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Abstract

The potential energy surface (PES) describes the energy of a chemical system as a
function of its geometry and is a fundamental concept in modern chemistry. A PES pro-
vides much useful information about the system, including the structures and energies
of various stationary points, such as stable conformers (local minima) and transition
states (first-order saddle points) connected by a minimum-energy path. Our group has
previously produced surrogate reduced-dimensional PESs using sparse interpolation
along chemically significant reaction coordinates, such as bond lengths, bond angles,
and torsion angles. These surrogates used a single interpolation basis, either poly-
nomials or trigonometric functions, in every dimension. However, relevant molecular
dynamics (MD) simulations often involve some combination of both periodic and non-
periodic coordinates. Using a trigonometric basis on nonperiodic coordinates, such as
bond lengths, leads to inaccuracies near the domain boundary. Conversely, polynomial
interpolation on the periodic coordinates does not enforce the periodicity of the surro-
gate PES gradient, leading to nonconservation of total energy even in a microcanonical
ensemble. In this work, we present an interpolation method that uses trigonometric

interpolation on the periodic reaction coordinates and polynomial interpolation on the



nonperiodic coordinates. We apply this method to MD simulations of possible isomer-
ization pathways of azomethane between cis- and trans- conformers. This method is
the only known interpolative method that appropriately conserves total energy in sys-
tems with both periodic and nonperiodic reaction coordinates. In addition, compared
to all-polynomial interpolation, the mixed basis requires fewer electronic structure cal-
culations to obtain a given level of accuracy, is an order of magnitude faster, and is

freely available on GitHub.

1 Introduction

The potential energy surface (PES) of a molecule maps its geometry to a corresponding elec-
tronic energy within the Born-Oppenheimer approximation.Born and Oppenheimer [1927],
Born and Fock [1928], Born and Huang [1954] One can glean much chemically useful in-
formation from a PES: local minima and first-order saddle points correspond to stable and
transition-state structures respectively, from which one may calculate energy barriers and
minimum-energy paths that describe chemical reactivity. Such knowledge is useful for both
theoretical investigationsGlasstone et al. [1941] as well as molecular dynamics (MD) simula-
tions.Albaugh et al. [2016], Brown et al. [2003], Bowman et al. [2011], Liu et al. [2019], Nance
et al. [2014]| Highly accurate evaluations of a PES can be done with an ab initio and density
functional theory (DFT) methods, but the computational cost of these methods rises rapidly
with the number of atoms N. For instance, the computational cost of DFT scales as O(N3),
while second-order Mgller—Plesset perturbation theory (MP2) is O(N?®) and coupled cluster
with single and double excitations (CCSD) is O(N%).Koch and Holthausen [2001] Thus, if a
large number of PES evaluations is required, a surrogate PES becomes necessary.

Various techniques exist to construct surrogate PESs, such as modified Shepard interpola-
tion,Collins and Parsons [1993], Collins [2002, 2003], Thompson et al. [1998], Espinosa-Garcia
et al. [2012], Wu and Manthe [2003], Zhou et al. [2011] permutationally invariant polynomials

(PIP),Albaugh et al. [2016], Brown et al. [2003], Bowman et al. [2011]|, Braams and Bow-



man [2009], Chen and Bowman [2018], Qu et al. [2018] interpolative moving least-squares
(IMLS),Dawes and Quintas-Sanchez [2018|, Guo et al. [2007]|, McLain [1974], Farwig [1986],
Maisuradze et al. [2003] Gaussian processes,Cui and Krems [2015], Uteva et al. [2017] neural
networks (nn-PES),Jiang et al. [2016], Lorenz et al. [2004], Manzhos et al. [2014], Lin et al.
[2021], Schran et al. [2020] and the finite-element method.Berweger et al. [1998] Most of
these methods are primarily concerned with constructing a full PES as a function of 3N —6
internal coordinates representing bond lengths, bond angles, and torsion angles. Even with
an ab initio method that has relatively low cost scaling, these full-dimensional surrogates
are feasible only for small atoms (i.e., N < 10).

Fortunately, often only a subset of the 3N —6 internal coordinates (called design variables)
are chemically relevant for a particular system. The rest of the internal coordinates (the
remainder variables) are optimized to yield the minimum electronic energy for a fixed value
of the design variables. The resulting PES is called a relazed PES. Even with relaxation,
however, optimizing the remainder variables is often computationally costly.

