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We investigate the ways in which a machine learning architecture known as Reservoir Computing learns concepts such as
“similar” and “different” and other relationships between image pairs and generalizes these concepts to previously unseen classes of
data. We present two Reservoir Computing architectures, which loosely resemble neural dynamics, and show that a Reservoir
Computer (RC) trained to identify relationships between image pairs drawn from a subset of training classes generalizes the
learned relationships to substantially different classes unseen during training. We demonstrate our results on the simple MNIST
handwritten digit database as well as a database of depth maps of visual scenes in videos taken from a moving camera.We consider
image pair relationships such as images from the same class; images from the same class with one image superposed with noise,
rotated 90∘, blurred, or scaled; images from different classes. We observe that the reservoir acts as a nonlinear filter projecting the
input into a higher dimensional space in which the relationships are separable; i.e., the reservoir system state trajectories display
different dynamical patterns that reflect the corresponding input pair relationships. Thus, as opposed to training in the entire
high-dimensional reservoir space, the RC only needs to learns characteristic features of these dynamical patterns, allowing it to
perform well with very few training examples compared with conventionalmachine learning feed-forward techniques such as deep
learning. In generalization tasks, we observe that RCs perform significantly better than state-of-the-art, feed-forward, pair-based
architectures such as convolutional and deep Siamese Neural Networks (SNNs). We also show that RCs can not only generalize
relationships, but also generalize combinations of relationships, providing robust and effective image pair classification. Our work
helps bridge the gap between explainable machine learning with small datasets and biologically inspired analogy-based learning,
pointing to new directions in the investigation of learning processes.

1. Introduction

Different types of Artificial Neural Networks (ANNs)
have been used in the areas of feature recognition and
image classification. Feed-forward machine learning archi-
tectures such as convolutional neural networks (CNNs)
[1], deep neural networks [2], and stacked autoencoders
[3] and recurrent architectures such as Recurrent Neu-
ral Networks (RNNs) [4] and Long Short-Term Memories
(LSTMs) [5] have been immensely successful for several
tasks from speech recognition [6] to playing the game GO
[2].

There have also been a number of rapid advances in
other recurrent machine learning architectures such as Echo
State Networks (ESNs) (originally proposed in the field of
machine learning) [7] and Liquid State Machines (LSMs)
(originally proposed in the field of computational neuro-
science) [8], commonly falling under the term Reservoir
Computing [9]. Comparedwith deep neural networks, Reser-
voir Computers (RCs) are a brain-inspired machine learning
framework, and their inherent dynamics when trained on
cognitive tasks have been shown to be useful in model-
ing local cortical dynamics in higher cognitive function
[10].

Hindawi
Complexity
Volume 2018, Article ID 6953836, 15 pages
https://doi.org/10.1155/2018/6953836

http://orcid.org/0000-0002-1556-404X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/6953836


2 Complexity

The goal of this work is to demonstrate the unreasonable
efficiency of Reservoir Computers (RCs) in learning the
relationships between images with very little training data
and consequently generalizing the learned relationships to
classes of images not seen before. We recognize that other
machine learning techniques such as deep learning [11] and
CNNs have been proven to be extremely successful at image
classification and have also been used for tasks involving
learning concepts of similarity [12–14]; however, they gener-
ally require large training datasets and high computational
resources. To our knowledge, similarity-based tasks have
not been systematically investigated using RC architectures.
However, RCs, because of their dynamical properties and
simple training needs, may inherently be better suited for
learning from a small training set and generalization of
this learning [15]. While other recurrent architectures, like
LSTMs and Gated Recurrent Units (GRUs), may also offer
dynamical properties enabling generalization, due to their
complex structure and training, they often require compar-
atively much larger datasets for training and hence are more
computationally intensive.

RCs are dynamical systems that nonlinearly transform
input data in a reproducibleway in order to serve as a resource
for information processing. They are appealing because
of their dynamical properties as well as easy scalability,
since only the output weights are trained, while the recur-
rent connections within the reservoir are fixed randomly.
Applications of RCs include processing and prediction of
many real world phenomena such as weather patterns, stock
market fluctuations, self-driving cars, language interpreta-
tion, and robotic control, several of which are inherently
nonlinear phenomenon. RCs are also appealing because of
their biologically inspired underpinnings. Biological systems
such as the visual cortex are known to have primarily
(∼70%) recurrent connections with less than 1 % of the
connections being feed-forward [16]. RCs (or closely related
architectures) provide insights into how biological brains
can carry out accurate computations with an “inaccurate”
and noisy physical substrate [17], for example, accurate
timing of the way in which visual spatiotemporal infor-
mation is super-imposed and processed in primary visual
cortex [18]. Additionally, models of spontaneously active
cortical circuits typically exhibit chaotic dynamics, as in RCs
[19, 20].

In biological systems, a recurring method of learning is
through analogies, using only a handful of examples [21]. For
example, in [22], bees were trained to fly towards the image
in an image pair that looked very similar to a previously
displayed base image. On training bees to fly towards the
visually similar image, the bees were presented with two
scents, one very similar to and one different from a base
scent. As a consequence of the visual training that induced
preference to the very similar category, the bees flew towards
the very similar scent. Recent work has also been done on
the phenomenon of “peak shift”, where animals not only
respond to entrained stimuli, but respond evenmore strongly
to similar ones that are farther away from nonrewarding
stimuli [23]. In this way, biological systems have been
found to translate learning of concepts of similarity across

sensory inputs, suggesting that the brain has a common
and fundamental mechanism that comprehends through
analogies or through concepts of “similarity,” allowing for
generalization of the relationships to unseen classes of data.
Comparedwithmachine learning, humans learnmuch richer
information using very few training examples. Moreover,
humans learn more than how to do pattern or object
recognition: they learn a concept, i.e., a model of the class
that allows their acquired knowledge to be flexibly applied
in new and unseen situations [24]. While many machine
learning approaches can effectively classify images with
human-like accuracy, these approaches often require large
training datasets and consequently increasingly powerful
GPUs.

