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Abstract

The potential energy surface (PES) describes the energy of a chemical system as a

function of its geometry and is a fundamental concept in modern chemistry. A PES pro-

vides much useful information about the system, including the structures and energies

of various stationary points, such as stable conformers (local minima) and transition

states (first-order saddle points) connected by a minimum-energy path. Our group has

previously produced surrogate reduced-dimensional PESs using sparse interpolation

along chemically significant reaction coordinates, such as bond lengths, bond angles,

and torsion angles. These surrogates used a single interpolation basis, either poly-

nomials or trigonometric functions, in every dimension. However, relevant molecular

dynamics (MD) simulations often involve some combination of both periodic and non-

periodic coordinates. Using a trigonometric basis on nonperiodic coordinates, such as

bond lengths, leads to inaccuracies near the domain boundary. Conversely, polynomial

interpolation on the periodic coordinates does not enforce the periodicity of the surro-

gate PES gradient, leading to nonconservation of total energy even in a microcanonical

ensemble. In this work, we present an interpolation method that uses trigonometric

interpolation on the periodic reaction coordinates and polynomial interpolation on the
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nonperiodic coordinates. We apply this method to MD simulations of possible isomer-

ization pathways of azomethane between cis- and trans- conformers. This method is

the only known interpolative method that appropriately conserves total energy in sys-

tems with both periodic and nonperiodic reaction coordinates. In addition, compared

to all-polynomial interpolation, the mixed basis requires fewer electronic structure cal-

culations to obtain a given level of accuracy, is an order of magnitude faster, and is

freely available on GitHub.

1 Introduction

The potential energy surface (PES) of a molecule maps its geometry to a corresponding elec-

tronic energy within the Born–Oppenheimer approximation.Born and Oppenheimer [1927],

Born and Fock [1928], Born and Huang [1954] One can glean much chemically useful in-

formation from a PES: local minima and first-order saddle points correspond to stable and

transition-state structures respectively, from which one may calculate energy barriers and

minimum-energy paths that describe chemical reactivity. Such knowledge is useful for both

theoretical investigationsGlasstone et al. [1941] as well as molecular dynamics (MD) simula-

tions.Albaugh et al. [2016], Brown et al. [2003], Bowman et al. [2011], Liu et al. [2019], Nance

et al. [2014] Highly accurate evaluations of a PES can be done with an ab initio and density

functional theory (DFT) methods, but the computational cost of these methods rises rapidly

with the number of atoms N . For instance, the computational cost of DFT scales as O(N3),

while second-order Møller–Plesset perturbation theory (MP2) is O(N5) and coupled cluster

with single and double excitations (CCSD) is O(N6).Koch and Holthausen [2001] Thus, if a

large number of PES evaluations is required, a surrogate PES becomes necessary.

Various techniques exist to construct surrogate PESs, such as modified Shepard interpola-

tion,Collins and Parsons [1993], Collins [2002, 2003], Thompson et al. [1998], Espinosa-Garcia

et al. [2012], Wu and Manthe [2003], Zhou et al. [2011] permutationally invariant polynomials

(PIP),Albaugh et al. [2016], Brown et al. [2003], Bowman et al. [2011], Braams and Bow-
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man [2009], Chen and Bowman [2018], Qu et al. [2018] interpolative moving least-squares

(IMLS),Dawes and Quintas-Sánchez [2018], Guo et al. [2007], McLain [1974], Farwig [1986],

Maisuradze et al. [2003] Gaussian processes,Cui and Krems [2015], Uteva et al. [2017] neural

networks (nn-PES),Jiang et al. [2016], Lorenz et al. [2004], Manzhos et al. [2014], Lin et al.

[2021], Schran et al. [2020] and the finite-element method.Berweger et al. [1998] Most of

these methods are primarily concerned with constructing a full PES as a function of 3N − 6

internal coordinates representing bond lengths, bond angles, and torsion angles. Even with

an ab initio method that has relatively low cost scaling, these full-dimensional surrogates

are feasible only for small atoms (i.e., N ≤ 10).

Fortunately, often only a subset of the 3N−6 internal coordinates (called design variables)

are chemically relevant for a particular system. The rest of the internal coordinates (the

remainder variables) are optimized to yield the minimum electronic energy for a fixed value

of the design variables. The resulting PES is called a relaxed PES. Even with relaxation,

however, optimizing the remainder variables is often computationally costly.

