
along the LOS to contribute convergence. The tightening of
the distributions as information from multiple apertures is
used is evident (see also Figure E2 in Rusu et al. 2019). The
medians of the distributions are close to null.

Appendix C of Rusu et al. (2017) shows that our use of
the MS to derive P(kext) can bias the inference because of the
different set of assumed cosmological parameters. However,
since our P(kext) is close to zero, the expected value of the
bias, if we assume the cosmological parameters derived from
Planck (e.g., Planck Collaboration et al. 2016), is at a level
of ~ 0.5%, below the 1% level of accuracy currently aimed
at from time delay cosmography (Suyu et al. 2017).

5 The distributions of P(kex) presented in this paper differ
slightly from the ones used in the blind cosmographic analysis of
DES J0408-5354 by Shajib et al. (2019a). In addition to that work
using the shear constraint derived therein, there is a minor differ-
ence owing to a clerical error discovered after unblinding, which
corresponds to a change in Hy of 0.13%, much smaller than the
statistical uncertainty of 3.9%. In order to preserve the blindness
of the Hy measurement, this correction has not been propagated
through the Shajib et al. (2019a) measurement. However, future
measurements based on DES J0408-5354 should use the corrected
distribution of P(kex) given in this paper.
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9 CONCLUSIONS

In this paper we have presented work on three of the ingre-
dients that are necessary to make a high-precision measure-
ment of the Hubble constant Hy using the lensed quasars
DES J0408-5354 and WGD 2038—4008 . These are 1) deter-
mining the velocity dispersion of the lensing galaxy, 2) iden-
tifying galaxies and groups along the line of sight that are
close enough to the lens and massive enough that they need
to be included in the mass model, and 3) estimating the ex-
ternal convergence kex; due to less massive structures that do
not need to be included explicitly in the mass model. These
ingredients require spectroscopic redshifts for the galaxies in
the fields of the two lenses. To obtain these we have carried
out spectroscopic observations using Gemini South/GMOS-
S, Magellan/LDSS-3 and VLT /MUSE. As detailed in §3.1-
3.2, we obtained a total of 199 high-confidence redshifts from
the three instruments for DES J0408-5354 , corresponding
to a redshift completeness of 68% for galaxies with 18 <i <
23 and 5” < radius < 3’. For WGD 2038-4008 we obtained
54 high-confidence redshifts from the Gemini South/GMOS-
S data, with a 16% redshift completeness for the same i-band
magnitude and radius ranges.

As described in §4, in our redshift survey observa-
tions we also set aside slits to measure the stellar ve-
locity dispersions of the main lensing galaxies in our
two systems. The velocity dispersion of the main deflec-
tor G1 in DES J0408-5354 was measured using four inde-
pendent spectra from the above three instruments, with
a consistent result of about 230 kms~!(see Table 2).
The velocity dispersion for the main lensing galaxy G in
WGD 2038-4008 was obtained from one spectrum taken us-
ing Gemini South/GMOS-S, with a resulting value of about
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Figure 16. Histograms of the catalogue and BPZ-based pho-
tometric redshift distributions for a representative fraction of
~ 500000 galaxies in the MS, using the semi-analytical models
of De Lucia & Blaizot (2007) and Henriques et al. (2015). The
BPZ-based photometric redshift distribution for a similar num-
ber of DES galaxies, down to the same i < 22.5 mag limit, is also
shown.

300 kms~!. The detailed velocity dispersion measurements
and uncertainties are given in Table 2.
The galaxy group identification uses the spectro-

scopic redshifts described above and the same algorithm
that was used for the analysis of the HOLICOW lenses
HE 0435-1223 (Sluse et al. 2017) and WFI2033-4723 (Sluse
et al. 2019). We find 10 galaxy groups in DES J0408—5354 for
which we then compute the flexion shift Ajx proposed by
McCully et al. (2017). McCully et al. (2017) showed that
explicitly modeling perturbers with flexion shifts larger than
Azx > 107#” allows one to constrain the bias on Hy due to
this uncertainty to the percent level. Out of our 10 groups
in DES J0408-5354 we find one group (labelled 5 in Table 3)
that has a flexion shift of loggAzx = —3.86f8:%. This group
has 17 members, one of which is the lensing galaxy G1 and
the centroid of this group is close to the lens. However Sha-
jib et al. (2019a) show that the change in Hy of including
this group would result in a decrease of approximately 0.4
percent so it is not explicitly included in the mass model.
For WGD 2038-4008, we find two galaxy groups from our
spectroscopic redshift sample, but neither group has flexion
shift above our cut.