Despite the fact that research in learning from very
few images, e.g., one shot learning [25], etc., has gained
momentum recently, integrating it with generalization of
learning is a relatively unexplored area. One shot learning,
which learns a class (e.g., sleeping cats) from one example,
is distinctly different from the task of generalization to
an entirely new class (e.g., recognizing sleeping dogs after
having only been trained to recognize sleeping cats). In
our framework, the RC not only requires very few training
examples compared to techniques such as deep learning,
but can also effectively use analogies to learn relationships,
leading to easy generalization.

RCs are built on several prior successful approaches that
emphasize the use of a dynamical system, e.g., with temporal
reinforcement, for successful, neuroinspired learning. In the
ground-breaking work of Hopfield in [26], the success of
Recurrent Neural Networks (RNNs) depends on the exis-
tence of attractors. In training, the dynamical system of the
RNN is left running until it ends up in one of its several
attractors. Similarly, in [27], a unique conceptor is found for
each input pattern in a driven RNN. However, training of
RNNs is difficult due to training problems like exploding or
vanishing gradient. RCs overcome this problem by training
only the output weights. RCs offer a convenient solution to
some the problems with RNNs, while offering many of the
same advantages.

In thiswork, we explore twoRCarchitectures that broadly
resemble neural architecture (Section 2.1). We train the
RCs on both the MNIST handwritten digit database (to
demonstrate proof of concept) as well as depth maps of
visual scenes from a moving camera, to study generalization
of the learned relationships between pairs of images. The
data and methods are outlined in Section 2. The methods
include training the RC to identify relationships between
image pairs drawn from a subset of handwritten digits (0–5)
from the MNIST database and generalizing the learned
relationships to images of handwritten digits (6–9) unseen
during training. Additionally, using a database of depth maps
of images taken from amoving camera, we train RCs to learn
relationships such as “similar” (e.g., same scene, different
camera perspectives) and “different” (different scenes) and
investigate the system’s ability to generalize its learning to
visual scenes that are very different from those used in
training. In Section 3.1, we present the performance of our
RC architectures in generalization to unseen classes, showing
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Figure 1: Examples of images taken from a moving camera from the same class. A pair of these would be classified under the category
“similar”.

successful generalization for both handwritten digits and
depth maps.

We also compare, in Section 3.2, the RC performance
for our generalization task to two pair-based, feed-forward
approaches: a deep Siamese Neural Network (SNN) and
a convolutional Siamese Neural Network (CSNN). Several
recent studies have been very successful in using Siamese
(pair-based) feed-forward networks for similarity-based
tasks such as sketch-based image retrieval [28], gait recogni-
tion in humans [29], signature verification [30], verification
and one/few shot learning on the Omniglot dataset [31, 32],
etc. For our generalization task, we show that the reservoir
performs significantly better than commonly used deep and
convolutional Siamese Neural Networks, both for simpler
MNIST images as well as for depth maps, highlighting the
utility of the RC approach for generalization to unseen
data classes using limited training data. We also show, in
Section 3.3, that the reservoir is able to recognize not only
the individual relationships it has been trained on but also
combinations of them.

In order to explain the success of the reservoir in
generalization, we look for recurring dynamical patterns the
reservoir system state trajectories in Section 3.4. We find
that the reservoir state trajectories in response to different
types of input pairs effectively cluster, with different clusters
corresponding to different relationships between the pair
of input images. The reservoir can then be thought of as
a nonlinear filter whose goal is to map the input into a
high-enough dimensional space that the important features
become nearly linearly separable. In addition, the dynamical
properties of the reservoir allow for temporally encoded
“memory”. We speculate that this combination of effective
nonlinear filtering and temporally encoded memory allows
for generalization of the learned relationships to classes of
image pairs seen and unseen by the reservoir using a small
number of training image pairs.

2. Data and Methods

We use two datasets for our study: (1) the handwritten digit
MNIST database that consists of 70000 images, each 28×28
pixels in size, of handwritten digits 0-9; and (2) depth maps
fromamoving camera from6different visual scenes recorded
indoors in an office setting (refer data availability for access to
dataset). Each visual scene has depth maps from at least 300
images, each compressed to 100×100 pixels in size, recorded
as the camera is moved within a small distance (∼30cm) and
rotated within a small angle (∼30∘). A sample of three RBG
images from one of the 6 classes is shown in Figure 1.

In our framework, images are always considered in pairs
(image 1 and image 2). We study five relationships, noise,
rotated, zoomed, blurred, and different. We are interested in
exploring relationships between images through concepts of
“similarity” and “difference”. The relationships we consider
are a natural extension of these concepts. Examples of the
image pair relationships applied to the MNIST dataset are
shown in Figure 2. We create the image pairs as follows.

Two different images from the same class, i.e., of the same
digit, are taken directly from the MNIST database for cases
1–4. There may be significant variation between these images
in spite of them being from the same class.