Our group has previously approximated relaxed PESs with sparse polynomial interpola-

tion, a method chosen for advantageous scaling in the dimensionality of the PES compared

to other methods discussed above.Nance and Kelley [2015], Judd et al. [2014] Here, the

interpolation basis functions are globally defined Lagrange polynomials with the Clenshaw–

Curtis points.Clenshaw and Curtis [1960] The global nature of the basis functions is also a

distinction between this method and modified Shepard interpolation or interpolative mov-

ing least squares, which use a spatially weighted combination of locally valid basis func-

tions.Thompson et al. [1998], Maisuradze et al. [2003] Furthermore, the Smolyak sparse-grid

frameworkSmolyak [1963] ensures that the total number of interpolation nodes grows only

polynomially in the number of design variables, rather than exponentially, as with naïve

full-tensor interpolation.Novak and Ritter [1999], Hallatschek [1992] Our group has applied

sparse polynomial interpolation to reaction-path following,Nance et al. [2014] intersystem
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crossing,Nance et al. [2015] and NVE1 and NVT2 molecular dynamics (MD) simulations.Liu

et al. [2019] Furthermore, this MD simulation framework uses classical Hamiltonian dynamics

and sparse polynomial surrogate PESs to simulate the time evolution of the design variables

only.Liu et al. [2019]

However, as we previously observed, the gradient of the surrogate PES is not periodic

when using an all-polynomial approximation basis, even when crossing the boundary of

periodic design variables (e.g., full rotations of torsion angles). This leads to nonphysical

phenomena, such as nonconservation of total energy. To remedy this limitation, we con-

structed surrogate PESs with sparse trigonometric interpolationHallatschek [1992], Morrow

and Stoyanov [2020], Griebel and Hamaekers [2014] on a tungsten molecule where the design

variables are all periodic.Morrow et al. [2019] The interpolation basis functions in this case

are sines and cosines. This method enforces periodicity to numerical tolerances and also

produces a slightly more accurate surrogate PES than sparse polynomial interpolation on

the same system.Morrow et al. [2019]

A limitation of existing interpolative PES approximation methods is that the same class

of basis functions must be applied to each design variable.Nance and Kelley [2015], Morrow

and Stoyanov [2020] However, many chemical systems of interest involve both periodic co-

ordinates (e.g., full-rotation torsion angles) and nonperiodic coordinates (e.g., bond lengths,

bond angles). In these systems, polynomial interpolation on periodic coordinates will lead

to nonphysical phenomena due to the lack of periodicity in the surrogate PES gradient.

However, trigonometric interpolation on nonperiodic coordinates will lead to persistent in-

accuracies at the domain boundary called Gibbs effects.Helmberg [1994]

We chose azomethane for testing a new mixed-basis interpolation method. Azomethane

is a relatively small molecule (N = 10 atoms), but it has interesting chemical properties

to simulate. It has two stable conformers in the singlet ground state (denoted S0), which

are trans and cis, and it is known to decompose into N2 and two methyl radicals by step-
1Conserves number of particles in the system (N), volume (V), and energy (E).
2Like above, but temperature (T) instead of energy.
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wise dissociation after excitation to the first singlet excited state (S1) in gas phase (Figure

1).Burton and Weisman [1990], Andrews et al. [1992] ExperimentalDiau and Zewail [2003]

and ab initioSellner et al. [2010], Cattaneo and Persico [2001], Gaenko et al. [2014] studies

have determined that the lifetime of azomethane in the S1 state is between 70–500 fs. Liu

et al investigated the dissociation mechanism with state-average complete active space self-

consistent-field (saCASSCF) and multireference configuration interaction with single and

double excitation (MRCISD) methods to prove that dissociation of the C–N bond is sequen-

tial.Liu et al. [1996] This was further studied by Sellner and coworkers using nonadiabatic

ab initio surface-hopping dynamics with MCSCF-GVB-CAS and MRCISD methods.Sellner

et al. [2010] Azomethane dynamics in solution are also studied with QM/MM to show that

C–N dissociation is suppressed with the presence of polar or nonpolar solvents.Ruckenbauer

et al. [2010] Cattaneo et al constructed a PES of azomethane at the CASSCF level and used

trajectory surface hopping (TSH) and molecular dynamics surface hopping (MDSH) to show

similar results.Cattaneo and Persico [2001, 2000] While we are focusing on the construction

of and dynamics on the mixed-basis surrogate S0 PES of azomethane in this work, a mixed-

basis PES for azomethane will be used for a reduced-dimensional TSH photoexcitation and

photodissociation simulation in the future. Preliminary results indicate that when evaluating

the ground-state PES with closed-shell wavefunctions, our method is able to capture conical

intersections and regions of strong nonadiabatic coupling to sufficient accuracy to reproduce

experimental results.

Figure 1: Isomerization and dissociation scheme of azomethane.
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In this paper, we present a mixed-basis interpolative method that uses the Smolyak

sparse grid construction. This method applies trigonometric interpolation to the periodic

design variables and polynomial interpolation to all others. We construct a mixed-basis

surrogate PES for azomethane and use it to drive a reduced-dimensional MD simulation of

azomethane isomerization paths. This method requires fewer electronic structure evaluations

than all-polynomial interpolation to obtain realistic energy barriers and locations of minima

and transition states. Furthermore, we demonstrate explicitly that the mixed-basis surrogate

appropriately conserves total energy over the entire time integration, while the all-polynomial

surrogate does not.