To calculate the flexion shift for individual galaxies we
start with the general methodology described in Sluse et al.
(2019) and then use two different scaling relations (Zahid
et al. 2016; Auger et al. 2010) to estimate the line-of-sight
central velocity dispersion of the galaxy from its stellar mass.
The stellar masses are calculated using galaxy model fitting
to DES photometry, as detailed in §3.3. The Auger et al.
(2010) relation between velocity dispersion and stellar mass
gives more conservative, larger flexion shift values, resulting
in four galaxies in DES J0408-5354 with flexion shifts larger
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P(g)zfé)r DES J0408-5354 using De Lucia & Blaizot (2007) galaxies

0.20 -

normalized counts

—— -0.013 0.043; all LOS

—— -0.0290.034; 45:1, 1/r; w/ group

—— -0.025 0.036; 45:1, z/r; w/ group

—— -0.044 0.031; 120:1, 1/r; w/ group

—— -0.048 0.030; 120: 1, z/r; w/ group

—— -0.045 0.030; 120:1,1/r; 45:1, 1/r; w/ group
-0.041 0.032; 120:1, 1/r; 45:1, z/r; w/ group

------- -0.038 0.032; 45:1, 1/r; w/o group

------- -0.037 0.033; 45:1, z/r; w/o group

------- -0.050 0.032; 120:1, 1/r; w/o group

-0.053 0.029; 120:1, z/r; w/o group

------- -0.052 0.030; 120:1,1/r; 45:1, 1/r; w/o group

-0.052 0.030; 120:1,1/r;45:1, z/r; w/o group

—0.05  0.00

Figure 17. Histograms of smoothed ke distributions for DES J0408-5354 for a variety of constraints, using the De Lucia & Blaizot
(2007) semi-analytical galaxy models. “w/ group” and “w/o group” refer to the case when the member galaxies of the lens group are
kept or not kept as part of the LOS, respectively. The first distribution shown is for the case when all LOS from MS are used, without
constraints. The first two numbers in the legend are the median and the semi-difference between the 16th and the 84th percentiles of

each distribution, respectively.

than our log;yAzx = —4.0 cut; these galaxies (G3, G4, G5,
and G6 in Table 4) are therefore selected for explicit model-
ing by Shajib et al. (2019a). For WGD 2038-4008 , we do not
find any individual galaxies with flexion shift greater than
our cut.

Our measurement of the external convergence kex; starts
with determining the line-of-sight under/overdensities for
DES J0408-5354 and WGD 2038-4008 using weighted num-
ber counts. We use a catalog of galaxy properties for the
two fields from the DES Year 3 Gold version 2.2 catalog.
As both of these fields are within the DES footprint we
are able to select the control fields from the DES cata-
log as well. This helps us to avoid potential biases due to
mismatches in, for example, image resolution between the
target and control fields. Where available we use the spec-
troscopic redshifts for the galaxies in the target fields. As
detailed in §7, for the galaxy counts we use four different
sets of weights (including weighting by redshift and/or ra-
dius), two different apertures (one of radius 120”” and the
other of radius 45”), as well as two photometric redshift
schemes (DNF and BPZ). For DES J0408-5354 we remove
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the four galaxies (G3-G6 in Table 4) which are explicitly in-
corporated into the lens model. Also for DES J0408—5354 we
calculate the weighted counts for both the case where the
galaxy group containing the main deflector G1 is included
in the count and the case where we explicitly exclude the
group. We find that DES J0408-5354 lives in a significantly
under-dense environment whereas WGD 2038—-4008 is in an
environment that is closer to mean density. As described
in §8, we then apply the same observational constraints
to the MS, with galaxies from the De Lucia & Blaizot
(2007) semi-analytical model, to compute {;, the ratio of
weighted galaxy counts of target to control fields. We ob-
tain P(kext), the probability distribution of the external con-
vergence Kext, by selecting lines of sight from the MS that
match the observed {; constraints. As expected from the
significantly underdense field of DES J0408-5354, the re-
sulting fiducial P(kex;) distributions are tight (with width
~ 0.03 in kext) and medians around kex; ~ —0.04 - —0.05. For
the case excluding the group containing G1 from the num-
ber counts, the median kex¢ decreases by < 0.01. The dis-
tributions for WGD 2038-4008 are much tighter, with width
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P(K) fgr WGD 2038-4008 using De Lucia & Blaizot (2007) galaxies