(1) Noise: one of the images in the pair (image 1)
remains untransformed, whereas the other (image 2)
is transformed by superimposing random noise with
peak value given by 20 % of the peak value of image 1
(Figure 2(a)).

(2) Rotated: image 2 is 90∘ rotated (Figure 2(b)).
(3) Zoomed: image 2 is zoomed with a magnification of

2 (Figure 2(c)).
(4) Blurred: image 2 is blurred (Figure 2(d)) by convolv-

ing every pixel of the image by a 6 × 6 convolution
matrix with all values 1/36.

(5) Different: two different images from different classes
(Figure 2(e)).

All pairs are characterized by the relationship between the
image pair. For instance, we call a pair rotated if we start
from two different handwritten images of the same digit
and rotate the second image 90∘ with respect to the first.
Since two different handwritten images of the same digit are
used, the relationship between the image pair involves an
initial nonlinear transformation in addition to the applied
transformation.

2.1. Network Architecture. In this work we use the Echo State
Network (ESN) class of RCs for training and classification.
Our RCs are neural networks with two layers: a hidden layer
of recurrently interconnected nonlinear nodes, driven both
by inputs as well as through feedback from other nodes in
the reservoir layer and an output or readout layer. Only the
output weights of the reservoir are trained. RCs have been
found to replicate attractors in dynamical systems [33, 34]. It
works particularly well for analyzing time series input data
due to its short-term memory [15] and high-dimensional
encoding of the input [35, 36]. The input images are hence
converted into a “time series” by feeding the reservoir a



4 Complexity

(a) (b) (c) (d) (e)

Figure 2: Pairs of images that are representative of the transformations classified into five labels: (a) very similar, (b) rotated by 90∘, (c)
zoomed, (d) blurred, and (e) different.
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Figure 3: (a) Reservoir architecture with input state of the two images at time 𝑡 denoted by 󳨀→𝑢(𝑡), reservoir state vector at a single time by
󳨀→𝑟 (𝑡), and output state by 󳨀→𝑦 . (b) shows one image pair from the rotated 90∘ category of the MNIST dataset split vertically and fed into the
reservoir in columns of 1 pixel width, shown to be larger here for ease of visualization.

column of the input image at each time point (as in [37]).The
method of “temporalization” of the input (row-wise, column-
wise, etc.) simply changes the input representation and does
not affect the analysis. While there is limited understanding
of the actual processes through which the brain processes
analogies, we explore two models that are inspired by cortical
processing of relationships between inputs. There has been
some evidence [38] of integrated processing, particularly in
the visual cortex. To mimic an integrated processing sys-
tem more closely, we study the single reservoir architecture
(Figure 3(a)). However, there is also some evidence that
analogy processing involves two steps: (1) the brain generated
individual mental representations of the different inputs
and (2) brain mapping based on structural similarity, or
relationship, between them [39].We create the dual reservoir
architecture (Figure 4) in an attempt to mimic this parallel
processing of signals followed by mapping based on the
differences between the processed signal in the cortex. Since
there is not a consensus in the neuroscience community
about the details of cortical processing, we present both the
single and dual reservoir architecture here.

2.1.1. Single Reservoir Architecture

Input Layer. As discussed above, in order to exploit the
memory properties of RCs, the input is converted to a time
series. We vertically concatenate the image pair to form
the combined image. We then input the combined image,
through the input weights matrix 𝑊in, column by column
(shown in Figure 3(b) for the MNIST database) into the
reservoir, i.e., with the time axis to run across the columns
of the combined image. While this “temporalization” may

seem artificial, there’s a unique reproducible reservoir state
trajectory (the sequence of reservoir states) corresponding
to each image, causing the results to be independent of
order of temporalization, as long as all images are tempo-
ralized the same way. 𝑊in is randomly chosen and scaled
such that the inputs to the reservoir are between 0 and
1.

Reservoir Layer. The reservoir can be thought of as a dynam-
ical system characterized by a reservoir state vector 󳨀→𝑟 (𝑡)
which describes the state of the reservoir nodes as a function
of time 𝑡. 󳨀→𝑟 (𝑡) is given by

󳨀→𝑟 (𝑡 + 1) = tanh (𝑊in ⋅ 󳨀→𝑢 (𝑡)𝑊res ⋅ 󳨀→𝑟 (𝑡) + 𝑏) (1)

The input weights matrix 𝑊in ∈ R𝑁𝑅×𝑁𝑢 , where 𝑁𝑅 is
number of nodes in the reservoir and 𝑁𝑢 is the dimension
of the input vector 󳨀→𝑢(𝑡); here 𝑁𝑢 is the number of rows
of the concatenated image. The activity of the reservoir at
time 𝑡 is given by 󳨀→𝑟 (𝑡), of size 𝑁𝑅. The recurrent connection
weights 𝑊res ∈ R𝑁𝑅×𝑁𝑅 are set randomly between −1
and 1. 𝑏 is a scalar bias. We use hyperbolic tangent as the
nonlinear activation function. We rescale 𝑊res to have a
spectral radius 𝛾 (maximal absolute eigenvalue) of 0.5, but we
observe no conclusive correlation or robust pattern between
performance and this choice as seen in Figure 10. Our choice
of spectral radius is in part influenced by the analysis of
the effect of spectral radius on performance presented in
[40]. The reservoir is a dynamical system that transforms
the low dimensional input into a much higher dimensional
reservoir space and is not affected by 𝑊in and 𝑊res being
sparse,making it computationally faster.Matrix sparsity is 0.9
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Figure 4: Dual reservoir architecture with input state of the two images at time 𝑡 denoted by 󳨀→𝑢(𝑡) and 󳨀→V (𝑡), reservoir state vectors by 󳨀󳨀→𝑟1,2(𝑡),
and output state by 󳨀→𝑦 .