2 Methods

In this section, we discuss how to construct a mixed-basis surrogate potential energy surface

(PES), as well as describe the reduced-dimensional molecular dynamics (MD) framework.

The full PES E(x) of anN -atom molecule is a function of the internal coordinates x ∈ R3N−6.

We first partition x = (q, ξ), where q ∈ Rd are the design variables and ξ are the remainder

variables. Then we minimize over ξ to compute the relaxed PES:

E(q) = min
ξ
E(q, ξ) . (1)

Recently there have been studies on automatically detecting the relevant design variables,Hare

et al. [2019], Schmitz et al. [2020] but one often selects the design variables based on a pri-

ori chemical knowledge or empirical studies of the system. Additionally, the full Cartesian

geometry of the molecule must be differentiable with respect to q, which will be discussed

in Section 2.2. If a certain remainder variable has discontinuities that cannot be smoothed

out, then that variable may be added to the design variables to enforce continuity. Based

on continuity requirements and previous studies of azomethane,Cattaneo and Persico [2001,

2000, 1998] we chose the design variables shown in Figure 2. Three of the controlled geomet-
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ric parameters (q1, q4, q5) were chosen to illustrate three pathways for structural transition

between trans and cis : rotation, inversion and methyl dissociation. The two methyl rota-

tions (q2, q3) were controlled to prevent hydrogen atoms from unpredictably permuting their

ordering during structure optimization. We describe q in much greater detail in Section 3.2.

N N

C H3

H3C

q1

q3

q2

q5
q4

1

2

1

2

Figure 2: Structure of azomethane and design variables q.

Equation (1) requires an optimization over ξ, in addition to an approximate solution of

the Schrödinger equation for q = (x, ξ) at each optimization step. Due to the computational

cost, directly evaluating (1) repeatedly (e.g., in a dynamics simulation) is highly impractical

for molecules with N > 10, rendering a surrogate model V (q) = Es(q) necessary. Com-

pared to least-squares, an advantage of interpolatory surrogates is that, in general, fewer

evaluations of the true function are necessary to achieve a given accuracy threshold. Sparse

interpolation is an attractive choice because of the improved ratio of approximation accuracy

to the number of interpolation nodes, leading to a more accurate surrogate with respect to

the number of expensive ab initio calculations. Each ab initio calculation is independent of

the others, and therefore populating the nodes is naturally parallelizable.

Previously, sparse polynomial and trigonometric interpolation have been used to con-

struct Es(q), where one chooses the interpolation basis at the front end and applies it to

each component of q. In this work, however, we aim to apply trigonometric interpolation

to the periodic coordinates and polynomial interpolation to everything else. We will now

provide an overview of the general sparse grid framework, as well as our mixed-basis formu-

lation.
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2.1 Mixed-basis formulation

Given a target function f , the general form of a sparse interpolant in both the trigonometric

and polynomial case isMorrow and Stoyanov [2020], Stoyanov [2015], Stoyanov and Webster

[2016]

GΘ[f ](q) =
∑
i∈Θ

ti U i[f ](q) , (2)

U i[f ](q) =

m(i1)∑
j1=1

· · ·
m(id)∑
jd=1

cij

d∏
k=1

φjk(qk) . (3)

In Equation (2), i ∈ Nd
0 is a multi-index,3 Θ = Θ(d, L,α) is the set of admissible multi-

indices, and ti are Smolyak coefficients that depend on Θ. In Equation (3), U i is a full-

tensor interpolation operator, m(ik) is the number of nodes along dimension k, cij are the

interpolation coefficients, and φjk are one-dimensional basis functions. The set Θ controls

the accuracy of the surrogate and is chosen to capture only the most dominant modes of

the target function f . The parameter d is the number of design variables, L is the level of

the sparse grid, and α is an anisotropy vector, which tells Θ which directions to favor when

adding nodes. The coefficients ti are chosen to ensure that GΘ[f ] truly matches f at the

interpolation nodes. The full mathematical details of this construction can be found in the

Supporting Information, but we want to highlight a few important points.

First, the sparse grid is completely determined by Θ, d, L, α, and the one-dimensional

interpolation rule (i.e., polynomial or trigonometric interpolation). For polynomial inter-

polation, we take the basis functions φjk to be Lagrange polynomials whose roots are the

Clenshaw–Curtis points,Clenshaw and Curtis [1960] which are similar to Chebyshev nodes

but nested in the interpolation level; for trigonometric interpolation, the φjk are sines and

cosines.

Second, we are absolutely free to choose a different Θ, d, L, α, and interpolation rule
3In the literature, i is sometimes called a tensor since it controls the size of the corresponding full-tensor

grid.Morrow and Stoyanov [2020], Stoyanov and Webster [2016]
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between the periodic and nonperiodic design variables.