5_

N w ~

normalized counts

=
1

-0.005 0.011; all LOS

-0.007 0.007; 45:1, 1/r

-0.005 0.008; 45:1, z/r

0.002 0.011; 120:1,1/r

0.004 0.013; 120:1,z/r

-0.002 0.007; 120:1,1/r;45:1, 1/r
-0.001 0.008; 120:1,1/r;45:1, z/r

K

O I 1 1 1 1
—0.03-0.02-0.01 0.00 0.01 0.02 0.03 0.04 0.05

Figure 18. Similar to Figure 17, for the case of WGD 2038-4008 .

~ 1%. This is expected due to the significantly lower source
redshift (zg =0.777 for WGD 2038-4008 vs. zg =2.375 for
DES J0408-5354 ), as there will be fewer structures along
the line of sight to contribute to the convergence.
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APPENDIX A: PROPERTIES FOR ALL
GALAXIES AND GALAXY GROUPS

We present the full sample of galaxies in the spectroscopic
sample as well as the group membership of each identified
group.
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Table Al: Properties of all 199 galaxies in spectroscopic survey of
the field of DES J0408-5354 and 54 galaxies in the spectroscopic sur-
vey of the field of WGD 2038-4008, arranged in order of decreas-
ing flexion shift on the lens galaxy. The columns display, in order,
the galaxy ID, coordinates (RA, DEC in degrees; ICRS), redshift z,
DES MOF_CM_MAG_CORRECTED i-band magnitudes (whenever possible),
distances to the lensing galaxy and flexion shifts. Spectroscopic red-
shift uncertainties are about 100 kms™!, or 0.00033 in redshift. Galax-
ies with bad MOF magnitudes are indicated with f; for these galaxies,
we use MAG_AUTO_CORRECTED photometry and the corresponding stellar
mass estimates from that photometric data. For the galaxy IDs, DES Y3
galaxies have 9-digit IDs, DES Y1 galaxies have 10-digit IDs, and MUSE
galaxies were labeled with the prefix "M USE” and sorted by ascending
redshifts. Stellar masses and corresponding uncertainties were calculated
using the Le PHARE galaxy template fitting code and DES Y3 photom-
etry (see §3.3). Flexion shift and uncertainties are calculated following
the method described in §6.1-6.1.1.

ID RA DEC z i-band Mag  log;o(M.) AO log)o(A3xzania)  10g10(A3XAuger)
(deg) (deg) (log19o(Mo)) (arcsec)  (logjp(arcsec))  (logjg(arcsec))
DES J0408-5354
488068102 62.090965  -53.901634  0.76866 20.096 11.42+0-19 6.4 -2.211933 -2.2019-31
488065185 62.095575  -53.898291  0.59441 21.867 10.299-19 12.4 -3.957)42 -3.421031
488066144 62.090243  -53.903609  0.77069 22.015 10.66+0-13 13.4 -4.07+0-38 -3.72+0-22
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0.22
~7.32%555

~7.3310:%
7363,
“137%%
-7.38+0-28
~74070:3

0.23
~7.40%5 52

0.23
~7.43%)55

0.23
~7.43%6:52

0.21
=7.46%53,

0.24
~7.46%5 52

0.23
-7.48%553

0.24
~7.52%55¢

0.21
=7.54%05;

-7.55:0%3
-7.5579-24
7.562431
-7.5679-31
75134
~7.594:3
-7.60:33]
~7.60%0:33

0.27
~7.63%5:34

0.24
—7.64+0-24

0.26
=7.65%45¢
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488073904
488068835
405340125
488076126
488074972
488073464
488072862
488071425
488077585
404169398
488076873
404169833
488074337
488067934
488077841
488070960
489521442
488076117
404169065
489520262
404169193
404169489
404169659
488075055
404169176
404169154
488073779
488072310
488072700
488072408
404169985
489520462
489520752
3070263610
3070263850
3070265512
3070264072
MUSE1
MUSE2
MUSE4
MUSE5