(90% of the entries are randomly chosen to be zero) unless
otherwise stated.

Output Layer. In the single reservoir architecture, for one
combined input image, the reservoir state trajectory, 𝑋, is
formed by concatenating the 𝑁𝑅 × 1 reservoir state vectors
(the state of all reservoir nodes) at every timestep 󳨀→𝑟 (𝑡) as
follows:

𝑋 = [󳨀→𝑟 (0) 󳨀→𝑟 (𝑡 = 1) . . . 󳨀→𝑟 (𝑡 = 𝑇)] , (2)

where 𝑋 is an augmented matrix of size 𝑁𝑅 × 𝑐 and 𝑐 is
the number of columns in the image (number of time steps,
𝑇, through which the entire image is input). For the single
reservoir case, 𝑋 is the same as the reservoir system state
trajectory, denoted by 𝑋 for both single and dual reservoir
architectures). 𝑋 is the matrix obtained by processing the
input through the reservoir architecture that is then used to
generate the output weights.

The output/readout layer representation (𝑌𝑖) for a very
similar pair is (1, 0, 0, 0, 0), rotated pair is (0, 1, 0, 0, 0),
zoomed pair is (0, 0, 1, 0, 0), blurred pair is (0, 0, 0, 1, 0), and
different pair is (0, 0, 0, 0, 1). The output weights convert the
reservoir system state trajectories𝑋𝑘 into the reservoir output
𝑦𝑖 (whose values are reservoir predicted probabilities of each
category). Ridge regression (see Appendix A) is then used
to train the output weights of the reservoir. While testing,
a fractional probability is allotted to each output label, and
the image pair is classified into the label with the highest
probability.

2.1.2. Dual Reservoir Architecture

Input Layer. In order to exploit the memory properties of
RCs, for the dual reservoir architecture, the input is again

converted to a time series. However unlike for the single
reservoir architecture, we input each image (image 1 and
image 2) column by column into two identical reservoirs,
allowing the time axis to run across the columns of the image.

Reservoir Layer. The reservoir state vectors for the two
reservoirs (corresponding to image 1 and image 2), 󳨀→𝑟1(𝑡) and󳨀→𝑟2(𝑡), are given by

󳨀→𝑟1 (𝑡 + 1) = tanh (𝑊in ⋅ 󳨀→𝑢 (𝑡) + 𝑊res ⋅ 󳨀→𝑟1 (𝑡) + 𝑏)
󳨀→𝑟2 (𝑡 + 1) = tanh (𝑊in ⋅ 󳨀→V (𝑡) + 𝑊res ⋅ 󳨀→𝑟2 (𝑡) + 𝑏)

(3)

where 󳨀→𝑢(𝑡), 󳨀→V (𝑡) are inputs from image 1 and 2 respectively.
The properties of the internal dynamics of the reservoir are
identical and the same as the single reservoir. 𝑊res for both
reservoirs are identical and randomly chosen as outlined in
the single reservoir case.

Output Layer. Contrary to the single reservoir case, here we
have two distinct reservoirs. The reservoir state trajectory 𝑋𝑘
of one individual reservoir for one image 𝑘 is then formed by
concatenating the reservoir state vector as in (2). However,
for the dual reservoir, we obtain two individual reservoir state
trajectories, whose difference forms the reservoir system state
trajectory 𝑋𝑘, that is used in the determination of the output
weights.

The 𝑘𝑡ℎ reservoir system state trajectory is given by 𝑋𝑘 =
|𝑋𝑘1−𝑋𝑘2|, where𝑋𝑘1, 𝑋𝑘2 are the reservoir state trajectories
corresponding to the images 1 and 2 respectively, for the
𝑘th input image pair. The readout layer representations for
different relationships are the same as that in the single
reservoir case. Ridge regression (refer Appendix A) is then
used to train the output weights of the reservoir.
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Figure 5: Fraction of image pairs correctly classified versus training set size (a and c) and reservoir size (b and d). Single reservoir results
show in (a and b). Dual reservoir results shown in (c and d). Dashed curves denote fourth order polynomial best fit. Reservoir size=1000
nodes for (a and c); training size=250 pairs for (b and d). Spectral radius 𝛾 = 0.5, sparsity = 0.9, and testing size= 500 pairs.

3. Results

3.1. Generalization to Untrained Image Classes. In this section
we discuss the performance of the single and dual reservoir
in the task of generalization of learned relationships. We
present the results obtained on the MNIST dataset as proof of
concept. The systems were trained on the five relationships,
noise added, 90∘ rotation, blur, zoom, and different (i.e., no
relationship), on image pairs of handwritten digits 0-5. Then
they were tested on identifying the same relationships (in
equal measure) between image pairs of handwritten digits 6-
9 (digits they have never seen before).We use fraction correct
(1- error rate) as a metric of performance.