Third, if the one-dimensional rule is nested with respect to L, then the nodes of a sparse

grid are nested with respect L as well. This is critical to produce an actual interpolant

and to obtain a favorable ratio of approximation error to the number of nodes.Morrow and

Stoyanov [2020], Stoyanov and Webster [2016] If we refine the grid from L to L + 1, then

we need only to evaluate Equation (1) for the new nodes. With a nested rule, the number

of nodes grows as O(dL) for d sufficiently large,Novak and Ritter [1999], Hallatschek [1992]

rather than exponentially as with full-tensor interpolation. Both the Clenshaw–Curtis and

trigonometric interpolation rules are nested.

Fourth, there are tools that do the heavy lifting of sparse grids, so there is no need to

write one’s own sparse grid code. We use the Tasmanian package from Oak Ridge National

Laboratory, to which one of the authors is a contributor. Tasmanian is written in C++ with

wrappers for Python, Matlab, and Fortran, and its capabilities include (but are not limited

to) both trigonometric and polynomial interpolation.Stoyanov [2015], Stoyanov et al. [2013]

The question still remains as to how we combine sparse trigonometric interpolation with

sparse polynomial interpolation. The interpolation coefficients are cj = f(qj) for polynomial

interpolation, but for trigonometric interpolation, cj comes from a discrete Fourier transform,

so we need to express Equations (2)-(3) differently. Helpfully, we may rewrite Equation (2)

in adjoint formStoyanov [2015] as

GΘ[f ](q) =
∑
j∈Θm

ψj(q) f(qj), (4)

Θm =
⋃
i∈Θ

{
j ∈ Nd

∣∣ 1 ≤ jk ≤ m(ik), ∀1 ≤ k ≤ d
}
,

where Θm is the set of all sparse-grid indices (as opposed to the allowable tensors i), ψj(q)

is the adjoint basis at an evaluation point q, and f(qj) is the function value at a specific

node.

Now we partition the geometry into q = (y, z), where y contains the periodic design
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variables and z has the nonperiodic ones. Furthermore, let us assume that the periodic

and nonperiodic portions of f can be separated with multiplication and addition, but not

function composition. This assumption is motivated by the standard separation of variables

ansatz. In this case, f has the structure

f(q) = f1(y)⊗ f2(z),

where f1 is the periodic portion of f , f2 is the nonperiodic portion, and ⊗ denotes the

possibility of both products and sums. Then we may use Equation (4) to apply Clenshaw–

Curtis and trigonometric interpolation separately:

GΘ[f ](q) =
∑
j∈Θtrig

m

∑
k∈Θpoly

m

ψtrig
j (y)ψpoly

k (z) f(yj , zk) (5)

Equation (5) requires two grids: a sparse trigonometric grid for the periodic coordinates and

a sparse polynomial-basis grid for the nonperiodic coordinates. Then, the overall grid is the

tensor product of these two sparse grids. Moreover, one may think of the resulting grid as

a sparse grid itself, with its own Θ = Θpoly ⊗ Θtrig. In Figure 3, we show the constituent

sparse grids that we utilized in this work.

Figure 3: 7215 mixed basis nodes composed of 111 trigonometric nodes (left) and 65 poly-
nomial nodes (right).
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2.2 Reduced-dimensional molecular dynamics

We follow the relaxed reduced-dimensional molecular dynamics framework originally devel-

oped by Liu and coworkers,Liu et al. [2019] which we briefly summarize here. Specifically,

we use the NVE ensemble and Langevin thermostat to demonstrate the flexibility of our

method. One difference between Liu’s work and this work is that we have implemented our

MD code in Python since Tasmanian’s Python interface is much faster than its Matlab

interface. The codes, including examples, are freely available on GitHub.4

In the Hamiltonian formalism,Deriglazov [2016], Lanczos [2012] the equations of motion

for the design variables q and the generalized momenta p are


q̇ =

∂H
∂p

ṗ = −∂H
∂q

. (6)

The classical Hamiltonian is a sum of potential and kinetic energy terms, expressed as

H(q,p) = V (q) +K(q,p) (7)

where V (q) is the sparse interpolant of the relaxed PES and K(q,p) involves the momenta

and Wilson’s G-matrix:Wilson et al. [1955]

K(q,p) =
1

2
pT G−1(q)p, (8)

Gij(q) =
3N∑
k=1

mk
∂Xk(q)

∂qi

∂Xk(q)

∂qj
(9)

The function X : Rd → R3N maps the design variables to the full Cartesian molecular

geometry, and mk is the atomic mass corresponding to Cartesian component Xk. In order to

conserve energy and be approximated with sparse interpolation, X(q) must be differentiable,
4 https://github.com/zbmorrow/mixed_basis_rrmd

11



including across periodic boundaries.

To integrate the system forward in time, we must first choose q(0) = q0 and compute

p(0) = p0. The momenta are computed by selecting a starting temperature T and drawing

3N Cartesian velocities from a Boltzmann distribution

v0 =
√
kBM−1 T Rt , Rt ∼ N (0, I). (10)

Here, kB is the Boltzmann constant in appropriate units, M = diag(m1, . . . ,m3N), and Rt

is a 3N -dimensional standard normal random variable realized at time t. We then project

the initial velocities onto the reduced-dimensional space by setting

p(0) = X ′(q0)T v0 , (X ′(q))ij =
∂Xi(q)

∂qj
. (11)

From Equations (7)–(9), we need to construct a surrogate PES V (q) and Cartesian mapping

function X(q), which we approximate using sparse interpolation.