62.151510
62.019738
62.147848
62.098545
62.158897
62.128601
62.014278
62.019165
62.091222
62.129582
62.062246
62.165627
62.173464
62.032469
62.133208
62.031874
62.031862
62.040622
62.156908
62.067931
62.141088
62.136503
62.146071
62.169444
62.145040
62.149335
62.020985
62.161986
62.160696
62.161866
62.153722
62.073666
62.055153
62.040098
62.075161
62.076105
62.073661
62.093482
62.088497
62.079502
62.092164

-53.927139
-53.894319
-53.880963
-53.939165
-53.933231
-53.924891
-53.921997
-53.913520
-53.947042
-53.867590
-53.943414
-53.875815
-53.929392
-53.898319
-53.947857
-53.910446
-53.864100
-53.939310
-53.860476
-53.853616
-53.862996
-53.870431
-53.872477
-53.933578
-53.862782
-53.862340
-53.927277
-53.918003
-53.920293
-53.918519
-53.878539
-53.855405
-53.858062
-53.885262
-53.892278
-53.885866
-53.889176
-53.907716
-53.889554
-53.896486
-53.902560

0.27214
0.91905
0.82674
0.29568
0.27187
1.08324
0.44369
0.77498
0.85319
1.04896
0.51666
0.61452
0.40472
1.34023
0.35684
1.23026
0.90591
1.01820
0.75027
0.91854
1.16021
0.04355
1.14904
1.03614
1.14723
1.14884
1.38408
1.25287
1.25468
1.25018
1.41999
1.17034
1.59303
1.32360
0.91583
0.91540
0.76790
0.23983
0.28757
0.55446
0.59221

22.822
22.531
22.738
22.286
22.261
22.899
22.954
22912
23.034
22.750
22.956
22.767
22.616
21.519
22.687
21.226
22.699
22.596
22.948
22.457
22.384
21.430
21.682
22.691
22.928
22.251
22.280
22.603
22.908
22.937
22.613
22.110
22.328

8.74+0-12
10.05%):3
05843
845G 1T
8.930-11
10.150-23
5990
9571054

0.17
9.94+05)

0.30
10.28+0-30

8.907023
9.1679-22
908413
10.94+0:03
8.91+0-17

0.19
10.58+0-19

096033
10.2470-1%
044243
97143}
10.50+3-3)
7.60%5:32
9.9874.11
10.13+0:17
10.2079-34
978034

0.18
10.52+0-18

0.18
9.08+0-18

9.07433
8.95+0-18
9.23+0-26
7,694
01443

162.5
151.3
139.6
142.4
188.4
121.1
180.0
158.9
169.8
142.9
167.7
181.6
205.6
123.0
195.1
129.8
179.0
176.9
200.1
173.3
170.9
144.3
153.9
206.8
176.9
184.1
177.2
165.2
166.2
165.7
154.7
164.0
168.1
119.0
42.4
58.9
52.4
28.9
37.4
26.2
10.3

9550 766505
840105 76870
883108 ~7.69703
986701 <771
—9.4310:3% “1T1H0%
83510850 7721038
04103 STT3
889108 77415
85793 -TI5HR
82803 775405
-0 776003
930108 77815

0.60
-9.40%5°3,

0.32
-8.04%535

0.22
~7.81%5:54

—7.81+0'20

-0.20

SO A
-825%0% 786103
ST e
sS993
oG -8R
o1 810
wsupi s0gy
-11.07+9-3 -8.16%0:3%
Sk BRI
St e

0.55
-8.92%5-33

0.26
-8.33%4:50

o6 s
0.42 0.23
-9.12:0-42 -8.7019:33
0.61 0.23
~10.89%0-6) -9.317023
0.66 0.26
-10.93+-8¢8 -9.33+9:3¢
0.58 0.24
~11.10%038 -9.40+9-34
0.68 0.27
~11.00+0-68 -9.5510-37
-12.93+0-72 -10.10%0-37
0.70 0.28
-11.75*9:79 -10.21+9-28
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MUSE7 62.086607  -53.902732  0.59822 - - 13.0 - -

