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We introduce the use of deep learning ensembles for real-time, gravitational wave detection of
spinning binary black hole mergers. This analysis consists of training independent neural networks
that simultaneously process strain data from multiple detectors. The output of these networks is then
combined and processed to identify significant noise triggers. We have applied this methodology in
02 and O3 data finding that deep learning ensembles clearly identify binary black hole mergers in
open source data available at the Gravitational-Wave Open Science Center. We have also
benchmarked the performance of this new methodology by processing 200 hours of open source,
advanced LIGO noise from August 2017. Our findings indicate that our approach identifies real
gravitational wave sources in advanced LIGO data with a false positive rate of 1 misclassification for
every 2.7 days of searched data. A follow up of these misclassifications identified them as glitches. Our
deep learning ensemble represents the first class of neural network classifiers that are trained with
millions of modeled waveforms that describe quasi-circular, spinning, non-precessing, binary black hole
mergers. Once fully trained, our deep learning ensemble processes advanced LIGO strain data faster than
real-time using 4 NVIDIA V100 GPUs.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The advanced LIGO [1] and Virgo [2] detectors have reported
over fifty gravitational wave observations by the end of their third
observing run [3]. Gravitational wave detection is now routine. It
is then timely and necessary to accelerate the development and
adoption of signal processing tools that minimize time-to-insight,
and that optimize the use of available, oversubscribed computa-
tional resources.

Over the last decade, deep learning has emerged as a go-to tool
to address computational grand challenges across disciplines. It is
extensively documented that innovative deep learning applications
in industry and technology have addressed big data challenges that
are remarkably similar to those encountered in gravitational wave
astrophysics. It is then worth harnessing these developments to
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help realize the science goals of gravitational wave astrophysics in
the big data era.

The use of deep learning to enable real-time gravitational wave
observations was first introduced in [4] in the context of simu-
lated advanced LIGO noise, and then extended to real advanced
LIGO noise in [5,6]. Over the last few years this novel approach
has been explored in earnest [7-25]. However, several challenges
remain. To mention a few, deep learning detection algorithms con-
tinue to use shallow signal manifolds which typical involve only
the masses of the binary components. There is also a pressing need
to develop models that process long datasets in real-time while
ensuring that they keep the number of misclassifications at a min-
imum. This article introduces the use of deep learning ensembles
to address these specific issues.

We showcase the application of this approach by identifying all
binary black hole mergers reported during advanced LIGO’s second
and third observing runs. We also demonstrate that when we feed
200 hours of advanced LIGO data into our deep learning ensem-
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ble, this method is capable of clearly identifying real events, while
also significantly reducing the number of misclassifications to just
1 for every 2.7 days of searched data. When we followed up these
misclassifications, we realized that they were loud glitches in Liv-
ingston data.

1.1. Executive summary
At a glance the main results of this article are:

e We introduce the first class of neural network classifiers that
sample a 4-D signal manifold that describes quasi-circular,
spinning, non-precessing binary black hole mergers.

e We use deep learning ensembles to search for and detect real
binary black hole mergers in open source data from the second
and third observing runs available at the Gravitational-
Wave Open Science Center [26].
Our deep learning ensemble is used to process 200 hours of
open source advanced LIGO noise, finding that this method-
ology: (i) processes data faster than real-time using a sin-
gle GPU; (ii) clearly identifies real events in this benchmark
dataset; and (iii) reports only three misclassifications that are
associated with loud glitches in Livingstone data.

This paper is organized as follows. Section 2 describes the ar-
chitecture of the neural networks used to construct the ensemble.
Section 3 summarizes the modeled waveforms and real advanced
LIGO noise used to train the ensemble. We summarize our results
in Section 4, and outline future directions of research in Section 5.

2. Neural network architecture

It is now well established that the design of a neural net-
work architecture is as critical as the choice of optimization
schemes [27,28]. Based on previous studies we have conducted to
denoise real gravitational wave signals [29], and to characterize the
signal manifold of quasi-circular, spinning, non-precessing, binary
black hole mergers [19,30], we have selected WaveNet [31] as the
baseline architecture for gravitational wave detection. As we de-
scribe below, we have modified the original architecture with a
number of important features tailored for signal detection.

2.1. Primary architecture

WaveNet [31] has been extensively used to process waveform-
type time-series data, such as raw audio waveforms that mimic
human speech with high fidelity. It is known to adapt well to
time-series of high sample rate, as its dilated convolution layers al-
low larger reception fields with fewer parameters, and its blocked
structure allows response to a combination of frequencies ranges.