2.2.1 NVE simulations

In the NVE ensemble, we wish to simulate the trajectory of a molecule while conserving total

energy. We integrate the system forward in time with the Störmer–Verlet method, which

conserves total energy.Verlet [1967], Störmer [1912] At step t = tn, the system is propagated

forward by the three-step process



qn+1/2 = qn +
∆t

2

∂H(qn+1/2,pn)

∂p

pn+1 = pn −
∆t

2

[
∂H(qn+1/2,pn)

∂q
+
∂H(qn+1/2,pn+1)

∂q

]
qn+1 = qn+1/2 +

∆t

2

∂H(qn+1/2,pn+1)

∂p

. (12)

The first step is an implicit Euler half-step in q, the second is a full Crank–Nicolson step

in p, and the third is an explicit Euler half-step in q.Gautschi [2012] The derivatives are
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expressed as

∂H
∂q

=
∂V

∂q
+
∂K

∂q
(13)

∂H
∂p

= G−1(q)p (14)

and then evaluated numerically. The first two steps of Störmer–Verlet involve solving a

nonlinear system of equations. For the all-polynomial surrogates, we use a derivative-free

optimizer in the SciPy packageVirtanen et al. [2020], Powell [1964] since polynomial gradi-

ents are not guaranteed to be continuous across the periodic boundary.Morrow et al. [2019]

Such derivative-free methods are more computationally costly, but they are the only option

for regions near the periodic boundary, where the surrogates are not differentiable. An ad-

vantage of the mixed-basis method is that we may solve the nonlinear system with Newton’s

method,Kelley [1995, 2018] which is much cheaper computationally, since the surrogates are

differentiable across the periodic boundary.

2.2.2 Langevin thermostat

The Langevin thermostat is a very popular algorithm for NVT simulations, in which temper-

ature is conserved. The equations of motion (6) become a system of stochastic differential

equations with additional terms to incorporate the coupling between the system and a ther-

mal bath.Allen and Tildesley [2017] In Cartesian coordinates (Q,P ), the Langevin equations

are 
dQ =

∂H
∂P

dt

dP = −∂H
∂Q

dt− γP dt+ σ dw
(15)

whereQ and P are the position and momentum of the particle. The additional terms capture

the viscosity of the bath (−γP ) and random forces (σ dw), without which (15) and (6) are

equivalent. From the fluctuation–dissipation theorem, the coefficient σi can be written in
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terms of γ as

σi =
√

2γmikBT (16)

where T is the target temperature.Allen and Tildesley [2017], Leimkuhler and Matthews

[2013] Like Liu and coworkers,Liu et al. [2019] we employ the BAOAB method of Leimkuh-

ler and MatthewsLeimkuhler and Matthews [2013,?] to integrate (15). In the reaction

coordinates (q,p), the BAOAB method is

(BA)


pn+1/2 = pn −

∆t

2

∂H(qn,pn+1/2)

∂q

qn+1/2 = qn +
∆t

2

∂H(qn,pn+1/2)

∂p

, (17)

(O)
{
p′n+1/2 = e−γ∆tpn+1/2 +

√
1− e−2γ∆tX ′(qn+1/2)T

√
kBMT Rt

, (18)

(AB)


qn+1 = qn+1/2 +

∆t

2

∂H(qn+1,p
′
n+1/2)

∂p

pn+1 = p′n+1/2 −
∆t

2

∂H(qn+1,p
′
n+1/2)

∂q

. (19)

3 Results and Discussion

We used our mixed-basis formulation to construct surrogates for the S0 PES and the Carte-

sian mapping function X(q). In an NVE framework, we compared the performance of the

mixed-basis surrogate to both on-the-fly full-dimensional Born–Oppenheimer molecular dy-

namics (BOMD)Helgaker et al. [1990], Uggerud and Helgaker [1992] and the previous state

of the art, which uses an all-polynomial interpolation basis.Liu et al. [2019] We then use

a Langevin thermostat to demonstrate that our mixed-basis surrogate produces accurate

temperature distributions and that azomethane isomerization is not likely to occur on the

S0 surface alone, even at high temperatures.
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3.1 Electronic structure of azomethane

All electronic structure calculations utilized the Gaussian 16 software packageFrisch et al.

[2016] with the B3LYP hybrid functionalBecke [1993,?], Lee et al. [1988], Stephens et al.

[1994] and the 6-311G* basis set.Krishnan et al. [1980] The computing environment was

Henry2, a high-performance computing cluster at North Carolina State University. Each

Gaussian instance used 16 cores on an Intel Xeon processor and was allocated 32GB RAM.