Our group has previously approximated relaxed PESs with sparse polynomial interpola-
tion, a method chosen for advantageous scaling in the dimensionality of the PES compared
to other methods discussed above.Nance and Kelley [2015]|, Judd et al. [2014]| Here, the
interpolation basis functions are globally defined Lagrange polynomials with the Clenshaw—
Curtis points.Clenshaw and Curtis [1960] The global nature of the basis functions is also a
distinction between this method and modified Shepard interpolation or interpolative mov-
ing least squares, which use a spatially weighted combination of locally valid basis func-
tions. Thompson et al. [1998], Maisuradze et al. [2003] Furthermore, the Smolyak sparse-grid
frameworkSmolyak [1963| ensures that the total number of interpolation nodes grows only
polynomially in the number of design variables, rather than exponentially, as with naive
full-tensor interpolation.Novak and Ritter [1999], Hallatschek [1992] Our group has applied

sparse polynomial interpolation to reaction-path following,Nance et al. [2014] intersystem



crossing,Nance et al. [2015] and NVE! and NVT? molecular dynamics (MD) simulations.Liu
et al. [2019] Furthermore, this MD simulation framework uses classical Hamiltonian dynamics
and sparse polynomial surrogate PESs to simulate the time evolution of the design variables
only.Liu et al. [2019]

However, as we previously observed, the gradient of the surrogate PES is not periodic
when using an all-polynomial approximation basis, even when crossing the boundary of
periodic design variables (e.g., full rotations of torsion angles). This leads to nonphysical
phenomena, such as nonconservation of total energy. To remedy this limitation, we con-
structed surrogate PESs with sparse trigonometric interpolationHallatschek [1992], Morrow
and Stoyanov [2020], Griebel and Hamaekers [2014] on a tungsten molecule where the design
variables are all periodic.Morrow et al. [2019] The interpolation basis functions in this case
are sines and cosines. This method enforces periodicity to numerical tolerances and also
produces a slightly more accurate surrogate PES than sparse polynomial interpolation on
the same system.Morrow et al. [2019]

A limitation of existing interpolative PES approximation methods is that the same class
of basis functions must be applied to each design variable.Nance and Kelley [2015], Morrow
and Stoyanov [2020] However, many chemical systems of interest involve both periodic co-
ordinates (e.g., full-rotation torsion angles) and nonperiodic coordinates (e.g., bond lengths,
bond angles). In these systems, polynomial interpolation on periodic coordinates will lead
to nonphysical phenomena due to the lack of periodicity in the surrogate PES gradient.
However, trigonometric interpolation on nonperiodic coordinates will lead to persistent in-
accuracies at the domain boundary called Gibbs effects.Helmberg [1994]

We chose azomethane for testing a new mixed-basis interpolation method. Azomethane
is a relatively small molecule (N = 10 atoms), but it has interesting chemical properties
to simulate. It has two stable conformers in the singlet ground state (denoted Sy), which

are trans and cis, and it is known to decompose into Ny and two methyl radicals by step-

!Conserves number of particles in the system (N), volume (V), and energy (E).
2Like above, but temperature (T) instead of energy.



wise dissociation after excitation to the first singlet excited state (S7) in gas phase (Figure
1).Burton and Weisman [1990], Andrews et al. [1992] ExperimentalDiau and Zewail [2003]
and ab initioSellner et al. [2010], Cattaneo and Persico [2001], Gaenko et al. [2014] studies
have determined that the lifetime of azomethane in the S; state is between 70-500 fs. Liu
et al investigated the dissociation mechanism with state-average complete active space self-
consistent-field (saCASSCF) and multireference configuration interaction with single and
double excitation (MRCISD) methods to prove that dissociation of the C-N bond is sequen-
tial.Liu et al. [1996] This was further studied by Sellner and coworkers using nonadiabatic
ab initio surface-hopping dynamics with MCSCF-GVB-CAS and MRCISD methods.Sellner
et al. [2010] Azomethane dynamics in solution are also studied with QM /MM to show that
C-N dissociation is suppressed with the presence of polar or nonpolar solvents.Ruckenbauer
et al. [2010] Cattaneo et al constructed a PES of azomethane at the CASSCF level and used
trajectory surface hopping (T'SH) and molecular dynamics surface hopping (MDSH) to show
similar results.Cattaneo and Persico [2001, 2000] While we are focusing on the construction
of and dynamics on the mixed-basis surrogate Sy PES of azomethane in this work, a mixed-
basis PES for azomethane will be used for a reduced-dimensional TSH photoexcitation and
photodissociation simulation in the future. Preliminary results indicate that when evaluating
the ground-state PES with closed-shell wavefunctions, our method is able to capture conical
intersections and regions of strong nonadiabatic coupling to sufficient accuracy to reproduce

experimental results.
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Figure 1: Isomerization and dissociation scheme of azomethane.



In this paper, we present a mixed-basis interpolative method that uses the Smolyak
sparse grid construction. This method applies trigonometric interpolation to the periodic
design variables and polynomial interpolation to all others. We construct a mixed-basis
surrogate PES for azomethane and use it to drive a reduced-dimensional MD simulation of
azomethane isomerization paths. This method requires fewer electronic structure evaluations
than all-polynomial interpolation to obtain realistic energy barriers and locations of minima
and transition states. Furthermore, we demonstrate explicitly that the mixed-basis surrogate
appropriately conserves total energy over the entire time integration, while the all-polynomial

surrogate does not.