Since we are using WaveNet for classification instead of wave-
form generation, we have removed the causal structure of the
network described in [31]. The causal structure of WaveNet is
modeled with a convolutional layer [32] with kernel size 2, and by
shifting the output of a normal convolution by a few time steps.
However, in this paper we adopt convolutional layers with kernel
size 3, so that the neural network will take into consideration both
past and future information when deciding on the label at the cur-
rent time step. We also dilate the convolutional layers to get an
exponential increase in the size of the receptive field [33]. This is
necessary to capture long-range correlations, as well as to increase
computational efficiency. By construction, WaveNet utilizes deep
residual learning, which is specifically tailored to train deeper neu-
ral network models [34]. The structure of WaveNet is described in
detail in [33]. Below we describe tailored, WaveNet-based archi-
tectures for gravitational wave detection.
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2.2. WaveNet architecture |

Model 1 processes Livingston and Hanford strain data using
two independent WaveNet models. Then the output of the two
WaveNets is concatenated, and fed into the last two convolutional
layers. Finally, a sigmoid transformation is applied to ensure that
the output values are in the range of [0, 1]. The network structure
is shown in Fig. 1.

2.3. WaveNet architecture Il

Model II is essentially the same shown in Section 2.2, except
that the input now consists of 1s long strain data sampled at 4096
Hz. Additionally, we reduce the depth of the model by cutting
down to 4 residual blocks, and reduce the number of filters, and
revert back to kernel size 2.

3. Data curation

In this section we describe the modeled waveforms used for
training, and the strategy followed to combine these signals with
real advanced LIGO noise.

3.1. Modeled waveforms

We train our neural networks using SEOBNRv3 waveforms [35].
Our datasets consist of time-series waveforms that describe the
last second of evolution that includes the late inspiral, merger
and ringdown of quasi-circular, spinning, non-precessing, binary
black hole mergers. Each waveform is produced at a sample rate of
16384 Hz and 4096 Hz. The parameter space covered for training
encompasses total masses M € [SMg, 100Mg], mass-ratios g < 5,
and individual spins sfu} € [—0.8, 0.8]. The sampling of this 4-D
parameter space is shown in Fig, 2. It is worth pointing out that
even though these models cover a total mass range M < 100Mg,
our models are able to generalize, since they can clearly iden-
tify the O3 event GW190521, which has an estimated total mass
M ~ 142M, [36].

We consistently encode ground truth labels for waveforms in
a binary manner, where data points before the amplitude peak of
every waveform are labeled as 1, while the data points after the
merger are labeled as 0. In other words, the change from 1's to 0's
indicates the location of the merger.

3.2. Advanced LIGO noise for training

We prepare the noise used for training by selecting continu-
ous segments of advanced LIGO noise from the Gravitational
Wave Open Science Center [26], which are typically 4096
seconds long. None of these segments include known gravitational
wave detections. These data are used to compute noise power
spectral density (PSD) estimates [37] that are used to whiten
both the strain data and the modeled waveforms. Thereafter, the
whitened strain data and the whitened modeled waveforms are
linearly combined, and a broad range of signal-to-noise ratios are
covered to encode scale invariance in the neural network. We then
normalize the standard deviation of training data that contain both
signals and noise to one.

We also encode time-invariance into our training data, which is
critical to correctly detect signals in arbitrarily long data stream ir-
respective of their locations. For every one second long segments
with injections used for training, the injected waveform is located
at a random location, with the only constraint that its peak must
locate inside the second half of the 1s-long input time series. To
improve the robustness of the trained model, only 40% of the sam-
ples in the training set contain GW signals, while the rest 60%
samples are advanced LIGO noise only.
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Fig. 1. Architecture of our WaveNet detection algorithm. The input and output are tensors of shape batch_size x 1 x model, where model = {16384, 4096}.

We present a more detailed description of the training approach
for Model I and Model II below.

3.2.1. Training for Model I

Model 1 is trained on three 4096s-long data segments with
starting GPS time 1186725888, 1187151872, and 1187569664.
After we whitened the three segments separately with the cor-
responding PSD, we truncated 122s-long data from each end of
the segment to remove edge effects. The neural network trained
this way is able to successfully detect the gravitational wave events
GW170104, GW170729, GW170809, GW170814, GW170817,
GW170818, GW170823, GW190412.