Further details on the electronic structure calculations are in Section 3.2 and the Supporting

Information.

One of the chemical properties of azomethane that is important to note is that its lowest-

energy electronic state depends on the C–N=N–C dihedral rotation. As illustrated by the

natural orbitals in Figure 4, the nitrogen lone-pair orbital and π∗ of nitrogen 2p orbitals

become degenerate in the ground state of azomethane when q1 = 90◦. Therefore, when the

PES is calculated with closed-shell restricted wavefunctions, we observe a sharp peak near

q1 = 90◦. In order to obtain a smooth PES, the stability testsBauernschmitt and Ahlrichs

[1996] of DFT wavefunctions were performed after each calculation.

Figure 4: Natural orbitals of azomethane for q1 = 180◦ and q1 = 90◦ at isovalue of 0.02
e1/2 (bohr)−3/2, where e denotes the charge of an electron, with occupation numbers. The
colors represent positive (blue) and negative (light grey) phases of the wavefunction.
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3.2 Constructing the surrogate PES

Each geometry is supplied to Gaussian in Cartesian coordinates, but the optimization uses

redundant internal coordinates. Each Gaussian job proceeds as follows: (1) stability check-

Bauernschmitt and Ahlrichs [1996] on wavefunction, (2) optimizationLi and Frisch [2006]

over remainder variables, (3) stability check, (4) optimization and frequency analysis, and

(5) stability check. The safeguards are to ensure that the relaxation over ξ found a true

minimum and that the lowest-energy wavefunction is selected. In this way, we can build sur-

rogates for ES0(q) and XS0(q). We provide sample Gaussian input files in the Supporting

Information.

The design variables, shown in Figure 2, are defined as follows:

1. q1 ∈ [−180, 180] is the C1–N1=N2–C2 dihedral angle;

2. q2 ∈ [−180, 180] is equal to the N2=N1–C1–H dihedral angle plus (q1 + 180), which we

will explain shortly;

3. q3 ∈ [−180, 180] is the N1=N2–C2–H′ dihedral angle;

4. q4 ∈ [1.1, 2.5] is the N1–C1 bond length; and

5. q5 ∈ [90, 270] is the N2=N1–C1 bond angle.

Angles are measured in degrees, and bond lengths in Å. The variables q1, q2, and q3 are

periodic, while q4 and q5 are nonperiodic. We do not freeze the other C–N distance or

N=N–C bond angle during geometry optimizations; scans along these parameters have a

single minimum which produced a continuous surface. Our aim is to study azomethane

photodynamics, and since the stepwise dissociation mechanism has been established in prior

work, we simply terminate the simulation when one C–N bond is broken. We allow q5 to

be linear or greater than 180◦ in order to capture methyl inversion, in accordance with

previous work.Cattaneo and Persico [2001, 1998] The lower bound on q4 and both bounds

on q5 were chosen to be the widest possible bounds without the molecule dissociating during
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the optimization process. We need a large enough domain on either side of the equilibrium

q5 value to capture the well. Furthermore, the PES is mostly flat in the q4 direction for

q4 > 2.5,Cattaneo and Persico [2001] so we truncated the domain to ensure that X(q) is

smooth; if q4 drifts beyond 2.5 Å during the course of an MD simulation, we consider the

molecule dissociated and terminate the simulation. The design variable q2 was originally not

part of our set of design variables but was added to maintain continuity of X(q).

Since the energy of a molecule is invariant with respect to translations or rotations of

the entire system, we must reconstruct the Cartesian geometries at the nodes in a consistent

manner in order to build X(q). Liu, Jakubikova, and Kelley used Kabsch alignment to

minimize the root-mean-squared deviation between each node and the global minimum.

However, their application was NH3 inversion, in which all atoms except nitrogen are moving

confluently; in our system, several atoms (e.g. N1, N2, C2) are mostly stationary. To obtain

consistent Cartesian geometries, we apply translations and rotations of the entire molecule

to place N1 at the origin, N2 on the positive x-axis, and C2 in Quadrant I of the xy-plane.

We then load these geometries into Tasmanian to construct X(q).

Since the molecule can be linear or q5 > 180 and since the Cartesian mapping function

X(q) must be smooth, we need to take special care to encode the geometry properly in our

input files. For a given sparse grid node qi, we apply the following transformations before

converting from internal coordinates to Cartesian:

1. If qi5 > 180, then we set qi1 ← 180 + qi1, qi2 ← 180 + qi2, and qi5 ← 360− qi5.

2. After Step 1, if qi5 < 180, we recover the N2=N1–C1–H dihedral by setting qi2 ←

qi2 − (qi1 + 180). This step is necessary to avoid multivalued geometries in the limit

q5 → 180. See the animations in the Supporting Information to view the effect on the

methyl group.