2 Methods

In this section, we discuss how to construct a mixed-basis surrogate potential energy surface
(PES), as well as describe the reduced-dimensional molecular dynamics (MD) framework.
The full PES &() of an N-atom molecule is a function of the internal coordinates & € R3S,
We first partition & = (q, £), where g € R? are the design variables and £ are the remainder

variables. Then we minimize over & to compute the relaxed PES:
E(q) = min £(q.£). (1)

Recently there have been studies on automatically detecting the relevant design variables,Hare
et al. [2019], Schmitz et al. [2020] but one often selects the design variables based on a pri-
ori chemical knowledge or empirical studies of the system. Additionally, the full Cartesian
geometry of the molecule must be differentiable with respect to g, which will be discussed
in Section 2.2. If a certain remainder variable has discontinuities that cannot be smoothed
out, then that variable may be added to the design variables to enforce continuity. Based
on continuity requirements and previous studies of azomethane,Cattaneo and Persico [2001,

2000, 1998| we chose the design variables shown in Figure 2. Three of the controlled geomet-



ric parameters (qi, g4, g5) were chosen to illustrate three pathways for structural transition
between trans and cis: rotation, inversion and methyl dissociation. The two methyl rota-
tions (g2, q3) were controlled to prevent hydrogen atoms from unpredictably permuting their

ordering during structure optimization. We describe g in much greater detail in Section 3.2.
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Figure 2: Structure of azomethane and design variables q.

Equation (1) requires an optimization over &, in addition to an approximate solution of
the Schrodinger equation for g = (x, €) at each optimization step. Due to the computational
cost, directly evaluating (1) repeatedly (e.g., in a dynamics simulation) is highly impractical
for molecules with N > 10, rendering a surrogate model V(q) = E®(q) necessary. Com-
pared to least-squares, an advantage of interpolatory surrogates is that, in general, fewer
evaluations of the true function are necessary to achieve a given accuracy threshold. Sparse
interpolation is an attractive choice because of the improved ratio of approximation accuracy
to the number of interpolation nodes, leading to a more accurate surrogate with respect to
the number of expensive ab initio calculations. Each ab initio calculation is independent of
the others, and therefore populating the nodes is naturally parallelizable.

Previously, sparse polynomial and trigonometric interpolation have been used to con-
struct E°(q), where one chooses the interpolation basis at the front end and applies it to
each component of q. In this work, however, we aim to apply trigonometric interpolation
to the periodic coordinates and polynomial interpolation to everything else. We will now
provide an overview of the general sparse grid framework, as well as our mixed-basis formu-

lation.



2.1 Mixed-basis formulation

Given a target function f, the general form of a sparse interpolant in both the trigonometric
and polynomial case isMorrow and Stoyanov [2020], Stoyanov [2015], Stoyanov and Webster
2016]

Golfl(q) =) t: U[f](a), (2)

m(i1) m(iq)

( d
Wil = > & [[ona). (3)

J1=1 Ja=1

In Equation (2), ¢ € N¢ is a multi-index,®> © = O(d, L, o) is the set of admissible multi-
indices, and t; are Smolyak coefficients that depend on ©. In Equation (3), U¢ is a full-
tensor interpolation operator, m(iy) is the number of nodes along dimension k, c;- are the
interpolation coefficients, and ¢;, are one-dimensional basis functions. The set © controls
the accuracy of the surrogate and is chosen to capture only the most dominant modes of
the target function f. The parameter d is the number of design variables, L is the level of
the sparse grid, and « is an anisotropy vector, which tells © which directions to favor when
adding nodes. The coefficients t; are chosen to ensure that Gg[f] truly matches f at the
interpolation nodes. The full mathematical details of this construction can be found in the
Supporting Information, but we want to highlight a few important points.

First, the sparse grid is completely determined by O, d, L, «, and the one-dimensional
interpolation rule (i.e., polynomial or trigonometric interpolation). For polynomial inter-
polation, we take the basis functions ¢;, to be Lagrange polynomials whose roots are the
Clenshaw—Curtis points,Clenshaw and Curtis [1960] which are similar to Chebyshev nodes
but nested in the interpolation level; for trigonometric interpolation, the ¢; are sines and

cosines.

Second, we are absolutely free to choose a different ©, d, L, a, and interpolation rule

3In the literature, 4 is sometimes called a tensor since it controls the size of the corresponding full-tensor
grid.Morrow and Stoyanov [2020], Stoyanov and Webster [2016]



between the periodic and nonperiodic design variables.