This neural network is also able to detected GW170608 and
GW190521 after further trained on advanced LIGO data close
to these two events. Specifically, to detect GW170608, the neu-
ral network is further trained on two 4096s-long data segments
with starting GPS time 1178181632, and 1180983296. Similarly,
to detect GW190521, the neural network is further trained on the
2048s-long data segments around GW190521.

The input to the neural network is a 1s-long 16384 Hz data
segment, with two channels from Livingston and Hanford obser-
vatories. The output of the neural network has one channel and
is of the same length as the input. The output is 1 when there
is signal at the corresponding location in the input, and O other-
wise.

To ensure that signals contaminated by advanced LIGO noise
generate long enough responses, we make sure that the flat peak
of the neural network output is located in the second half of the
1s-long input. In other words, when there is a signal in the second

half of the 1s-long input, the ground-truth output would be a peak
of width of at least 8192. Furthermore, to ensure that all possible
signal peaks appear in the second half of the input data segment,
we feed the test data into the neural network with a step size of
8192, i.e,, we crop out 1ls-long data segment of size 16384 every
8192 data points.

To constrain the output of the neural network in the range
[0,1], we apply the sigmoid function s(x) = 1/(1 + exp(—x))
element-wise on the final output from neural network, as shown
in Fig. 1. We use the binary cross entropy loss to evaluate the pre-
diction of the neural network when compared to ground-truth val-
ues. Finally, to avoid possible overfitting, we augment the training
data by reversing the 1s-long data segments in the time dimension
with a probability of 0.5.

3.2.2. Training for Model I

Model Il did not require fine-tuning on advanced LIGO data
around any specific events, i.e., it was able to detect all 02 and
03 events after the initial round of training which, as mentioned
above, consisted of three 4096s-long data segments with start-
ing GPS time 1186725888, 1187151872, and 1187569664. Further-
more, data augmentation of training data by randomly reversing
the 1s long input strains was not employed.

3.3. Optimization methodology
Model I The neural networks are trained on 4 NVIDIA K80 GPUs

in the Bridges-Al system [38], and also on 4 NVIDIA V100 GPUs
in the Hardware Accelerated Learning (HAL) deep learning clus-
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Fig. 2. Sampling of the component mass and individual spin parameter space
(my, my, s7, s3) for training and testing.

ter [39], with PyTorch [40]. We use ADAM [41] optimization, and
binary cross entropy as the loss function. The weight parameters
are initialized randomly. The learning rate is set to 10™4.

Model Il Model II is trained on 8 NVIDIA V100 GPUs in the HAL
cluster [39] with Tensorflow [42], once again using ADAM [41]
optimizer with binary cross entropy as the loss function. Similarly,
the weights are initialized randomly, the initial learning rate is set
to 107*, and a step-wise learning rate scheduler is employed to
attempt a more fine-grained convergence to a minimum of the loss
function.

Sigmoid Layer Output (16KHz)
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3.4. Post-processing

Once the models process advanced LIGO strain data, their out-
puts are post-processed as follows.

3.4.1. Post-processing for Model |

In the training set, for all input samples with gravitational
waves, their labels will always have 1's before the merger and 0’s
after the merger, and because we always place the merger in the
second half of the input time series, the length of the 1's will be
at least 8192. Therefore, if the input 1s-long data strain contains
a gravitational wave, the output of the neural network would be
a peak with a height of 1 and a width of at least 8192. Based
on this setup, the output of the neural network will be further
fed into the off-the-shelf peak detection algorithm find peaks
provided by SciPy. The algorithm will then output the locations
of possible peaks that satisfy the conditions of at least 0.9995 in
height and 8192 in width. To avoid possible overcounting, we also
assume that there is at most one signal in a 5s-long window. Fur-
thermore, since a GW signal will induce a flat (all 1’s) and wide (at
least 8192 in length) peak in the neural network output, we also
use an additional criterion that 94% of the outputs between the
left and right boundaries of the detected peak be greater than 0.99
to further reduce the false alarms. To showcase the application of
this approach for real events, the left panel of Fig. 3 presents the
output of Model I for the event GW170809.

3.4.2. Post-processing for Model 11

In the post-processing, the conditions for £ind peaks algo-
rithm were changed to 0.99993 and 2048 for height and width
respectively. Also, the additional criterion was relaxed so that only
95% of the outputs between the left and right boundaries of the
detected peak be greater than 0.95. The right panel of Fig. 3
presents the post-processing output of Model II for the event
GW170809.