After finishing one batch sparse grid nodes, we examine the surrogate PESs by plot-

ting various 2-D slices and optimizing the geometry on the surface to a local minimum or
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transition state. We also animated 50 randomly generated one-dimensional trajectories by

restricting all but one design variable. We are able to examine slices to detect inaccuracies

since the interpolation basis functions are global rather than local. We refine the sparse grid

until (a) the calculated energies, relative to the trans- minimum, are within ∼5% of their

Gaussian-optimized value and (b) all animations are smoothly varying. We show two rep-

resentative slices near the global minimum in Figure 5. The Supporting Information (Table

S2) shows the energies and geometries at minima and saddle points for the highest level of

refinement, as well as a selection of animations of X(q).

Figure 5: Mixed-basis surrogate PESs for the singlet ground state.

3.3 NVE: Mixed vs. all-polynomial basis

We begin by subjecting the surrogates to a relatively easy test: an NVE simulation at the

trans- minimum on the S0 surface.Liu et al. [2019] We will compare full-dimensional on-

the-fly BOMD, a mixed-basis surrogate, and an all-polynomial surrogate. Table 1 shows the

initial geometry used for each flavor of surrogate. Ten initial velocities v(0) ∈ R3N are drawn

from a Boltzmann distribution at 298.15 Kelvin. These are immediately used to run on-the-

fly BOMD in Gaussian 16. For reduced-dimensional MD, we project the initial velocities

onto p(0) using the surrogate X(q) corresponding to the basis in use. We integrate up to

2.5 ps with step size ∆t = 0.1 fs.
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Table 1: Minimizers for the trans- conformer.

# nodes argmin (q1, q2, q3, q4, q5)
Gaussian — [180.00, 122.20, 122.20, 1.46, 113.00]

Mixed basis 7215 [−179.71, 121.91, 121.84, 1.46, 116.06]
All polynomial 17233 [−179.63, 137.91,−155.80, 1.47, 113.16]

When measuring energy conservation in an MD simulation, one first stores kinetic and

total energy at each time step. Then, the general heuristic is to want

σ({Ki + Vi})
σ({Ki})

≤ O(10−4) (20)

where σ denotes the standard deviation of the observations.Allen and Tildesley [2017] In

this way, the variation in total energy is normalized by the variation in kinetic energy, and

the heuristic threshold allows us to determine whether a method suitably conserves energy.

We computed these ratios for each run and method and show the results in Table 2. On-

the-fly BOMD uses the full 24 degrees of freedom, rather than the five degrees of freedom

in the reduced-dimensional surrogates, which contributes to the slightly higher conservation

ratio compared to the mixed basis. Nonetheless, the sample means for BOMD and mixed-

basis MD are within the usual bound, while that of the all-polynomial surrogate is orders of

magnitude too large. Furthermore, the runtime is much lower when using a surrogate model,

particularly for the mixed basis, which has the fastest turnaround time and lowest core usage.

The core-hour usage of mixed-basis NVE MD is an order of magnitude lower than that of

all-polynomial MD and two orders of magnitude lower than BOMD. In Figure 6, we show

the iteration history of total energy during one of polynomial-basis simulations. When each

jump occurs, at least one periodic design variables is near ±180◦.

In Figure 7 we show histograms for selected design variables, remainder variables, and

potential energy. Table 3 shows the mean, standard deviation, and range of each histogram.

We show the all-polynomial results for completeness, but we re-emphasize that the all-

polynomial surrogate does not conserve total energy. The degeneracy noted in Section 3.1
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Table 2: Statistics of energy conservation ratios for each method, along with performance.

BOMD Mixed basis All-polynomial
Mean 7.5× 10−4 1.8× 10−5 1.8× 10−1

Stdev 4.0× 10−4 1.2× 10−5 1.0× 10−1

Min 3.4× 10−4 6.2× 10−6 6.5× 10−2

Max 1.6× 10−3 4.5× 10−5 4.1× 10−1

Avg wall time (hr) 41.11 0.67 7.04
Cores 16 1 5

0 500 1000 1500 2000 2500
5

5.5

6

6.5

7

Figure 6: Solid line: total energy. Dotted lines: q1, q2, or q3 is within 0.03◦ of ±180◦.

20



does not appear in these BOMD results since q1 never drifts outside [167.4, 192.0]. For the

N=N distance, the distribution of the mixed-basis trajectory is tight around its mean value

since r(N=N) was optimized out when populating the sparse grid. For the design variables,

certain distributions appear to have roughly the correct shape but are shifted right or left

from BOMD. This is due to the surrogate PESs having slightly different equilibrium values

for the trans- minimum.

Since both reduced-dimensional surrogates use less than the full 3N − 6 internal coordi-

nates, while BOMD uses all of them, we estimate the contribution of the remainder variables

ξ in a manner analogous to Liu and coworkers.Liu et al. [2019] At time step i, we add the

contributions from ξ by setting

V corrected
i = V surrogate

i + ηi

where ηi is a uniform random variable on the interval [0,HBOMD−Hsurrogate]. Ideally, we would

isolate the effects of the BOMD framework from the usage of additional design variables (i.e.

by using a full-dimensional surrogate PES), but constructing the full 24-dimensional PES is

computationally infeasible. As a result, the corrected distributions for V (q) in Figure 7 do

not match BOMD exactly.