MUSE11 62.092623  -53.909149  0.64338 - - 33.7 - -

MUSE13 62.088612  -53.911555  0.76379 - - 42.2 - -

MUSE16 62.075319  -53.889095  0.76863 - - 50.4 - -

MUSE17 62.095373  -53.907544  0.82980 - - 29.5 - -

MUSE18 62.069991  -53.898778  0.85458 - - 435 - -

MUSE23 62.082424  -53.891043  1.13208 - - 36.1 - -

MUSE27 62.084658  -53.911326  1.25152 - - 42.9 - -

WGD 2038-4008

169190452 309.539131  -40.115839  0.22917 18.213 10.769-04 107.9 -6.3970-8 -6.08+0-29
169192596 309.492815  -40.140131  0.23003 21.389 9.28+0-11 52.3 -7.61+9-89 -6.21%02)
169191228 309.535586  -40.122881  0.22900 20.025 10.139-07 83.9 -6.8610-8 -6.21%03}
169189459 309.539963  -40.103707  0.22827 17.848 11.0070-04 1435 -6.47+0-39 -6.27+0-20
169192249 309.537431  -40.135642  0.22864 21.077 9.60+0-08 71.9 -7.50+0-3% -6.38+0-21
169192351 309.523347 -40.137071  0.42874 20.494 10.1279-19 32.9 ~7.05+9-4¢ -6.39+0-2
169191897 309.517763  -40.130806  0.34445 22.210 8.691013 28.5 -8.561040 -6.63+0-32
169193594 309.514195  -40.155037  0.27820 21.126 9.31+J-11 65.3 -8.19+0-89 -6.8110-2)
169194640 309.471495  -40.170293  0.23647 19.289 10.4270-06 1624 -7.38+9-3 -6.91+-30
169192636 309.498710  -40.140676  0.42710 22.669 9.45+0-16 37.3 -8.27+081 -7.02+033
169193902 309.487074  -40.160804  0.42725 18.676 11.3550-03 108.6 -7.09+0-23 -7.04+0-30
169191786 309.521701  -40.129094  0.34157 22.937 8.6010-23 40.3 -9.15+0483 -7.13+0-26
169191437 309.540911  -40.125437  0.22716 21.577 8.65+0-19 91.4 -9.34%0-33 -7.374031
169193432 309.557474  -40.152652  0.34079 19.475 10.479-07 138.8 -7.83+0-3% -7.39+0-21
169194065 309.562909  -40.162398  0.34506 19.299 10.78+0-01 168.7 -1.75:0-8 -7.45%0-20
169191326 309.496715  -40.122896  0.34271 22.345 8.96+0-18 64.9 -9.20+0-38 -7.50%0-23
169189145 309.516470  -40.095073  0.20084 19.786 9.31:0-41 151.7 -8.8910-80 -7.51%)3)
169192814 309.520646  -40.143046  0.52902 22.046 9.57+0-29 33.5 -8.75+0.82 -7.60+0-24
169194067 309.482408  -40.160695  0.07580 20.890 8.19+0-28 116.7 -10.15+)41 -7.77+9:31
169193455 309.496328 -40.151391  0.36829 22.005 8.79+0-1 66.3 -9.68+0-4¢ -7.83%0-2)
169189914 309.518874  -40.103760  0.19742 22.878 8.00+0-39 121.5 -10.71%):32 -8.16%0-3%
169194531 309.503092  -40.167505  0.42654 21.622 9.83+0-19 112.1 -9.10%0-2 -8.18%0-2)
169189067 309.542813  -40.092954  0.28598 21.217 9.10%-13 180.7 -9.92+0-80 -8.35%0-22
169193237 309.561418 -40.148516  0.34018 22.225 9.14+0-12 143.8 -9.92+0-39 -8.39%0-22
169193555 309.568673 -40.153285  0.34218 21.564 9.39%0-12 168.2 -9.75%0-33 -8.43%0-21
169191966 309.541745  -40.132233  0.60086 20.513 10.7623-9] 85.3 -9.01+0-3 -8.70+0-21
169189826 309.535769  -40.102557  0.47794 22.031 9.99+0-08 141.1 -9.52+0-48 -8.75+9-21
169194495 309.511978  -40.166836  1.13033 22.524 10297934 107.3 -9.34+0-48 -8.82+0-26
169193901 309.570179  -40.158238  0.47405 21.269 10.18+097 1789 -9.50+0-44 -8.89+0-31
169189023 309.491739  -40.092652  0.54487 20.724 10.8070-03  168.6 -9.2610-33 -8.97+0-20
169193078 309.564077  -40.146099  0.34071 22.869 8.37+)1% 148.7 -11.21+)-23 -8.99+0-22
169191992 309.457026  -40.131800  0.51834 21.469 9.85+0-11 150.8 -10.17+0-52 -9.27+0-2}
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169195181
169192635
169191596
169190526
169196183
169193763
169189572
169192546
169194605
169194113
169195495
169190809
169193629
169196130
169195905
14