Third, if the one-dimensional rule is nested with respect to L, then the nodes of a sparse
grid are nested with respect L as well. This is critical to produce an actual interpolant
and to obtain a favorable ratio of approximation error to the number of nodes.Morrow and
Stoyanov [2020], Stoyanov and Webster [2016] If we refine the grid from L to L + 1, then
we need only to evaluate Equation (1) for the new nodes. With a nested rule, the number
of nodes grows as O(d") for d sufficiently large,Novak and Ritter [1999], Hallatschek [1992]
rather than exponentially as with full-tensor interpolation. Both the Clenshaw—Curtis and
trigonometric interpolation rules are nested.

Fourth, there are tools that do the heavy lifting of sparse grids, so there is no need to
write one’s own sparse grid code. We use the Tasmanian package from Oak Ridge National
Laboratory, to which one of the authors is a contributor. Tasmanian is written in C++ with
wrappers for Python, MATLAB, and Fortran, and its capabilities include (but are not limited
to) both trigonometric and polynomial interpolation.Stoyanov [2015], Stoyanov et al. [2013]

The question still remains as to how we combine sparse trigonometric interpolation with
sparse polynomial interpolation. The interpolation coefficients are ¢; = f(g;) for polynomial
interpolation, but for trigonometric interpolation, ¢; comes from a discrete Fourier transform,
so we need to express Equations (2)-(3) differently. Helpfully, we may rewrite Equation (2)

in adjoint formStoyanov [2015] as

Golfl(q) = > ¥i(q) f(g)). (4)
JEOm
On=|J{FeN| 1 <ji <m(ix), VI<k<d},
1€0

where ©,, is the set of all sparse-grid indices (as opposed to the allowable tensors %), 1;(q)
is the adjoint basis at an evaluation point g, and f(g;) is the function value at a specific
node.

Now we partition the geometry into ¢ = (y, z), where y contains the periodic design



variables and z has the nonperiodic ones. Furthermore, let us assume that the periodic
and nonperiodic portions of f can be separated with multiplication and addition, but not
function composition. This assumption is motivated by the standard separation of variables

ansatz. In this case, f has the structure

fla) = Aly) @ fa2),

where f; is the periodic portion of f, fo is the nonperiodic portion, and ® denotes the
possibility of both products and sums. Then we may use Equation (4) to apply Clenshaw—

Curtis and trigonometric interpolation separately:

Golfll@) = > > U™ (W)™ (2) f(ys, z) ()

Jjeon® ke
Equation (5) requires two grids: a sparse trigonometric grid for the periodic coordinates and
a sparse polynomial-basis grid for the nonperiodic coordinates. Then, the overall grid is the
tensor product of these two sparse grids. Moreover, one may think of the resulting grid as
a sparse grid itself, with its own © = OP°Y @ O%&, In Figure 3, we show the constituent

sparse grids that we utilized in this work.
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Figure 3: 7215 mixed basis nodes composed of 111 trigonometric nodes (left) and 65 poly-
nomial nodes (right).
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2.2 Reduced-dimensional molecular dynamics

We follow the relaxed reduced-dimensional molecular dynamics framework originally devel-
oped by Liu and coworkers,Liu et al. [2019] which we briefly summarize here. Specifically,
we use the NVE ensemble and Langevin thermostat to demonstrate the flexibility of our
method. One difference between Liu’s work and this work is that we have implemented our
MD code in Python since Tasmanian’s Python interface is much faster than its MATLAB
interface. The codes, including examples, are freely available on GitHub.*

In the Hamiltonian formalism,Deriglazov [2016], Lanczos [2012] the equations of motion

for the design variables q and the generalized momenta p are

.
o (6)
. OH

The classical Hamiltonian is a sum of potential and kinetic energy terms, expressed as

H(g,p) =V(q) + K(q,p) (7)

where V(q) is the sparse interpolant of the relaxed PES and K(q, p) involves the momenta
and Wilson’s G-matrix:Wilson et al. [1955]

K(q,p) = %pT G '(q)p, (8)
Gula) = Yo m g D5 )

The function X : RY — R3" maps the design variables to the full Cartesian molecular
geometry, and my is the atomic mass corresponding to Cartesian component Xj. In order to

conserve energy and be approximated with sparse interpolation, X (g) must be differentiable,

4 https://github.com/zbmorrow/mixed_basis_rrmd
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including across periodic boundaries.
To integrate the system forward in time, we must first choose g(0) = go and compute
p(0) = pg. The momenta are computed by selecting a starting temperature 7" and drawing

3N Cartesian velocities from a Boltzmann distribution

vo=\ks M 'TR,, R,~N(0,I). (10)

Here, kp is the Boltzmann constant in appropriate units, M = diag(m,..., m3y), and R
is a 3N-dimensional standard normal random variable realized at time ¢. We then project

the initial velocities onto the reduced-dimensional space by setting

(11)

From Equations (7)—(9), we need to construct a surrogate PES V(g) and Cartesian mapping

function X (q), which we approximate using sparse interpolation.