In Figures 5(a) and 5(c), we see that the reservoir perfor-
mance increases rapidly with training set size and plateaus at
around 200 training pairs. A training set size of ∼250 image
pairs gives a reasonable trade-off between performance and
computational efficiency. This is significantly lower than the
training set sizes typically used in machine learning. Hence,
our system achieves an important goal for many biomimetic
architectures, i.e., the ability to train with relatively few
training examples. Figures 5(b) and 5(d) show that for a
constant training data size (250 pairs) the performances
increase as expected with reservoir size up to ∼750 nodes

after which it saturates. The overall performance of the single
reservoir appears to be better than that of the dual reservoir
for a given reservoir size.

Further, we examine the reservoir performance as a
function of the spectral radius 𝛾 in Figure 10; we observe
a significant spread in performance values across 𝛾; how-
ever we see no definitive pattern or conclusive correlation
between the spectral radius and performance for the range
investigated. While we notice a better performance for 𝛾 =
0.1 in the single reservoir, this is neither consistent across
the single and dual reservoir architectures, nor the boost in
performance robust across all small 𝛾 values. For reference,
reservoir activity, single node activity, and output weights are
shown in the Appendix B.

3.2. Comparison with Siamese Neural Networks. The topic of
generalized learning has, to the best of our knowledge, not
been satisfyingly addressed using a dynamical-systems-based
machine learning approach that renders itself to easy analysis.
To assess the effectiveness of our approach, we compare
the performance of RCs with variants of a Siamese Neural
Network (SNN), a successful pair-based machine learning
technique (SNN architecture illustrated in Figure 6). Specifi-
cally, we compare the single and dual reservoir model to three
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Figure 6: Siamese Network Architecture. Two inputs 𝑋1 and
𝑋2 are fed into two identical networks. 𝐺𝑤(𝑋) is the network
transformation of the input 𝑋.𝑊 is the shared weights between the
two heads of the Siamese architecture.

other architectures: a base SNN multilayer perceptron with
4 fully connected layers of 128 neurons each, a deep SNN
multilayer perceptron with 8 fully connected layers of 128
neurons each, and a convolutional SNN (convolutional layer
with 32 filters, 3 × 3 kernel, and a rectified linear nonlinearity,
followed by 4 fully connected layers with 128, 64,32, and 2
neurons each). We compared performance for two binary
classification tasks (Figure 7(c)): (1) learning the 90∘ rotation
operator on MNIST image pairs; (2) learning to detect depth
maps that come from the same visual scene class for the
dataset of depth maps from a moving camera.

All SNN architectures were trained using contrastive loss
(following [41]) and the optimizer Adadelta with a self-
adjusting learning rate. The objective of our SNN is not
classification but differentiation. Hence the contrastive loss
function that pulls neighbors together and pushes nonneigh-
bors away is a natural choice compared to classification loss
functions such as cross entropy.The single and dual reservoirs
have 1000 nodes with 𝛾 = 0.5 and sparsity 0.9. Training
is done for a 100 (40) epochs on the base and deep SNN
multilayer perceptrons and 40 (20) epochs on the convSNN
forMNIST (visual scenes) data, respectively, and once on the
reservoirs on 500 image pairs.

Whilewe present a select few SNNarchitectures here (and
selected choices of parameters), we tried several other SNN
architectures including VGG16-SNN and deep convSNN and
found their performance to be comparable to the represen-
tative SNN performances we have shown. We also show
SNN multilayer perceptron performance on varying depth
(number of layers) and varying training data size (varied
in the lower range compared to traditional deep network
training sizes for comparison with the RCs and to motivate
the question of biological plausibility) while testing on seen
(trained) classes and unseen (test) classes (Figures 7(a) and
7(b) respectively) and find that while the network performs
fairly well on the trained classes, it performs consistently
poorly on the unseen classes. The loss and accuracy plots for
the SNN architectures for both tasks are in Appendix C.

3.2.1. Generalized Learning of the Rotation Operator on the
MNIST Dataset. We train the reservoir on a simple binary
classification task, i.e., classify image pairs from the MNIST
dataset as having the relationship “rotated” or not. Our
training set consists of rotated andnot rotated images of digits
0-5. Figure 7(c) shows the fraction of correct classification by
the RCs and the SNNs on the training classes (seen, digits
0-5) and testing classes (unseen, digits 6-9), as rotated or
not rotated. We observe that while the performance of all
the networks is comparable on training set digits (digits 0-
5), all the SNN architectures seem to have a near-random
percent correct for untrained digits (6-9). Performance did
not improve on increasing the depth of the base SNN (Figures
7(a) and 7(b)). The reservoir performance remains equally
good over trained digits (0-5) and untrained digits (6-9),
indicative of learning of the underlying relationship in the
pairs and not the individual digits themselves. From obser-
vations in Section 3.4, we speculate that the generalization
ability of the reservoir may be attributed to the convergence
of parts of the reservoir system state trajectories for all rotated
image pairs. The dynamical properties of the reservoir create
temporal patterns that enable memory. These properties may
make learning on small datasets easier by requiring the RC to
learn only some features of the dynamical patterns instead of
the whole reservoir space. By contrast, the feed-forward SNN
is not a dynamical system that enables temporally encoded
memory, and training occurs explicitly on the images as
opposed to the classes of relationships, which may be a
possible cause for poorer performance while generalizing.
For comparison, we present performance of a fully connected
SNN upon varying depth and training data size in Figures
7(a) and 7(b).