13

169194395
169194256
169190626
15

169192350

309.510546  -40.177017
309.485842  -40.140711
309.458841  -40.126588
309.539140  -40.111919
309.518797  -40.190901
309.500311  -40.155916
309.526023  -40.099386
309.545721  -40.139586
309.556455 -40.168268
309.498489  -40.161174
309.501974  -40.181155
309.511333  -40.116436
309.483800 -40.153801
309.490867  -40.190128
309.520673  -40.186885
309.515660 -40.134512
309.515880 -40.135034
309.544629  -40.165182
309.543818  -40.163338
309.551365  -40.113228
309.516878  -40.135319
309.514393  -40.137815

1.17836
1.35058
0.48342
0.91987
0.97564
0.67100
0.62258
0.67484
0.60064
0.87838
0.92178
0.81855
0.82247
0.81949
0.82054
0.77392
0.77492
0.76076
0.76067
0.78249
0.77619
-9.00000

22.655
20.463
22.409
21.537
21.295
22.476
20.045
21.345
22.811
22.655
21.862
20.801
21.200
21.775
21.349
21.462
20.761
22.386
22.326
22.480
22.884

0.15
9.61%) 13

7.58:43]
89370 1
10.6579-18
10.77+334
975703
o744
10.0379-11

0.21
9.43%)5;

0.22
10.00+9-22

9.98+0-12
10.56-0-1%
10.41+0-16
10.90+0-92

0.15
10.42%5-53

0.08
10.55+0-08

0.05
11.3200

0.32
10.04%542

0.19
9.84+)>7

0.21
9.87*0:30

0.13
10.18+0:-13

144.0
71.5
149.4
118.4
195.0
74.5
141.4
95.0
167.4
93.9
161.0
74.1
97.0
199.3
181.3
14.9
14.3
136.6
130.2
139.5
16.3
8.8

-10.62+0-38 -9.51+9-33
-12.53+9-9 -9.610-32
-11.35+9-27 -9.63%0-23
-10.3970-41 -10.03+9-33
-10.38+9-43 -10.08+9-2¢
-11.24%0-62 -10.25+)-38
-11.3510-33 -10.35+9-30
-11.16%048 -10.43+)-31
~11.80+0-64 -10.52+9-2
-11.50%9-3¢ -10.74+0-33
-11.68+9-34 -10.89+9-34
-11.89%0-42 -11.50*9-34
-12.279-42 -11.8079-33
-12.75%)-33 -12.50+9-29
-13.1519-42 -12.690-23
-14.27+9-38 -13.87+9-31
~14.00+9-34 ~13.94+0-30
-14.95+0-66 -14.22+0-39
-15.19+9-27 -14.290-34
-17.17%)-38 -16.28+0-2
-17.18+9-48 -16.58+9-32

Table A2: Properties of galaxies in each trial group. The columns dis-
play, in order, the coordinates (RA, DEC in degrees; ICRS), redshift z,
DES i-band MOF_CM_MAG_CORRECTED magnitudes (if available; assigned
a value of -99 if not), ID, and whether that galaxy passes the iterative
group membership algorithm described in §5.1. Spectroscopic redshift
uncertainties are about 100 kms™!, or 0.00033 in redshift. Galaxies with
DES Y3 IDs have 9 digits, while galaxies with DES Y1 IDs have 10 dig-
its. The lens galaxy is indicated as such, and galaxies with spectroscopic
redshifts from MUSE have IDs that begin with "MUSE”