2.2.1 NVE simulations

In the NVE ensemble, we wish to simulate the trajectory of a molecule while conserving total
energy. We integrate the system forward in time with the Stormer—Verlet method, which
conserves total energy.Verlet [1967], Stormer [1912] At step ¢ = t,,, the system is propagated

forward by the three-step process

.
At aH(QnH/m Pn)
Qn+1/2 = qn+ > op
Prit = p, — g 8H(qn+1/27pn) + aH(anrl/Zapn-i-l) ] (12)
2 0q 0q
_ 4 gaH(an/z,PnH)
k‘ln+1 dn+1/2 5 op

The first step is an implicit Euler half-step in q, the second is a full Crank—Nicolson step

in p, and the third is an explicit Euler half-step in q.Gautschi [2012] The derivatives are

12



expressed as

oH oV 0K

04~ 0q " 0q (13)
oH

ap (g)p (14)

and then evaluated numerically. The first two steps of Stormer—Verlet involve solving a
nonlinear system of equations. For the all-polynomial surrogates, we use a derivative-free
optimizer in the SciPy packageVirtanen et al. [2020], Powell [1964| since polynomial gradi-
ents are not guaranteed to be continuous across the periodic boundary.Morrow et al. [2019]
Such derivative-free methods are more computationally costly, but they are the only option
for regions near the periodic boundary, where the surrogates are not differentiable. An ad-
vantage of the mixed-basis method is that we may solve the nonlinear system with Newton’s
method,Kelley {1995, 2018] which is much cheaper computationally, since the surrogates are

differentiable across the periodic boundary.

2.2.2 Langevin thermostat

The Langevin thermostat is a very popular algorithm for NVT simulations, in which temper-
ature is conserved. The equations of motion (6) become a system of stochastic differential
equations with additional terms to incorporate the coupling between the system and a ther-

mal bath.Allen and Tildesley [2017]| In Cartesian coordinates (Q, P), the Langevin equations

are
aQ =y
o ®

where Q and P are the position and momentum of the particle. The additional terms capture
the viscosity of the bath (—vP) and random forces (o dw), without which (15) and (6) are

equivalent. From the fluctuation—dissipation theorem, the coefficient o; can be written in
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terms of v as

g; = \/ Q’YmZkBT (16)

where T is the target temperature.Allen and Tildesley [2017|, Leimkuhler and Matthews
[2013] Like Liu and coworkers,Liu et al. [2019] we employ the BAOAB method of Leimkuh-
ler and MatthewsLeimkuhler and Matthews [2013,7] to integrate (15). In the reaction

coordinates (g, p), the BAOAB method is

_ ga%(qnapn-&-lﬂ)

Dny1/2 = Pn 9 P
(BA) q : (17)
_ + gaﬂ((b%pn—i-l/?)
dn+1/2 dn 5 op
(O) {p;z—&—l/Z = eﬂmpnﬂ/g + 1-— e*QVAt X/(qn+1/2)T\/ ]{IBMT Rt ) (18)
At OH(@n+1, P11 2)
Qnt1 = Qqny1j2 + > op
AB 19
( > oy At aH(qn-Ha pln+1/2) ( )
Prn+1 = Pnyi1/2 — o dq

3 Results and Discussion

We used our mixed-basis formulation to construct surrogates for the Sy PES and the Carte-
sian mapping function X (g). In an NVE framework, we compared the performance of the
mixed-basis surrogate to both on-the-fly full-dimensional Born—Oppenheimer molecular dy-
namics (BOMD)Helgaker et al. [1990], Uggerud and Helgaker [1992] and the previous state
of the art, which uses an all-polynomial interpolation basis.Liu et al. [2019] We then use
a Langevin thermostat to demonstrate that our mixed-basis surrogate produces accurate
temperature distributions and that azomethane isomerization is not likely to occur on the

Sp surface alone, even at high temperatures.
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3.1 Electronic structure of azomethane

All electronic structure calculations utilized the Gaussian 16 software packageFrisch et al.
[2016] with the B3LYP hybrid functionalBecke [1993,7], Lee et al. [1988|, Stephens et al.
[1994] and the 6-311G™* basis set.Krishnan et al. [1980] The computing environment was
Henry2, a high-performance computing cluster at North Carolina State University. Each
Gaussian instance used 16 cores on an Intel Xeon processor and was allocated 32GB RAM.
Further details on the electronic structure calculations are in Section 3.2 and the Supporting
Information.