3.2.2. Generalizing Similarities in Depth Perception from a
Moving Camera. Identifying similarities in scenes and prop-
erties of scenes such as depth, style, etc. from a moving
camera is an important problem in the field of computer
vision [42, 43]. We are interested in studying how the
reservoir could learn and generalize relationships between
images of visual scenes from a moving camera, frames of
which may be nonlinearly transformed with respect to each
other. To demonstrate the practicality of our method, we
implement it on depth maps from 6 different visual scenes
recorded indoors in an office setting. Each visual scene has
depth maps from 300 images, recorded as the camera is
moved within a small distance (∼30cm) and rotated within
a small angle (∼30∘). We then train the networks to identify
pairs of depth maps as very similar (same visual scene)
or different (different visual scenes), learning to capture
small spatial and rotational invariance. Training is done
on 500 images each from the first three visual scenes.
We study whether the systems are able to generalize, i.e.,
identify relationships between depth maps from the other
three visual scenes. Figure 7(c) shows the reservoir per-
forms significantly better on untrained scenes than the SNN,
which classifies randomly. Both systems have a comparable
and very high performance on the trained scenes. Thus,
the reservoir is able to identify frames with similar depth
maps from scenes it has not seen before. This has potential
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Figure 7: SNN perceptron performance on trained (seen) classes (a) and test (unseen) classes (b) of MNIST data as a function of training
dataset size and SNNperceptron depth. (c) Classification accuracy (fraction correct) of the single anddual reservoir, base SNN, deep SNN, and
convSNN on seen (trained) classes and unseen (test) classes, on (1) identifying rotation transformation inMNIST images; and (2) identifying
similar visual scenes from a moving camera. Training size: 500 images; testing size: 500 images.

applications in scene or object recognition using a moving
camera.

3.3. Combining Relationships. In this section we train the
reservoir independently on the five relationships as in previ-
ous sections. However our test images have a linear combina-
tion ofmultiple relationships applied on them simultaneously
(e.g., rotated as well as blurred). We then study the ability
of the reservoir to recognize all the separate relationships
applied to the test input pair.

Several tests on subsets/combinations of relationships
were performed; however we only present a few demon-
strative cases here. Training is done on the five individual
relationships (noise, rotated, blurred, zoomed, and different)
for digits 0-5. Here we present testing on a combination
of 3 relationships (90∘ rotation, zoom and blur), combi-
nation of 2 relationships (90∘ rotation and blur) as well
as solo 90∘ rotation for digits 6-9. For testing image pairs
with 𝑛 relationships applied simultaneously, we consider
the reservoir to have classified correctly if the 𝑛 highest
label probabilities predicted by the reservoir during testing
correspond to the 𝑛 applied relationships. In Figure 8 we
observe that both the single and dual reservoirs perform very

well (in terms of percent correct) at identifying combined
relationships in images that they have never seen before. The
single reservoir, on average, performs slightly better than the
dual reservoir. While there may be some inherent biases (ex.
in Figure 8(f), the dual reservoir shows a bias towards the
zoomed category), in spite of the biases, the reservoirs are
able to not only identify and separate linear combinations
of these relationships, but also generalize this knowledge to
previously unseen classes. We speculate that this ability to
generalize combinations of multiple relationships is a result
of overlap of reservoir system state trajectory clusters that
correspond to the separate relationships. The cases shown in
Figure 8 are representative of the higher end of the range of
accuracies obtained with other combinations (not presented
here) as well.

3.4. Clustering Reservoir Space. Here we present a study
of the features reservoir system state trajectories that may
be important for generalization. In order to generalize, for
a given relationship between the input image pair, there
must be a corresponding relationship between the reservoir
activity, dependent only on the relationship between the
input images and not on the specific features of the input
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Figure 8: Graphing probabilities of the reservoir output (𝑦𝑘) versus the image pair number 𝑘, for image pairs that are rotated (a, d) 2
combination: rotated and blurred (b, e); 3 combination: noise, blurred, and zoomed (c, f), for single and dual reservoir, respectively. The
fractions correct, where classification is considered to be correct if the 𝑛 predicted maximum probability labels are the 𝑛 transformations
applied to the test image pair (shown on top left of each panel), are 0.97, 0.97, 1.0, 0.93, 0.84, and 0.93 for (a, b, c, d, e, f), respectively. 𝛾=0.5;
reservoir size=1000. Training digits: 0-5; testing digits: 6-9. Training size: 250 pairs.

images themselves. As discussed earlier, the reservoir serves
as a nonlinear filter, whose goal for classification problems
is to map the input into a high-dimensional space where the
different relationships become linearly separable. In addition,
the dynamical properties of the reservoir allow it to encode
memory (because the reservoir state at time 𝑡 depends on its
state at time 𝑡−1). In this way, the reservoir’s dynamical activ-
ity pattern in response to the input can highlight important
features/relationships within the temporalized input. In this
section we illustrate that reservoir system state trajectories
corresponding to a relationship do indeed cluster/become
separable in reservoir space, allowing for generalization.

In Figure 9, we plot a representation of 500 reservoir
system state trajectories for each relationship (using different
input digits; equally sampled) for (a) the single reservoir
and (b) the dual reservoir. We show here the five standard
relationships for MNIST, noise, rotate, blur, zoom, and
different, as well as one combined relationship, blur+rotate. A
single reservoir system state trajectory has a very high dimen-
sionality (𝑁𝑅 × 𝑇). We are interesting in viewing this high-
dimensional data in a reduced dimensional space. Hence,
we use the following dimensionality reduction techniques:
first, we use Principal Component Analysis (PCA) to extract
the 100 largest principal components (PCs) of each reser-
voir system state trajectory. We then use the t-Distributed
Stochastic Neighbor Embedding (t-SNE) technique [44]
on the extracted PCs for further dimensionality reduction.

t-SNE, being particularly well suited for the visualization of
high-dimensional datasets, has been used very successfully
in recent years along with PCA.