RA DEC b4 i-band Mag ID Group Member?
DES J0408-5354
Group 1
62.030809  -53.908820 0.26729 20.096 488070602 False
62.084697  -53.867583 0.27148 21.675 489521853 True
62.061177  -53.921532  0.27257 19.767 488072697 True
62.144676  -53.934498 0.27176 18.315 488074578 True
62.084648  -53.885204  0.27247 18.309 488070148 True
62.097716 ~ -53.879281 0.27278 22.768 489523301 True
62.046958  -53.922500 0.27124 22.409 488073010 True
62.092960  -53.861224 0.27153 20.306 489521068 True
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62.054344  -53.919213  0.27226 22.046 488072443 True
62.151510  -53.927139 0.27214 22.822 488073904 True
62.146922  -53.934938 0.27044 19.713 488074678 False
62.158897  -53.933231 0.27187 22.261 488074972 True
62.083413  -53.882657 0.27216 22.456 488069700 True
Group 2
62.049904  -53.911313 0.30581 21.203 488071089 True
62.045447  -53.913359  0.30642 21.438 488071411 True
62.080583  -53.922670 0.30741 21.184 488073021 True
62.093088  -53.919040 0.30909 21.573 488072433 True
62.096336  -53.944173  0.30792 19.259 488076699 True
62.020675  -53.907526  0.30566 19.692 488067185 True
Group 3
62.139479  -53.928501  0.42858 19.429 488073735 True
62.025309  -53.910519  0.42954 19.664 488070449 False
62.114845  -53.953040 0.42826 21.346 488078736 True
62.108903  -53.956880  0.42895 21.139 488079339 True
62.131777  -53.926465 0.42904 21.665 488073762 True
62.148320  -53.919275  0.42744 20.060 488072414 True
62.133767  -53.937477  0.42807 20.447 488075668 True
62.135113  -53.933925  0.42804 22.300 488075100 True
62.140970  -53.931443 0.43054 20.683 488074608 False
Group 4
62.106161  -53.923866 0.57035 20.933 488073290 True
62.023367  -53.910705 0.57025 19.314 488066235 True
62.151601  -53.871104 0.56693 22.810 404169588 False
62.047075  -53.950191 0.56953 21.811 488078159 True
62.017973  -53.905064 0.57028 21.306 488066250 True
62.019121  -53.902892 0.57171 21.720 488067945 True
Group 5
62.037079  -53.908383  0.59964 22.356 488070607 True
62.169886  -53.887360 0.59607 20.158 488070133 True
62.160850  -53.917944  0.59760 22.185 488072301 True
62.130404  -53.867675 0.59397 23.104 404169402 False
62.035444  -53.909470 0.60004 22.347 488070816 True
62.068708  -53.913477  0.59843 21.581 488071428 True
62.071692  -53.906245 0.59727  -9999.000 488066584 True
62.134647  -53.901754  0.59479 21.047 488067363 False
62.078380  -53.881917 0.59451 19.918 489523481 False
62.072770  -53.910296 0.59811 19.975 488070807 True
62.083912  -53.903969 0.60048 22.304 488066462 True
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62.067875
62.038672
62.023889
62.095575
62.090417
62.092164
62.077898
62.086607
62.103108
62.085632
62.085862

62.148449
62.113750
62.147459
62.156908
62.146052
62.108813

62.106067
62.158048
62.125315
62.073251
62.090965
62.050530
62.090541
62.030863
62.019165
62.090243
62.073661
62.088612
62.099785
62.080992
62.075319

62.142829
62.107604
62.171213
62.156567
62.112378
62.171213

-53.910488
-53.869800
-53.873587
-53.898291
-53.899889
-53.902560
-53.903878
-53.902732
-53.897861
-53.891330
-53.910180

-53.873747
-53.913080
-53.869008
-53.860476
-53.874054
-53.919489

-53.909453
-53.912350
-53.873569
-53.920150
-53.901634
-53.926881
-53.904725
-53.912062
-53.913520
-53.903609
-53.889176
-53.911555
-53.908977
-53.904565
-53.889095

-53.870321
-53.941787
-53.906968
-53.871330
-53.871809
-53.906968

0.59977
0.59969
0.59935
0.59441
0.59671
0.59221
0.59797
0.59822
0.59832
0.59906
0.60029