One of the chemical properties of azomethane that is important to note is that its lowest-
energy electronic state depends on the C-N=N-C dihedral rotation. As illustrated by the
natural orbitals in Figure 4, the nitrogen lone-pair orbital and 7* of nitrogen 2p orbitals
become degenerate in the ground state of azomethane when ¢; = 90°. Therefore, when the
PES is calculated with closed-shell restricted wavefunctions, we observe a sharp peak near
g1 = 90°. In order to obtain a smooth PES, the stability testsBauernschmitt and Ahlrichs

[1996] of DFT wavefunctions were performed after each calculation.

q,=180° q,=90°
2
iJ
0.000 0.947
< »®
9
2.000 1.053

Figure 4: Natural orbitals of azomethane for ¢; = 180° and ¢; = 90° at isovalue of 0.02
e'/? (bohr)~3/2, where e denotes the charge of an electron, with occupation numbers. The
colors represent positive (blue) and negative (light grey) phases of the wavefunction.
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3.2 Constructing the surrogate PES

Each geometry is supplied to Gaussian in Cartesian coordinates, but the optimization uses
redundant internal coordinates. Each Gaussian job proceeds as follows: (1) stability check-
Bauernschmitt and Ahlrichs [1996] on wavefunction, (2) optimizationLi and Frisch [2006]
over remainder variables, (3) stability check, (4) optimization and frequency analysis, and
(5) stability check. The safeguards are to ensure that the relaxation over £ found a true
minimum and that the lowest-energy wavefunction is selected. In this way, we can build sur-
rogates for Eg,(q) and Xg,(q). We provide sample Gaussian input files in the Supporting
Information.

The design variables, shown in Figure 2, are defined as follows:

—_

. q1 € [~180,180] is the C'-N'=N?-C? dihedral angle;

2. ¢ € [—180,180] is equal to the N*>~N'-C'-H dihedral angle plus (g + 180), which we

will explain shortly;
3. g3 € [~180,180] is the N'=N*-C?-H’ dihedral angle;

4. q4 € [1.1,2.5] is the N*-C" bond length; and

ot

. g5 € ]90,270] is the N*>~N*-C' bond angle.

Angles are measured in degrees, and bond lengths in A. The variables ¢, ¢, and g3 are
periodic, while ¢4 and ¢5 are nonperiodic. We do not freeze the other C-N distance or
N=N-C bond angle during geometry optimizations; scans along these parameters have a
single minimum which produced a continuous surface. Our aim is to study azomethane
photodynamics, and since the stepwise dissociation mechanism has been established in prior
work, we simply terminate the simulation when one C-N bond is broken. We allow g5 to
be linear or greater than 180° in order to capture methyl inversion, in accordance with
previous work.Cattaneo and Persico [2001, 1998] The lower bound on ¢4 and both bounds

on g5 were chosen to be the widest possible bounds without the molecule dissociating during
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the optimization process. We need a large enough domain on either side of the equilibrium
g5 value to capture the well. Furthermore, the PES is mostly flat in the ¢4 direction for
qs > 2.5,Cattaneo and Persico [2001]| so we truncated the domain to ensure that X (q) is
smooth; if ¢4 drifts beyond 2.5 A during the course of an MD simulation, we consider the
molecule dissociated and terminate the simulation. The design variable ¢ was originally not
part of our set of design variables but was added to maintain continuity of X (q).

Since the energy of a molecule is invariant with respect to translations or rotations of
the entire system, we must reconstruct the Cartesian geometries at the nodes in a consistent
manner in order to build X (q). Liu, Jakubikova, and Kelley used Kabsch alignment to
minimize the root-mean-squared deviation between each node and the global minimum.
However, their application was NHj3 inversion, in which all atoms except nitrogen are moving
confluently; in our system, several atoms (e.g. N*, N? C?) are mostly stationary. To obtain
consistent Cartesian geometries, we apply translations and rotations of the entire molecule
to place N! at the origin, N? on the positive z-axis, and C? in Quadrant I of the zy-plane.
We then load these geometries into Tasmanian to construct X (q).

Since the molecule can be linear or ¢5; > 180 and since the Cartesian mapping function
X (g) must be smooth, we need to take special care to encode the geometry properly in our
input files. For a given sparse grid node gq‘, we apply the following transformations before

converting from internal coordinates to Cartesian:
1. If ¢t > 180, then we set ¢} < 180 + ¢, g5 + 180 + ¢4, and ¢ < 360 — ¢t.

2. After Step 1, if ¢¢ < 180, we recover the N*>~N'-C'-H dihedral by setting ¢} <«
¢4 — (¢} + 180). This step is necessary to avoid multivalued geometries in the limit
g5 — 180. See the animations in the Supporting Information to view the effect on the

methyl group.

After finishing one batch sparse grid nodes, we examine the surrogate PESs by plot-

ting various 2-D slices and optimizing the geometry on the surface to a local minimum or
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transition state. We also animated 50 randomly generated one-dimensional trajectories by
restricting all but one design variable. We are able to examine slices to detect inaccuracies
since the interpolation basis functions are global rather than local. We refine the sparse grid
until (a) the calculated energies, relative to the trans- minimum, are within ~5% of their
Gaussian-optimized value and (b) all animations are smoothly varying. We show two rep-
resentative slices near the global minimum in Figure 5. The Supporting Information (Table
S2) shows the energies and geometries at minima and saddle points for the highest level of
refinement, as well as a selection of animations of X(q).