We visualize the reservoir system state trajectories in a
two-dimensional space and find that relationships between
images cluster. We observe from Figure 9 that the separation
of relationships is more prominent for the dual reservoir
(Figure 9(b)) compared to the single reservoir (Figure 9(a)).
This may be attributed to the architecture of the dual reser-
voir, which takes the difference between the individual image
trajectories, thus more directly encoding the classification
features, i.e., the features of the differences between the image
pair (blur, scale, rotation feature, etc.), unlike the single
reservoir. However, we note that despite the fact that we
see better separation of of clusters for the dual reservoir,
the single reservoir slightly outperforms it on the MNIST
data (see Figure 7(b)). One possible reason for this is that
Figure 9 only shows a two-dimensional representation of
the clusters and perhaps the single reservoir shows a better
separation than the dual reservoir in higher dimensions.
Another possible reason is that the reservoir system state
trajectories do not take into account the training, which,
in addition to the clustering of reservoir trajectories, is a
key component of the reservoir’s performance. There may
be some features of the reservoir system state trajectories
from the single reservoir architecture that are not captured
in Figure 9 yet allow for more effective training.
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Figure9: 500 reservoir systemstate trajectories for each relationship in the reduceddimensional space spannedby the two largest components
obtained using t-SNE on the 100 largest principal components of the reservoir system state trajectory for (a) single reservoir and (b) dual
reservoir. Input images: digits 0-9 of MNIST dataset.𝑁𝑅: 1000. t-SNE iterations: 300. perplexity: 40.
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Figure 10: Fraction correct as a function of spectral radius for (a) single reservoir; (b) dual reservoir.𝑁𝑅=1000; training size=250 pairs; testing
size=500 pairs; 𝛾 = 0.5; sparsity = 0.9.

We speculate that the separation of the system trajectories
in reservoir space is important for generalizing with small
datasets when using a linear training procedure like ours.
Here, we have demonstrated that the reservoir does indeed
function as an effective nonlinear filter that acts upon the
image pairs and separates them in high-dimensional reser-
voir space into clusters characterized by the relationships
between the two input images.

4. Conclusion

In this paper we have used Reservoir Computers (RCs)
for image classification problems that involve generalization
of relationships learned between image pairs using limited
training data. While image classification has been studied
extensively before, here we present a biologically inspired
recurrent network approach that not only generalizes learn-
ing, but also allows us to build an interpretation of the

results. We present our results on the simple handwritten
digits database, as well as on a video dataset of depth maps
from a moving camera, useful in identification of similar
scenes from different camera perspectives. We observe that
the reservoir system state trajectories obtained from input
image pairs with the same relationship cluster in reservoir
space. This can be interpreted as the reservoir trajectory
exhibiting dynamical patterns corresponding to image pair
relationships. Because the reservoir system state trajectories
separate in the high-dimensional reservoir space according
to the input pair relationships, a linear method of training
such as ridge regression is effective. The separability of the
clusters allows for training to converge relatively quickly and
with limited training data. By reducing dimensionality from
the reservoir space to the space mapped by the clusters,
we obtain a well-generalizing reservoir using only a small
training dataset, whereas contemporary methods such as
deep learning require much larger datasets. Although we see
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Figure 11: Reservoir activity for the single reservoir architecture. (a), (b), (c), (d), and (e) show the differential reservoir activity of 200 nodes
over 28 timesteps for input relationships noise, rotated, zoomed, blurred, and different, respectively. (f) shows the output weightmatrix(𝑊out)
for 50 reservoir nodes. (g) shows activity of a random node for all output labels over 28 timesteps. 𝑁𝑅: 1000; 𝛾 = 0.5; sparsity= 0.9.

strong performance with a sparse reservoir and few training
images in our proof-of-concept study, we suspect that, for
more complex input images, a more powerful (and possibly
more sophisticated) architecture would be required to match
performance.

We find that the RCs perform significantly better than
deep/convolutional SNNs for the task of generalization. From
a computation perspective, theRChas the added advantage of
speed since only the output weights are trained and the reser-
voir is sparsely connected. Our system is biologically inspired
in two ways. First, the learning mimics biological learning

through comparisons and analogies. Second, the internal
dynamics of the reservoir are known to broadly resemble
neural cortex activity. We conclude that although state-
of-the-art machine learning techniques such as SNNs (for
pairwise input) work exceedingly well for traditional image
classification, they do not work as well for generalization of
learning, for which RCs significantly outperform them in our
study, perhaps due, in part, to their dynamical “memory”
properties that lead to distinctive dynamical patterns in the
reservoir state trajectories.Whilemore complex architectures
such as LSTMs may also have much greater success in
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Figure 12: Reservoir activity for the dual reservoir architecture. (a), (b), (c), (d), and (e) show the differential reservoir activity of 200 nodes
over 28 timesteps for input relationships noise, rotated, zoomed, blurred, and different respectively. (f) shows the output weight matrix(𝑊out)
for 50 reservoir nodes. (g) shows activity of a random node for all output labels over 28 timesteps. 𝑁𝑅: 1000; 𝛾 = 0.5; sparsity= 0.9.

generalization than nonrecurrent architectures, they require
much larger training data and more computational power.
However, implementing the experiment on an LSTM net-
work could be an interesting future direction, especially for
more challenging generalization problems.