3.4.3. Post-processing of deep learning ensemble

Finally, we combine the output of the deep learning models to
identify noise triggers that pass a given threshold of detectabil-
ity for each model. We do this by comparing the GPS times for
all triggers between each model. By definition (in the separate
post-processing for each model), each model can only produce at
most one trigger every 5 seconds. Hence, when combining the
triggers from the two models, any triggers more than 5 seconds
apart can be dropped as random False Alarms. In fact, since each
model is extremely precise at identifying the merger location, we
apply a much stricter criterion, namely, i.e., any triggers more than
1/128 seconds apart between the two models are dropped as False

Sigmoid Layer Output (4KHz)

0.0- W Lk
00 02 04 06 08 10 12 14
Time [s]

Fig. 3. Post-processing output of Model I, left panel, and Model II, right panel, for the event GW170809, Notice that we have zoomed in to show the neural network response

in the vicinity of the waveform signal.
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Fig. 4. Detection output of our deep learning ensemble for GW170104, top left; GW170818, top right; GW190412, bottom left; and GW190521, bottom right. Notice that our
ensemble identifies all these events with no false positives in minutes and hour-long datasets.
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Fig. 5. Output of our deep learning ensemble upon processing Livingston and Hanford data between August 5-16, 2017. This methodology identifies the two real events
contained therein, while also indicating the existence of three false positives, associated to loud glitches in the Livingston channel. Every tick represents a day. These data

were processed within 14 hours using 4 NVIDIA V100 GPUs.

Alarms, whereas triggers within 1/128 seconds of each other are
counted as a single Positive Detection.

In the following section we use this approach to search for
gravitational waves in minutes, hours, and hundreds of hours long
real advanced LIGO data.

4. Results

In this section we present results for the performance of our
deep learning ensemble to search for and detect binary black hole
mergers in 02 and 03 data. These results are summarized in Fig. 4,
and Fig. 7 in Appendix A.

Fig. 4 shows that our deep learning ensemble can detect 02 and
03 events without any additional false positives in the minutes
or hour-long datasets released at the Gravitational-Wave
Open Science Center containing these events. Similar results
may be found in Fig. 7 in Appendix A. To the best of our knowl-
edge this is the first time deep learning is used to search for and
detect real events, while also reducing the number of false pos-

itives at this level, in hours-long datasets. Notice also that our
method can generalize to detect events that are beyond the param-
eter space used to train our neural networks. This is confirmed by
the detection of GW190521, bottom right panel in Fig. 4, which has
an estimated total mass M ~ 142M,, whereas our training dataset
covered systems with total mass M < 100Mg.

While this is a significant result, it is also essential to bench-
mark the performance of our approach using much longer datasets.
We have done this by processing 200hrs of advanced LIGO noise
from August 2017. We feed these data into our deep learning en-
semble to address two issues: (i) the sensitivity of the ensemble to
real events in long datasets; and (ii) quantify the number of false
positives, and explore the nature of false positives to gain addi-
tional insights into the response of our deep learning ensemble to
both signals and noise anomalies. The results of this analysis are
presented in Fig. 5.

At a glance, Fig. 5 indicates that our approach identifies
two real events contained in this 200hr-long dataset, namely,
GW170809 and GW170814. These two events are marked with
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Fig. 6. Left panel: normalized L-channel spectrograms around three false positives and GW170809, Right panel: as left panel, but now for the detection output of Model II.

red lines in Fig. 5. We also notice that our ensemble indicates the
existence of three additional noise triggers, marked by blue and

yellow lines, which are worth following up.

We have looked into these three noise triggers to figure out

why they were singled out by our deep learning ensemble. We

present spectrograms and the response of Model II to these events
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Fig. 7. Detection output of our deep learning ensemble for GW170608, top left; GW170729, top right; GW170809, middle left; GW170814, middle right; and GW170823,
bottom panel. Notice that our ensemble identifies all these events with no false positives in minutes and hour-long datasets.

in Fig. 6. As shown in the left panels of this figure, all three false
positives are caused by loud glitches in Livingston data. Another
interesting result we observe in these panels is that the response
of our deep learning models to these false positives is different
to real events, as shown in the bottom panels of Fig. 6; see also
Fig. 3. Note that the response of our neural networks for real
events is sharp-edged, whereas the neural networks' response to
noise anomalies is, at best, jagged. This is an additional feature
that may be used to tell apart real events from other noise anoma-
lies.