Relaxed PES (ground-state singlet) Relaxed PES (ground-state singlet)
Slice: gy = 120°, g3 = 120°, ¢, = 1.46 A Slice: ¢1 = —180°, go = 120°, g3 = 120°

Sty

LT

W
TGRS

AE (kcal/mol)
AE (kcal/mol)

g5 (deg) 100 200 @ (deg)

Figure 5: Mixed-basis surrogate PESs for the singlet ground state.

3.3 NVE: Mixed vs. all-polynomial basis

We begin by subjecting the surrogates to a relatively easy test: an NVE simulation at the
trans- minimum on the Sy surface.Liu et al. [2019] We will compare full-dimensional on-
the-fly BOMD, a mixed-basis surrogate, and an all-polynomial surrogate. Table 1 shows the
initial geometry used for each flavor of surrogate. Ten initial velocities v(0) € R?*" are drawn
from a Boltzmann distribution at 298.15 Kelvin. These are immediately used to run on-the-
fly BOMD in Gaussian 16. For reduced-dimensional MD, we project the initial velocities
onto p(0) using the surrogate X (q) corresponding to the basis in use. We integrate up to

2.5 ps with step size At = 0.1 fs.

18



Table 1: Minimizers for the trans- conformer.

# nodes argmin (Qh 42, 43, 44, Q5)
Gaussian — [180.00, 122.20, 122.20, 1.46, 113.00]
Mixed basis 7215 [—179.71,121.91,121.84, 1.46, 116.06]
All polynomial 17233 [—179.63,137.91, —155.80, 1.47, 113.16]

When measuring energy conservation in an MD simulation, one first stores kinetic and

total energy at each time step. Then, the general heuristic is to want

o({ K +Vi})

S (20)

where ¢ denotes the standard deviation of the observations.Allen and Tildesley [2017] In
this way, the variation in total energy is normalized by the variation in kinetic energy, and
the heuristic threshold allows us to determine whether a method suitably conserves energy.
We computed these ratios for each run and method and show the results in Table 2. On-
the-fly BOMD uses the full 24 degrees of freedom, rather than the five degrees of freedom
in the reduced-dimensional surrogates, which contributes to the slightly higher conservation
ratio compared to the mixed basis. Nonetheless, the sample means for BOMD and mixed-
basis MD are within the usual bound, while that of the all-polynomial surrogate is orders of
magnitude too large. Furthermore, the runtime is much lower when using a surrogate model,
particularly for the mixed basis, which has the fastest turnaround time and lowest core usage.
The core-hour usage of mixed-basis NVE MD is an order of magnitude lower than that of
all-polynomial MD and two orders of magnitude lower than BOMD. In Figure 6, we show
the iteration history of total energy during one of polynomial-basis simulations. When each
jump occurs, at least one periodic design variables is near £180°.

In Figure 7 we show histograms for selected design variables, remainder variables, and
potential energy. Table 3 shows the mean, standard deviation, and range of each histogram.
We show the all-polynomial results for completeness, but we re-emphasize that the all-

polynomial surrogate does not conserve total energy. The degeneracy noted in Section 3.1
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Table 2: Statistics of energy conservation ratios for each method, along with performance.

BOMD | Mixed basis | All-polynomial
Mean 75x107% | 1.8 x107° 1.8 x 107!
Stdev 4.0x 107 | 1.2 x 1075 1.0 x 107¢
Min 34x107*| 62x107° | 6.5x 1072
Max 1.6 x 1073 | 4.5x107° 4.1 x 1071
Avg wall time (hr) 41.11 0.67 7.04
Cores 16 1 5

Energy using polynomial surrogate

——Energy
-------- Periodic boundary cross
S 65¢ —— \—_’
= _ -
i T
% 6
g
3
E 5.5
@ .
giii i I T | .
0 500 1000 1500 2000 2500

Time (fs)

Figure 6: Solid line: total energy. Dotted lines: ¢, g2, or ¢z is within 0.03° of +180°.
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does not appear in these BOMD results since ¢; never drifts outside [167.4,192.0]. For the
N=N distance, the distribution of the mixed-basis trajectory is tight around its mean value
since 7(N=N) was optimized out when populating the sparse grid. For the design variables,
certain distributions appear to have roughly the correct shape but are shifted right or left
from BOMD. This is due to the surrogate PESs having slightly different equilibrium values
for the trans- minimum.

Since both reduced-dimensional surrogates use less than the full 3N — 6 internal coordi-
nates, while BOMD uses all of them, we estimate the contribution of the remainder variables
€ in a manner analogous to Liu and coworkers.Liu et al. [2019] At time step i, we add the

contributions from & by setting

corrected __ Y surrogate
Vi =V + i

where 7); is a uniform random variable on the interval [0, Homp —Hsurrogate|- 1deally, we would
isolate the effects of the BOMD framework from the usage of additional design variables (i.e.
by using a full-dimensional surrogate PES), but constructing the full 24-dimensional PES is
computationally infeasible. As a result, the corrected distributions for V(q) in Figure 7 do

not match BOMD exactly.