We see the strength of our work is lying not only in its
demonstration of the utility of RCs for generalization using
small datasets, but also in our ability to interpret this in terms
of the clustering of the dynamics of the reservoir system state
trajectory. This relates to new ideas in explainable Artificial
Intelligence (AI), a topic that continues to receive traction. An
interesting direction would be to explore different reservoir-
like architectures that model the human brain better. Another

promising direction would be to study synchronization pat-
terns in the reservoir and their role in learning.

Appendices

A. Ridge Regression and Training

Only the output weight matrix 𝑊out is optimized during
training such that it minimizes the mean squared error
𝐸(𝑦, 𝑌) between the output of the reservoir 𝑦 and the target
signal 𝑌. The reservoir output is

𝑦 = 𝑊out𝛿𝑋 (A.1)
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Figure 13: Plot of training loss and accuracy for (a and c) base Siamese network, (b and d) deep Siamese network, and (c and f) convolutional
Siamese network.

𝑊out ∈ R𝑁𝑦×𝑁𝑅 where𝑁𝑦 is the dimensionality of the readout
layer.

𝛿𝑋 or the concatenated reservoir system state trajectory
is the matrix containing all reservoir system state trajectories
during training phase, 𝛿𝑋 = [𝑋0 𝑋1 . . . 𝑋𝑀] where 𝑀 is
the total number of training image pairs, input one after the
other, and 𝑌 = [𝑌0 𝑌1 . . . 𝑌𝑀] is the matrix containing the
corresponding readout layer for all images.𝑊out is computed
using Ridge Regression (or Tikhonov regularization) [45],
which adds an additional small cost to least square error,
thus making the system robust to overfitting and noise.
Ridge regression calculates𝑊out byminimizing squared error
𝐽(𝑊out)while regularizing the normof the weights as follows:

𝐽 (𝑊out) = 𝜂 󵄨󵄨󵄨󵄨󵄨𝑊
out󵄨󵄨󵄨󵄨󵄨
2 + ∑
𝑖

((𝑊out)𝑇 𝛿𝑋𝑖 − 𝑌𝑖)
2

. (A.2)

where 𝛿𝑋 is the concatenated reservoir system state trajec-
tories over all training image pairs, 𝑌 contains the corre-
sponding label representations, and the summation is over all
training image pairs. Upon solving the stationary condition
𝜕𝐽/𝜕𝑊out = 0 is

𝑊out = (𝛿𝑋𝛿𝑋𝑇 + 𝜂𝐼)−1 𝛿𝑋𝑌. (A.3)

where 𝜂 is a regularization constant and 𝐼 is the identity
matrix.

B. Reservoir Dynamics and Performance

We present the performance of the single and dual reservoir
as a function of spectral radius 𝛾. 𝛾 is varied from 0 to 1
while looking for the optimal performance region where the
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reservoir has memory or is in the “echo state” (edge of chaos)
[46]; however we find no indicative pattern (Figure 10).

Performance with Spectral Radius. Figure 10 shows fraction
correct as a function of reservoir dynamics for (a) single and
(b) dual reservoir.

Reservoir Dynamics. For completion, we plot the reservoir
activity, i.e., averaged reservoir system state trajectory cor-
responding to our five relationships applied to the MNIST
dataset, output weights, and single node activity. Figures 11
and 12 show plots of activity in the single reservoir and dual
reservoir architecture, respectively. We see that the individual
node (f) itself does not encode any decipherable information.
However each output label (a, b, c, d, and e) has a slightly
different signature in reservoir space.

C. Loss and Accuracy of SNNs

In Figure 13 we plot the training loss and accuracy for the base
SNN (4 layers), deep SNN (8 layers), and convolutional SNN
for the two tasks of identifying rotation operator in MNIST
and identifying similar visual scenes from a moving camera.
Since training data is small, losses converge fairly quickly over
epochs. The optimizer Adadelta, which employs a variable
learning rate, was used in training.

Data Availability

The visual scenes captured from a moving camera (images
and depth maps) dataset used to support the findings of
this study are available from the corresponding author
upon request. The dataset has not been included in the
article/supplementary material due to its large size. Code
is available at https://github.com/a-jan-tusk/Reservoir-for-
generalization.
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of Echo State Networks,” Neural Computation, vol. 19, no. 1, pp.
111–138, 2007.

[41] R.Hadsell, S. Chopra, andY. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in Proceedings of the IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’06), pp. 1735–1742, June 2006.

[42] H. Rahmani, A. Mian, and M. Shah, “Learning a deep model
for human action recognition from novel viewpoints,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp.
1-1.

[43] A. Zeng, K.-T. Yu, S. Song et al., “Multi-view self-supervised
deep learning for 6D pose estimation in the Amazon Picking
Challenge,” in Proceedings of the 2017 IEEE International Con-
ference on Robotics and Automation, ICRA 2017, pp. 1386–1393,
Singapore, June 2017.

[44] L van der Maaten and G. Hinton, “Viualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605,
2008.

[45] F. Wyffels, B. Schrauwen, and D. Stroobandt, “Stable output
feedback in reservoir computing using ridge regression,” in In
Proceedings of the 18th International Conference on Artificial
Neural Networks, 2008.

[46] G. K. Venayagamoorthy and B. Shishir, “Effects of spectral
radius and settling time in the performance of echo state
networks,” Neural Networks, vol. 22, no. 7, pp. 861–863, 2009.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