In summary, we have designed a deep learning ensemble that
can identify binary black hole mergers in 02 and O3 data. Our
benchmark analyses indicate that our ensemble can process 200
hrs of advanced LIGO noise within 14 hours using one node in the
HAL cluster, which consists of 4 NVIDIA V100 GPUs. We have found
that this approach identifies real events in advanced LIGO data, and
produces 1 misclassification for every 2.7 days of searched data.
We have also found that our ensemble can generalize to astro-
physical signals whose parameters are beyond the parameter space
used for training, which furnishes evidence for the ability of our
models to generalize to new signals.

This new method lays the foundation for the design of a
production scale deep learning pipeline for gravitational wave
searches, which we will present in an upcoming publication.

5. Conclusions

We have introduced neural networks that cover a 4-D signal
manifold that describe quasi-circular, spinning, non-precessing bi-
nary black hole mergers. We have shown that the use of deep
learning ensembles enables the detection of 02 and O3 binary
black hole mergers. We have also demonstrated that when this
method is applied to hundreds of hours of advanced LIGO noise,
we can identify real events contained in these data nearly ten
times faster than real-time, with the additional advantage of re-
ducing the number of false positives to about one for every 2.7
days of searched data.

Future work will build upon this framework, enlarging the pa-
rameter space so as to cover a wider range of astrophysical sources
that are detectable by advanced ground-based detectors, including
binary neutron stars and neutron star-black hole mergers, the lat-
ter being enhanced by early warning detection methods [25].
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As data associated with new gravitational wave detections
become available through the Gravitational-Wave Open
Science Center, it will be feasible to better tune detection
thresholds in these models, which at this point are experimen-
tal in nature. It may also be possible to start using real events for
training purposes, which will increase the sensitivity of deep learn-
ing searches. In brief, deep learning methods are at a tipping point
of enabling accelerated gravitational wave detection searches.
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Appendix A. Additional 02 and 03 binary black hole mergers

We present the output of our deep learning ensemble for 02
and 03 binary black hole merger detections—see Fig. 7. Note that
as we discussed in the main body of the article, our approach
identifies these events, and produces no false positives over the
minutes and hour-long datasets containing these real events.

References

[1] The LIGO Scientific Collaboration, |. Aasi, et al, Class, Quantum Gravity 32
(2015) 074001, arXiv:1411.4547 [gr-qc].

[2] F. Acernese, et al., Class. Quantum Gravity 32 (2015) 024001.

[3] R. Abbott, et al., arXiv:2010.14527 [gr-qc], 2020.

[4] D. George, E.A. Huerta, Phys. Rev. D 97 (2018) 044039, arXiv:1701.00008 [astro-
ph.IM].

[5] D. George, H. Shen, E. Huerta, in: NiPS Summer School 2017, 2017, arXiv:1711.
07468 [astro-ph.IM].

Physics Letters B 812 (2021) 136029

[6] D. George, E. Huerta, Phys. Lett. B 778 (2018) 64.

[7] H. Gabbard, M. Williams, F. Hayes, C. Messenger, Phys. Rev. Lett. 120 (2018)
141103, arXiv:1712.06041 [astro-ph.IM].

[8] V. Skliris, M.R. Norman, PJ. Sutton, arXiv preprint, arXiv:2009.14611, 2020.

[9] Y.-C. Lin, J.-H.P. Wu, arXiv preprint, arXiv:2007.04176, 2020.

[10] H. Wang, S. Wu, Z. Cao, X. Liuy, J.-Y. Zhu, Phys. Rev. D 101 (2020) 104003, arXiv:
1909.13442 [astro-ph.IM].

[11] H. Nakano, T. Narikawa, K-i. Oohara, K. Sakai, H.-a. Shinkai, H. Takahashi,
T. Tanaka, N. Uchikata, S. Yamamoto, T.S. Yamamoto, Phys. Rev. D 99 (2019)
124032, arXiv:1811.06443 [gr-qc].

[12] X. Fan, J. Li, X. Li, Y. Zhong, ]. Cao, Sci. China, Phys. Mech. Astron. 62 (2019)
969512, arXiv:1811.01380 [astro-ph.IM].

[13] X-R. Li, G. Babu, W.-L. Yu, X.-L. Fan, Front. Phys. (Beijing) 15 (2020) 54501,
arXiv:1712.00356 [astro-ph.IM].

[14] D.S. Deighan, S.E. Field, C.D. Capano, G. Khanna, arXiv:2010.04340 [gr-qc], 2020.

[15] A.L. Miller, et al., Phys. Rev. D 100 (2019) 062005, arXiv:1909.02262 [astro-ph.
IM].