3.4 Langevin thermostat

In this section, we focus only on the mixed-basis surrogate since it has been demonstrated
that a polynomial surrogate will not properly capture energy when crossing a periodic bound-
ary. We wish to study the effect of temperature on azomethane geometry. We start at the
trans- minimum on the Sy surface and integrate to 40 ps with a time step of At = 0.05
fs at various target temperatures 7.° The time step needs to be suitably small for New-

ton’s method to converge. We used a relatively modest value for the friction coefficient,

5We determined to need At = 0.05 fs for T = 3000 K, and we used it in all runs for consistency.
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Figure 7: Histograms of selected design variables, remainder variables, and potential energy.

Table 3: Statistics from NVE MD trajectories.

BOMD Mixed basis | All-polynomial
mean 180.0 180.3 179.9
¢ (deg) stdev 4.0 3.7 5.8
range | [167.4,192.0] | [168.0,192.3] | [159.3,198.6]
mean 122.2 122.1 140.8
72 (deg) stdev 11.0 8.5 5.7
range | [77.6,178.0] | [95.3,147.7] | [119.5,159.1]
mean 1.47 1.46 1.47
au (A) stdev 0.02 0.03 0.03
range | [1.39,1.56] [1.37,1.56] [1.37,1.59]
mean 112.9 115.9 113.2
g5 (deg) stdev 1.9 2.1 2.5
range | [106.9,119.6] | [110.4,121.0] | [106.1,121.2]
mean 1.24 1.23 1.23
r(N=N) (A)  stdev 0.013 0.001 0.013
range | [1.19,1.28] | [1.22,1.23] [1.19,1.28]
mean 3.8 4.6 4.8
V(q) (kcal/mol) stdev 1.5 2.8 2.4
range | [0.00,8.9] [0.02, 12.56] [0.03,12.53]
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v =0.01 fs~".Liu et al. [2019], Cattaneo and Persico [1998] Initial velocities are drawn from
a Boltzmann distribution at temperature 7" and then projected onto p(0).

We show the results in Figure 8. The average runtime of each thermostat simulation was
22.9 hours on XSEDE Bridges-2 with a single core.Towns et al. [2014], Nystrom et al. [2015]
To demonstrate the reconstruction of the full Cartesian geometry with X (q), the Supporting
Information contains an animation of the geometry evolution after thermal equilibration.
Even 3000 K is not hot enough to overcome the torsion transition structure (¢; =~ 90).
Furthermore, the dissociation energy of the C'-N' bond is lower than the energy barrier
of the torsion transition state.Cattaneo and Persico [2000] As a result, isomerization is not
energetically favorable via Sy and temperature alone. In Figure 8(b), we have plotted the
sample means and standard deviations of ensemble temperature versus their theoretical
expectation values. Instantaneous temperature 7 (g, p) is related to kinetic energy K(q, p)

by
2K(q,p)

T(q,p) = dhn

where d is the number of design variables. From the equipartition theorem,Miinster [1969]

maximum likelihood estimators for the mean and standard deviation of 7 are given by

where T is the target temperature of the thermostat. The theoretical and observed statistics

agree closely with each other.

4 Conclusions

We have presented a mixed-basis interpolation algorithm that uses trigonometric interpola-

tion on periodic design variables and polynomial interpolation on nonperiodic design vari-
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Figure 8: Left: Geometry distribution (solid) and average total energy (dashed lines) at
different temperatures. Right: Predicted (lines) and observed (dots/triangles) statistical
values for temperature.

ables. Unlike previous methods, it is not limited to molecules with purely periodic or purely
nonperiodic reaction coordinates, and therefore is an improvement over the prior state of
the art (same-basis interpolation) and widely generalizable to different systems. The results
demonstrate that our method conserves total energy within accepted tolerances, is compu-
tationally efficient, and accurately reproduces the temperature distribution of a thermostat
in a reduced-dimensional MD framework. The Python codes for mixed-basis interpolative
PES approximation and reduced-dimensional MD are freely available on GitHub.*

This work has investigated only the lowest-lying singlet state of azomethane, but it is
known that light-induced Sy — 57 excitation is a likely isomerization and decomposition
pathway for azomethane.Sellner et al. [2010], Cattaneo and Persico [2001, 1998] An extension
of our surrogate PES approximation will be to implement the fewest-switches surface hopping

(FSSH) algorithm of TullyTully [1990], Nance [2015] in a reduced-dimensional setting.

Supporting Information Available

Mathematical details of sparse interpolation and example Gaussian input files (pdf). Data

for trigonometric and polynomial PESs (xIsx). Animations of selected geometry trajectories
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(mp4).
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