0.75002
0.74981
0.75141
0.75027
0.75095
0.75070

0.77562
0.76818
0.76243
0.77290
0.76866
0.75824
0.77568
0.77531
0.77498
0.77069
0.76790
0.76379
0.76669
0.76785
0.76863

0.80082
0.79782
0.79737
0.80070
0.80252
0.79720

21.729
22.534
22.742
21.867
19.770
-99.000
-99.000
-99.000
-99.000
-99.000
-99.000
Group 6
22.097
22.287
21.712
22.948
22.586
22.550
Group 7
21.908
18.274
22.755
22.129
20.096
22.336
22.925
22.736
22.912
22.015
-99.000
-99.000
-99.000
-99.000
-99.000
Group 8
21.848
21.477
22.595
21.188
21.675
22.595

488070966
489522088
489522522
488065185
Lens
MUSE5
MUSEG6
MUSE7
MUSES
MUSE9
MUSE10

404169737
488071415
404169401
404169065
404169758
488072531

488070825
488070947
404169734
488072604
488068102
488073766
488066886
488071245
488071425
488066144
3070264072.0
MUSE13
MUSE14
MUSE15
MUSE16

404169534
488076578
488070460
404169584
404169634
488070460

True
True
True
False
True
False
True
True
True
True

True

True
False
True
False
True

False

False
False
False
False
True
False
False
False
False
False
True
False
True
True

True

True
True
True
True
True

True
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Group 9
62.036870  -53.925643 0.91818 21.953 488073582 True
62.043694  -53.923652 0.91456 22.098 488073160 True
62.025664  -53.892284 0.91979 21.768 488067796 True
62.030458  -53.871796 0.91911 22.148 489522305 True
62.019738  -53.894319 0.91905 22.531 488068835 True
62.067931  -53.853616 0.91854 22.457 489520262 True
62.075161  -53.892278 0.91583 -99.000 3070263850.0 True
62.076105  -53.885866  0.91540 -99.000 3070265512.0 True
62.088268  -53.890642 0.91504 -99.000 MUSE19 True

Group 10
62.161866  -53.918519  1.25018 22.937 488072408 True
62.160696  -53.920293  1.25468 22.908 488072700 True
62.161986  -53.918003 1.25287 22.603 488072310 True
62.098868  -53.909951  1.25002 -99.000 MUSE25 True
62.095831  -53.909607  1.25062 -99.000 MUSE26 True
62.084658  -53.911326 1.25152 -99.000 MUSE27 True
62.107634  -53.905654  1.25400 -99.000 MUSE28 True

WGD 2038-4008

Group 1
309.492815 -40.140131  0.23003 21.389 169192596 True
309.539963 -40.103707  0.22827 17.848 169189459 True
309.539131  -40.115839  0.22917 18.213 169190452 True
309.535586  -40.122881  0.22900 20.025 169191228 True
309.540911  -40.125437  0.22716 21.577 169191437 True
309.537431 -40.135642  0.22864 21.077 169192249 True
309.511379  -40.137024  0.22829 - 169191076 /Lens True

Group 2
309.521701  -40.129094  0.34157 22.937 169191786 True
309.517763  -40.130806  0.34445 22.210 169191897 True
309.564077  -40.146099  0.34071 22.869 169193078 True
309.561418 -40.148516  0.34018 22.225 169193237 True
309.557474  -40.152652  0.34079 19.475 169193432 True
309.496715  -40.122896  0.34271 22.345 169191326 True
309.568673  -40.153285  0.34218 21.564 169193555 True
309.562909 -40.162398  0.34506 19.299 169194065 True
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Table A3. Properties of redMaPPer clusters in the field of view of WGD 2038-4008 . The columns show the cluster ID, cluster redshift,
richness, velocity dispersion (rounded to the nearest 10 km s_l), the group centroid (in RA and Dec), projected distance of the centroid
to the lens (A@), and flexion shift log(Asx(arcsec)). See §6.3 for further discussion

MEM_MATCH_ID Zoroup Pl Taroup RAcr, DECeqr A6 log;o(A3x)

(kms™1) (deg) (arcsec)  (logjg(arcsec))
62659 0.221 £0.008  5.1+£1.7 340fg’8 309.53913, -40.11584 107.9 —5.1t8:i
138669 0.405+0.017 10.8+2.0 430f28 309.48707, -40.16080 108.6 -6.0+£0.2
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