3.4 Langevin thermostat

In this section, we focus only on the mixed-basis surrogate since it has been demonstrated

that a polynomial surrogate will not properly capture energy when crossing a periodic bound-

ary. We wish to study the effect of temperature on azomethane geometry. We start at the

trans- minimum on the S0 surface and integrate to 40 ps with a time step of ∆t = 0.05

fs at various target temperatures T .5 The time step needs to be suitably small for New-

ton’s method to converge. We used a relatively modest value for the friction coefficient,
5We determined to need ∆t = 0.05 fs for T = 3000 K, and we used it in all runs for consistency.
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Figure 7: Histograms of selected design variables, remainder variables, and potential energy.

Table 3: Statistics from NVE MD trajectories.

BOMD Mixed basis All-polynomial

q1 (deg)
mean 180.0 180.3 179.9
stdev 4.0 3.7 5.8
range [167.4, 192.0] [168.0, 192.3] [159.3, 198.6]

q2 (deg)
mean 122.2 122.1 140.8
stdev 11.0 8.5 5.7
range [77.6, 178.0] [95.3, 147.7] [119.5, 159.1]

q4 (Å)
mean 1.47 1.46 1.47
stdev 0.02 0.03 0.03
range [1.39, 1.56] [1.37, 1.56] [1.37, 1.59]

q5 (deg)
mean 112.9 115.9 113.2
stdev 1.9 2.1 2.5
range [106.9, 119.6] [110.4, 121.0] [106.1, 121.2]

r(N=N) (Å)
mean 1.24 1.23 1.23
stdev 0.013 0.001 0.013
range [1.19, 1.28] [1.22, 1.23] [1.19, 1.28]

V (q) (kcal/mol)
mean 3.8 4.6 4.8
stdev 1.5 2.8 2.4
range [0.00, 8.9] [0.02, 12.56] [0.03, 12.53]
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γ = 0.01 fs−1.Liu et al. [2019], Cattaneo and Persico [1998] Initial velocities are drawn from

a Boltzmann distribution at temperature T and then projected onto p(0).

We show the results in Figure 8. The average runtime of each thermostat simulation was

22.9 hours on XSEDE Bridges-2 with a single core.Towns et al. [2014], Nystrom et al. [2015]

To demonstrate the reconstruction of the full Cartesian geometry with X(q), the Supporting

Information contains an animation of the geometry evolution after thermal equilibration.

Even 3000 K is not hot enough to overcome the torsion transition structure (q1 ≈ 90).

Furthermore, the dissociation energy of the C1–N1 bond is lower than the energy barrier

of the torsion transition state.Cattaneo and Persico [2000] As a result, isomerization is not

energetically favorable via S0 and temperature alone. In Figure 8(b), we have plotted the

sample means and standard deviations of ensemble temperature versus their theoretical

expectation values. Instantaneous temperature T (q,p) is related to kinetic energy K(q,p)

by

T (q,p) =
2K(q,p)

d kB

where d is the number of design variables. From the equipartition theorem,Münster [1969]

maximum likelihood estimators for the mean and standard deviation of T are given by

µ(T ) = T

σ(T ) =
√

2/d T

where T is the target temperature of the thermostat. The theoretical and observed statistics

agree closely with each other.

4 Conclusions

We have presented a mixed-basis interpolation algorithm that uses trigonometric interpola-

tion on periodic design variables and polynomial interpolation on nonperiodic design vari-
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Figure 8: Left: Geometry distribution (solid) and average total energy (dashed lines) at
different temperatures. Right: Predicted (lines) and observed (dots/triangles) statistical
values for temperature.

ables. Unlike previous methods, it is not limited to molecules with purely periodic or purely

nonperiodic reaction coordinates, and therefore is an improvement over the prior state of

the art (same-basis interpolation) and widely generalizable to different systems. The results

demonstrate that our method conserves total energy within accepted tolerances, is compu-

tationally efficient, and accurately reproduces the temperature distribution of a thermostat

in a reduced-dimensional MD framework. The Python codes for mixed-basis interpolative

PES approximation and reduced-dimensional MD are freely available on GitHub.4

This work has investigated only the lowest-lying singlet state of azomethane, but it is

known that light-induced S0 → S1 excitation is a likely isomerization and decomposition

pathway for azomethane.Sellner et al. [2010], Cattaneo and Persico [2001, 1998] An extension

of our surrogate PES approximation will be to implement the fewest-switches surface hopping

(FSSH) algorithm of TullyTully [1990], Nance [2015] in a reduced-dimensional setting.

Supporting Information Available

Mathematical details of sparse interpolation and example Gaussian input files (pdf). Data

for trigonometric and polynomial PESs (xlsx). Animations of selected geometry trajectories
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(mp4).
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