[16] P.G. Krastev, Phys. Lett. B 803 (2020) 135330, arXiv:1908.03151 [astro-ph.IM].

[17] M.B. Schifer, F. Ohme, A.H. Nitz, Phys. Rev. D 102 (2020) 063015, arXiv:2006.
01509 [astro-ph.HE].

[18] C. Dreissigacker, R. Prix, Phys. Rev. D 102 (2020) 022005, arXiv:2005.04140 [gr-
qcl.

[19] A. Khan, E. Huerta, A. Das, Phys. Lett. B 808 (2020) 0370, arXiv:2004.09524
[gr-qc].

[20] C. Dreissigacker, R. Sharma, C. Messenger, R. Zhao, R. Prix, Phys. Rev. D 100
(2019) 0440009, arXiv:1904.13291 [gr-qc].

[21] B. Beheshtipour, M.A. Papa, Phys. Rev. D 101 (2020) 064009, arXiv:2001.03116
[gr-qc].

[22] V. Skliris, M.RK. Norman, PJ. Sutton, arXiv:2009.14611 [astro-ph.IM], 2020.

[23] S. Khan, R. Green, arXiv preprint, arXiv:2008.12932, 2020.

[24] AJ.K Chua, CR. Galley, M. Vallisneri, Phys. Rev. Lett. 122 (2019) 211101.

[25] W. Wei, E.A. Huerta, arXiv:2010.09751 [gr-qc], 2020.

[26] M. Vallisneri, ]. Kanner, R. Williams, A. Weinstein, B. Stephens, in: Proceed-
ings, 10th International LISA Symposium, Gainesville, Florida, USA, May 18-23,
2014, ]. Phys. Conf. Ser. 610 (2015) 012021, arXiv:1410.4839 [gr-qc].

[27] M. Raissi, P. Perdikaris, G.E. Karniadakis, arXiv:1711.10561 [cs.Al], 2017,

[28] M. Raissi, P. Perdikaris, G.E. Karniadakis, arXiv:1711.10566 [cs.Al], 2017.

[29] W. Wei, E.A. Huerta, Phys. Lett. B 800 (2020) 135081, arXiv:1901.00869 [gr-qc].

[30] Khan Asad, E.A. Huerta, Arnav Das, A deep learning model to characterize the
signal manifold of quasi-circular, spinning, non-precessing binary black hole
mergers, https://doi.org/10.26311/8wnt-3343, 2020.

[31] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O, Vinyals, A. Graves, N,
Kalchbrenner, A. Senior, K. Kavukcuoglu, arXiv:1609.03499 [cs.SD], 2016.

[32] A. Krizhevsky, 1. Sutskever, G.E. Hinton, in: Advances in Neural Information Pro-
cessing Systems, 2012, pp. 1097-1105.

[33] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O, Vinyals, A. Graves, N,
Kalchbrenner, A. Senior, K. Kavukcuoglu, Wavenet: a generative model for raw
audio, arXiv:1609.03499 [cs.SD], 2016.

[34] K. He, X. Zhang, S. Ren, J. Sun, in: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016, pp. 770-778.

[35] Y. Pan, A. Buonanno, A. Taracchini, LE. Kidder, A.H. Mroué, H.P. Pfeiffer, M.A.
Scheel, B, Szildgyi, Phys. Rev. D 89 (2014) 084006, arXiv:1307.6232 [gr-qc].

[36] R. Abbott, et al., LIGO Scientific, Virgo, Phys. Rev. Lett. 125 (2020) 101102,
arXiv:2009.01075 [gr-qc].

[37] S.A. Usman, et al., Class. Quantum Gravity 33 (2016) 215004, arXiv:1508.02357
[gr-qc].

[38] XSEDE, Bridges-Al, https://portal xsede.org/psc-bridges.

[39] NCSA, HAL cluster, https://wiki.ncsa.illinois.edu/display/ISL20/HAL+cluster.

[40] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmai-
son, L. Antiga, A. Lerer, (2017).

[41] D.P. Kingma, ]. Ba, arXiv preprint, arXiv:1412.6980, 2014.

[42] M. Abadi, P. Barham, ]. Chen, Z. Chen, A, Davis, J. Dean, M, Devin, S, Ghemawat,
G. Irving, M. Isard, M. Kudlur, ]. Levenberg, R. Monga, S. Moore, D.G. Murray,
B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, X. Zheng, in:
Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation, OSDI'16, USENIX Association, 2016, pp. 265-283.



